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Abstract

Accurately modelling experimental factors of variation is crucial to modern sci-
ence. By understanding the distinct contributions of treatment and nuisance factors,
researchers can better interpret, and generalise experimental findings. In many
real-world experiments, treatment and nuisance factors are correlated, making
standard assumptions of independence unrealistic. Classical design of experiments
provides many approaches for mitigating confounding, yet their integration with
modern deep generative models remains underexplored. We introduce a framework
that adapts variational autoencoders (VAEs) with block design—inspired inductive
biases to account for treatment—nuisance dependence. Specifically, we propose
stop-gradient and independence-constraint mechanisms that respect experimental
structure and enforce disentanglement even under correlated assignments. Our find-
ings highlight both the promises and pitfalls of combining block design principles
with disentangled generative modelling, paving the way for principled, causally
informed use of deep learning in experimental sciences.

1 Introduction

Disentangling factors of variation is a fundamental problem in experimental science. Since the early
development of statistical models in the 20 century (Fisher, 1949; Hill, 1965), researchers have
sought to understand how experimental outcomes depend on changes in experimental conditions
(Robins, 1997; Eberhardt and Scheines, 2007; Pearl, 2009).

Methods that learn disentangled representations have increasingly been applied to experimental data
(Du et al., 2022; Lopez et al., 2023; Moinfar and Theis, 2024). The goal of disentangled representation
learning is to map the underlying factors of variation in a dataset into latent variables that are both
semantically and statistically independent (Bengio et al., 2013; Wang et al., 2024), and that, among
other things (Locatello et al., 2019), (i) separate signal from nuisance variation (Kim et al., 2019; Tu
et al., 2024), and (ii) provide a principled basis for constructing counterfactuals (Peters et al., 2017).
These properties align with the aims of experiment design, where the goal is to isolate treatment
effects while mitigating nuisance influences.

Modern machine learning methods handle nuisance variation post-hoc, by conditioning on the nui-
sance factor (Lopez et al., 2018) or imposing independence via the loss function (Tu et al., 2024;
Makino et al., 2025; Adduri et al., 2025). These methods fall under model-based approaches to
treatment-nuisance disentanglement. Conversely, block designs aim to separate treatment and nui-
sance effects with a structure-based approach'. Block designs should not replace optimal experiment
design methods. Instead, we should use the well-establishing principles of block design to inform
how and when inductive biases for disentangling treatment-nuisance effects are used.

'By ensuring that experimental units are allocated between factors in a structured way (Dean et al., 2015).
We describe several block designs more formally in Section 2.
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a) Design I. Complete Design b) Design I1. Incomplete Design ©) Design III. Nested Design d) Design IV. Incomplete Design
(Unconfounded) (Partially Confounded) (Fully Confounded) with a Reference Treatment
(Partially Confounded)

Figure 1: Classical block designs and treatment—nuisance confounding. Rows correspond to nuisance n; and
columns correspond to treatment t; where t,ef denotes the reference treatment. A filled dot (e) indicates that
treatment ¢; was observed with nuisance n;.

Our contributions. In this work, we analyse independence in disentangled representations through
the lens of block designs. Our specific contributions are: (/) We characterise when independence
between treatments and nuisance factors is violated under classical block designs; (2) We propose
inductive biases that adapt identifiable VAEs to data with correlated treatment-nuisance structure; (3)
We empirically validate our approach using a real-world interventional dataset, showing improved
disentanglement compared to baseline methods. These contributions highlight the importance of
grounding representation learning methods in experimental design theory, thereby advancing the
integration of disentanglement, causality, and scientific practice.

2 Background

Variational Autoencoders. VAEs (Kingma et al., 2013) are a class of deep generative models
that perform amortized variational inference in latent variable models (see Appendix A for a full
description). Given observed data x € &, latent variable models aim to relate each x to latent z € Z.
The identifiable VAE (iVAE) framework (Khemakhem et al., 2020) provides identifiability guarantees
on the standard VAE by conditioning on auxiliary variables. Formally, the conditional generative
model is given by py(x,z|u) = p(x|z, u)p(z|u), where u is an arbitrary auxiliary variable (e.g.
treatment label). Under suitable conditions, this modification enables recovery of the true latent
structure up to element-wise transformations.

Inductive Biases for Disentanglement. Many works aim to achieve unsupervised dimension-wise
disentanglement of latent factors in VAEs where the components of z := [21,. .., 2,]T € RP are
independent (Chen et al., 2016; Higgins et al., 2017; Kim and Mnih, 2018; Chen et al., 2018).
Whilst this is an important problem for both structured and unstructured data, disentanglement
of labelled factors of variation, or supervised vector-wise disentanglement, where two or more
latent vectors z1,z2 € RP are mutually independent, is of particular relevance to the analysis of
experimental data and — depending on the structure of the experiment and model — is a prerequisite
to dimension-wise disentanglement®. The most prominent models for vector-wise disentanglement
are the iVAE (Khemakhem et al., 2020), sparse VAE (Lachapelle et al., 2022), and their extensions
(Lopez et al., 2023; Bereket and Karaletsos, 2023). Other approaches specific to the challenge of
predicting transcriptional responses to cellular perturbations have also been proposed in the domain
of computational biology. (Lotfollahi et al., 2021; Wu et al., 2024; Mao et al., 2024; Adduri et al.,
2025), many of which assume an additive latent structure between latents?.

Design of Experiments. In experimental design, the experimental unit is the subject to which
a treatment or intervention is applied, while a nuisance factor is a source of confounding (e.g.
experimental batch, time-of-day) that may obscure treatment effects (Dean et al., 2015). Block
designs aim to structurally prevent confounding of treatment-nuisance effects. In hierarchical
experiments, nuisance factors can be organised into groups (e.g. clinical sites, laboratories).

In this work, we focus on the classical designs shown in Figure 1. These classical designs motivate
our inductive biases: in nonlinear, high-dimensional settings, independence between treatments and
nuisances should only be enforced where treatment and nuisance assignment are not confounded.

?Previous work has considered dimension-wise disentanglement with correlated factors, which can be viewed
as a specific problem within disentanglement for nested block designs (Trduble et al., 2021).

3These models have weaker identifiability guarantees and thus require supervision in the form of statistical
independence constraints or adversarial losses to enforce independence of treatment and nuisance factors.
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3 Methodology

We now describe how the iVAE can be adapted to block design experiments. Suppose that we have
a dataset of triplets: D := {(x;,t;,u;)}Y,, with measurement, x; € X, treatment level, t; € T,
and nuisance label, u; € U, corresponding to experimental unit i. The variational posteriors over
treatment and nuisance latents are:

ng(Zt | t7x) = N(fﬁ<x7t)’f;(xvt))v Q¢(Zu | U,X) = ./\/(f,;‘(x,u),fg(x, U)),

with corresponding fully learnable priors
po(ze | 1) = N(fL(0), fo(1)),  polzu | w) = N(f(u), f5 (w)).

Block Designs. We distinguish between five classical block designs (Figure 1; Appendix B).
Complete designs (Design I) contain every treatment-nuisance pair, so treatment-nuisance effects
are unconfounded. In incomplete and nested designs (Designs II, III), confounding arises depending
on treatment-nuisance overlap. Design IV introduces a reference treatment across nuisance factors,
which anchors nuisance effects.

While we focus on inductive bias for block designs with reference treatments variant (Design IV),
we provide a more general formulation in Appendix C. The reference treatment variant is both more
common in real experimental protocols and is more stable in experiments with sparse treatment-
nuisance overlap, which includes our real-world dataset.

3.1 Stop-gradients with Reference Treatments

In incomplete designs (Designs II, IV), treatment and nuisance factors are correlated, leading to
latent entanglement when conditioning on (¢, u). A reference treatment, t,¢¢, is often present across
nuisance factors. In this case, reference treatments, such as that seen in Figure 1d, provide a shared
signal across nuisance factors. To exploit this, we allow z, updates only for reference treatment
samples:

Zy ti = tres,
sg(z,) otherwise,

E, [log p (x|z¢,2},)] where z), = { )
and where sg(-) denotes the stop-gradient operator. Intuition: Only treatments observed across
multiple nuisance factor levels carry information to separate treatment-nuisance effects. For non-
reference treatments z,, is frozen to prevent it from absorbing treatment signal®.

3.2 Independence Constraints with Reference Treatments

Independence penalties are often used to enforce disentanglement, but unconditional penalties are only
valid for unconfounded designs (Design I). For incomplete designs (Designs II, IV), unconditional
independence would contradict the experimental structure. Let D(z; L z,,) be a general unconditional
independence criterion. Analogous to the stop-gradient variant, independence penalties can be
restricted to reference treatment samples:

D(Zt 1 Zu) t= tref,

Dre 1z,)= .
(2 L 2.) {0 otherwise.

This ensures that nuisance disentanglement is anchored by the treatment shared across nuisance
factors, while avoiding spurious independence constraints on confounded pairs. The training objective
becomes £(0) = LrLao(0) + A Dres(2z: L z,), with A controlling the strength of the penalty. We
implement independence constraints via the Hilbert-Schmidt independence criterion (HSIC) and
apply an exponential moving average to stabilise updates across minibatches (see Appendix D).

4 Evaluation

Dataset. The LINCS L1000 dataset (Lamb, 2006; Subramanian, 2017) is an interventional study
measuring bulk gene expression across thousands of perturbations and multiple cell-lines. Data were
collected with an incomplete block design (Appendix E). We condition on perturbation (treatment),
batch (nuisance), and cell-type. Perturbations are confounded with batches, with t,.¢ being present
across all batches. Cell-types are consistently allocated across perturbations.

4Stop-gradient operators have been shown to prevent cross-modal interference in multi-modal learning
(Mairtens and Yau, 2024).
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Table 1: Performance of the baseline iVAE and its variants with different stop-gradient (sg) and independence
constraint settings. Ablated RMSE Rank columns report performance when replacing z with its expectation E[z],
for different latent components. For each metric, (1) indicates a higher value is better, and ({.) indicates a lower
value is better. Model hyperparameters can be found in Appendix E.2.

Independence Ablated RMSE Rank ) Treatment
sg() Constraint RMSE (1) RMSE Rank (1) Ablated latent (i.e. z := E[z]) Disentanglement
2 (1) 2, (1) score (D
- - 0.5860 + 5.0 x 1073  0.1627 +1.0 x 102 01789+ 1.1 x 1072 04763 +£3.7x 1073 0.0250 + 2.5 x 1073
v - 0.6467 +3.5x 1073 0.2670 £ 7.6 x 102 0.3935+1.9x 1072 0.3599+1.3x 1072 0.5721+8.6 x 1072
- D(z L z,) 0.5856 £4.2 x 1073 0.1625 £ 7.1 x 1073 0.1796 £ 8.8 x 1073 0.4762+3.8 x 1073 0.0255 +2.1 x 1073
—  Dres(z Lz,) 058754+4.6x107%  0.1666 +£8.2 x 1073 0.1830+£8.9x 1073 04771+£3.0x 1072 0.0240 2.5 x 1073
v D(z L z,) 0.6525 £4.7x 1073 0.2833+£9.3 x 1073 04270 £2.4 x 1072 0.3483 £ 1.5 x 10°2  0.7008 + 9.46 x 1072
V' Dis(z Lz,) 0.6525+3.7x1073 0.2778 £ 8.1 x 1073 04349+1.1x102 0.3356+4.1x10"3 0.7282+4.0 x 10~2

Metrics. To assess predictive performance we measure RMSE and the RMSE mean rank metric,
which is a treatment-specific metric that measures how well the model discerns different treatments. A
perfect score under the rank metric is 0, whilst predicting the outcome of a random treatment instead
of the true treatment yields a score of 0.5. We also conduct sensitivity analysis using the treatment

disentanglement score (TDS): TDS := ‘—%—I > I {Agt) > Agu)} , where Agk) is the change in rank

metric for treatment ¢ when latent k is replaced with its expected value. The TDS measures the
proportion of treatments for which the treatment latent dominates the nuisance latent. We provide
mathematical descriptions of all metrics in Appendix E.3.

Results. In Table 1, the baseline iVAE achieves the lowest RMSE (0.5860) and rank error (0.1627).
Applying only independence constraints does not affect overall performance. In contrast, introducing
sg(+) degrades predictive accuracy, with RMSE rising to around 0.65 and rank error to 0.27-0.28. This
pattern holds regardless of whether independence penalties are also applied. As expected, enforcing
disentanglement more aggressively trades off predictive performance for stronger separation between
latent factors.

