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ABSTRACT

Recent research in reinforcement learning (RL) has shown a growing trend to-
wards the pretraining paradigm, where a unified model pretrained on diverse and
unlabeled data can be quickly adapted to various downstream tasks. Inspired by
advances in other domains, masked prediction provides a generic abstraction for
pretraining on decision-making data by masking part of the trajectory and predict-
ing the missing inputs. In spite of the versatility of masked prediction, it remains
unclear how to balance the learning of reusable skills at different levels of complex-
ity. To this end, we propose CurrMask, a curriculum masking approach that adjusts
its masking scheme for learning diverse and versatile skills. The main idea behind
CurrMask is that using masking schemes with different block sizes and mask ratios
creates varying levels of temporal granularity. By explicitly combining them in a
meaningful order, CurrMask can better capture both local dynamics and global de-
pendencies. To achieve this, CurrMask uses a multi-armed bandit algorithm to find
a proper curriculum for masking schemes that maximizes overall learning progress
during training. Through extensive experiments, we show that CurrMask exhibits
superior finetuning performance on offline RL tasks and zero-shot performance on
goal-conditioned planning and skill prompting tasks. Additionally, our analysis
reveals that CurrMask gradually increases the complexity of masking scheme,
encouraging the model to capture both short-term and long-term dependencies.

1 INTRODUCTION

Humans distinguish themselves from machines by their capacity to adapt and generalize. One
crucial factor behind this discrepancy is the drive to acquire reusable knowledge (e.g., concepts and
behaviors) even in the absence of explicit reward (White, 1959). This has motivated research in
unsupervised reinforcement learning (RL) (Laskin et al., 2021; Chebotar et al., 2021), in which the
agent is required to learn from reward-free offline data (Carroll et al., 2022; Schwarzer et al., 2021)
or online interaction (Liu & Abbeel, 2021; Yarats et al., 2021) for pretraining.

To build generic decision-making agents, great efforts have been made recently to apply self-
supervised learning objectives for unsupervised offline pretraining (Schwarzer et al., 2021; Sun
et al., 2023). Among these studies, one popular approach is masked prediction, a simple but versatile
self-supervision framework that has proven its effectiveness in domains like language (Devlin et al.,
2019) and vision (He et al., 2022). By masking a portion of the input trajectory and predicting it
conditioned on the remaining, the model can not only capture rich representations but also learn
transferable behaviors. For example, given a masked trajectory (s1,[MASK], s2, a2,[MASK], a3),
a model learned by masked prediction is forced to reason about both dynamics (i.e., masked state s3)
and behaviors (i.e., masked action a1).

If masked prediction is the answer, what is the question? In this work, we investigate which parts
should be masked for decision-making data. Our research stems from the finding that models trained
with token-wise random masking, a widely adopted masking strategy in natural language modeling,
fall short in modeling long-term dependencies (see Figure 4). While randomly masked words
describe semantically dense information, state-action sequences in decision-making data contain
heavy information redundancy (e.g., consecutive states are usually similar). This causes the model
to predict masked tokens solely based on their neighboring unmasked tokens. Besides, state-action
sequences naturally come with a unique pattern of interleaved modality, unlike single-modal word
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Figure 1: Illustration of CurrMask. Based on the framework of masked prediction, CurrMask
incorporates masking schemes in various levels of temporal granularity and complexity to facilitate
skill learning. To schedule different masking schemes in a meaningful order, CurrMask leverages a
multi-armed bandit model to adjust its mask based on the learning progress during training.

sequences. These discrepancies in information density and sequence pattern requires a reevaluation
of masking scheme design for RL pretraining.

Motivated by the above considerations, we posit that masking for decision-making data needs to be
done in blocks rather than tokens. A block of consecutive state and action tokens forms a semantic
entity of skill (Ajay et al., 2021; Pertsch et al., 2021). For example, applying block-wise masking of
size 3 results in (s1,[MASK],[MASK],[MASK], s3, a3). By using a block-wise masking scheme,
the model is compelled to prioritize global dependencies over basic local correlations when making
masked predictions. Moreover, the combination of multiple mask ratios and block sizes incentivizes
the model to acquire adaptable skills that can be utilized for diverse downstream tasks.

