
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Competing Event Models: Next Event Prediction Under Interventions

Abstract
Modeling interventions that include treatment
times is an important task in many domains
such as healthcare, finance, and others. Scaling
up models for these interventional distributions
is challenging, since popular architectures, e.g.
transformers that predict the next event in a se-
quence, do not naturally support alterting times of
specific treatments. We develop competing event
models, an autoregressive generative approach
in which estimating interventions in both when
and what treatments are applied is made simple.
The key element in our solution draws from the
competing risks literature and models the timing
of each type of event, e.g. a treatment or an ob-
servation, given that its the next to occur. This
design allows straightforward treatment timing
interventions via next-token prediction, admits
a simple likelihood-based objective, and yields
valid effect estimates under standard assumptions.
We evaluate on a simulated benchmark for effect
estimation of sequential treatments.

1. Introduction
Autoregressive models are the de-facto solution for genera-
tion of sequential data in language (Radford et al., 2018), ge-
netic sequences (Rives et al., 2021), medical records (Stein-
berg et al., 2021) and more. Modeling interventions using
such architectures can be applied to tasks like off-policy
evaluation and policy optimization. Consider modeling med-
ical records and observing the data of a patient suffering
from heart failure. A cardiologist may wish to assess the risk
of worsening conditions, e.g. experiencing decompensation,
or side-effects, under different treatment policies/regimens.
Such causal inference questions are important in medicine
(Joshi et al., 2025; van Amsterdam et al., 2022; Chen et al.,
2021), and generating potential trajectories under regimens
of interest is an attractive way to answer them.

In many scenarios, the timing of treatment is a crucial aspect
of treatment regimens, or policies. For example, we would
like to know how the trajectory would change if we treated a

. AUTHORERR: Missing \icmlcorrespondingauthor.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

patient a month later, or perhaps a week earlier than planned.
More elaborate questions may include more complex poli-
cies like “What if in the future we will treat the patient
whenever cholesterol levels are above a certain threshold?”.
However, we claim here that common autoregressive models
of the observational distribution, e.g. transformers trained
for next event/token prediction, do not naturally lend them-
selves to sampling from interventional distributions that
modify timing of a specific treatment because these next
event prediction approaches explicitly model the time of any
next event. In this work, we take a step towards estimating
such interventions by augmenting autoregressive models
to predict potential event times, as explained below. Our
contributions are as follows.

• We develop competing event model (CEMs), autoregres-
sive models where each event has a type, e.g. a treatment
or observation event. To determine the type of the next
event, a CEM samples a potential next event time for each
type, then assigns the one that received the minimal time
among the possible types. We show that such a proce-
dure samples correctly from the observational distribution
while allowing simple interventions on treatments, (e.g.
what drug and dosage to give) and their timings (when
to administer it). We specify conditions when these inter-
ventions produce correct causal estimates.

• To learn CEMs from observed data, we provide a maxi-
mum likelihood method and implement it with a decoder-
only transformer architecture. We demonstrate the
method in an off-policy evaluation problem for a tumor
growth simulator.

In Section 2, we review the formalism of intervening on
temporal point processes and define the problem. The dis-
cussion in this section leads us to develop CEMs and review
related methods in Section 3. We then experiment with their
implementation on a tumor growth simulation in Section 4.

2. Modeling Interventions in Point Processes
The problem setting, described below, follows a notation
close to that in Upadhyay et al. (2018); Wald et al. (2025)
and identifiability conditions from Røysland et al. (2022). In
Section 2.2 we discuss autoregressive models of the obser-
vational distribution, such as transformers trained for next
token prediction, and how we may use them to sample from
interventional distributions.

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Competing Event Models

2.1. Problem Setting
Data are generated by marked point processes with an under-
lying multivariate counting process {Ne}e∈E on the time
interval [0, T], where the set E denotes the possible types
of events. We further assume some standard technical con-
ditions that Ne(t) is almost surely finite for any t ∈ [0, T]
and the filtration is the σ-algebra generated by random vari-
ables Ne(t) and their marks, see Aalen et al. (2008) for an
introduction. The random variables for marks are denoted
by Z, and a trajectory sampled from the process is denoted
by H = {(t0, e0, z0), (t1, e1, z1), . . . , (tn, en, zn)}, where
Ht = {(tk, ek, zk) ∈ H : tk ≤ t} are events up to time t.
Definition 2.1. Pobs is a multivariate marked point process,
supported on the time interval [0, T] for some T > 0, with
observed components {Ne}e∈E where E is a finite set. We
also allow unobserved components {Nu}u∈U , whose jumps
Hu are omitted from the trajectoriesH. We assume inten-
sities λobs(t | Ht,Hu

t) = E[dN(t) | Ht,Hu
t] exist, and let

the marks take on values in space Z . ForHt ∈ supp(Pobs),
we denote the density functions of the next event time and
type by Pobs(Tnext, Enext | Ht), and the mark conditioned
on these by Pobs(Znext|Ht, Tnext = tnext, Enext = enext).

For example, when modeling a trajectory of events in a
medical record, each type e ∈ E may correspond to an ICD
code, and Z may represent additional details of the event. If
the type e corresponds to the administration of a drug, then
the respective z can encode additional details such as the
dose or more specific features of the drug. An intervention
will replace one or more of the intensity functions and mark
distributions, while keeping all others fixed, the unobserved
components included. For simplicity, we focus on inter-
ventions on one intensity process. The technical novelty in
our solution regards such interventions, and generalizing to
interventions on several components or mark distributions
is straightforward.
Definition 2.2. An intervention on the timing of e ∈ E
replaces λe

obs(t | Ht,Hu
t) with an intensity λe(t | Ht) while

keeping all components of Pobs fixed. We denote the result-
ing interventional distribution by P .

Having defined the interventions of interest, we next specify
the conditions on the unobserved processes that we require
for identifiability. They are a special case of the eliminabil-
ity assumption formalized in Røysland et al. (2022). These
are rather strong assumption and relaxing them is an inter-
esting research question, yet they are commonly used (see
(Røysland, 2011; Schulam & Saria, 2017; Vanderschueren
et al., 2023; Hess & Feuerriegel, 2025; Wald et al., 2025)
for somewhat similar assumptions in related settings) to
guarantee identifiability of P from Pobs.
Lemma 2.3 (corolloary of Røysland et al. (2022)). Let
Pobs an observed distribution and consider an interven-
tion on the timing of e ∈ E . Assume that the unobserved

processes can be divided into λu = [λu1 , λu2] such that
the following two conditions hold: (i) λe(t | Ht,Hu

t) =
λe(t | Ht,Hu2

t), and (ii) λE\e(t | Ht,Hu
t) = λE\e(t | Ht)

and λu2(t | Ht,Hu
t) = λu1(t | Ht). Furthermore, assume

that λe ≪ λe
obs, where≪ denotes absolute continuity. Let

Pobs|E be the marginal distribution over observed variables.
The interventional distribution obtained by intervening on
timing of e ∈ E in Pobs|E is P as defined in Definition 2.2.

To conclude this problem introduction, we summarize the in-
tuition behind the formal statement above. Since the learner
does not observe the events Hu, the training set {Hi}mi=1

it recevies is a sample from Pobs|E . Therefore, a distribu-
tion that can be calculated from the training data is the one
obtained by plugging λe into Pobs|E . The distribution we
would like to estimate is the one where λe is plugged into
Pobs (i.e. where unobserved processes are not ignored),
and then marginal over the observed variables is taken. As-
sumptions (i) and (ii) intuitively mean that the past of an
unobserved process can only affect the future of λe or λE\e,
but not both (i.e. unobserved histories do not confound
future events). These conditions ensure that the distribu-
tion we can calculate coincides with the desired one. This
assumption is summarized graphically by the local inde-
pendence graph (Didelez, 2008) in Figure 1. The overlap
assumption in (iii) ensures that plugging λe into a model
of Pobs does not result in trajectories that go out-of-support
w.r.t Pobs.

U1Ne NE\eU2

Figure 1: The assumed local independence graph. Intu-
itively, an edge a→ b means the past of proccess a affects
the future intensity of b.

Having formalized the estimation problem of interest, we
turn to solve the algorithmic problem: how to learn autore-
gressive models that allow easy interventions on timings?

2.2. Interventions in Next-Event Models
Our goal in the rest of this work is to provide a sim-
ple “next-event” (or next-token) prediction architecture
that supports interventions on the timing of each type
e ∈ E , that is, on λe(t|Ht), or on its mark distribution,
P (Znext|Ht, Tnext, Enext). This reflects interventions that
are of interest in real-world applications. Returning to our
example of modeling patient trajectories, if e is a type that
corresponds to prescribing a drug, then we may be able to
intervene both on the timing on the event and its mark which
includes details about the treatment. For other events, e.g.
when e corresponds to a lab test, we may be able to control
the timing, but not the mark if it holds the results of the test.
Hence, separating these objects can be helpful.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Competing Event Models

Parameterizing next-event distributions. When fitting
neural networks to model point processes, a crucial architec-
tural choice is which mathematical object to fit. Common
choices are to let the parameters θ of a neural network spec-
ify the intensity function λobs(t | Ht; θ), or the distribution
of the next jump time, Pobs(Tnext | Ht; θ). Both choices (as
well as other functions) can express the joint distribution,
and there is a one-to-one correspondence between them
(Shchur et al., 2021). We focus on the latter, as it has some
attractive properties, and it is a common choice in recent
transformer-based models (McDermott et al., 2023; Song
et al., 2024; Steinberg et al., 2023; Yang et al., 2023; Labach
et al., 2023; Hill et al., 2023; Pang et al., 2024; Renc et al.,
2024). For instance, Renc et al. (2024) train a next-token
prediction model that has tokens for medical events in the
MIMIC dataset and additional tokens corresponding to times
between events (1-2 hours, 2-6 hours etc.). Mark distribu-
tions are also parameterized Pθ(Znext|Ht, Tnext, Enext; θ).

Challenges in intervening on P (Tnext | Ht; θ). Turning
to interventions on timings of e ∈ E , which going forward
we refer to as the treatment, we note below that obtaining
a sample from the interventional P (Tnext | Ht) by sam-
pling Pobs(Tnext | Ht) requires a non-trivial transformation.
Consider two interventions of interest:

1. We are given data from a population different than the one
observed in Pobs. We would like plug-in the treatment
timing policy of that population into our model of Pobs.

2. We would like to set the next treatment at some fixed time
t+ δ, or prevent it from happening altogether.

The crux of the challenge in performing these interventions
on a model of P (Tnext | Ht; θ) is that Tnext is not the next
event time of a specific type, but the next event time of any
type. For the first intervention, if we are given data or a
closed form intensity λe(t | Ht), there is no set of parame-
ters in P (Tnext | Ht; θ) that controls treatment timing alone
and can be tuned by the provided target population data. Nor
there are outputs where we can plug-in a given intensity λe.
The second type of intervention is challenging as well. Say
that we draw tnext ∼ Pobs(Tnext | Ht; θ), where t < t+ δ,
and our model of Pobs assigns a probability of 0.3 for the
event being a treatment (i.e. type e). To intervene, we will
somehow need to set this probability to 0. If we do that,
then how should we distribute the probability between other
types? Also, the intervention should affect the distribution
of Tnext, how should we calculate that? While the desired
quantity is a functional of Pobs and in principle can be calcu-
lated based on our model, the required procedure would far
exceed simple uses of autoregressive models, like sampling
or directly intervening on next tokens. This motivates us to
define CEMs and their training procedure in what follows.

3. Competing Event Models
Recall that our goal is to learn a next-token prediction model
where replacing the intensity λe

obs is straightforward. To this
end, the key is to introduce distributions pẽ(Tnext | Ht; θ)
for all ẽ ∈ E , which are the distributions of the next event
of type ẽ, conditioned on no other event occurring before-
hand. These objects are common in the survival analysis
and competing risks literature (Crowder, 2012; Kalbfleisch
& Prentice, 2002; Tsiatis, 1975; Lee et al., 2018), where we
wish to fit a distribution for the survival time of a patient,
but in the observed data some patients are lost to censor-
ing. That is, they drop out of the experiment after a certain
time. Identification of the correct survival distribution is
possible under similar conditions to the ones laid out in
Lemma 2.3. Competing Event Models takes inspiration
from this literature and extends the principle to sequence
data, and interventions on timing. Let us formalize this.

Definition 3.1. Let Pobs a multivariate marked process
with intensities {λẽ

obs}ẽ∈E , e ∈ E one type of event in the
process, andHt events up to time t. Denoting by ∆N(t, t+
δ) = 0 the event where no jumps occur in the interval
(t, t + δ), we define the following intensity for any δ ∈
(0, T − t],

λ̃e
obs(t+ δ|Ht) = λe

obs(t+ δ|Ht,∆N(t, t+ δ) = 0).

When considering this intensity, we will denote the random
variable for the first jump time after t by Te, the probability
density for this jump time by p̃e(Te|Ht), and the CDF of
p̃e(Te|Ht) by Fe[t+ δ|Ht].

As suggested in the definition, there is a one-to-one corre-
spondence between p̃e and λe

obs, hence we will implement
treatment timing interventions by changing p̃e while keep-
ing p̃ẽ fixed for all ẽ ∈ E \ e. The key components that
remain to be specified, is how to form a joint distribution
from {p̃ẽ}ẽ∈E and sample from it; how to fit the distribu-
tions from data; and how to perform interventions.
The lemma below (see Appendix A for proof) suggests sam-
pling times independently from all the p̃ẽ and setting the
next event type and time according to the earliest one. It
also gives the expression for the likelihood, from which we
derive the training algorithm. The sampling and training
procedures are summarized in Algorithm 1, including the
loss to fit mark distributions.
Lemma 3.2. Let Ht ∈ supp(Pobs), consider the ran-
dom variable Tnext = minẽ∈E Tẽ and e the minimizing
argument, where p̃(T̃1, . . . , T̃|E||Ht) =

∏
ẽ∈E p̃ẽ(T̃ẽ | Ht).

Then p̃(Tnext = t̃, Enext = e|Ht) = pobs(Tnext =
t̃, Enext = e|Ht). The likelihood of an observed trajec-
toryH = {(tj , ej , zj)}nj=1 under this model is given by

∑
j∈[n]

log p̃ej
(
tj |Htj−1

)
+
∑
e ̸=ej

log
(
1− Fe[tj |Htj−1

]
)

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Competing Event Models

Algorithm 1 CEMs Learning and Sampling

Training p(H; θ)
Input: Trajectories {Hi}Ni=1, learning rate η
Initialize θ randomly
for D rounds do

Draw batch B and for eachHi ∈ B calculate

L(Hi; θ)←
∑

(tj ,ej ,zj)∈Hi

log pej (tj |Htj−1 ; θ)

+
∑
e ̸=ei

log(1− Fe[tj |Htj−1
; θ])

+ log p(z|Htj−1 , Tj = tj , Ej = ej ; θ)

Update θ ← θ + η|B|−1
∑

Hi∈B ∇θL(Hi; θ)
end for
Return p(·; θ)
Sampling p(·|Ht;θ) with intervention p̃ẽ(Tnext | Ht)

Sample Te ∼ pe(Tnext | Ht;θ) for e ̸= ẽ
Sample Tẽ ∼ p̃ẽ(Tnext | Ht)
Set enext ← argmine Te, tnext ← Tenext

Sample znext ∼ p(z | Ht, Tnext = tnext, Enext = enext)
ReturnHt ∪ (tnext, enext, z)

Implementation considerations and interventions. The
rather flexible formulation of CEMs allows various imple-
mentation choices. The timeline may be discretized, where
events are sparse and occur irregularly, or it may be continu-
ous and parameterized by, e.g., a mixture density network
(Bishop, 1994). There is also flexibility in choosing what to
consider as types of events E and what as marks Z , accord-
ing to the type of interventions we consider. The training
objective maximizes the likelihood of the time tj for the
type ej of the j-th event, while maximizing the probability
of all times after tj for the types e ̸= ej . In our implementa-
tion the timeline is discretized, so calculating Fe[ti | Hti−1]
is simple. Yet if one uses more complex functions that are
difficult to integrate, the following identity (see Appendix A
for derivation) can be useful to obtain an unbiased stochastic
estimator of the gradient:

∇θ log 1− Fe[ti | Hti−1
; θ] =

E
t∼pe(·|Te>ti;θ)

[
∇θ log pe(t|Hti−1

; θ)
]

The resulting estimator is rather intuitive: Sample a next
time for e ̸= ei from the estimate of p̃e, conditioned this
time is later than t, and maximize the likelihood of this time.

Finally, we discuss how to apply interventions on a fitted
model Pobs(H; θ), like those suggested in Section 2.2. Man-
ually setting the potential time Te to some value, like t+ δ,
and following the min-time sampling procedure, is a simple
way to estimate queries such as “what if we treat at time

(γ, β)obs ERM / MC FQE EDQ CEM

(γ, β)int = (6, 0.75)
(6, 0.75) 0.0325± 0.0002 0.0461± 0.0006 0.0373± 0.0007 0.0305± 0.0044
(10, 0.5) 0.063± 0.0026 0.0750± 0.0210 0.050± 0.0029 0.0345± 0.0026

Figure 2: NRMSE for tumor growth simulation. Top row
evaluates prediction on Pobs, the bottom evaluates pre-
diction under an intervention where treatment distribution
(γ, β)obs = (10, 0.5) is replaced by (γ, β)int = (6, 0.75).

t + δ”. To finetune according to a reward/loss function,
we may tune parameters θe that only affect the distribution
p̃e(·; θ) (in our implementation, there is a shared representa-
tion, and a separate linear prediction head for each ẽ ∈ E).
Replacing p̃e(·; θ) with a closed-form alternative is also
straightforward, and we do that in our experiment next.

4. Experiments
As a proof-of-concept for CEMs, we use a pharmacokinetic
model for tumor growth. This setting from Bica et al. (2020)
was adapted to study the irregular time sampling we are in-
terested in (Seedat et al., 2022; Vanderschueren et al., 2023;
Wald et al., 2025). We defer most details on the simula-
tor to Appendix B and briefly describe the task here. The
simulator works in discrete time t ∈ [T] where T = 20,
and irregular event times are induced by the feature being
unobserved at most times. We have E = {x, a}, where the
mark zt ∈ R+ for x is the tumor volume and is observed
with probability σ((z̄t−d:t−1/dmax)− 1.5), where z̄t−d:t−1

is the average tumor volume over the last d timesteps, and
dmax is the maximum considered volume. For a the mark
denotes type of treatment: radiotherapy, chemotherapy, or
combined therapy. We intervene on the treatment assign-
ment mechanism, determined by two parameters (γ, β),
where each type of treatment is assigned with probability
σ(γ(xlast − β) + t− tlast). Here, xlast is the last observed
volume and tlast is the time of the last treatment. β con-
trols how often treatments are applied, while γ controls the
dependence of treatment assignment on tumor volume.

We implement CEMs by modifying the GPT-2 architecture,
and also use this to implement baselines: ERM/MC that pre-
dicts the tumor growth from observed data, disregarding the
target treatment policy, and two off-policy evaluation meth-
ods based on dynamic programming, FQE (Le et al., 2019)
and EDQ (Wald et al., 2025). We relegate additional details
on the simulator, baselines/related literature and architecture
to Appendix B. To evaluate the methods, we use them to
predict the tumor volume at time T = 20, and report the
normalized mean squared error in Figure 2. CEMs outper-
form the baselines on prediction under the intervention, we
further expand our analysis of the results in Appendix B.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Competing Event Models

References
Aalen, O., Borgan, O., and Gjessing, H. Survival and event

history analysis: a process point of view. Springer Sci-
ence & Business Media, 2008.

Bica, I., Alaa, A. M., Jordon, J., and van der Schaar,
M. Estimating counterfactual treatment outcomes over
time through adversarially balanced representations. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=BJg866NFvB.

Bishop, C. M. Mixture density networks. 1994.

Chen, I. Y., Joshi, S., Ghassemi, M., and Ranganath, R.
Probabilistic machine learning for healthcare. Annual
review of biomedical data science, 4(1):393–415, 2021.

Crowder, M. J. Multivariate survival analysis and compet-
ing risks. CRC Press, 2012.

Didelez, V. Graphical models for marked point processes
based on local independence. Journal of the Royal Sta-
tistical Society Series B: Statistical Methodology, 70(1):
245–264, 2008.

Geng, C., Paganetti, H., and Grassberger, C. Prediction of
treatment response for combined chemo-and radiation
therapy for non-small cell lung cancer patients using a
bio-mathematical model. Scientific reports, 7(1):13542,
2017.

Hess, K. and Feuerriegel, S. Stabilized neural prediction of
potential outcomes in continuous time. In The Thirteenth
International Conference on Learning Representations,
2025.

Hill, B. L., Emami, M., Nori, V. S., Cordova-Palomera,
A., Tillman, R. E., and Halperin, E. Chiron: A genera-
tive foundation model for structured sequential medical
data. In Deep Generative Models for Health Workshop
NeurIPS 2023, 2023.

Joshi, S., Urteaga, I., van Amsterdam, W. A., Hripcsak,
G., Elias, P., Recht, B., Elhadad, N., Fackler, J., Sendak,
M. P., Wiens, J., et al. Ai as an intervention: improving
clinical outcomes relies on a causal approach to ai devel-
opment and validation. Journal of the American Medical
Informatics Association, pp. ocae301, 2025.

Kalbfleisch, J. D. and Prentice, R. L. The statistical analysis
of failure time data. John Wiley & Sons, 2002.

Labach, A., Pokhrel, A., Huang, X. S., Zuberi, S., Yi, S. E.,
Volkovs, M., Poutanen, T., and Krishnan, R. G. Duett:
dual event time transformer for electronic health records.
In Machine Learning for Healthcare Conference, pp. 403–
422. PMLR, 2023.

Le, H., Voloshin, C., and Yue, Y. Batch policy learning un-
der constraints. In International Conference on Machine
Learning, pp. 3703–3712. PMLR, 2019.

Lee, C., Zame, W., Yoon, J., and Van Der Schaar, M. Deep-
hit: A deep learning approach to survival analysis with
competing risks. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Li, M. M., Li, K., Ektefaie, Y., Messica, S., and Zitnik, M.
Controllable sequence editing for counterfactual genera-
tion. arXiv preprint arXiv:2502.03569, 2025.

McDermott, M., Nestor, B., Argaw, P., and Kohane, I. S.
Event stream gpt: a data pre-processing and model-
ing library for generative, pre-trained transformers over
continuous-time sequences of complex events. Advances
in Neural Information Processing Systems, 36:24322–
24334, 2023.

Melnychuk, V., Frauen, D., and Feuerriegel, S. Causal trans-
former for estimating counterfactual outcomes. In Inter-
national Conference on Machine Learning, pp. 15293–
15329. PMLR, 2022.

Pang, C., Jiang, X., Pavinkurve, N. P., Kalluri, K. S., Minto,
E. L., Patterson, J., Zhang, L., Hripcsak, G., Gürsoy,
G., Elhadad, N., et al. Cehr-gpt: Generating electronic
health records with chronological patient timelines. arXiv
preprint arXiv:2402.04400, 2024.

Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. Improving language understanding by generative
pre-training. 2018.

Renc, P., Jia, Y., Samir, A. E., Was, J., Li, Q., Bates, D. W.,
and Sitek, A. Zero shot health trajectory prediction using
transformer. NPJ Digital Medicine, 7(1):256, 2024.

Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J.,
Guo, D., Ott, M., Zitnick, C. L., Ma, J., et al. Biological
structure and function emerge from scaling unsupervised
learning to 250 million protein sequences. Proceedings of
the National Academy of Sciences, 118(15):e2016239118,
2021.

Røysland, K. A martingale approach to continuous-time
marginal structural models. Bernoulli, 17(3):895 – 915,
2011.

Røysland, K., Ryalen, P., Nygaard, M., and Didelez, V.
Graphical criteria for the identification of marginal causal
effects in continuous-time survival and event-history anal-
yses. arXiv preprint arXiv:2202.02311, 2022.

Schulam, P. and Saria, S. Reliable decision support using
counterfactual models. Advances in neural information
processing systems, 30, 2017.

5

https://openreview.net/forum?id=BJg866NFvB
https://openreview.net/forum?id=BJg866NFvB

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Competing Event Models

Seedat, N., Imrie, F., Bellot, A., Qian, Z., and van der
Schaar, M. Continuous-time modeling of counterfactual
outcomes using neural controlled differential equations.
arXiv preprint arXiv:2206.08311, 2022.

Shchur, O., Türkmen, A. C., Januschowski, T., and
Günnemann, S. Neural temporal point processes: A
review. arXiv preprint arXiv:2104.03528, 2021.

Song, Z., Lu, Q., Zhu, H., Buckeridge, D., and Li, Y. Trajgpt:
Irregular time-series representation learning for health
trajectory analysis. arXiv preprint arXiv:2410.02133,
2024.

Steinberg, E., Jung, K., Fries, J. A., Corbin, C. K., Pfohl,
S. R., and Shah, N. H. Language models are an effective
representation learning technique for electronic health
record data. Journal of biomedical informatics, 113:
103637, 2021.

Steinberg, E., Fries, J., Xu, Y., and Shah, N. Motor: a time-
to-event foundation model for structured medical records.
arXiv preprint arXiv:2301.03150, 2023.

Tsiatis, A. A nonidentifiability aspect of the problem of
competing risks. Proceedings of the National Academy
of Sciences, 72(1):20–22, 1975.

Upadhyay, U., De, A., and Gomez Rodriguez, M. Deep re-
inforcement learning of marked temporal point processes.
Advances in neural information processing systems, 31,
2018.

van Amsterdam, W. A., de Jong, P. A., Verhoeff, J. J.,
Leiner, T., and Ranganath, R. Decision making in cancer:
Causal questions require causal answers. arXiv preprint
arXiv:2209.07397, 2022.

Van Hasselt, H., Guez, A., and Silver, D. Deep reinforce-
ment learning with double q-learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 30,
2016.

Vanderschueren, T., Curth, A., Verbeke, W., and van der
Schaar, M. Accounting for informative sampling when
learning to forecast treatment outcomes over time. arXiv
preprint arXiv:2306.04255, 2023.

Wald, Y., Goldstein, M., Efroni, Y., van Amsterdam, W. A.,
and Ranganath, R. Time after time: Scalable effect esti-
mation for interventions on when and what to do. In The
Thirteenth International Conference on Learning Repre-
sentations, 2025.

Yang, Z., Mitra, A., Liu, W., Berlowitz, D., and Yu, H.
Transformehr: transformer-based encoder-decoder gen-
erative model to enhance prediction of disease outcomes
using electronic health records. Nature communications,
14(1):7857, 2023.

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Competing Event Models

A. Proof and Additional Details
Let us restate and prove the statement on the likelihood and sampling procedure of CEMs.
Lemma A.1. Let Ht ∈ supp(Pobs), consider the random variable Tnext = minẽ∈E Tẽ and e the minimizing argument,
where p̃(T̃1, . . . , T̃|E||Ht) =

∏
ẽ∈E p̃ẽ(T̃ẽ | Ht). Then p̃(Tnext = t̃, Enext = e|Ht) = pobs(Tnext = t̃, Enext = e|Ht). The

likelihood of an observed trajectoryH = {(tj , ej , zj)}nj=1 under this model is given by

∑
j∈[n]

log p̃ej
(
tj |Htj−1

)
+
∑
e ̸=ej

log
(
1− Fe[tj |Htj−1

]
)

Proof. Let us show that the log-likelihood of a trajectory H, when written in terms of the next jump-time distributions
{p̃j}kj=1 is

∑
j∈[n]

log p̃ej
(
tj |Htj−1

)
+
∑
e ̸=ei

log
(
1− Fe[tj |Htj−1]

)
To show this we rewrite the terms above using intensities λ instead of next time densities, and observe that it coincides with
the familiar log-likelihood ofH from the point processes literature (Aalen et al., 2008),∑

j∈[n]

log λej (tj |Htj−)−
∫ T

0

∑
e∈E

λe(t|Ht−)dt.

HereHt− is the history of events up until time t, but not including time t. The equivalence follows easily by observing that
in trajectory H the process does not jump at any t ∈ (tj−1, tj), so it holds that λ(t|Ht) = λ(t|Htj−1 ,∆N(tj−1, t) = 0).
Hence we get

p̃e(tj |Htj−1
) = λ̃e(tj |Htj−1

) exp

{
−
∫ tj

tj−1

λ̃e(t|Htj−1
)dt

}

= λe(tj |Htj−1
,∆N(tj−1, tj) = 0) exp

{
−
∫ tj

tj−1

λe(t|Htj−1
,∆N(tj , t) = 0)dt

}

= λe(ti|Htj−) exp

{
−
∫ tj

tj−1

λe(t|Ht−)dt

}

Fe[tj |Htj−1] = 1− exp

{
−
∫ tj

tj−1

λ̃e(t|Htj−1)dt

}

= 1− exp

{
−
∫ tj

tj−1

λe(t|Htj−1
,∆N(tj , t) = 0)dt

}

= 1− exp

{
−
∫ tj

tj−1

λe(t|Ht−)dt

}
Putting these together, we obtain

∑
j∈[n]

log p̃ej (tj |Htj−1
) +

∑
e ̸=ei

log(1− Fe[tj |Htj−1
])


=
∑
j∈[n]

log λei(tj |Htj−)−
∫ tj

tj−1

λei(t|Ht−)dt−
∑
e ̸=ej

∫ tj

tj−1

λe(t|Ht−)

=
∑
j∈[n]

log λei(tj |Htj−)−
∫ T

0

∑
e∈E

λe(t|Ht−)dt.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Competing Event Models

This indeed coincides with the likelihood in terms of λe(t | Ht−), which concludes the proof of the claim on the log-
likelihood.

Next, to show that min-time sampling returns a correct sample from Pobs, we again show that the next-time density coincides
with the familiar expression written with densities,

Pobs(Tnext = t̃, E = e | Ht) = λe(t̃ | Ht̃−) exp

(
−
∫ t̃

t

∑
ẽ∈E

λẽ(s|Hs−)ds

)
.

We start by spelling ourHs− using the event ∆N(t, s) = 0, as the expression above conditions on events where there are no
jumps in the interval (t, t̃). We begin by rewriting the probabilities of a next event time and type, under min-time sampling,
in terms of densities and CDFs. The first equality in the following holds due to independence, while in the second we switch
to writing with the intensities λ̃ we defined, then we combine the exponents, followed by spelling out the conditioning sets
and switching λ̃ to λ, and finally we note that the observed history Ht coincides with the events ∆N(t, s) = 0 for s ≤ t̃
since no jumps occur in this interval.

p̃(Tnext = t̃, Enext = e | Ht) = p̃e(T̃e = t̃ | Ht)
∏

ẽ∈E\e

1− Fẽ[t̃ | Ht]

= λ̃e(t̃ | Ht) exp

(
−
∫ t̃

t

λ̃e(s | Ht)ds

) ∏
ẽ∈E\e

exp

(
−
∫ t̃

t

λ̃ẽ(s | Ht)ds

)

= λ̃e(t̃ | Ht)exp

(
−
∑
ẽ∈E

∫ t̃

t

λ̃ẽ(s | Ht)ds

)

= λe(t̃ | Ht,∆N(t, t̃) = 0)exp

(
−
∑
ẽ∈E

∫ t̃

t

λẽ(s | Ht,∆N(t, s) = 0)ds

)

= λe(t̃ | Ht̃−)exp

(
−
∑
ẽ∈E

∫ t̃

t

λẽ(s | Hs−)ds

)
.

This concludes the proof as the right hand side coincides with Pobs(Tnext = t̃, Enext = e | Ht), so the desired identity is
obtained.

For completeness, we also spell out the derivation of the identity from the main text, from which we may form a stochastic
estimator of the gradient for the CDF,

∇θ log 1− Fe[ti | Hti−1 ; θ] =∇θ log

∫ T

ti

p̃e(Tnext = t | Hti−1 ; θ) =

1∫ T

ti
p̃e(Tnext = t | Htt−1

; θ)dt

∫ T

ti

∇θp̃e(Tnext = t′ | Hti−1
; θ)dt′ =

∫ T

ti

p̃e(Tnext = t′ | Hti−1
; θ)∫ T

ti
p̃e(Tnext = t | Htt−1 ; θ)dt

∇θ log p̃e(Tnext = t′ | Hti−1 ; θ)dt
′ =

E
t′∼pe(·|Te>ti;θ)

[
∇θ log pe(t

′|Hti−1 ; θ)
]

B. Details on Simulations and Baselines
Cancer simulator: The tumor growth simulation we use is adapted from Bica et al. (2020); Seedat et al. (2022); Melnychuk
et al. (2022) and is based on the work of Geng et al. (2017). Tumor volumes V (t) are simulated as finite differences from
the following differential equation,

dV (t)

dt
=

ρ log

(
K

V (t)

)
︸ ︷︷ ︸

Tumor growth

− βcC(t)︸ ︷︷ ︸
Chemotherapy

−
(
αrd(t) + βrd(t)

2
)︸ ︷︷ ︸

Radiotherapy

+ et︸︷︷︸
Noise

V (t).

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Competing Event Models

Here C(t) is the chemotherapy concentration, d(t) represents the level of radiothearpy. ρ,K, βc, αr, βr are effect parameters
drawn for each patient from a prior distribution described in Geng et al. (2017), and et ∼ N (0, 0.0001) is a noise term. To
create irregularly sampled observations of the tumor volume, at each time step we draw a value from a Bernoulli distribution
to decide whether the trajectory contains the tumor volume at this time step or not. The success probability is a function of
the average tumor volume over the most recent 15 volumes (both observed and unobserved). If we denote a missing value
by ∅ and the observation at timestep t by Xt (which equals ∅ if there is no sample at this timestep and V (t) otherwise), then
sampling times are drawn according to the following probabilities:

p(Vt ̸= ∅|Ht) = σ

(
V̄t−15:t

Vmax
− 1.5

)
The policies we use to decide on treatments draw binary decisions of whether or not to apply chemotherapy and radiotherapy
at each timestep. Denoting these decisions by random variables Ct and dt, they are drawn according to P (Rt = 1|Ht) =
σ (γ · (vlast − β) + t− tlast), where vlast is the last observed volume before time t and tlast is the last time that treatment was
applied before t. The same probabilities are applied for dt.

we conjecture that this is because they are simpler and faster to train than the dynamic programming baselines, where FQE
suffers from noisy gradients due to time discretization, while EDQ is better but still requires many epochs to train

Architecture: To implement all the methods we use the GPT-2 architecture. Each token is a concatenation of embeddings
of time ti, value zi and event type ei ∈ {A,X, Y,∆T}. The event types A,X, Y correspond to actions, features, and
outcomes, while ∆T is introduced to represent time differences between two events (the time difference can also be 0). For
CEMs we include prediction heads for the time difference to next event, for each event type (i.e. predicting the potential
time T̃e). After each event token of type that is not ∆, we place a token of type ∆ with a value of this drawn next time
difference. Since we discretize time in our implementation, the time prediction heads output a probability distribution over
possible categorical time differences and are trained with a cross-entropy loss. We also introduce a prediction head for the
marks of each type except ∆, and the mark of the next event is taken as the prediction of that head in case the corresponding
type is the one with the earliest time.

Baselines: We choose the baselines Monte-Carlo/Empirical Risk Minimization as this is the simplest baseline, that
demonstrates the effect of distribution shift on the performance of a naı̈ve learner. This baseline simply regresses to the
observed label, and thus does not take into account that at test time we will intervene on the treatment policy.

FQE (Le et al., 2019) is a dynamic programming algorithm that is arguably the most common algorithm for policy evaluation
in discrete time. Since the problem we experiment with is an off-policy evaluation problems, it is an appropriate baseline to
examine the effect of using an algorithm that is not tailored for irregularly sampled times.

EDQ (Wald et al., 2025) is a recent algorithm proposed as a dynamic programing algorithm that is an alternative to FQE,
and is more suitable for irregularly sampled times. Since finely discretized times may harm the propagation of information
backward in time in discrete-time FQE, EDQ does dynamic programming based on the earliest disagreement time, which
may be much later than oen timestep ahead, and thus enable better flow of the error backwards in time.

For both EDQ and FQE above we also include a target network (Van Hasselt et al., 2016), and update it with soft-Q updates.
Empirically, we should note that it seems like FQE and EDQ are underperforming CEMs due to long training times (FQE
suffers from this more than EDQ). Sppeding up the implementations of these algorithm might be possible, and they might
achieve improved performace, though we leave that for future exploration.

Finally, we wish to mention several relevant works regarding causal inference on data with irregularly sampled times, as
there are a few reccent works on the topic. Seedat et al. (2022) give an architecture that is more suitable for irregualrly
sampled data, but does not intervene on treatment timing, Vanderschueren et al. (2023) give a reweighting technique to
simulate non-informative sampling times. However, they do not learn generative models of such data, nor intervene on them,
and the method cannot evaluate dynamic policies (where treatments and times are dependent on past observations). Hess &
Feuerriegel (2025) give a thorough treatment and neural model for reweighting intensities to make them non-informative,
and using stabilized weights to improve sample complexity. They also do not learn an intervenable generative model, and
to the best of our understanding do not support dynamic policies. Finally, a recent preprint (Li et al., 2025) proposes an
architecture to answer time-related counterfactual questions, yet the code is not available and the paper does not formalize a
causal inference question. It is interesting to explore whether the methods and estimands we develop are connected to those
in Li et al. (2025).

9

