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Abstract

Accurately modelling experimental factors of variation is crucial to modern sci-1

ence. By understanding the distinct contributions of treatment and nuisance factors,2

researchers can better interpret, and generalise experimental findings. In many3

real-world experiments, treatment and nuisance factors are correlated, making4

standard assumptions of independence unrealistic. Classical design of experiments5

provides many approaches for mitigating confounding, yet their integration with6

modern deep generative models remains underexplored. We introduce a framework7

that adapts variational autoencoders (VAEs) with block design–inspired inductive8

biases to account for treatment–nuisance dependence. Specifically, we propose9

stop-gradient and independence-constraint mechanisms that respect experimental10

structure and enforce disentanglement even under correlated assignments. Our find-11

ings highlight both the promises and pitfalls of combining block design principles12

with disentangled generative modelling, paving the way for principled, causally13

informed use of deep learning in experimental sciences.14

1 Introduction15

Disentangling factors of variation is a fundamental problem in experimental science. Since the early16

development of statistical models in the 20th century (Fisher, 1949; Hill, 1965), researchers have17

sought to understand how experimental outcomes depend on changes in experimental conditions18

(Robins, 1997; Eberhardt and Scheines, 2007; Pearl, 2009).19

Methods that learn disentangled representations have increasingly been applied to experimental data20

(Du et al., 2022; Lopez et al., 2023; Moinfar and Theis, 2024). The goal of disentangled representation21

learning is to map the underlying factors of variation in a dataset into latent variables that are both22

semantically and statistically independent (Bengio et al., 2013; Wang et al., 2024), and that, among23

other things (Locatello et al., 2019), (i) separate signal from nuisance variation (Kim et al., 2019; Tu24

et al., 2024), and (ii) provide a principled basis for constructing counterfactuals (Peters et al., 2017).25

These properties align with the aims of experiment design, where the goal is to isolate treatment26

effects while mitigating nuisance influences.27

Modern machine learning methods handle nuisance variation post-hoc, by conditioning on the nui-28

sance factor (Lopez et al., 2018) or imposing independence via the loss function (Tu et al., 2024;29

Makino et al., 2025; Adduri et al., 2025). These methods fall under model-based approaches to30

treatment-nuisance disentanglement. Conversely, block designs aim to separate treatment and nui-31

sance effects with a structure-based approach1. Block designs should not replace optimal experiment32

design methods. Instead, we should use the well-establishing principles of block design to inform33

how and when inductive biases for disentangling treatment-nuisance effects are used.34

1By ensuring that experimental units are allocated between factors in a structured way (Dean et al., 2015).
We describe several block designs more formally in Section 2.
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c) Design III. Nested Design
(Fully Confounded)

d) Design IV. Incomplete Design
with a Reference Treatment

(Partially Confounded)

a) Design I. Complete Design
(Unconfounded)

b) Design II. Incomplete Design
(Partially Confounded)
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Figure 1: Classical block designs and treatment–nuisance confounding. Rows correspond to nuisance ni and
columns correspond to treatment ti where tref denotes the reference treatment. A filled dot (•) indicates that
treatment tj was observed with nuisance ni.

Our contributions. In this work, we analyse independence in disentangled representations through35

the lens of block designs. Our specific contributions are: (1) We characterise when independence36

between treatments and nuisance factors is violated under classical block designs; (2) We propose37

inductive biases that adapt identifiable VAEs to data with correlated treatment-nuisance structure; (3)38

We empirically validate our approach using a real-world interventional dataset, showing improved39

disentanglement compared to baseline methods. These contributions highlight the importance of40

grounding representation learning methods in experimental design theory, thereby advancing the41

integration of disentanglement, causality, and scientific practice.42

2 Background43

Variational Autoencoders. VAEs (Kingma et al., 2013) are a class of deep generative models44

that perform amortized variational inference in latent variable models (see Appendix A for a full45

description). Given observed data x ∈ X , latent variable models aim to relate each x to latent z ∈ Z .46