To encourage the model to capture semantically meaningful relations, we propose CurrMask, a
curriculum masked prediction approach that automatically arranges the order of different masking
schemes for training. Our main intuition is that the ability of long-horizon reasoning can be developed
by first learning how to act locally. This motivates us to consider a mask curriculum representing a
skill learning curriculum. We use the EXP3 algorithm (Auer et al., 2002) to determine which masking
scheme to apply when faced with uncertainty of training dynamics, in order to establish a meaningful
order. An illustration of our approach is shown in Figure 1.

We conduct a series of empirical studies on various MuJoCo-based control tasks, including locomo-
tion and robotic arm manipulation. Our results demonstrate that CurrMask enables the learning of a
versatile model that achieves superior performance in representation learning, zero-shot skill prompt-
ing, and zero-shot goal-conditioned planning. Further analysis reveals that CurrMask effectively
mitigates the issue of local correlations and is better in capturing long-term dependencies. These
findings shed light on the design of masking schemes that can effectively balance the acquisition of
reusable skills at varying levels of temporal granularity and complexity.

2 RELATED WORK

Our work considers masked prediction as an effective approach for unsupervised RL pretraining.
By incorporating curriculum learning into the framework, we show that the proposed approach
CurrMask can effectively boost masked prediction. In this section, we give a review over related
works in these research directions.

Masked Prediction as a Self-Supervision Task Masked prediction requires the model to predict
a missing portion of the input that has been held out. Pretraining via masked prediction has been
explored in natural language processing (Devlin et al., 2019; Joshi et al., 2020), computer vision (He
et al., 2022; Bao et al., 2022), and decision making (Liu et al., 2022; Carroll et al., 2022). One of the
most notable applications is masked language modeling (Devlin et al., 2019) for learning transferable
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text representations. Recently, it has been shown that masked prediction can also facilitate decision
making, either by training visual backbones (Radosavovic et al., 2023; Seo et al., 2023) or by learning
temporal information (Carroll et al., 2022; Liu et al., 2022).

Masking Schemes For masked prediction, a central question is what is masked. One common
scheme is to randomly mask some of the tokens from the input. Apart from random masking, recent
studies have proposed attention-guided masks (Li et al., 2021; Kakogeorgiou et al., 2022; Li et al.,
2022) and adversarial masks (Shi et al., 2022; Tomar et al., 2023) to force the model to focus specific
parts of the input for better performance. In the domain of decision making, previous work usually
considers the simplest random masking scheme (Liu et al., 2022), manually designed task-specific
masks (Carroll et al., 2022), or a combination of random masking with other representation learning
objectives (Sun et al., 2023). In this work, we aim to illustrate the connection between masking
schemes and skill learning, in search for automatic learning curricula for masked prediction.

Unsupervised RL Pretraining Our work also falls into the category of extracting prior knowledge
without extrinsic human supervision for sample-efficient RL. Previous work has vastly studied reward-
free RL, in which the agent can interact with the environment in the absence of rewards (Eysenbach
et al., 2019; Yarats et al., 2021). Another setting is to utilize unlabeled offline data for representation
learning (Schwarzer et al., 2021; Stooke et al., 2021) or skill learning (Ajay et al., 2021; Jiang et al.,
2022). Masked prediction presents a promising framework to enjoy the best of both world.

Curriculum Learning Inspired by how humans learn faster when knowledge is ordered by easiness,
curriculum learning (Elman, 1993; Bengio et al., 2009) has been formulated for machine learning
algorithms to improve training efficiency. While curriculum learning has been actively explored in
the context of online RL (Jabri et al., 2019; Fang et al., 2021), in this work we show that offline RL
pretraining also benefits from a proper learning curriculum.

3 PRELIMINARIES

3.1 MASKED PREDICTION

Let τ = (st, at)
T
t=1 = (s1, a1, s2, a2, · · · , sT , aT ) denote a trajectory consisting of state-action se-

quences and D denote the training dataset. The self-supervised task of masked prediction is to recon-
struct τ from a masked view masked(τ), where masked(·) represents a specific masking function.
For example, if masked(·) represents a deterministic scheme that masks the initial and final actions of
the input, the resulting masked trajectory is masked(τ) = (s1,[MASK], s2, a2, · · · , sT ,[MASK]).
Here, [MASK] represents a special learnable token. The learning objective1 is then given by:

max
θ

Eτ∼D

T∑
t=1

logPθ (st, at | masked(τ)) ,

where Pθ is parameterized by a bidirectional transformer (Devlin et al., 2019). By reconstructing
state-action sequences, the model learns to reason over temporal dependencies.

