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ABSTRACT

Scaling laws predict the loss of a target machine learning model by extrapolating
from easier-to-train models with fewer parameters or smaller training sets. This
provides an efficient way for practitioners and researchers alike to compare pre-
training decisions involving optimizers, datasets, and model architectures. Despite
the widespread use of scaling laws to model the dynamics of language model
training, there has been little work on understanding how to best estimate and
interpret them. We collect (and release) a large-scale dataset containing losses and
downstream evaluations for 485 previously published pretrained models. We use
these to estimate more than 1000 scaling laws, then derive a set of best practices
for estimating scaling laws in new model families. We find that fitting scaling laws
to intermediate checkpoints of training runs (and not just their final losses) substan-
tially improves accuracy, and that—all else equal—estimates of performance are
generally most accurate when derived from other models of similar sizes. However,
because there is a significant degree of variability across model seeds, training
multiple small models is sometimes more useful than training a single large one.
Moreover, while different model families differ in scaling behavior, they are often
similar enough that a target model’s behavior can be predicted from a single model
with the same architecture, along with scaling parameter estimates derived from
other model families.

1 INTRODUCTION

Substantial effort and cost are required to train even a single large language model (LLM).1 There is
thus an acute need for efficient decision-making aids that can evaluate the effectiveness of proposed
changes to language models’ architecture or training data without full-scale training runs. While
there is a large body of work that motivates or evaluates these changes using small models (Warstadt
et al., 2023; Hillier et al., 2024), synthetic tasks (Akyürek et al., 2024; Wortsman et al., 2023) or
theory (Jelassi et al., 2024), one of the most important tools for current practitioners is the estimation
of scaling laws for LLMs (Ivgi et al., 2022; Dubey et al., 2024).

A scaling law extrapolates the performance of a target model from the performance of a set of models
with fewer parameters or smaller training sets. Typically, this extrapolation requires models to belong
to the same model family, differing only in parameter count and training set size, but using the
same architecture and training distribution. A high-quality scaling law accurately predicts the target
model’s test performance (Rosenfeld et al.; Kaplan et al., 2020; Hoffmann et al., 2022).

Most past work describing and characterizing scaling laws has begun by exhaustively training
models in a family across a full range of dataset sizes and parameter counts. One question that
has received comparatively little attention is how, when training a new LLM, a practitioner with
limited computational resources should choose which small-scale models to train in order to best
estimate a target model’s final performance. This paper offers a practical guide to when, and how,
to use small models to efficiently obtain meaningful predictions about large models’ behavior—
maximizing prediction reliability while minimizing the budget for preliminary experimentation,
which necessarily involves tradeoffs between the number of preliminary models trained, the size of
the largest preliminary model, and size of the dataset used to train it.

1Code, data and full numbers are found in our repository
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We begin by collecting diverse model data to perform a large-scale meta-analysis of scaling laws (§3).
Usually, scaling law research relies on a single collection of closely related models, or alters only a
minimal aspect of pretraining (e.g. data size; Muennighoff et al., 2024). Instead, we gather data from
as diverse a set of scaled families as possible, to allow this and future meta-analysis of scaling laws
that generalize across architectures, datasets and settings.

The rest of the paper uses this data to analyze a number of key questions around scaling law estimation:

1. How reliably may we expect scaling laws to extrapolate? Variation between random
parameter initializations can produce changes of up to 4% in loss. Most published improve-
ments in pretraining procedures, when performing minimal controlled experiments, report
loss changes between 4% and 50% (§4).

2. How much does the shape of scaling laws vary across model families? Different model
families have scaling laws with a different functional dependence on model size (§5).
However, transformer LMs are similar enough that, with a single model from a target family
and a scaling law from a different model family, it is sometimes possible to accurately
estimate target model performance (§5.1).

3. Must scaling laws be estimated only from fully trained models? Even though optimiza-
tion procedures are typically sensitive to the full size of a training run, estimating scaling
laws from intermediate training checkpoints greatly improves scaling law fit (§6). It is
generally possible to estimate a model’s final loss beginning roughly 1/3 of the way through
training.

4. How large must models be to produce reliable scaling estimates? All else equal, experi-
menting with large models is typically more useful than with small models (§7), but may be
outweighed by the benefits of reduced variance from training more, smaller models (§8).

5. Taken together, cost-effective estimation of a scaling law should consider the number of
models, the size of the models, and the number of training tokens for each model. We
highlight those size, tokens and number of models effects in Fig. 2.

Our experiments also provide insight into the functional form of scaling laws themselves, suggesting
that they may have fewer degrees of freedom (§9) than typically assumed. We conclude with
discussion of other work on scaling law estimation that may be of interest to practitioners §10.

2 DEFINING A SCALING LAW

A scaling law estimates the loss of a costly model by training cheaper ones (see Fig. 1) which share
a pretraining procedure and differ by some hyperparameters, typically model size (#params) and
number of tokens seen during training (#toks). A scaling law is a function that predicts a target
model’s loss on held-out data when setting the value of one hyperparameter (Kaplan et al., 2020) or
both (Rosenfeld et al.; Hoffmann et al., 2022). Comparing laws’ predictions about different pretraining
choices (e.g. data Ge et al., 2024) allows informed decisions about which large-scale model to train.

Model #params

M
odel #toks

M
odel Perform

ance L

f model

ARE
L(t)

L(t)

Figure 1: Illustration of a scaled fam-
ily, an estimated scaling law, and its
prediction error for a target model.

A scaling law also enables finding the optimal choice of
hyperparameters under computational constraints on pre-
training (Hoffmann et al., 2022) or inference (Touvron et al.,
2023; Sardana et al.).

Formally, we will call a model f any single concrete neu-
ral language model with a specific set of parameters. Dif-
ferent seeds, or even different checkpoints from the same
training run, correspond to different models. We define a
scaled model family f as a set of models, with each f ∈ F
differing only in size #params(f) and number of tokens
#toks(f).

There are two specific subsets of scaled model families that
will be useful in our experiments. First, the maximal pa-
rameter family max#params(F ) contains only models in
F with the largest number of parameters. Formally, de-
fine m = maxf∈F #params(f); then max# params(F ) =

2
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Figure 2: The effects of three variables on scaling law accuracy. Each cell corresponds to a single
scaling law estimated from a set Ftrain of model checkpoints, with the color denoting that scaling
law’s error when predicting the largest model in a family. Each column shows a subset of the three
axes along which these training sets differ: (1) the number of tokens used to train each LM in Ftrain

(expressed as a fraction of the full training corpus), (2) the number of distinct models trained; and
(3) the size of the largest model trained (expressed as a scale-up factor—the ratio between the target
model and the largest model in Ftrain). In (a), all laws are estimated from four models. In (c) all
laws use the full corpus. Orange lines show iso-FLOP contours (sets of scaling laws whose training
sets require the same computational cost to produce). represent the most efficient ways to obtain
15%, 10% and 5% ARE. One of the most immediate conclusions from these plots is that scaling law
estimation is quite noisy—the inclusion of a single badly-behaved model in the estimation procedure
can produce large errors, and in small model families error does not reliably decrease with additional
computation. However—because of noise—it is often preferable to extrapolate from a large number
of small, partially trained models rather than a small number of large models.

{f ∈ F : #params(f) = m}. This family will generally contain the target model(s) whose
behavior we wish to predict t ∈ Ftarget. Second, the q-maximal token family max#toks(F, q)
contains all models in f trained on at least a q-sized fraction of the training set. Formally, define
t = q · (maxf∈F #toks(f)); then max#toks(F, q) = {f ∈ F : #toks(f) ≥ t}. Note that this
definition does not distinguish between partially trained models on one hand, and models trained to
convergence on a subset of the largest training set used in a family on the other. Throughout this
paper, we will not in general distinguish between these two types of models, a decision evaluated
in Section 6. Indeed, except where noted, max#toks(F, q) should be thought of as containing the
checkpoints from the last q% of a training run.

A scaling law L̂(f | F ) estimates the performance of a new model f given a model family F . (We
will simply write L̂(f) when the family is clear from the context.) All experiments in this paper use
the common functional form from the literature (Hoffmann et al., 2022):

L̂(f) := E +
A

#params(f)α
+

B

#toks(f)β
. (1)

Here E captures the scaled family’s general performance; A,α and B, β describe the scaling effect
of #params and #toks respectively.2 These parameters are estimated by first collecting a set of

2We believe many of the findings in this paper apply to other functional forms that have been proposed for
scaling laws (Caballero et al.), and even suggest new parameterizations as described in §9.
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training models Ftrain, then minimizing the reconstruction error

argmin
E,A,α,B,β

∑
f∈Ftrain

(L̂(f)− L(f))2

where L(f) denotes the empirical negative log-likelihood of some held-out data under the model f .

In this sense, a scaling law is an ordinary parametric machine learning model, and we may ask many
of the same questions about L̂ that we ordinarily ask about LLMs —what training data (Ftrain) should
we collect? How do we estimate accuracy? We seek to provide empirical answers to these questions,
for which we first require data.

3 DATA FOR 1000+ SCALING LAWS AND MORE

As part of this work, we have collected and released the largest-scale public dataset describing scaling
behavior across model families. This dataset aggregates information from a large number of LLM
training efforts that have released information about the behavior of multiple models of different
sizes or scales. While experiments in this paper focus on scaling laws that measure loss, the dataset
also includes information about model performance on downstream evaluation benchmarks where
available. We have focused on language models where the largest one is more than 3B parameters
and where data was shared publicly or in private correspondence. Our repository accepts further
contributions and requests for additions. In addition to those, we have manually extracted some data
from papers that did not release models but reported losses in figures.

3.1 DATA SOURCES

For each model in this dataset, we report any downstream evaluation and loss that was measured
during training, as well as calculated #toks for each, links to matching checkpoints when available,
links to data sources, and information about computational cost (in FLOPs) and number of training
epochs (i.e. passes over the training set). Each model is identified by a unique name, a type (e.g.
llama), #toks, #params, architecture type (e.g. encoder-decoder), and seed.

Models in this dataset include Pythia (Biderman et al., 2023, which provides the largest set of
models and variations in a family), OPT (Zhang et al., 2022, collected thanks to Xia et al., 2023;
Biderman et al., 2023), OLMO (Groeneveld et al., 2024), Amber (Liu et al., 2023), K2 (Team,
2024), Mamba (Liu et al., 2023) RedPajamas 3 ModuleFormer mixture of experts (Shen et al., 2023),
overtrained models (Gadre et al., 2024), Mamba, Llama and hybrid architecture variations from
Poli et al. (2024), transformer architectures (Alabdulmohsin et al., 2022), Bloom (Le Scao et al.,
2023), T5-Pile (Sutawika et al., 2024), Pandey (2024) models, GPT-family models with different data
regimes (Muennighoff et al., 2024), Gopher (Hoffmann et al., 2022) and GPT3 (Brown et al., 2020).

The data consists of 1.9M steps of training evaluated on loss or perplexity, usually on multiple data
sources belonging to 485 unique pretrained models, and more than 40 scaled families. To combine
the data together, each loss or score was kept in its original form and an aggregating function to
normalize the scores to similar scales (perplexity and loss have a log relation) and average was
supplied. The data, saved as a compressed table with all the metadata and scores together is hence
large but comprehensive.

We hope this will provide a useful resource for the community and plan to extend it further as models
get released and their training dynamics are shared. We see such a resource as a facilitator to more
research on model development (e.g. A/B testing), scaling laws, downstream scaling laws (Gadre
et al., 2024; Ruan et al., 2024; Owen, 2024; Isik et al., 2024), training dynamics (Choshen et al.,
2022) and more.

3.2 SCALING LAW ESTIMATION

In the rest of the paper, we present findings from estimating hundreds of scaling laws as follows:

3https://www.together.ai/blog/redpajama-models-v1
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Figure 3: Parameters differ between scaled model families. Surprisingly, however, the pairs of
parameters controlling the influence of model and training set size have similar ratios. The legend
shows model architecture (left), scaling families (center) and per-family intercept (right).

Fitting For each model family F , we identify the maximal parameter family Fmax =

max#params(F ), and estimate a scaling law L̂ using the remaining models Ftrain = F \ Fmax.
Estimation of scaling law parameters uses the curve_fit function in scikit-learn (Pedregosa
et al., 2011). We additionally experimented with an L-BFGS-based solver but found it to be less
stable. We only estimate scaling laws for model families that contain at least three models.

Evaluation To evaluate estimated scaling laws reliably, we need to account for loss fluctuations
during large-scale model training. Thus, we test against a few checkpoints near the end of training:
we choose as target models Ftarget the 30%-maximal token family from the set Fmax defined in
the previous paragraph—that is, we take Ftarget = max#toks(Fmax, 0.3). We then report the mean
absolute relative error (ARE) Ef∈Ftarget |L(f)− L̂(f | Ftrain)|/L(f) between the empirical loss L
and the loss L̂ predicted by the scaling law. We reran our experiments with huber loss see §E.

4 HOW WELL CAN I EXPECT A SCALING LAW TO PREDICT?

4% is the best ARE typically obtained; ARE up to 20% can still distinguish between many modeling choices.

To establish how accurate a scaling law must be to be useful to practitioners, we first assess what
changes in model accuracy have been considered meaningful in past work. We have surveyed
experiments in the literature where an A/B test was performed, i.e., two models were trained similarly,
manipulating one attribute to see how it affects scores. Empirically, we found no widely adopted
modeling changes that were motivated with less than a 4% relative difference between models.
Additionally, reported variance across random restarts of the same model architecture reaches up to
3.5% (c.f.,§8; Sellam et al., 2021). We take this to mean that this is approximately the minimal effect-
size experimenters care about and possibly the minimal effect one can reliably measure. Accordingly,
this bounds the best goodness of fit we should expect or require of scaling laws.

To offer several concrete points of comparison: Pythia 6.9B models fixed inconsistencies in their code
and hence have two versions (c.f. App. B; Biderman et al., 2023) which differ in loss by 40%. They
also provide data deduplication A/B test that had a minor effect on the loss of about 5%. Gadre et al.
(2024) tested the effect of training 400M parameter models for different #toks. The most similar
(double the training tokens) has approximately 4% change and can reach a 50% loss difference with
30 times more training. Training on a constant #toks but repeating the same data resulted in almost
no changes for up to 4 repetitions (epochs), and later in about 8%, 50% on 14.44 repetitions of the
data (Muennighoff et al., 2024). Instead of varying the amount of data or epochs, Ge et al. (2024)
found that training on a different kind of data incurred ARE of approximately 10% and different data
mixes led to 6% changes or less.
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5 WHEN I TRAIN A NEW MODEL, DO I EVEN NEED A NEW SCALING LAW?

Different model families exhibit different scaling behavior, but performance can sometimes be estimated
using a single model in a new family.

Scaling laws relate performance to scalar training parameters like model or dataset size. For discrete
decisions (whether the choice of nonlinearity or data preprocessing scheme), it is not immediately
obvious how to pool information across models that differ in these traits (see Ruan et al., 2024;
Maia Polo et al., 2024, for concurrent work that performs this pooling based on downstream task
behavior). Clearly, different pretrained models with the same #params and #toks still show
different loss, so these differences can be consequential. But how do discrete choices of architecture,
training procedure, or dataset, affect the form of scaling laws?

One way to answer this question is to look at the parameter estimates for scaling law parameters E,
α, A, β and B differ across model families. These results are shown in Fig. 3, where it can be seen
that there are often dramatic differences in all five parameters across families. In this sense, even
the rate at which additional data or parameters improve model performance depend on underlying
architectural details, suggesting that understanding the behavior of a new model family may require a
new scaling law.

But another way to answer this question is to ask how reliably we can predict final model accuracy
when borrowing (or pooling) some parameters of scaling laws between families—even if these
result in poor parameter estimates, they may predict large-scale model behavior within the range of
meaningful differences identified in Section 4. To do so, we set the #params scaling parameters
(A,α) to fixed values reported in past work, and estimate remaining parameters for individual model
families. We take the variable values found by Muennighoff et al. (2024) (see Besiroglu et al., 2024;
Porian et al., 2024 for a discussion of estimates from earlier work including Hoffmann et al., 2022).
We find (see Fig. 6 in App. A) that in some cases only a single training run in a new model family is
necessary to obtain accurate scaling law predictions. In the OLMO family, for example, we obtain
less than 1% error estimating the accuracy of a 7B model from a collection of 1B model checkpoints.
We find that predictions generalize, and a constant #params scaling factor is enough for most models
(except the encoder-decoder T5-Pile). However, error rates are larger than in the source family, and
predictions for larger models are worse (most conspicuous in OPT’s error of 37%, 25% and 15%
when extrapolating from 8.7B, 13B and 30B to 175B).

5.1 CAN I JUST TRAIN THE TARGET MODEL A BIT INSTEAD OF MANY SMALL MODELS?

Yes, but obtaining reliable estimates in this way requires up to 30% of the full training run.

The above results (last row of Fig. 6 in App. A) also suggest the possibility of predicting losses
not with just smaller models, but with partially trained versions of the target model itself. When
predicting inside the same #params family—that is, estimating L̂(f | Ftarget \ {f})— the #params
term in Eq. (1) is constant, and extrapolation is only required for #toks. As seen in the figures, this
form of estimation is informative if permitted by computational constraints. Beyond the immediate
usefulness of this approach, it is a promising avenue for future research. Better adjusting the scaling
laws for predicting through training might improve this efficiency.

5.2 ARE EVEN SIMPLER BASELINES ENOUGH?

Some extrapolation is necessary: scaling laws can produce accurate estimates even when the target model
vastly outperforms any training model.

To provide another form of comparison for the predicted scaling laws, we compute two baselines.
Both baselines adopt a pessimistic evaluation assuming that the target model is no better than the best
model in the small model family used to estimate a scaling law. Specifically, the baselines are the
best performance L̂(∅ | Ftrain) = minf∈Ftrain L(f) and the performance of the most-trained model,
consuming the most compute for training, i.e. L̂(∅ | Ftrain) = argmaxf∈Ftrain

#params(f) ×
#toks(f). Those baselines might be the best one can expect without fitting a law to scaling.

6
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Figure 4: The effect of fitting on more of the training trajectory. Each cell represents the absolute
relative error estimating scaling laws from a given number of models (vertical axis) trained on a given
subset of the final checkpoints from a training run (so scaling laws on the left are estimated using all
checkpoint, and laws on the right are estimated using only the final 10% of checkpoints). White cells
failed to fit. As long as the first ≈10% of checkpoints are discarded, final loss can often be predicted
accurately.

We find (See App. 5.2) that out of the two, the best performance baseline is closer to L(Ftarget),
which is to be expected, as the target model performance is better than any other model in F and this
is the better of the two. In both cases, even with the full F , the baselines suffer more than 15% error,
mostly above 10%, almost never get below 5%, and 18% ARE on average across all scaled families
we study.

6 I HAVE SOME DATA, WHAT PORTIONS SHOULD I USE?

Estimate scaling laws from intermediate checkpoints, not just fully trained models!

Most past work on scaling behavior of language models (e.g., Gadre et al., 2024; Muennighoff et al.,
2024) has trained a separate model for each value of #toks studied. This is based on the assumption
that changes in the learning rate schedule, which depend on the size of the full dataset that will be
used for training, render losses from intermediate checkpoints uninformative.

However, some recent work has demonstrated the effectiveness of learning schedules that do not
require prior access to the size of the training set (Hu et al., 2024), and some work has questioned
whether careful choice of the learning rate decay is even necessary for reliable scaling laws (Porian
et al., 2024). Together, these findings motivate revisiting the assumption that only a single useful
datapoint may be obtained from each training run. In the final portion of §5.1, we observed the
value of intermediate checkpoints when only a single #params family is used to fit a scaling law.
Mathematically, there has to be some difference between models trained on the same number of
tokens and sizes depending on the scheduler, it is unknown however, how big is this difference.
We now test whether this finding extends to larger families—i.e. whether including intermediate
checkpoints from all models in a model family reduces ARE.

Results are shown in Fig. 4, which plots ARE for scaling laws estimated from data subsets of the form
max#toks(F, q) for varying q. We find that including full training curves in scaling law estimation
can predict losses well. In fact, relying merely on the end of training produces significantly worse
performance across the board. Our remaining experiments thus fit scaling laws using all these
intermediate checkpoints, and not final performance alone.

6.1 SHOULD I USE ALL INTERMEDIATE CHECKPOINTS?

Almost all, but drop checkpoints from the beginning of training.

In Fig. 4, we plot the ARE for different q-maximal token families serving as F , i.e., when fitting
only with the end of training runs. There is not a clear trend indicating whether we should use all
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(a) Cut 10B first tokens
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(b) Fit all data

Figure 5: The effect of fitting with all the training losses and without the beginning 10B tokens seen.
Each cell represents the absolute relative error when estimating a scaling law from a given number
of models (vertical axis) trained on a given subset of checkpoints from the beginning of training
(horizontal axis).

data (as might be suggested by GPT-3 results alone) or only some of it. But it is rarely the case that
best estimates are obtained from the end of training alone.

There is, however, a distinctly uninformative phase at the beginning of training, as can be seen in
the loss curves (App. B) and noted in the literature (e.g., Chen et al.). We observe that this period is
more likely to contain significant spikes or an increase in loss (worse performance) despite additional
training. We hence hypothesize this part should always be removed from the scaling law.

Indeed, our experiments depicted in Fig. 5 compare scaling law AREs with and without including
models trained on less than 10B tokens in F . Evidently, the very beginning of training (often not
even reported in logs and graphs) is sometimes harmful to the prediction and is perhaps more noisy.
Specifically, we run the same experiments with and without ignoring the first 10B tokens seen. We
find that for some models (e.g., OPT and Pythia) the ARE exceeds 15% even when using the whole
data, but drops to 4-10% when ignoring those tokens. In preliminary experiments, we found that
cutting fewer tokens gave noisier results, and cutting more had a negligible effect.

7 HOW BIG A MODEL SHOULD I TRAIN?

Larger models are better, but not necessary. Mainly, beware of specific models that might give noisy results.

In Fig. 2 we compare scaling laws when controlling the amount, percentage, or size of the models (2
at a time). We find that choosing models closer in #params to the target model is generally effective
(e.g., Fig. 2a, 2c), but the effect is neither strong nor monotonic. For example, in all cases fitting
on all F provides one of the lowest ARE. However, in GPT, Gopher and OPT, predicting with the
smallest 4 models available is already enough to achieve less than 10% error. In Pythia, the smallest
models are not predictive but the rest of the models provide a similar fit. While relying on a larger
model is beneficial, predicting many scales up (e.g., the behavior of a 34× larger model in Pythia) is
still reliable, especially if accounting for other factors we discuss next.
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In fact, training additional, larger models before fitting a scaling law may sometimes decrease
accuracy due to increased variance in large model performance—see, for example, Pythia 2.8B in
Fig. 1. Unfortunately, it is difficult to identify whether a seed is exceptionally high or low-performing
without additional information. For example, cross-validation on F fails to detect it (see App. D).

Instead, this instability can be addressed by accounting for seed variability. A wasteful way to do
so would be to train every model several times. A better alternative is to diversify and train each
model on as differing hyperparameters (here, seed, #params, #toks) as possible and to maximize
the information gained (a common practice in efficiency-coverage scenarios, e.g., Perlitz et al., 2024).
Hence, we suggest training more models of differing sizes each accounting for both size and seed
changes, rather than training multiple seeds. We further discuss the effects of number of models (|F |)
in §8.

Selection of #params values to optimize statistical and computational efficiency is a problem we
leave for future work. Given the choice of the largest model and the number of models, it is unclear
how to space the model sizes, whether linearly, log-scale, or otherwise.

8 HOW MANY MODELS ARE NEEDED FOR RELIABLE PREDICTIONS?

5 models is a safe bet, more would improve the results’ robustness. These models can be small.

We have seen that predicting with larger models and hence extrapolating less yields better results.
However, given compute constraints (and additional hardware constraints like memory), practitioners
may generally wish to use smaller models when possible. Consider for example Fig. 2b where we
compare fitting on 4 models but vary their size. We find that more models reduce ARE even without
being bigger models. As discussed in §7, adding a larger model to a current scaled family serves two
goals, it increases the proximity to the predicted model, as well as increases the number of models
seen.

We separate the contribution of size and number of models effect. In Fig. 2c, we predict with the
largest model being held constant and add (at minimal cost) smaller models. We see again that larger
models do benefit predictions. For example, the small models part (left) of the graph indicates large
errors (bright). However, we also see again the unwanted effects a single model may have on the
overall prediction. Consider for example the figure’s diagonal in Pythia. Cells in a diagonal share
a group of models and each row adds another one to F . Evidently this specific group hurts results,
even when larger models are added to F . With enough models (bottom of diagonal), the negative
decreases. Switching the model (next column) also removes the negative effect. Moreover, across all
rows the tendency is never monotonic, implying larger models do not not ensure better predictions.

But in general, we see that increasing the number of models tends to improve prediction. For example,
in GPT3 the best predictions are with many models. Perhaps intuitively, adding a larger model and
improving both #params and number of models aspects improves quite consistently (Fig. 2b and
diagonals of Fig. 2c).

9 WHAT PARAMETERS DO I ACTUALLY NEED TO ESTIMATE?

Scaling laws might have fewer degrees of freedom than described in the literature.

Assuming we do not try to account for aspects other than #toks and #params (see §10), one might
wonder if some of the observed errors come from model misspecification—an incorrect functional
form for L̂, which (with a small number of exceptions including Caballero et al.) has generally
gone uncontested since it was first proposed (Rosenfeld et al.; Hoffmann et al., 2022). Here we
specifically evaluate whether scaling laws empirically exhibit fewer degrees of freedom than has been
proposed. First, we compute the principal components of the 5 learned parameters and find that 3
components explain 99.49% of the variance between the 5 parameters. Inspection reveals that two of
these components tightly couple the pairs of parameters dealing with the same training parameter
(#params and #toks). Plotting values of A against α and of B against β (Fig. 3), we see a clear
linear relationship between these variables despite ther non-linear interaction in Eq. 1. There are a
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few exceptions: the Encoder-Decoder model T5-Pile shows a different behavior from the rest of the
scaled families, and four additional scaled families show a different relationship between B and β. In
fact, all these families share the common feature that they were trained using multiple passes over
a single training set Gadre et al. (2024). The outlier point with β > 4 is a 70m baseline of Pythia
for a continual training intervention experiment (Biderman et al., 2023). Future work may consider
different function forms tying some of the parameters or introducing other ones instead.

Another change for the function form that future work should consider is accounting for the learning
rate schedule, as our experiments assumed it was negligible. A mismatch between the form and the
real dependence might explain the inconsistencies in using the beginning of training. As noted in §6.1,
the beginning is not fitting as well as later on, which we also see to some extent in the percentages
axis of Fig.4. This might also be expected as previous works did not take the training trajectory (and
loss schedule) into account and ignored this data.

10 RELATED WORK

This work builds on a large number of recent studies relating scaling law estimation and decision-
making about model training. Among the aspects studied are total training costs including inference
(Sardana et al.), effects of sophisticated data selection (Sorscher et al., 2022; Ge et al., 2024), training
time (Inbar & Sernau, 2024), transfer of learned skills (Hernandez et al., 2021), behavior of models in
other modalities (Mikami et al., 2022; Abnar et al.; Alabdulmohsin et al., 2024; Hesslow et al., 2022)
mixtures of experts (Ludziejewski et al.), data mixing (Ge et al., 2024), downstream performance
(Muennighoff et al., 2024), vocabulary size (Tao et al., 2024), and architecture comparisons (Tay
et al., 2023; Poli et al., 2024) including small models (Muckatira et al., 2024) or other phenomena
like finetuning (Zhang et al.) and the loss in different positions in the training sequences (Xiong et al.,
2024). Especially relevant to our context is Ruan et al. (2024); Maia Polo et al. (2024) that rely on
multiple pretraining settings for creating scaling laws that generalize across models or kinds of losses.

Another line of works that can be seen as a scaling law discusses the relation between model width
and hyperparameter choices (rather than loss) (Yang et al., 2022; 2021; Blake et al., 2024; Lingle,
2024).

11 LIMITATIONS

Our use of ARE as a primary evaluation metric does not distinguish between over-estimation or
under-estimation of performance. When using scaling laws to choose between candidate models to
train, these error estimates may be unnecessarily conservative (e.g. if both families’ laws are biased
in the same direction).

Another major limitation in this study is the difficulty of aggregating information across model
families. As most published families evaluate models of incomparable scales, often over incomparable
ranges, we were unable to produce an informative version of Fig. 2 that aggregated information across
all models available, and was thus able to give general recommendations about compute-optimal
choice of preliminary experiments.

12 DISCUSSION

This paper provides a first study of open questions in the estimation of scaling laws and their relation
to large-scale pretraining decisions. We expect that many of these conclusions could be sharpened
or extended with the availability of additional information about model training, and we call on
other leaders of large-scale training efforts to share training losses and evaluation results from
multiple checkpoints during pretraining—even in cases where model parameters themselves cannot
be released.

Our findings leave open many important questions, from performing efficient predictions by fitting
on many model families to scaling laws of the deltas between a/b test for a change in attribute (e.g.
optimizer) or generalize from one a/b test to another, and to other methods of efficiently compare
architectures that do not rely on multiple models (e.g. continual learning). In addition, our results in
§9 suggest other scaling law parameterizations might better fit data.
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Practical reccomendations
§4 Set an estimation goal and a budget

§5.1 If budget allows, train the whole model for 30%
§A If extremely constrained, consider predicting with one model
§6 Use all training losses (except the beginning)
§7 Train as big as possible, but limit tokens
§7 Train more models, not only larger
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A SCALE UP WITH 1 MODEL

We bring errors of data from fitting from a single model on a given percentage of training to the
largest model with full training. Scaling is constant and follows the literature (Muennighoff et al.,
2024) and the largest model stands as target model (so the bottom line in each figure represents
predicting from the beginning of training). In parallel to this paper, an even more efficient work on
predicting with 1 model was suggested, and the two should be incorporated (Maia Polo et al., 2024).

B LOSS CURVES AND PREDICTIONS

We provide in Fig. 7 graphs of the loss during training of the target models per originating source
(e.g., a paper) together with the predictions by using different percentage of the training.

C IS SCALING WORKING ONLY UPWARDS?

No. Small models usually show consistent and predicatable performance.
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Figure 6: Fitting scaling laws under the assumption that all models scale similarly. Thus, a single
model is needed to predict. The last row in each Figure represents predicting a model at the beginning
of its training. 17
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Figure 7: In each figure all losses from a specific source and predictions of the scaling loss with
different percentage of the #toks and all models. Predictions are points where the X axis is the
available data for prediction and y the prediction value, lines are the actual value. One scaled family
per paper was sampled as a representative.

Usually, one does not use a scaling law to extrapolate to a smaller model as one can just train the
small model. However, under observational scaling laws, where one wants to research a phenomenon
without scaling at all (Ruan et al., 2024; Maia Polo et al., 2024), or when many models were trained
and one wishes to create smaller models for various reasons (Hillier et al., 2024; Warstadt et al.,
2023), scaling down might prove useful. Moreover, in the context of traditional scaling laws this may
act as a baseline. Such an experiment may shed another light on the number of models |F | versus
their size #params. If large models are better because they are more stable or otherwise fit laws
more robustly, few models will be enough, if the number of models or scale down difference from the
prediction, it will show similar behaviour to scaling up. See more in §8.

To test this we reverse the order of models and predict with the largest models the loss on the smallest
models. This means that for example in the case of 3 models, we predict the smallest model’s loss and
fit the scaling law relying on the 3 largest models. As before, we break the results by the percentage
of training done and do not reverse it.

As shown in Fig. 8, the number of models plays an important role in fitting well and a minimum of
30-40% of the training is necessary for good fit, more than that often improves further.
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Figure 8: Fitting scaling laws trying to predict the smallest model, with the largest (Y-axis) models
trained on a percentage of the data (X-axis).
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D CAN WE DETECT BAD MODELS TO FIT ON?

If so, not through cross validataion.

In §7, we raise the issue of instability of scaling law predictions, with a single model vastly changing
the results. We tried to see if, without knowing the ARE, we could remove bad models from the
prediction. We hypothesized that models that we can’t predict would mean models that would skew
our predictions when fitted upon. We performed a cross-validation on the #params families in F
each time setting the models with most #toks as target ans exclusing the #params family from
F . Our hypothesis was found to be incorrect. Such cases of hard-to-predict models were found to
indicate that the models left in F are bad predictors and not that the target is very dissimilar (a "bad"
training). In 58% of the cases removing that model from the scaling law created the worst ARE
possible on the actual target, more than removing any other model.

E HUBER REPLICATION

Huber loss is sometimes used instead of ARE (Hoffmann et al., 2022). Huber loss is defined as

Lδ(a) =

{
1
2a

2 for |a| ≤ δ,

δ ·
(
|a| − 1

2δ
)
, otherwise.

(2)

We use δ = e10−3 as done in (Hoffmann et al., 2022). The overall results are similar but for
completeness report them in Fig. 9.
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Figure 9: Scaling laws under a Huber loss. The line represents most efficient setting to recieve <0.05.
Comparison of several models given different amount of models and percentages of training.
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