The identifiable VAE (iVAE) framework (Khemakhem et al., 2020) provides identifiability guarantees47

on the standard VAE by conditioning on auxiliary variables. Formally, the conditional generative48

model is given by pθ(x, z|u) = p(x|z,u)p(z|u), where u is an arbitrary auxiliary variable (e.g.49

treatment label). Under suitable conditions, this modification enables recovery of the true latent50

structure up to element-wise transformations.51

Inductive Biases for Disentanglement. Many works aim to achieve unsupervised dimension-wise52

disentanglement of latent factors in VAEs where the components of z := [z1, . . . , zp]
T ∈ Rp are53

independent (Chen et al., 2016; Higgins et al., 2017; Kim and Mnih, 2018; Chen et al., 2018).54

Whilst this is an important problem for both structured and unstructured data, disentanglement55

of labelled factors of variation, or supervised vector-wise disentanglement, where two or more56

latent vectors z1, z2 ∈ Rp are mutually independent, is of particular relevance to the analysis of57

experimental data and – depending on the structure of the experiment and model – is a prerequisite58

to dimension-wise disentanglement2. The most prominent models for vector-wise disentanglement59

are the iVAE (Khemakhem et al., 2020), sparse VAE (Lachapelle et al., 2022), and their extensions60

(Lopez et al., 2023; Bereket and Karaletsos, 2023). Other approaches specific to the challenge of61

predicting transcriptional responses to cellular perturbations have also been proposed in the domain62

of computational biology. (Lotfollahi et al., 2021; Wu et al., 2024; Mao et al., 2024; Adduri et al.,63

2025), many of which assume an additive latent structure between latents3.64

Design of Experiments. In experimental design, the experimental unit is the subject to which65

a treatment or intervention is applied, while a nuisance factor is a source of confounding (e.g.66

experimental batch, time-of-day) that may obscure treatment effects (Dean et al., 2015). Block67

designs aim to structurally prevent confounding of treatment-nuisance effects. In hierarchical68

experiments, nuisance factors can be organised into groups (e.g. clinical sites, laboratories).69

In this work, we focus on the classical designs shown in Figure 1. These classical designs motivate70

our inductive biases: in nonlinear, high-dimensional settings, independence between treatments and71

nuisances should only be enforced where treatment and nuisance assignment are not confounded.72

2Previous work has considered dimension-wise disentanglement with correlated factors, which can be viewed
as a specific problem within disentanglement for nested block designs (Träuble et al., 2021).

3These models have weaker identifiability guarantees and thus require supervision in the form of statistical
independence constraints or adversarial losses to enforce independence of treatment and nuisance factors.
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3 Methodology73

We now describe how the iVAE can be adapted to block design experiments. Suppose that we have74

a dataset of triplets: D := {(xi, ti, ui)}Ni=1, with measurement, xi ∈ X , treatment level, ti ∈ T ,75

and nuisance label, ui ∈ U , corresponding to experimental unit i. The variational posteriors over76

treatment and nuisance latents are:77

qϕ(zt | t,x) := N (f t
µ(x, t), f

t
σ(x, t)), qϕ(zu | u,x) := N (fu

µ (x, u), f
u
σ (x, u)),

with corresponding fully learnable priors78

pθ(zt | t) := N (f t
µ(t), f

t
σ(t)), pθ(zu | u) := N (fu

µ (u), f
u
σ (u)).