Importantly, the choice of masked(·) specifies a concrete task the model is trained on. Therefore, it
is crucial to design an appropriate masking scheme that enables learning of general relationships in
state-action sequences. This goal boils down to two aspects: 1) how much is masked, and 2) what
is masked. For the former, it has been shown that a high mask ratio (e.g., 95%) is meaningful for
decision-making data due to its low information density (Liu et al., 2022). For the latter, since it is
undesirable to specify the tasks of interest when pretraining, the random masking scheme is widely
used (i.e., uniformly sampling a subset of tokens to mask). These principles form the basis of our
proposed masking approach, which is elaborated in Section 4.

1It is a design choice to compute loss on the entire input (Vincent et al., 2008) or only on the masked
tokens (Devlin et al., 2019). In this work, we apply the former as it has been shown to work better with sequential
decision-making data (Liu et al., 2022).
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Algorithm 1: Curriculum Masking
Input :candidate masking schemesM with cardinality K, training steps T , evaluation interval I ,

evaluation samples N , offline dataset D, bidirectional transformer Pθ

1 Initialize weights wk ← 0 for k = 1, . . . ,K;
2 Initialize masking scheme k ∼ πw;
3 for t← 1 . . . T do

/* Evaluation & selection */
4 if t mod I = 0 then
5 Compute loss Ltarget on {τn | τn ∼ D, n = 1, . . . , N};
6 Calculate reward r (Equation 1);
7 Update weights wk ← 0 for k = 1, . . . ,K (Equation 2);
8 Update masking scheme k ∼ πw;
9 end

/* Training */
10 Compute loss Lk on τ ∼ D;
11 Update θ by gradient descent;
12 end

3.2 AUTOMATED CURRICULUM LEARNING

Automated curriculum learning considers how to arrange the order of tasks during training by
adapting the selection of learning scenarios to match the learner’s abilities. Consider a series of tasks
represented by loss functions L1, . . . ,LK . The objective is to find a time-varying sequence of tasks
to accelerate training. To this end, a proper automatic curriculum needs to specify two factors: 1)
how to measure learning progress, in order to adjust its task schedule dynamically, and 2) how to
perform task selection based on progress signals. We describe our design in Section 4.

4 CURRICULUM MASKED PREDICTION

In this section, we describe the proposed approach, CurrMask, for unsupervised RL pretraining.
Algorithm 1 summarizes the overall pipeline. At the core of CurrMask is masked prediction as
a versatile self-supervised learning objective and an automatic learning curriculum over masking
schemes to enable fast skill discovery. Once pretrained on offline data, CurrMask can perform various
downstream tasks in a zero-shot manner, or be finetuned for policy learning. In the following, we
elaborate the design of CurrMask and provide sufficient explanation.

4.1 BLOCK-WISE MASKING ENHANCES LONG-TERM REASONING

Our research is based on the discovery that models trained using random masking, a commonly used
strategy in natural language modeling, fall short in capturing long-term dependencies (see Figure 4).
This is undesirable for decision-making agents that maximize long-term reward. To overcome this
issue, CurrMask applies the block-wise masking scheme (Joshi et al., 2020; Bao et al., 2022) that
masks the trajectory in blocks instead of individual tokens. By doing so, CurrMask pushes the model
to focus on semantically meaningful abstractions rather than simple local correlations. Predicting
missing blocks of state-action sequences also resembles multi-step inverse dynamics models (Lamb
et al., 2022), which has been shown to learn robust representations for decision making. We present
pseudocode of our block-wise masking implementation in Appendix A.

Blocks consisting of consecutive states and actions also form a notion of skills or primitives. Prior
works in offline skill discovery (Ajay et al., 2021; Jiang et al., 2022) typically use variational inference
to partition trajectories into skills. In this work, we argue that masked prediction with block-wise
masking represents an alternative approach for offline skill discovery. The link between masked
prediction and skill discovery inspires us to explore automatic curricula that can aid in learning skills.
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4.2 LEARNING OVER A MIXTURE OF MASKING SCHEMES

The block size explicitly determines the level of temporal granularity for masked prediction. To
capture both short-term and long-term temporal dependencies, CurrMask employs a combination of
masking schemes with varying block sizes and mask ratios during pretraining.

Given a set of masking schemes M where |M| = K, we define the loss function for masked
prediction task k as:

Lk(τ ; θ) =

T∑
t=1

logPθ (st, at | maskedk(τ)) ,

where maskedk ∈M denotes a specific masking scheme. CurrMask aims to minimize the multi-task
learning objective Ltarget(τ ; θ) =

1
K

∑K
k=1 Lk(τ ; θ).

4.3 AUTOMATED CURRICULUM LEARNING BOOSTS TRAINING EFFICIENCY

A key feature of mixed masking schemes is their inherent variability in complexity. Intuitively, the
ability of reasoning over global dependencies can be developed by first learning how to plan within
a short horizon. This motivates us to consider curriculum learning to facilitate masked prediction.
By scheduling masking schemes in a meaningful order, we expect that the model will learn more
efficiently and quickly during training.

Evaluation of Learning Progress The first factor to determine is the measure of learning progress.
Ideally, we would like the curriculum to maximize the rate at which the model learns to solve
downstream tasks. However, it is usually intractable to measure without downstream task information.
Hence, we consider target loss decrease (Graves et al., 2017) as a proxy signal for learning progress:

r = fscale(Ltarget(θ)− Ltarget(θ
′)), (1)

where θ and θ′ denote the model parameters before and after training, respectively. To alleviate the
issue of time-varying magnitudes, we follow Graves et al. (2017) to rescale values into [−1, 1] using

the 20-th and 80-th percentiles of history values: fscale(r̂) = max(−1,min(1,
2(r̂−rlo)
rhi−rlo

− 1)).

Task Selection To schedule tasks in a meaningful order, we aim to minimize Ltarget achieved after
training on them sequentially. This can be formulated a multi-armed bandit problem (Lattimore &
Szepesvári, 2020), where each arm represents a masking scheme and the goal is to maximize the
total reward earned over time. Since the reward distribution induced by Equation 1 shifts as the
network learns, we use the EXP3 algorithm (Auer et al., 2002), a non-stochastic multi-armed bandit
algorithm that mixes the probability distribution computed using exponential weights w with the
uniform distribution:

πw(i) = (1− γ)
wi∑K
j=1 wj

+
γ

K
i = 1, . . . ,K.

Each time EXP3 samples an arm k ∼ πw and observes reward r, it uses the importance-weighted
estimator x̂i =

I{i=k}r
πw(i) to update its weights according to the following formula:

w′
i = wi exp (γx̂i/K) i = 1, . . . ,K. (2)

As such, exponential growth significantly increases the probability of choosing good arms (i.e., mask-
ing schemes). Please see Appendix D for discussions on how CurrMask addresses non-stationarity.

5 EXPERIMENTS

In this section we conduct an empirical study to answer the following questions: (Q1) Can CurrMask
learn a versatile model that achieves good performance on a variety of downstream tasks, both in
zero-shot and finetuning scenarios? (Q2) What role do block-wise masking and masking curricula
play in CurrMask? (Q3) Does CurrMask better capture long-term temporal dependencies?
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reward ↑ run stand walk reach-bl reach-br reach-tl reach-tr
Random 30.4±0.9 105.1±3.4 58.7±4.0 64.3±5.5 63.1±4.2 62.4±4.3 67.4±3.9

Mixed 30.6±1.4 110.4±3.3 50.9±2.2 70.4±7.6 64.8±3.7 65.8±3.9 68.9±5.3

Mixed-inv 24.6±1.3 105.5±5.0 55.3±3.1 59.8±3.3 57.2±2.7 62.8±2.1 62.7±2.8

Mixed-prog 27.0±0.5 105.2±3.7 52.8±4.8 86.8±6.4 87.7±5.1 87.9±4.8 89.2±3.8

CurrMask 37.1±1.4 109.7±3.3 90.6±2.4 81.7±7.4 84.5±2.9 78.7±6.1 83.5±3.7

Table 1: Skill prompting results. We report the zero-shot performance of models pretrained with
different masking schemes. Results are averaged over 5 random seeds.

5.1 ENVIRONMENT SETUP

We evaluate our method on a set of environments from the DeepMind control suite (Tunyasuvunakool
et al., 2020). Each environment has several tasks specified by how the reward function is defined.
Specifically, we consider a total of 7 tasks that are associated with 2 different environments. At
evaluation, we test how well the model pretrained for each environment on offline datasets adapts to
different downstream tasks. For more details and experimental results, please refer to Appendix B.2
and Appendix E, respectively.

Environments The walker environment consists of 3 locomotion tasks (run, stand, and walk).
All the tasks provide a dense reward measure of task completion. For example, task run provides
rewards encouraging forward velocity. jaco is an environment for robot arm manipulation, which
includes 4 reaching tasks (bottom_left, bottom_right, top_left, and top_right).
These tasks are sparse-reward tasks given that nonzero rewards are provided only when the current
position is within a certain distance threshold of the target position.

Dataset Collection For each environment, we construct a multi-task dataset by collecting trajectories
of 12M steps from the replay buffer of TD3 agents (Fujimoto et al., 2018). Specifically, for each task
in the Walker/Jaco environment, we train an agent for 4M/3M environment steps. This collection
procedure ensures that the pretraining dataset contains experiences of varying quality. For zero-shot
evaluation, we additionally construct a validation set for each environment using the same protocol
but with different random seeds.

Baselines & Implementation Details We compare CurrMask with the following baselines: 1)
Random (Liu et al., 2022) samples a mask ratio and randomly masks a portion of individual tokens
in each training step; 2) Mixed samples a mask ratio as well as a block size at each step and applies
block-wise masking; 3) Mixed-prog uses a manually designed mask curriculum that progressively
increases the block size during pretraining; 4) Mixed-inv reverses the order of Mixed-prog’s
mask curriculum. We consider multiple mask ratios (15%, 35%, 55%, 75%, and 95%) and multiple
block sizes (1, 2, . . . , 20) to construct scheme poolM (|M| = 100) for CurrMask. The baselines are
subject to the same candidate ratios and block sizes. For all the evaluated methods, we use the same
encoder-decoder transformer architecture with a 3-layer encoder and a 2-layer decoder, following
prior work (He et al., 2022; Liu et al., 2022). The encoder takes only unmasked states and actions into
account, whereas the whole trajectory including both masked and unmasked tokens will be passed to
the decoder. Both the encoder and decoder are bidirectional, i.e., each token can attend to both the
left and right context via the self-attention mechanism.

5.2 DOWNSTREAM TASKS

To demonstrate the versatility of CurrMask, we consider various downstream tasks that require
different capabilities, including zero-shot inference by specifying certain masking schemes (i.e., skill
prompting and goal-conditioned planning) and adaptation via finetuning (i.e., offline RL).

Skill Prompting A unified model trained on diverse multi-task data is expected to acquire various
skills that can be invoked to perform certain tasks. Skill prompting tests this ability by requiring
the model to generate consecutive behaviors given a short state-action sequence. For each task,
we randomly sample 5-timestep state-action sequences from the validation set as the prompts, and
evaluate the quality of the generated trajectory of length 120 by its task rewards.
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distance ↓ run stand walk reach-bl reach-br reach-tl reach-tr
Random 15.45±.47 4.83±.44 10.11±.21 1.50±.06 1.51±.04 1.45±.05 1.44±.06

Mixed 15.35±.51 4.80±.43 10.16±.24 1.55±.07 1.57±.05 1.53±.05 1.52±.07

Mixed-inv 16.53±.57 5.28±.49 11.18±.29 1.67±.07 1.63±.06 1.66±.07 1.60±.07

Mixed-prog 15.66±.55 4.95±.47 10.19±.20 1.56±.05 1.55±.04 1.53±.05 1.51±.09

CurrMask 15.48±.49 4.80±.44 10.05±.20 1.45±.05 1.47±.05 1.41±.06 1.38±.08

Table 2: Goal-conditioned planning results. We report the zero-shot performance of models
pretrained with different masking schemes. Results are averaged over 5 random seeds.

Goal-conditioned Planning Another type of downstream task we consider is goal-conditioned
planning. Starting from a given state, the model needs to roll out actions that can achieve target goals
within a number of steps. We consider 5 target goals with intervals of 20 steps, seeking to evaluate
the model’s capability to generate long-term plans. For each task, we use a fix set of trajectories
sampled from the validation set. We randomly sample starting states and corresponding goal states
from the trajectories for planning. The performance is assessed by the L2 distance between every
goal and the closest state within the short range of a given time budget.

Offline RL Finally, we study if the representations learned by CurrMask can accelerate offline RL.
Our intuition is that, by capturing both short-term and long-term temporal dependencies in the offline
data, CurrMask should learn useful and generic representations for downstream finetuning. For each
task, we add a critic head and actor head on top of the encoder, and run TD3 (Fujimoto et al., 2018) to
perform offline RL training2, following prior work (Liu et al., 2022). Each offline dataset is collected
from the entire replay buffer of a ProtoRL agent (Yarats et al., 2021) trained for 2M environment
steps. Notably, the datasets consist of highly exploratory data, which emphasizes the importance of
having good representations.

5.3 MAIN RESULTS

We test the versatility of CurrMask over a variety of downstream tasks, in answer to Q1 and Q2.

Skill Prompting Table 1 summarizes the zero-shot performance for skill prompting. We can observe
that CurrMask consistently achieves better performance than Random, suggesting that CurrMask is
proficient in mirroring skill prompts to accomplish specific tasks. Besides, other baseline methods
that incorporate block-wise masking (i.e., Mixed, Mixed-prog, and Mixed-inv) generally
outperform Random. This matches our expectation that blocks form more semantically meaningful
entities than individual tokens and can be utilized by masked prediction to facilitate skill learning.
The only exception is Mixed-inv. The poor performance of Mixed-inv sends a strong signal
that a proper curriculum is important for masked prediction training.

Goal-conditioned Planning Next we evaluate how capable CurrMask is for long-horizon planning.
As shown in Table 2, CurrMask can rollout better goal-reaching trajectories than the baselines in 6
out of 7 tasks. The advantages are more prominent in the jaco environment. We conjecture that it is
because robot arm manipulation forms a more hierarchical structure to reach a specific goal. Another
notable observation is that, in contrast to skill prompting results, Mixed has worse performance than
Random. This indicates that the superior performance of CurrMask is not only due to block-wise
masking, but rather a consequence of dynamically balancing what to mask during training.

Offline RL Finally, we present offline RL results in Figure 2. Compared with learning from scratch,
learning with pretrained representations obtained by CurrMask results in significant training speedup
and performance improvement. We observe that CurrMask outperforms Random, which suggests
that CurrMask not only learns diverse skills but also extracts transferable representations for policy
learning. It should also be noted that in some cases (e.g., walk) pretraining with Random leads to
diminished performance for finetuning, whereas CurrMask is generally more stable.

2Although TD3 is originally designed as an off-policy RL algorithm, Yarats et al. (2022) show that it achieves
very competitive performance on offline datasets of diverse behaviors.
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Figure 2: Offline RL results. We report the finetuning performance of models pretrained with
different masking schemes. Results are averaged over 5 random seeds.

5.4 ANALYSIS

In this section, we investigate several aspects of CurrMask to further answer Q2 and Q3.

Impact of Block-wise Masking To better understand how block-wise masking contributes to
CurrMask, we conduct an ablation study on the choice of block sizes. Figure 3a shows the influence
of the block size, where masked prediction is combined with randomly selected mask ratios and
a fixed block size. With block-wise masking, masked prediction benefits from larger block sizes
to perform zero-shot skill prompting. Besides, mixing different block sizes uniformly for training,
referred to as Mixed, leads to average performance. This indicates that the block size does have a
great impact over final performance, and a proper learning curriculum can be crucial.

Impact of Masking Curricula Another important question is whether good masking curricula
should be determined manually or found adaptively during training. We would like to emphasize
that Mixed-prog does not consistently lead to performance improvements compared to Random.
Specifically, in most goal-conditioned planning tasks and in offline RL and skill prompting tasks of
the walker domain, Mixed-prog performs worse than Random. The performance gap can be very
substantial (e.g., a decrease of 56.8% in offline RL performance for walk). In contrast, for CurrMask,
we consistently observe improvements over Random.