Ablating z, in the baseline increases rank error only modestly to 0.179, whereas ablating z,, causes
a much larger jump to near random (0.476). This indicates that most predictive power is absorbed
into the nuisance latent when no additional inductive bias is applied. With sg(+), ablating z; has a
much stronger effect (0.39-0.43), while ablating z,, has a weaker effect (0.33-0.36). TDS also shows
that the models that do not use sg(+) are not able to disentangle treatment and nuisance. This may
be due to the strength of nuisance effects, which even for the models that are more disentangled
according to TDS, have similar ablated RMSE rank for both z; and z,,. The confidence intervals
for sg(+) with D(-), and sg(+) alone are comparably wide. Conversely, for sg(-) with Dyt (+) the
confidence interval for TDS is narrower, suggesting that the reference-only independence constraint
is more stable across runs, with this combination outperforming all others on average.

5 Discussion

We show that classical block design theory provides a principled route to improving disentanglement
in modern experimental datasets. Viewing representation learning through the lens of experimental
design clarifies when the common assumption of independence between treatment and nuisance
factors is violated. Our results indicate that structure-aware inductive biases—based on the actual
relationship between treatment and nuisance factors—yield better disentanglement than approaches
that assume orthogonality by default. This work is especially relevant to joint analyses of datasets
with overlapping, partially overlapping, or disjoint interventions. It may also be relevant to foundation
models that pool diverse assays, where nuisance factors correlate with intervention sets across studies,
so enforcing unconditional independence can degrade separation of treatment and nuisance signals.

Several extensions follow naturally. First, early results suggest that latent-dimension dropout can
further aid disentanglement. We leave a systematic study of latent dropout, and ELBO-motivated
vector-wise biases, to future work. Second, while our analysis assumed a fixed design, practition-
ers often have partial control over block structure. Planning with these constraints may improve
identifiability of treatment effects and offers a promising bridge between experimental design and
causal representation learning. Finally, since LINCS L1000 exhibits strong nuisance effects in
our experiments, we plan to expand our experiments to include a synthetic dataset, a single-cell
interventional dataset and model baselines that use adversarial losses and latent additive architectures.
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A Variational Autoencoders

VAE:s define a joint distribution over observed and latent variables, pg(x,z) = pyg(x | z)p(z) , where
the likelihood py(x | z) is typically parametrised by a neural network decoder, and the prior over
latents is chosen as a standard normal, p(z) = N(0,I). Inference is approximated via a variational
posterior ¢4(z | x), parametrised by an encoder network. Training proceeds by maximizing the
evidence lower bound (ELBO), given by

L(x) = Eq, (23 [log po(x | 2)] = Dkr(g5(2 | x) || p(2)),
which balances reconstruction accuracy with regularization towards the prior via the Kullback—Leibler
divergence.

B Classical Block Designs

In experimental design, a nuisance factor is a source of variability that is not of primary scientific
interest but may influence the response. When such a factor can be explicitly controlled, it can be
treated as a blocking factor. A block is then the group of experimental units sharing the same level(s)
of the blocking factor, within which treatments are compared. Blocking thus reduces the impact
of nuisance variation by ensuring that treatment contrasts are made within relatively homogeneous
groups. Not all nuisance factors are suitable for blocking; some must instead be addressed by
randomization or other design strategies. For example, in a cell culture experiment, measurements
taken on different days may systematically differ because of incubator conditions; by treating day
as a blocking factor and applying all drug treatments within each day, treatment comparisons are
protected from day-to-day variation.

Design I: Complete Block Designs. Every treatment-nuisance pair appears, so treatment and
nuisance effects are unconfounded. The unconditional constraint z,, L z, can therefore be applied
(see Figure 1a).

Design II: Incomplete Block Designs. Not every treatment-nuisance pairs appears, which leads to
partial confounding between treatment and nuisance effects. In this case, the unconditional constraint
Z,, L z; is invalid (see Figure 1b).

Design III: Nested Designs. Each treatment occurs under only one nuisance factor. Treatment and
nuisance effects are fully confounded and cannot be separated without external information. Since
nuisance factor assignment depends on treatment, any disentanglement constraint or inductive bias
would violate the experimental design (see Figure 1c).

Design IV: Incomplete Designs with a Reference Treatment. All treatments appear under only
one nuisance factor, except for a designated reference treatment ¢,.s. Nuisance effects can be
identified using ¢,.¢, under the assumption that it provides a consistent anchor across nuisance factors
(see Figure 1d).

C Additional Inductive Biases

C.1 Stop-gradients on Overlapping Treatment—-Nuisance Pairs

To disentangle z,, and z; we can trigger nuisance latent updates only for treatments that provide
cross-block overlap.

Let U(t) be the set of nuisance factors with which treatment ¢ appears, and define the overlap indicator
r(t) = I{|U(t)] > 2 }. We then modify the iVAE expected log-likelihood as

I r(t;) =1 and w; € U(L;),
“ " \sg(z,) otherwise,

E.llogp(x | z¢,2,)] where 2)

and sg(-) denotes the stop-gradient operator. Thus, for treatments confined to a single nuisance level,

Z,, is frozen to prevent it from absorbing treatment signal.

C.2 Independence Constraints on Overlapping Treatment—Nuisance Pairs

Let D(z; L z,) be a dependence penalty (e.g. Hilbert-Schmidt independence criterion or adversarial

models). We restrict it to samples with overlapping treatment-nuisance structures. Thus we have,
D*(z 1 2) = D(z; L z,) where r(tl) =1 and u; € U(t;),

0 otherwise.

3
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D Unbiased HSIC Estimation with EMA Smoothing

We regularize independence between z,, and z; using the unbiased small-sample Hilbert—Schmidt
Independence Criterion (HSIC), which is valid for m > 4 (Gretton et al., 2007).

To stabilise the stochastic estimate over minibatches, we maintain an exponential moving average
(EMA) buffer

h« OZE"‘ (1 - a)}_lprcv

with decay o = 0.9, and include an additional EMA-weighted penalty ng/ﬁé in the loss (both terms

share the same scalar weight). Class-wise HSIC is only computed when the subset has more than
a minimum number of samples (threshold > 4 in our code), ensuring the unbiased estimator is
well-defined.

Algorithm 1 Unbiased HSIC with EMA for Treatments and
Blocks

Input: batch (t,u) € R?*¢, previous EMA hyyey, decay o €
(07 1)’ weight Ansic
Output: h (updated EMA estimate), Lygc (A\-weighted EMA

estimate)

z; < fl(x,t) > treatment latent
Zoy < fﬁ(X, u) > nuisance latent
h « HSIC(zy, z,,) > compute unbiased HSIC
}_lnew o }_lprev + (1 - Oé) il > update EMA
Lysic < Ausic * h > Weight new EMA estimate

return (Anew, Lusic)

E Evaluation Framework

E.1 LINCS L1000 dataset.

The LINCS L1000 dataset (Lamb, 2006; Subramanian, 2017) is a large-scale transcriptional profiling
resource generated within the NIH Library of Integrated Network-Based Cellular Signatures (LINCS)
program. The L1000 assay measures the bulk expression of 978 carefully selected “landmark”™
genes, which are sufficient to capture the majority of variation in cellular transcriptional states. This
approach enables cost-efficient, high-throughput profiling of cellular responses to a broad range
of perturbations, including small molecules and genetic interventions, across multiple human cell
lines. The resulting dataset comprises millions of gene expression signatures and serves as a widely
used reference for studying perturbation biology, drug mechanisms of action, and gene regulatory
networks.

The design of the LINCS L1000 dataset falls into the category of incomplete block design with a
reference treatment introduced in Appendix B. Each experiment involves two biological sources of
variation: perturbations and cell-lines. In our experiments we treat perturbations as the treatment and
cell-line labels as covariates.

Each experiment involves multiple nuisance factors, commonly referred to as batches in biology,
which must be taken into account when estimating perturbation effects. Because not every perturbation
is profiled in every possible combination of cell line, and batch, the dataset constitutes an incomplete
block design: each block (e.g., a plate or batch) contains only a subset of perturbations. However,
each block contains at least the same control (e.g. DMSO for small molecules).

Due to its scale and design, the LINCS L1000 provides us with a real-world test-bed for evaluating
our framework for disentangled representation learning.

Preprocessing. The LINCS consortium distributes the L1000 dataset at 5 levels of processing,
reflecting increasing degrees of normalization and inference. We downloaded the level 3 which
provides normalised expression values for the 978 landmark genes across perturbations and control
conditions, correcting for plate- and batch-specific effects. This preserves the treatment—block
structure while harmonizing measurement scale. We apply gene-wise normalisation, which is
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Figure 2: (a) The number of unique perturbations present in each batch. (b) The distribution of the number of
batches that each unique perturbation appears in.
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Figure 3: The number of batches in which each cell-line is present.

standard practice for perturbation experiments. For gene i, we compute mean, x5, and standard

deviation, o¢"! of expression under control samples, and apply normalisation:
t1
- Ty —

€T = T .
Filtering. For simplicity, we restrict ourselves to small-molecule perturbations, which constitute
the majority of the LINCS dataset. Summary statistics illustrating the incomplete block design of
LINCS L1000 are given for perturbations and batches in Figure 2 and for cell-lines and batches in
Figure 3. Furthermore, we filter to a common set of cell lines across retained treatments so every
perturbation in the dataset has at least one sample for every cell-line.

E.2 Model Implementation
Our dataset is comprised of tetrads:

D := {(xi, pi, ci, bi)}

with gene expression, x;, perturbation label p;, cell-type label ¢;, and batch label b;. Our treatments of
interest are the perturbations. Cell-types are an important factor of variation so we always condition
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on cell-type, however, they are not the main interest of the experiment and are not a nuisance factor
since they are well-spread across perturbations. Batches are our nuisance factors as perturbation and
batch assignment are partially confounded in the incomplete block design of LINCS L1000.

We define variational posteriors over perturbation (treatment), batch (nuisance), and cell-line latents:
Q¢>(Zp|p7 X) = N(fﬁ(x7p)7 ff,’(x,p)), Q¢(Zb|b7 X) = N(fﬁ(xa b)7 fcl;(xv b))7

and, Q¢(ZC|C,X) = N(fﬁ(x’c)7f§(x’c))7

with learnable priors,
Po(zplp) == N(f2(p), f2(p));  po(z|b) := N'(f1(b), f2(D)),
and, pg(zclc) == N(f;(c). f5(c)).

Each f(-) is an MLP consisting of two hidden layers with 64 units each and tanh The latent space
had a dimension of 256. Perturbations are represented as learned 160-dimensional embeddings. The
model was trained with a batch size of 256 using the Adam optimiser (learning rate = 0.001, weight
decay = 1 x 1079). Early stopping was employed based on the validation perturbation-wise RMSE
with a patience of 75 epochs. Training was run a single Ampere 24GB GPU for up to 500 epochs.
Where HSIC penalties are appled we set A = 100.

E.3 Maetrics

In our evaluation, we first average the predicted and observed expression profiles across replicates for
each perturbation-cell-type pair (p, c). We then compute the Root Mean Squared Error (RMSE) for
each perturbation within a given cell-type (Gaudelet et al., 2024; Wu et al., 2024),

RMSE(p, c) = [|xP©) — x(Pe)]|,, “4)

where %(P:¢) and x(P-©) are the predicted and observed average expression vectors, under perturbation
p and cell-type c. We report the average RMSE across all perturbations:

1

RMSEan (C) = W

> RMSE.y(p, ©). ()

peP

Given a distance metric D(x;, X;) between two vectors x;, x; € X, the rank metric (Wu et al., 2024)
measures the fraction of predictions that are closer to the average across true expression vectors x (P:)
than the average across predictions x(P-¢),

rank(fc(pZZ’c); c) = Z H{D(fc(]’c),x(z’c)) < D(X(Z’c),x(z’c))}’

Pl—1 <
1<5<|P|
i#£]

where we use the RMSE as our distance metric. We then obtain the average rank across perturbations
for a given cell label,

1 .
rank,,q(c) = P Z rank(x(%); ¢).
1<i<|P|

To quantify how well the model separates treatment effects from nuisance variation, we introduce the
treatment disentanglement score (TDS). We begin by computing the perturbation-wise rank metric
for three model variants:

1. Unablated model: full latent representations;

2. Perturbation-ablated model: where the perturbation latent is replaced with its expected
value across all perturbation labels;

3. Batch-ablated model: where the batch latent is replaced with its expected value across all
perturbation labels.

10
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For each perturbation ¢, we calculate the change in rank score when ablating a latent variable:

Agk) = rank®™ (%(4); ¢) — rank(x9; ¢),
where k € {perturbation, batch}. Intuitively, Agk) measures how much predictive accuracy
depends on latent k.

The final TDS compares the relative importance of perturbation (treatment) versus batch (nuisance)
latents: 1

_ (p) (b)
TDS = WZH{Ai > A7
i€T
Thus, TDS reflects the fraction of treatments for which the perturbation latent contributes more to

predictive accuracy than the batch latent. A higher score indicates better disentanglement of true
treatment effects from nuisance variation.

11
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