Block Designs. We distinguish between five classical block designs (Figure 1; Appendix B).79

Complete designs (Design I) contain every treatment-nuisance pair, so treatment-nuisance effects80

are unconfounded. In incomplete and nested designs (Designs II, III), confounding arises depending81

on treatment-nuisance overlap. Design IV introduces a reference treatment across nuisance factors,82

which anchors nuisance effects.83

While we focus on inductive bias for block designs with reference treatments variant (Design IV),84

we provide a more general formulation in Appendix C. The reference treatment variant is both more85

common in real experimental protocols and is more stable in experiments with sparse treatment-86

nuisance overlap, which includes our real-world dataset.87

3.1 Stop-gradients with Reference Treatments88

In incomplete designs (Designs II, IV), treatment and nuisance factors are correlated, leading to89

latent entanglement when conditioning on (t, u). A reference treatment, tref, is often present across90

nuisance factors. In this case, reference treatments, such as that seen in Figure 1d, provide a shared91

signal across nuisance factors. To exploit this, we allow zu updates only for reference treatment92

samples:93

Ez [log p (x|zt, z∗u)] where z∗u =

{
zu ti = tref,

sg(zu) otherwise,
(1)

and where sg(·) denotes the stop-gradient operator. Intuition: Only treatments observed across94

multiple nuisance factor levels carry information to separate treatment-nuisance effects. For non-95

reference treatments zu is frozen to prevent it from absorbing treatment signal4.96

3.2 Independence Constraints with Reference Treatments97

Independence penalties are often used to enforce disentanglement, but unconditional penalties are only98

valid for unconfounded designs (Design I). For incomplete designs (Designs II, IV), unconditional99

independence would contradict the experimental structure. Let D(zt ⊥ zu) be a general unconditional100

independence criterion. Analogous to the stop-gradient variant, independence penalties can be101

restricted to reference treatment samples:102

Dref(zt ⊥ zu) =

{
D(zt ⊥ zu) t = tref,

0 otherwise.

This ensures that nuisance disentanglement is anchored by the treatment shared across nuisance103

factors, while avoiding spurious independence constraints on confounded pairs. The training objective104

becomes L(θ) = LELBO(θ) + λDref(zt ⊥ zu), with λ controlling the strength of the penalty. We105

implement independence constraints via the Hilbert-Schmidt independence criterion (HSIC) and106

apply an exponential moving average to stabilise updates across minibatches (see Appendix D).107

4 Evaluation108

Dataset. The LINCS L1000 dataset (Lamb, 2006; Subramanian, 2017) is an interventional study109

measuring bulk gene expression across thousands of perturbations and multiple cell-lines. Data were110

collected with an incomplete block design (Appendix E). We condition on perturbation (treatment),111

batch (nuisance), and cell-type. Perturbations are confounded with batches, with tref being present112

across all batches. Cell-types are consistently allocated across perturbations.113

4Stop-gradient operators have been shown to prevent cross-modal interference in multi-modal learning
(Märtens and Yau, 2024).
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Table 1: Performance of the baseline iVAE and its variants with different stop-gradient (sg) and independence
constraint settings. Ablated RMSE Rank columns report performance when replacing z with its expectation E[z],
for different latent components. For each metric, (↑) indicates a higher value is better, and (↓) indicates a lower
value is better. Model hyperparameters can be found in Appendix E.2.

sg(·) Independence
Constraint RMSE (↓) RMSE Rank (↓)

Ablated RMSE Rank Treatment
Disentanglement

Score (↑)Ablated latent (i.e. z := E[z])
zt (↑) zu (↓)

– – 0.5860± 5.0× 10−3 0.1627± 1.0× 10−2 0.1789± 1.1× 10−2 0.4763± 3.7× 10−3 0.0250± 2.5× 10−3

! – 0.6467± 3.5× 10−3 0.2670± 7.6× 10−3 0.3935± 1.9× 10−2 0.3599± 1.3× 10−2 0.5721± 8.6 × 10−2

– D(zt ⊥ zu) 0.5856± 4.2× 10−3 0.1625± 7.1× 10−3 0.1796± 8.8× 10−3 0.4762± 3.8× 10−3 0.0255± 2.1× 10−3

– Dref(zt ⊥ zu) 0.5875± 4.6× 10−3 0.1666± 8.2× 10−3 0.1830± 8.9× 10−3 0.4771± 3.0× 10−3 0.0240 ±2.5× 10−3