We provide additional experimental results to better illustrate that CurrMask is not just rediscovering
the programmatic curriculum. Figure 6 displays the skill prompting results versus training steps
during pretraining, revealing noticeable differences in skill learning progress between Mixed-prog
and CurrMask. Additionally, Table 6 compares CurrMask with Mixed using a constant block size.
This comparison emphasizes that a proper masking scheme is unlikely to be predetermined and
highlights the benefits of CurrMask for its adaptivitity.

Training Dynamics Next, we investigate how automatic curricula steer masking schemes during
training. Figure 3b visualizes the time-varying probabilities of choosing different block sizes
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Figure 3: Both block-wise masking and curriculum masking contribute to CurrMask’s perfor-
mance. Left: the performance of zero-shot skill prompting as a function of fixed block size. Right:
the probabilities of choosing different block sizes and mask ratios during pretraining with CurrMask.
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Figure 4: Analysis of long-term prediction capability. Left: We visualize the attention map
(L2-normalized over different heads) of the first decoder layer, when the model is conducting skill
prompting. Right: the performance of zero-shot skill prompting as a function of rollout length.

and mask ratios during CurrMask pretraining. We can see that CurrMask gradually increases the
probability of choosing large block sizes while also preferring a moderate mask ratio. The former
observation reveals that CurrMask has a tendency to learn more complex skills, which aligns with
our intuition. For the latter, we believe it reflects the degree of information redundancy in sequential
decision-making data, also reported in previous work (Liu et al., 2022; He et al., 2022).

Evaluation of Long-term Prediction One of the most important intuition behind CurrMask is
that block-wise masking can enhance the model’s capability to capture long-term dependencies. To
verify this, we look into the attention maps during prediction with skill prompts even when they
are far from current timesteps. Figure 4a compares the attention patterns induced by Random and
CurrMask. We notice significant differences in how the approaches use the prompt. Compared to
Random, CurrMask better leverages the provided states and actions to generate behaviors. Besides,
the predictions of CurrMask attend to prior actions more than they do to prior states. These findings
support our intuition that CurrMask is more effective at extracting useful long-term dependencies.
We offer a more comprehensive assessment in Appendix F.

This discrepancy in attention patterns is further validated by the performance of long-horizon skill
prompting. Figure 4b shows the skill prompting performance as a function of the rollout length. We
observe that CurrMask outperforms the baselines significantly when the rollout length is extended.
Notably, Random and Mixed-inv have degenerated performance for long rollouts, supporting our
hypothesis that CurrMask acquires non-trivial long-term prediction capacity.

6 CONCLUSION

In this work, we propose CurrMask, a curriculum masking approach for unsupervised RL pretraining.
Motivated by the unique pattern of sequential decision-making data (i.e., low information density and
interleaved modality), we propose to apply block-wise masking with mixed mask ratios and block
sizes to capture temporal dependencies at both short-term and long-term levels of granularity. As
different masking schemes naturally vary in prediction difficulty, we consider automated curriculum
learning as the inner drive to facilitate training by scheduling these schemes in a meaningful order.
We show through extensive experiments that CurrMask learns a versatile model that consistently
outperforms the baselines in various downstream tasks. Our analysis of the impact of block-wise
masking and curriculum learning emphasizes the adaptivity of CurrMask and its superior ability to
extract global dependencies.

Limitations One limitation of CurrMask is the computational overhead, as CurrMask relies on an
extra bandit model to schedule masking schemes for training3. Furthermore, the advantages offered
by CurrMask could be affected by the underlying structure of the environment. This encourages us to
extend our method to more challenging settings like image-based RL in future research.

3We observe a computation overhead of 4.7% for 100k gradient steps with a single RTX 3090 graphic card.
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A PSEUDOCODE OF BLOCK-WISE MASKING

Algorithm 2 demonstrates the block-wise masking mechanism, which is employed as an intermediate
step for masking in CurrMask and other baseline models.

Algorithm 2: Block-wise Masking
Input : sequence length L, mask ratio p, block size b
Output : binary mask matrix m ∈ {0, 1}L (0 for masked, 1 for unmasked),

1 if b = 1 then
2 return random_masking(L, p);
3 end
4 l← p · L ; /* length of masked tokens */
5 c← ⌊L−1

b ⌋ ; /* number of blocks in a sequence */
6 Initialize mask m← 1;
7 Randomly choose start index s← random(0, · · · , b− 1);
8 Shuffle block indices bs← shuffle(0, . . . , c− 1);
9 Expand block indices to token indices ts← (i · b+ j + s for i in bs for j in (1, · · · , b− 1));

10 Mask tokens m← set_zero(m, ts[−l :]);
11 if len(ts) < l then
12 Mask remaining tokens m← set_zero(m, ((0, · · · , L− 1)− ts)[len(ts)− l :]);
13 end
14 return m;

B EXPERIMENTAL DETAILS

B.1 DATA COLLECTION

Pretraining Datasets For both the walker and jaco environments, we create a multi-task dataset
by gathering trajectories from the replay buffer of TD3 agents. We collect a total of 12M steps from
the replay buffer for each environment. Each task in the walker environment is trained for 4M
environment steps, while each task in the jaco environment is trained for 3M steps. By following
this procedure, we ensure that the pretraining datasets encompasses experiences of varying quality.

Validation Datasets For zero-shot evaluation of both skill prompting and goal-conditioned planning,
we construct a separate validation set for each environment using the same collection protocol for
pretraining datasets but with different random seeds.

Training Datasets for Offline RL Each offline dataset is obtained from the complete replay buffer
of a ProtoRL agent, which was trained for 2M environment steps. For each task, the collected dataset
is relabeled with task-specific rewards during offline RL. It is worth mentioning that these datasets
contain highly exploratory data, emphasizing the significance of having effective representations.
Table 3 summarizes the statistics.

task min max mean
stand 27.07 408.59 198.85
walk 4.81 199.95 72.95
run 4.55 79.00 38.61
top_left 0.00 245.18 5.23
top_right 0.00 227.04 5.64
bottom_left 0.00 225.56 3.59
bottom_right 0.00 242.03 4.35

Table 3: Episodic return statistics of training datasets used for offline RL.

13



Under review as a conference paper at ICLR 2024

B.2 IMPLEMENTATION DETAILS

Hyperparameters Our CurrMask implementation is based on the MaskDP codebase4. Table 4
summarizes the hyperparameters used by CurrMask for training and evaluation.

model value
# encoder layers 3
# decoder layers 2
# attention heads 4
context length 64
hidden dimension 256
mask ratio [15%, 35%, 55%, 75%, 95%]
block size [1, 2, . . . , 20]
training
optimizer Adam
batch size 384
learning rate 1e-4
# gradient steps 300k
EXP3 γ 0.2
evaluation interval I 100
# evaluation samples N 10
skill prompting
# seeds 5
# trajectories sampled per seed 100
prompt length 5
rollout length 120
goal-conditioned planning
# seeds 10
# trajectories sampled per seed 100
offline RL
# seeds 5
# training steps 35k

Table 4: Hyperparameters used for model training and evaluation.

Baselines For all the baselines, we use the same model architecture and common hyperparameters as
CurrMask. The implementation of Mixed-prog involves manually partitioning the training process
into four stages based on the value of current_step/total_step. Within the intervals of
[[0, 0.25), [0.25, 0.5), [0.5, 0.75), [0.75, 1.00)], sub-sequences are sampled with lengths ranging from
[[1, 5], [1, 10], [1, 15], [1, 20]], respectively. This deliberate control enables the progressive increase
in block size of the mask, posing greater challenges to the training procedure as it unfolds. The
implementation of Mixed-inv shares significant similarities with Mixed-prog. Both methods
adopt a four-stage approach to partition the training process. The key distinction lies in the sampling
of sub-sequence lengths as training progresses. In the case of Mixed-inv, these lengths follow a
descending pattern, specifically [[1, 20], [1, 15], [1, 10], [1, 5]].

Evaluation of Skill Prompting To facilitate skill prompting, the agent is provided with a short
state-action segment randomly extracted from a trajectory in the validation dataset. The agent is
then positioned at the final state of the segment and tasked with generating subsequent behaviors
in an autoregressive manner. The quality of the generated sequence is evaluated by comparing its
accumulated rewards with those obtained from the rollout of an expert with advanced skills. In detail,
we employ a prompt length of 5 timesteps and the initial position of each prompt is randomly sampled
within the range of [0.1 · trajectory_length, 0.85 · trajectory_length]. