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Competing Event Models: Next Event Prediction Under Interventions

Abstract
Modeling interventions that include treatment
times is an important task in many domains
such as healthcare, finance, and others. Scaling
up models for these interventional distributions
is challenging, since popular architectures, e.g.
transformers that predict the next event in a se-
quence, do not naturally support alterting times of
specific treatments. We develop competing event
models, an autoregressive generative approach
in which estimating interventions in both when
and what treatments are applied is made simple.
The key element in our solution draws from the
competing risks literature and models the timing
of each type of event, e.g. a treatment or an ob-
servation, given that its the next to occur. This
design allows straightforward treatment timing
interventions via next-token prediction, admits
a simple likelihood-based objective, and yields
valid effect estimates under standard assumptions.
We evaluate on a simulated benchmark for effect
estimation of sequential treatments.

1. Introduction
Autoregressive models are the de-facto solution for genera-
tion of sequential data in language (Radford et al., 2018), ge-
netic sequences (Rives et al., 2021), medical records (Stein-
berg et al., 2021) and more. Modeling interventions using
such architectures can be applied to tasks like off-policy
evaluation and policy optimization. Consider modeling med-
ical records and observing the data of a patient suffering
from heart failure. A cardiologist may wish to assess the risk
of worsening conditions, e.g. experiencing decompensation,
or side-effects, under different treatment policies/regimens.
Such causal inference questions are important in medicine
(Joshi et al., 2025; van Amsterdam et al., 2022; Chen et al.,
2021), and generating potential trajectories under regimens
of interest is an attractive way to answer them.

In many scenarios, the timing of treatment is a crucial aspect
of treatment regimens, or policies. For example, we would
like to know how the trajectory would change if we treated a
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patient a month later, or perhaps a week earlier than planned.
More elaborate questions may include more complex poli-
cies like “What if in the future we will treat the patient
whenever cholesterol levels are above a certain threshold?”.
However, we claim here that common autoregressive models
of the observational distribution, e.g. transformers trained
for next event/token prediction, do not naturally lend them-
selves to sampling from interventional distributions that
modify timing of a specific treatment because these next
event prediction approaches explicitly model the time of any
next event. In this work, we take a step towards estimating
such interventions by augmenting autoregressive models
to predict potential event times, as explained below. Our
contributions are as follows.

• We develop competing event model (CEMs), autoregres-
sive models where each event has a type, e.g. a treatment
or observation event. To determine the type of the next
event, a CEM samples a potential next event time for each
type, then assigns the one that received the minimal time
among the possible types. We show that such a proce-
dure samples correctly from the observational distribution
while allowing simple interventions on treatments, (e.g.
what drug and dosage to give) and their timings (when
to administer it). We specify conditions when these inter-
ventions produce correct causal estimates.

• To learn CEMs from observed data, we provide a maxi-
mum likelihood method and implement it with a decoder-
only transformer architecture. We demonstrate the
method in an off-policy evaluation problem for a tumor
growth simulator.

In Section 2, we review the formalism of intervening on
temporal point processes and define the problem. The dis-
cussion in this section leads us to develop CEMs and review
related methods in Section 3. We then experiment with their
implementation on a tumor growth simulation in Section 4.

2. Modeling Interventions in Point Processes
The problem setting, described below, follows a notation
close to that in Upadhyay et al. (2018); Wald et al. (2025)
and identifiability conditions from Røysland et al. (2022). In
Section 2.2 we discuss autoregressive models of the obser-
vational distribution, such as transformers trained for next
token prediction, and how we may use them to sample from
interventional distributions.
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2.1. Problem Setting
Data are generated by marked point processes with an under-
lying multivariate counting process {Ne}e∈E on the time
interval [0, T ], where the set E denotes the possible types
of events. We further assume some standard technical con-
ditions that Ne(t) is almost surely finite for any t ∈ [0, T ]
and the filtration is the σ-algebra generated by random vari-
ables Ne(t) and their marks, see Aalen et al. (2008) for an
introduction. The random variables for marks are denoted
by Z, and a trajectory sampled from the process is denoted
by H = {(t0, e0, z0), (t1, e1, z1), . . . , (tn, en, zn)}, where
Ht = {(tk, ek, zk) ∈ H : tk ≤ t} are events up to time t.
Definition 2.1. Pobs is a multivariate marked point process,
supported on the time interval [0, T ] for some T > 0, with
observed components {Ne}e∈E where E is a finite set. We
also allow unobserved components {Nu}u∈U , whose jumps
Hu are omitted from the trajectoriesH. We assume inten-
sities λobs(t | Ht,Hu

t ) = E[dN(t) | Ht,Hu
t ] exist, and let

the marks take on values in space Z . ForHt ∈ supp(Pobs),
we denote the density functions of the next event time and
type by Pobs(Tnext, Enext | Ht), and the mark conditioned
on these by Pobs(Znext|Ht, Tnext = tnext, Enext = enext).

For example, when modeling a trajectory of events in a
medical record, each type e ∈ E may correspond to an ICD
code, and Z may represent additional details of the event. If
the type e corresponds to the administration of a drug, then
the respective z can encode additional details such as the
dose or more specific features of the drug. An intervention
will replace one or more of the intensity functions and mark
distributions, while keeping all others fixed, the unobserved
components included. For simplicity, we focus on inter-
ventions on one intensity process. The technical novelty in
our solution regards such interventions, and generalizing to
interventions on several components or mark distributions
is straightforward.
Definition 2.2. An intervention on the timing of e ∈ E
replaces λe

obs(t | Ht,Hu
t ) with an intensity λe(t | Ht) while

keeping all components of Pobs fixed. We denote the result-
ing interventional distribution by P .

Having defined the interventions of interest, we next specify
the conditions on the unobserved processes that we require
for identifiability. They are a special case of the eliminabil-
ity assumption formalized in Røysland et al. (2022). These
are rather strong assumption and relaxing them is an inter-
esting research question, yet they are commonly used (see
(Røysland, 2011; Schulam & Saria, 2017; Vanderschueren
et al., 2023; Hess & Feuerriegel, 2025; Wald et al., 2025)
for somewhat similar assumptions in related settings) to
guarantee identifiability of P from Pobs.
Lemma 2.3 (corolloary of Røysland et al. (2022)). Let
Pobs an observed distribution and consider an interven-
tion on the timing of e ∈ E . Assume that the unobserved

processes can be divided into λu = [λu1 , λu2 ] such that
the following two conditions hold: (i) λe(t | Ht,Hu

t ) =
λe(t | Ht,Hu2

t ), and (ii) λE\e(t | Ht,Hu
t ) = λE\e(t | Ht)

and λu2(t | Ht,Hu
t ) = λu1(t | Ht). Furthermore, assume

that λe ≪ λe
obs, where≪ denotes absolute continuity. Let

Pobs|E be the marginal distribution over observed variables.
The interventional distribution obtained by intervening on
timing of e ∈ E in Pobs|E is P as defined in Definition 2.2.

To conclude this problem introduction, we summarize the in-
tuition behind the formal statement above. Since the learner
does not observe the events Hu, the training set {Hi}mi=1

it recevies is a sample from Pobs|E . Therefore, a distribu-
tion that can be calculated from the training data is the one
obtained by plugging λe into Pobs|E . The distribution we
would like to estimate is the one where λe is plugged into
Pobs (i.e. where unobserved processes are not ignored),
and then marginal over the observed variables is taken. As-
sumptions (i) and (ii) intuitively mean that the past of an
unobserved process can only affect the future of λe or λE\e,
but not both (i.e. unobserved histories do not confound
future events). These conditions ensure that the distribu-
tion we can calculate coincides with the desired one. This
assumption is summarized graphically by the local inde-
pendence graph (Didelez, 2008) in Figure 1. The overlap
assumption in (iii) ensures that plugging λe into a model
of Pobs does not result in trajectories that go out-of-support
w.r.t Pobs.

U1Ne NE\eU2

Figure 1: The assumed local independence graph. Intu-
itively, an edge a→ b means the past of proccess a affects
the future intensity of b.

Having formalized the estimation problem of interest, we
turn to solve the algorithmic problem: how to learn autore-
gressive models that allow easy interventions on timings?

2.2. Interventions in Next-Event Models
Our goal in the rest of this work is to provide a sim-
ple “next-event” (or next-token) prediction architecture
that supports interventions on the timing of each type
e ∈ E , that is, on λe(t|Ht), or on its mark distribution,
P (Znext|Ht, Tnext, Enext). This reflects interventions that
are of interest in real-world applications. Returning to our
example of modeling patient trajectories, if e is a type that
corresponds to prescribing a drug, then we may be able to
intervene both on the timing on the event and its mark which
includes details about the treatment. For other events, e.g.
when e corresponds to a lab test, we may be able to control
the timing, but not the mark if it holds the results of the test.
Hence, separating these objects can be helpful.
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Parameterizing next-event distributions. When fitting
neural networks to model point processes, a crucial architec-
tural choice is which mathematical object to fit. Common
choices are to let the parameters θ of a neural network spec-
ify the intensity function λobs(t | Ht; θ), or the distribution
of the next jump time, Pobs(Tnext | Ht; θ). Both choices (as
well as other functions) can express the joint distribution,
and there is a one-to-one correspondence between them
(Shchur et al., 2021). We focus on the latter, as it has some
attractive properties, and it is a common choice in recent
transformer-based models (McDermott et al., 2023; Song
et al., 2024; Steinberg et al., 2023; Yang et al., 2023; Labach
et al., 2023; Hill et al., 2023; Pang et al., 2024; Renc et al.,
2024). For instance, Renc et al. (2024) train a next-token
prediction model that has tokens for medical events in the
MIMIC dataset and additional tokens corresponding to times
between events (1-2 hours, 2-6 hours etc.). Mark distribu-
tions are also parameterized Pθ(Znext|Ht, Tnext, Enext; θ).

Challenges in intervening on P (Tnext | Ht; θ). Turning
to interventions on timings of e ∈ E , which going forward
we refer to as the treatment, we note below that obtaining
a sample from the interventional P (Tnext | Ht) by sam-
pling Pobs(Tnext | Ht) requires a non-trivial transformation.
Consider two interventions of interest:

1. We are given data from a population different than the one
observed in Pobs. We would like plug-in the treatment
timing policy of that population into our model of Pobs.

2. We would like to set the next treatment at some fixed time
t+ δ, or prevent it from happening altogether.

The crux of the challenge in performing these interventions
on a model of P (Tnext | Ht; θ) is that Tnext is not the next
event time of a specific type, but the next event time of any
type. For the first intervention, if we are given data or a
closed form intensity λe(t | Ht), there is no set of parame-
ters in P (Tnext | Ht; θ) that controls treatment timing alone
and can be tuned by the provided target population data. Nor
there are outputs where we can plug-in a given intensity λe.
The second type of intervention is challenging as well. Say
that we draw tnext ∼ Pobs(Tnext | Ht; θ), where t < t+ δ,
and our model of Pobs assigns a probability of 0.3 for the
event being a treatment (i.e. type e). To intervene, we will
somehow need to set this probability to 0. If we do that,
then how should we distribute the probability between other
types? Also, the intervention should affect the distribution
of Tnext, how should we calculate that? While the desired
quantity is a functional of Pobs and in principle can be calcu-
lated based on our model, the required procedure would far
exceed simple uses of autoregressive models, like sampling
or directly intervening on next tokens. This motivates us to
define CEMs and their training procedure in what follows.

3. Competing Event Models
Recall that our goal is to learn a next-token prediction model
where replacing the intensity λe

obs is straightforward. To this
end, the key is to introduce distributions pẽ(Tnext | Ht; θ)
for all ẽ ∈ E , which are the distributions of the next event
of type ẽ, conditioned on no other event occurring before-
hand. These objects are common in the survival analysis
and competing risks literature (Crowder, 2012; Kalbfleisch
& Prentice, 2002; Tsiatis, 1975; Lee et al., 2018), where we
wish to fit a distribution for the survival time of a patient,
but in the observed data some patients are lost to censor-
ing. That is, they drop out of the experiment after a certain
time. Identification of the correct survival distribution is
possible under similar conditions to the ones laid out in
Lemma 2.3. Competing Event Models takes inspiration
from this literature and extends the principle to sequence
data, and interventions on timing. Let us formalize this.

Definition 3.1. Let Pobs a multivariate marked process
with intensities {λẽ

obs}ẽ∈E , e ∈ E one type of event in the
process, andHt events up to time t. Denoting by ∆N(t, t+
δ) = 0 the event where no jumps occur in the interval
(t, t + δ), we define the following intensity for any δ ∈
(0, T − t],

λ̃e
obs(t+ δ|Ht) = λe

obs(t+ δ|Ht,∆N(t, t+ δ) = 0).

When considering this intensity, we will denote the random
variable for the first jump time after t by Te, the probability
density for this jump time by p̃e(Te|Ht), and the CDF of
p̃e(Te|Ht) by Fe[t+ δ|Ht].

As suggested in the definition, there is a one-to-one corre-
spondence between p̃e and λe

obs, hence we will implement
treatment timing interventions by changing p̃e while keep-
ing p̃ẽ fixed for all ẽ ∈ E \ e. The key components that
remain to be specified, is how to form a joint distribution
from {p̃ẽ}ẽ∈E and sample from it; how to fit the distribu-
tions from data; and how to perform interventions.
The lemma below (see Appendix A for proof) suggests sam-
pling times independently from all the p̃ẽ and setting the
next event type and time according to the earliest one. It
also gives the expression for the likelihood, from which we
derive the training algorithm. The sampling and training
procedures are summarized in Algorithm 1, including the
loss to fit mark distributions.
Lemma 3.2. Let Ht ∈ supp(Pobs), consider the ran-
dom variable Tnext = minẽ∈E Tẽ and e the minimizing
argument, where p̃(T̃1, . . . , T̃|E||Ht) =

∏
ẽ∈E p̃ẽ(T̃ẽ | Ht).

Then p̃(Tnext = t̃, Enext = e|Ht) = pobs(Tnext =
t̃, Enext = e|Ht). The likelihood of an observed trajec-
toryH = {(tj , ej , zj)}nj=1 under this model is given by

∑
j∈[n]

log p̃ej
(
tj |Htj−1

)
+
∑
e ̸=ej

log
(
1− Fe[tj |Htj−1

]
)
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Algorithm 1 CEMs Learning and Sampling

Training p(H; θ)
Input: Trajectories {Hi}Ni=1, learning rate η
Initialize θ randomly
for D rounds do

Draw batch B and for eachHi ∈ B calculate

L(Hi; θ)←
∑

(tj ,ej ,zj)∈Hi

log pej (tj |Htj−1 ; θ)

+
∑
e ̸=ei

log(1− Fe[tj |Htj−1
; θ])

+ log p(z|Htj−1 , Tj = tj , Ej = ej ; θ)

Update θ ← θ + η|B|−1
∑

Hi∈B ∇θL(Hi; θ)
end for
Return p(·; θ)
Sampling p(·|Ht;θ) with intervention p̃ẽ(Tnext | Ht)

Sample Te ∼ pe(Tnext | Ht;θ) for e ̸= ẽ
Sample Tẽ ∼ p̃ẽ(Tnext | Ht)
Set enext ← argmine Te, tnext ← Tenext

Sample znext ∼ p(z | Ht, Tnext = tnext, Enext = enext)
ReturnHt ∪ (tnext, enext, z)

Implementation considerations and interventions. The
rather flexible formulation of CEMs allows various imple-
mentation choices. The timeline may be discretized, where
events are sparse and occur irregularly, or it may be continu-
ous and parameterized by, e.g., a mixture density network
(Bishop, 1994). There is also flexibility in choosing what to
consider as types of events E and what as marks Z , accord-
ing to the type of interventions we consider. The training
objective maximizes the likelihood of the time tj for the
type ej of the j-th event, while maximizing the probability
of all times after tj for the types e ̸= ej . In our implementa-
tion the timeline is discretized, so calculating Fe[ti | Hti−1]
is simple. Yet if one uses more complex functions that are
difficult to integrate, the following identity (see Appendix A
for derivation) can be useful to obtain an unbiased stochastic
estimator of the gradient:

∇θ log 1− Fe[ti | Hti−1
; θ] =

E
t∼pe(·|Te>ti;θ)

[
∇θ log pe(t|Hti−1

; θ)
]

The resulting estimator is rather intuitive: Sample a next
time for e ̸= ei from the estimate of p̃e, conditioned this
time is later than t, and maximize the likelihood of this time.

Finally, we discuss how to apply interventions on a fitted
model Pobs(H; θ), like those suggested in Section 2.2. Man-
ually setting the potential time Te to some value, like t+ δ,
and following the min-time sampling procedure, is a simple
way to estimate queries such as “what if we treat at time

(γ, β)obs ERM / MC FQE EDQ CEM

(γ, β)int = (6, 0.75)
(6, 0.75) 0.0325± 0.0002 0.0461± 0.0006 0.0373± 0.0007 0.0305± 0.0044
(10, 0.5) 0.063± 0.0026 0.0750± 0.0210 0.050± 0.0029 0.0345± 0.0026

Figure 2: NRMSE for tumor growth simulation. Top row
evaluates prediction on Pobs, the bottom evaluates pre-
diction under an intervention where treatment distribution
(γ, β)obs = (10, 0.5) is replaced by (γ, β)int = (6, 0.75).

t + δ”. To finetune according to a reward/loss function,
we may tune parameters θe that only affect the distribution
p̃e(·; θ) (in our implementation, there is a shared representa-
tion, and a separate linear prediction head for each ẽ ∈ E).
Replacing p̃e(·; θ) with a closed-form alternative is also
straightforward, and we do that in our experiment next.

4. Experiments
As a proof-of-concept for CEMs, we use a pharmacokinetic
model for tumor growth. This setting from Bica et al. (2020)
was adapted to study the irregular time sampling we are in-
terested in (Seedat et al., 2022; Vanderschueren et al., 2023;
Wald et al., 2025). We defer most details on the simula-
tor to Appendix B and briefly describe the task here. The
simulator works in discrete time t ∈ [T ] where T = 20,
and irregular event times are induced by the feature being
unobserved at most times. We have E = {x, a}, where the
mark zt ∈ R+ for x is the tumor volume and is observed
with probability σ((z̄t−d:t−1/dmax)− 1.5), where z̄t−d:t−1

is the average tumor volume over the last d timesteps, and
dmax is the maximum considered volume. For a the mark
denotes type of treatment: radiotherapy, chemotherapy, or
combined therapy. We intervene on the treatment assign-
ment mechanism, determined by two parameters (γ, β),
where each type of treatment is assigned with probability
σ(γ(xlast − β) + t− tlast). Here, xlast is the last observed
volume and tlast is the time of the last treatment. β con-
trols how often treatments are applied, while γ controls the
dependence of treatment assignment on tumor volume.

We implement CEMs by modifying the GPT-2 architecture,
and also use this to implement baselines: ERM/MC that pre-
dicts the tumor growth from observed data, disregarding the
target treatment policy, and two off-policy evaluation meth-
ods based on dynamic programming, FQE (Le et al., 2019)
and EDQ (Wald et al., 2025). We relegate additional details
on the simulator, baselines/related literature and architecture
to Appendix B. To evaluate the methods, we use them to
predict the tumor volume at time T = 20, and report the
normalized mean squared error in Figure 2. CEMs outper-
form the baselines on prediction under the intervention, we
further expand our analysis of the results in Appendix B.
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A. Proof and Additional Details
Let us restate and prove the statement on the likelihood and sampling procedure of CEMs.
Lemma A.1. Let Ht ∈ supp(Pobs), consider the random variable Tnext = minẽ∈E Tẽ and e the minimizing argument,
where p̃(T̃1, . . . , T̃|E||Ht) =

∏
ẽ∈E p̃ẽ(T̃ẽ | Ht). Then p̃(Tnext = t̃, Enext = e|Ht) = pobs(Tnext = t̃, Enext = e|Ht). The

likelihood of an observed trajectoryH = {(tj , ej , zj)}nj=1 under this model is given by

∑
j∈[n]

log p̃ej
(
tj |Htj−1

)
+
∑
e ̸=ej

log
(
1− Fe[tj |Htj−1

]
)

Proof. Let us show that the log-likelihood of a trajectory H, when written in terms of the next jump-time distributions
{p̃j}kj=1 is

∑
j∈[n]

log p̃ej
(
tj |Htj−1

)
+
∑
e ̸=ei

log
(
1− Fe[tj |Htj−1 ]

)
To show this we rewrite the terms above using intensities λ instead of next time densities, and observe that it coincides with
the familiar log-likelihood ofH from the point processes literature (Aalen et al., 2008),∑

j∈[n]

log λej (tj |Htj−)−
∫ T

0

∑
e∈E

λe(t|Ht−)dt.

HereHt− is the history of events up until time t, but not including time t. The equivalence follows easily by observing that
in trajectory H the process does not jump at any t ∈ (tj−1, tj), so it holds that λ(t|Ht) = λ(t|Htj−1 ,∆N(tj−1, t) = 0).
Hence we get

p̃e(tj |Htj−1
) = λ̃e(tj |Htj−1

) exp

{
−
∫ tj

tj−1

λ̃e(t|Htj−1
)dt

}

= λe(tj |Htj−1
,∆N(tj−1, tj) = 0) exp

{
−
∫ tj

tj−1

λe(t|Htj−1
,∆N(tj , t) = 0)dt

}

= λe(ti|Htj−) exp

{
−
∫ tj

tj−1

λe(t|Ht−)dt

}

Fe[tj |Htj−1 ] = 1− exp

{
−
∫ tj

tj−1

λ̃e(t|Htj−1)dt

}

= 1− exp

{
−
∫ tj

tj−1

λe(t|Htj−1
,∆N(tj , t) = 0)dt

}

= 1− exp

{
−
∫ tj

tj−1

λe(t|Ht−)dt

}
Putting these together, we obtain

∑
j∈[n]

log p̃ej (tj |Htj−1
) +

∑
e ̸=ei

log(1− Fe[tj |Htj−1
])


=
∑
j∈[n]

log λei(tj |Htj−)−
∫ tj

tj−1

λei(t|Ht−)dt−
∑
e ̸=ej

∫ tj

tj−1

λe(t|Ht−)

=
∑
j∈[n]

log λei(tj |Htj−)−
∫ T

0

∑
e∈E

λe(t|Ht−)dt.
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This indeed coincides with the likelihood in terms of λe(t | Ht−), which concludes the proof of the claim on the log-
likelihood.

Next, to show that min-time sampling returns a correct sample from Pobs, we again show that the next-time density coincides
with the familiar expression written with densities,

Pobs(Tnext = t̃, E = e | Ht) = λe(t̃ | Ht̃−) exp

(
−
∫ t̃

t

∑
ẽ∈E

λẽ(s|Hs−)ds

)
.

We start by spelling ourHs− using the event ∆N(t, s) = 0, as the expression above conditions on events where there are no
jumps in the interval (t, t̃). We begin by rewriting the probabilities of a next event time and type, under min-time sampling,
in terms of densities and CDFs. The first equality in the following holds due to independence, while in the second we switch
to writing with the intensities λ̃ we defined, then we combine the exponents, followed by spelling out the conditioning sets
and switching λ̃ to λ, and finally we note that the observed history Ht coincides with the events ∆N(t, s) = 0 for s ≤ t̃
since no jumps occur in this interval.

p̃(Tnext = t̃, Enext = e | Ht) = p̃e(T̃e = t̃ | Ht)
∏

ẽ∈E\e

1− Fẽ[t̃ | Ht]

= λ̃e(t̃ | Ht) exp

(
−
∫ t̃

t

λ̃e(s | Ht)ds

) ∏
ẽ∈E\e

exp

(
−
∫ t̃

t

λ̃ẽ(s | Ht)ds

)

= λ̃e(t̃ | Ht)exp

(
−
∑
ẽ∈E

∫ t̃

t

λ̃ẽ(s | Ht)ds

)

= λe(t̃ | Ht,∆N(t, t̃) = 0)exp

(
−
∑
ẽ∈E

∫ t̃

t

λẽ(s | Ht,∆N(t, s) = 0)ds

)

= λe(t̃ | Ht̃−)exp

(
−
∑
ẽ∈E

∫ t̃

t

λẽ(s | Hs−)ds

)
.

This concludes the proof as the right hand side coincides with Pobs(Tnext = t̃, Enext = e | Ht), so the desired identity is
obtained.

For completeness, we also spell out the derivation of the identity from the main text, from which we may form a stochastic
estimator of the gradient for the CDF,

∇θ log 1− Fe[ti | Hti−1 ; θ] =∇θ log

∫ T

ti

p̃e(Tnext = t | Hti−1 ; θ) =

1∫ T

ti
p̃e(Tnext = t | Htt−1

; θ)dt

∫ T

ti

∇θp̃e(Tnext = t′ | Hti−1
; θ)dt′ =

∫ T

ti

p̃e(Tnext = t′ | Hti−1
; θ)∫ T

ti
p̃e(Tnext = t | Htt−1 ; θ)dt

∇θ log p̃e(Tnext = t′ | Hti−1 ; θ)dt
′ =

E
t′∼pe(·|Te>ti;θ)

[
∇θ log pe(t

′|Hti−1 ; θ)
]

B. Details on Simulations and Baselines
Cancer simulator: The tumor growth simulation we use is adapted from Bica et al. (2020); Seedat et al. (2022); Melnychuk
et al. (2022) and is based on the work of Geng et al. (2017). Tumor volumes V (t) are simulated as finite differences from
the following differential equation,

dV (t)

dt
=

ρ log

(
K

V (t)

)
︸ ︷︷ ︸

Tumor growth

− βcC(t)︸ ︷︷ ︸
Chemotherapy

−
(
αrd(t) + βrd(t)

2
)︸ ︷︷ ︸

Radiotherapy

+ et︸︷︷︸
Noise

V (t).
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Here C(t) is the chemotherapy concentration, d(t) represents the level of radiothearpy. ρ,K, βc, αr, βr are effect parameters
drawn for each patient from a prior distribution described in Geng et al. (2017), and et ∼ N (0, 0.0001) is a noise term. To
create irregularly sampled observations of the tumor volume, at each time step we draw a value from a Bernoulli distribution
to decide whether the trajectory contains the tumor volume at this time step or not. The success probability is a function of
the average tumor volume over the most recent 15 volumes (both observed and unobserved). If we denote a missing value
by ∅ and the observation at timestep t by Xt (which equals ∅ if there is no sample at this timestep and V (t) otherwise), then
sampling times are drawn according to the following probabilities:

p(Vt ̸= ∅|Ht) = σ

(
V̄t−15:t

Vmax
− 1.5

)
The policies we use to decide on treatments draw binary decisions of whether or not to apply chemotherapy and radiotherapy
at each timestep. Denoting these decisions by random variables Ct and dt, they are drawn according to P (Rt = 1|Ht) =
σ (γ · (vlast − β) + t− tlast), where vlast is the last observed volume before time t and tlast is the last time that treatment was
applied before t. The same probabilities are applied for dt.

we conjecture that this is because they are simpler and faster to train than the dynamic programming baselines, where FQE
suffers from noisy gradients due to time discretization, while EDQ is better but still requires many epochs to train

Architecture: To implement all the methods we use the GPT-2 architecture. Each token is a concatenation of embeddings
of time ti, value zi and event type ei ∈ {A,X, Y,∆T}. The event types A,X, Y correspond to actions, features, and
outcomes, while ∆T is introduced to represent time differences between two events (the time difference can also be 0). For
CEMs we include prediction heads for the time difference to next event, for each event type (i.e. predicting the potential
time T̃e). After each event token of type that is not ∆, we place a token of type ∆ with a value of this drawn next time
difference. Since we discretize time in our implementation, the time prediction heads output a probability distribution over
possible categorical time differences and are trained with a cross-entropy loss. We also introduce a prediction head for the
marks of each type except ∆, and the mark of the next event is taken as the prediction of that head in case the corresponding
type is the one with the earliest time.

Baselines: We choose the baselines Monte-Carlo/Empirical Risk Minimization as this is the simplest baseline, that
demonstrates the effect of distribution shift on the performance of a naı̈ve learner. This baseline simply regresses to the
observed label, and thus does not take into account that at test time we will intervene on the treatment policy.

FQE (Le et al., 2019) is a dynamic programming algorithm that is arguably the most common algorithm for policy evaluation
in discrete time. Since the problem we experiment with is an off-policy evaluation problems, it is an appropriate baseline to
examine the effect of using an algorithm that is not tailored for irregularly sampled times.

EDQ (Wald et al., 2025) is a recent algorithm proposed as a dynamic programing algorithm that is an alternative to FQE,
and is more suitable for irregularly sampled times. Since finely discretized times may harm the propagation of information
backward in time in discrete-time FQE, EDQ does dynamic programming based on the earliest disagreement time, which
may be much later than oen timestep ahead, and thus enable better flow of the error backwards in time.

For both EDQ and FQE above we also include a target network (Van Hasselt et al., 2016), and update it with soft-Q updates.
Empirically, we should note that it seems like FQE and EDQ are underperforming CEMs due to long training times (FQE
suffers from this more than EDQ). Sppeding up the implementations of these algorithm might be possible, and they might
achieve improved performace, though we leave that for future exploration.

Finally, we wish to mention several relevant works regarding causal inference on data with irregularly sampled times, as
there are a few reccent works on the topic. Seedat et al. (2022) give an architecture that is more suitable for irregualrly
sampled data, but does not intervene on treatment timing, Vanderschueren et al. (2023) give a reweighting technique to
simulate non-informative sampling times. However, they do not learn generative models of such data, nor intervene on them,
and the method cannot evaluate dynamic policies (where treatments and times are dependent on past observations). Hess &
Feuerriegel (2025) give a thorough treatment and neural model for reweighting intensities to make them non-informative,
and using stabilized weights to improve sample complexity. They also do not learn an intervenable generative model, and
to the best of our understanding do not support dynamic policies. Finally, a recent preprint (Li et al., 2025) proposes an
architecture to answer time-related counterfactual questions, yet the code is not available and the paper does not formalize a
causal inference question. It is interesting to explore whether the methods and estimands we develop are connected to those
in Li et al. (2025).

9