! D(zt ⊥ zu) 0.6525± 4.7× 10−3 0.2833± 9.3× 10−3 0.4270± 2.4× 10−2 0.3483± 1.5× 10−2 0.7008± 9.46× 10−2

! Dref(zt ⊥ zu) 0.6525± 3.7× 10−3 0.2778± 8.1× 10−3 0.4349± 1.1× 10−2 0.3356± 4.1× 10−3 0.7282± 4.0× 10−2

Metrics. To assess predictive performance we measure RMSE and the RMSE mean rank metric,114

which is a treatment-specific metric that measures how well the model discerns different treatments. A115

perfect score under the rank metric is 0, whilst predicting the outcome of a random treatment instead116

of the true treatment yields a score of 0.5. We also conduct sensitivity analysis using the treatment117

disentanglement score (TDS): TDS := 1
|T |

∑
i I

{
∆

(t)
i > ∆

(u)
i

}
, where ∆

(k)
i is the change in rank118

metric for treatment i when latent k is replaced with its expected value. The TDS measures the119

proportion of treatments for which the treatment latent dominates the nuisance latent. We provide120

mathematical descriptions of all metrics in Appendix E.3.121

Results. In Table 1, the baseline iVAE achieves the lowest RMSE (0.5860) and rank error (0.1627).122

Applying only independence constraints does not affect overall performance. In contrast, introducing123

sg(·) degrades predictive accuracy, with RMSE rising to around 0.65 and rank error to 0.27–0.28. This124

pattern holds regardless of whether independence penalties are also applied. As expected, enforcing125

disentanglement more aggressively trades off predictive performance for stronger separation between126

latent factors.127

Ablating zt in the baseline increases rank error only modestly to 0.179, whereas ablating zu causes128

a much larger jump to near random (0.476). This indicates that most predictive power is absorbed129

into the nuisance latent when no additional inductive bias is applied. With sg(·), ablating zt has a130

much stronger effect (0.39–0.43), while ablating zu has a weaker effect (0.33–0.36). TDS also shows131

that the models that do not use sg(·) are not able to disentangle treatment and nuisance. This may132

be due to the strength of nuisance effects, which even for the models that are more disentangled133

according to TDS, have similar ablated RMSE rank for both zt and zu. The confidence intervals134

for sg(·) with D(·), and sg(·) alone are comparably wide. Conversely, for sg(·) with Dref(·) the135

confidence interval for TDS is narrower, suggesting that the reference-only independence constraint136

is more stable across runs, with this combination outperforming all others on average.137

5 Discussion138

We show that classical block design theory provides a principled route to improving disentanglement139

in modern experimental datasets. Viewing representation learning through the lens of experimental140

design clarifies when the common assumption of independence between treatment and nuisance141

factors is violated. Our results indicate that structure-aware inductive biases—based on the actual142

relationship between treatment and nuisance factors—yield better disentanglement than approaches143

that assume orthogonality by default. This work is especially relevant to joint analyses of datasets144

with overlapping, partially overlapping, or disjoint interventions. It may also be relevant to foundation145

models that pool diverse assays, where nuisance factors correlate with intervention sets across studies,146

so enforcing unconditional independence can degrade separation of treatment and nuisance signals.147

Several extensions follow naturally. First, early results suggest that latent-dimension dropout can148

further aid disentanglement. We leave a systematic study of latent dropout, and ELBO-motivated149

vector-wise biases, to future work. Second, while our analysis assumed a fixed design, practition-150

ers often have partial control over block structure. Planning with these constraints may improve151

identifiability of treatment effects and offers a promising bridge between experimental design and152

causal representation learning. Finally, since LINCS L1000 exhibits strong nuisance effects in153

our experiments, we plan to expand our experiments to include a synthetic dataset, a single-cell154

interventional dataset and model baselines that use adversarial losses and latent additive architectures.155
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A Variational Autoencoders244

VAEs define a joint distribution over observed and latent variables, pθ(x, z) = pθ(x | z)p(z) , where245

the likelihood pθ(x | z) is typically parametrised by a neural network decoder, and the prior over246

latents is chosen as a standard normal, p(z) = N (0, I). Inference is approximated via a variational247

posterior qϕ(z | x), parametrised by an encoder network. Training proceeds by maximizing the248

evidence lower bound (ELBO), given by249

L(x) = Eqϕ(z|x)[log pθ(x | z)]− DKL(qϕ(z | x) || p(z)),
which balances reconstruction accuracy with regularization towards the prior via the Kullback–Leibler250

divergence.251

B Classical Block Designs252

In experimental design, a nuisance factor is a source of variability that is not of primary scientific253

interest but may influence the response. When such a factor can be explicitly controlled, it can be254

treated as a blocking factor. A block is then the group of experimental units sharing the same level(s)255

of the blocking factor, within which treatments are compared. Blocking thus reduces the impact256

of nuisance variation by ensuring that treatment contrasts are made within relatively homogeneous257

groups. Not all nuisance factors are suitable for blocking; some must instead be addressed by258

randomization or other design strategies. For example, in a cell culture experiment, measurements259

taken on different days may systematically differ because of incubator conditions; by treating day260

as a blocking factor and applying all drug treatments within each day, treatment comparisons are261

protected from day-to-day variation.262

Design I: Complete Block Designs. Every treatment-nuisance pair appears, so treatment and263

nuisance effects are unconfounded. The unconditional constraint zu ⊥ zt can therefore be applied264

(see Figure 1a).265

Design II: Incomplete Block Designs. Not every treatment-nuisance pairs appears, which leads to266

partial confounding between treatment and nuisance effects. In this case, the unconditional constraint267

zu ⊥ zt is invalid (see Figure 1b).268

Design III: Nested Designs. Each treatment occurs under only one nuisance factor. Treatment and269

nuisance effects are fully confounded and cannot be separated without external information. Since270

nuisance factor assignment depends on treatment, any disentanglement constraint or inductive bias271

would violate the experimental design (see Figure 1c).272

Design IV: Incomplete Designs with a Reference Treatment. All treatments appear under only273

one nuisance factor, except for a designated reference treatment tref. Nuisance effects can be274

identified using tref, under the assumption that it provides a consistent anchor across nuisance factors275

(see Figure 1d).276

C Additional Inductive Biases277

C.1 Stop-gradients on Overlapping Treatment–Nuisance Pairs278

To disentangle zu and zt we can trigger nuisance latent updates only for treatments that provide279

cross-block overlap.280

Let U(t) be the set of nuisance factors with which treatment t appears, and define the overlap indicator281

r(t) = I{ |U(t)| ≥ 2 } . We then modify the iVAE expected log-likelihood as282

Ez[log p(x | zt, z∗u)] where z∗u =

{
zu r(ti) = 1 and ui ∈ U(ti),
sg(zu) otherwise,

(2)

and sg(·) denotes the stop-gradient operator. Thus, for treatments confined to a single nuisance level,283

zu is frozen to prevent it from absorbing treatment signal.284

C.2 Independence Constraints on Overlapping Treatment–Nuisance Pairs285

Let D(zt ⊥ zu) be a dependence penalty (e.g. Hilbert-Schmidt independence criterion or adversarial286

models). We restrict it to samples with overlapping treatment-nuisance structures. Thus we have,287

D∗(zt ⊥ zu) =

{
D(zt ⊥ zu) where r(ti) = 1 and ui ∈ U(ti),
0 otherwise.

(3)
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D Unbiased HSIC Estimation with EMA Smoothing288

We regularize independence between zu and zt using the unbiased small-sample Hilbert–Schmidt289

Independence Criterion (HSIC), which is valid for m ≥ 4 (Gretton et al., 2007).290

To stabilise the stochastic estimate over minibatches, we maintain an exponential moving average291

(EMA) buffer292

h← αh+ (1− α)h̄prev

with decay α = 0.9, and include an additional EMA-weighted penalty LEMA
HSIC in the loss (both terms293

share the same scalar weight). Class-wise HSIC is only computed when the subset has more than294

a minimum number of samples (threshold > 4 in our code), ensuring the unbiased estimator is295

well-defined.296

Algorithm 1 Unbiased HSIC with EMA for Treatments and
Blocks
Input: batch (t,u) ∈ R2×ℓ, previous EMA h̄prev, decay α ∈
(0, 1), weight λHSIC

Output: h̄ (updated EMA estimate), LHSIC (λ-weighted EMA
estimate)

zt ← f t
µ(x, t) ▷ treatment latent

zu ← f b
µ(x,u) ▷ nuisance latent

ĥ← HSIC(zt, zu) ▷ compute unbiased HSIC
h̄new ← α h̄prev + (1− α) ĥ ▷ update EMA
LHSIC ← λHSIC · h̄ ▷ Weight new EMA estimate
return

(
h̄new, LHSIC

)

297

E Evaluation Framework298

E.1 LINCS L1000 dataset.299

The LINCS L1000 dataset (Lamb, 2006; Subramanian, 2017) is a large-scale transcriptional profiling300

resource generated within the NIH Library of Integrated Network-Based Cellular Signatures (LINCS)301

program. The L1000 assay measures the bulk expression of 978 carefully selected “landmark”302

genes, which are sufficient to capture the majority of variation in cellular transcriptional states. This303

approach enables cost-efficient, high-throughput profiling of cellular responses to a broad range304

of perturbations, including small molecules and genetic interventions, across multiple human cell305

lines. The resulting dataset comprises millions of gene expression signatures and serves as a widely306

used reference for studying perturbation biology, drug mechanisms of action, and gene regulatory307

networks.308

The design of the LINCS L1000 dataset falls into the category of incomplete block design with a309

reference treatment introduced in Appendix B. Each experiment involves two biological sources of310

variation: perturbations and cell-lines. In our experiments we treat perturbations as the treatment and311

cell-line labels as covariates.312

Each experiment involves multiple nuisance factors, commonly referred to as batches in biology,313

which must be taken into account when estimating perturbation effects. Because not every perturbation314

is profiled in every possible combination of cell line, and batch, the dataset constitutes an incomplete315

block design: each block (e.g., a plate or batch) contains only a subset of perturbations. However,316

each block contains at least the same control (e.g. DMSO for small molecules).317

Due to its scale and design, the LINCS L1000 provides us with a real-world test-bed for evaluating318

our framework for disentangled representation learning.319

Preprocessing. The LINCS consortium distributes the L1000 dataset at 5 levels of processing,320

reflecting increasing degrees of normalization and inference. We downloaded the level 3 which321

provides normalised expression values for the 978 landmark genes across perturbations and control322

conditions, correcting for plate- and batch-specific effects. This preserves the treatment–block323

structure while harmonizing measurement scale. We apply gene-wise normalisation, which is324
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Figure 2: (a) The number of unique perturbations present in each batch. (b) The distribution of the number of
batches that each unique perturbation appears in.
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Figure 3: The number of batches in which each cell-line is present.

standard practice for perturbation experiments. For gene i, we compute mean, µctl
i , and standard325

deviation, σctl
i of expression under control samples, and apply normalisation:326

x̃i :=
xi − µctl

i

σctl
i

.

Filtering. For simplicity, we restrict ourselves to small-molecule perturbations, which constitute327

the majority of the LINCS dataset. Summary statistics illustrating the incomplete block design of328

LINCS L1000 are given for perturbations and batches in Figure 2 and for cell-lines and batches in329

Figure 3. Furthermore, we filter to a common set of cell lines across retained treatments so every330

perturbation in the dataset has at least one sample for every cell-line.331

E.2 Model Implementation332

Our dataset is comprised of tetrads:333

D := {(xi, pi, ci, bi)}

with gene expression, xi, perturbation label pi, cell-type label ci, and batch label bi. Our treatments of334

interest are the perturbations. Cell-types are an important factor of variation so we always condition335
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on cell-type, however, they are not the main interest of the experiment and are not a nuisance factor336

since they are well-spread across perturbations. Batches are our nuisance factors as perturbation and337

batch assignment are partially confounded in the incomplete block design of LINCS L1000.338

We define variational posteriors over perturbation (treatment), batch (nuisance), and cell-line latents:339

qϕ(zp|p,x) := N (fp
µ(x, p), f

p
σ(x, p)), qϕ(zb|b,x) := N (f b

µ(x, b), f
b
σ(x, b)),

340

and, qϕ(zc|c,x) := N (f c
µ(x, c), f

c
σ(x, c)),

with learnable priors,341

pθ(zp|p) := N (fp
µ(p), f

p
σ(p)), pθ(zb|b) := N (f b

µ(b), f
b
σ(b)),

342

and, pθ(zc|c) := N (f c
µ(c), f

c
σ(c)).

Each f(·) is an MLP consisting of two hidden layers with 64 units each and tanh The latent space343

had a dimension of 256. Perturbations are represented as learned 160-dimensional embeddings. The344

model was trained with a batch size of 256 using the Adam optimiser (learning rate = 0.001, weight345

decay = 1× 10−5). Early stopping was employed based on the validation perturbation-wise RMSE346

with a patience of 75 epochs. Training was run a single Ampere 24GB GPU for up to 500 epochs.347

Where HSIC penalties are appled we set λ = 100.348

E.3 Metrics349

In our evaluation, we first average the predicted and observed expression profiles across replicates for350

each perturbation-cell-type pair (p, c). We then compute the Root Mean Squared Error (RMSE) for351

each perturbation within a given cell-type (Gaudelet et al., 2024; Wu et al., 2024),352

RMSE(p, c) = ||x̂(p,c) − x(p,c)||2, (4)

where x̂(p,c) and x(p,c) are the predicted and observed average expression vectors, under perturbation353

p and cell-type c. We report the average RMSE across all perturbations:354

RMSEavg(c) =
1

|P|
∑
p∈P

RMSEavg(p, c). (5)

Given a distance metric D(xi,xj) between two vectors xi,xj ∈ X , the rank metric (Wu et al., 2024)355

measures the fraction of predictions that are closer to the average across true expression vectors x(p,c)356

than the average across predictions x̂(p,c),357

rank(x̂(p=i,c); c) =
1

|P| − 1

∑
1≤j≤|P|

i ̸=j

I{D(x̂(j,c),x(i,c)) ≤ D(x̂(i,c),x(i,c))},

where we use the RMSE as our distance metric. We then obtain the average rank across perturbations358

for a given cell label,359

rankavg(c) =
1

|P|
∑

1≤i≤|P|

rank(x̂(i,c); c).

To quantify how well the model separates treatment effects from nuisance variation, we introduce the360

treatment disentanglement score (TDS). We begin by computing the perturbation-wise rank metric361

for three model variants:362

1. Unablated model: full latent representations;363

2. Perturbation-ablated model: where the perturbation latent is replaced with its expected364

value across all perturbation labels;365

3. Batch-ablated model: where the batch latent is replaced with its expected value across all366

perturbation labels.367
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For each perturbation i, we calculate the change in rank score when ablating a latent variable:368

∆
(k)
i = rank(k)(x̂(i,c); c)− rank(x̂(i,c); c),

where k ∈ {perturbation,batch}. Intuitively, ∆
(k)
i measures how much predictive accuracy369

depends on latent k.370

The final TDS compares the relative importance of perturbation (treatment) versus batch (nuisance)371

latents:372

TDS =
1

|T |
∑
i∈T

I
{
∆

(p)
i > ∆

(b)
i

}
.

Thus, TDS reflects the fraction of treatments for which the perturbation latent contributes more to373

predictive accuracy than the batch latent. A higher score indicates better disentanglement of true374

treatment effects from nuisance variation.375
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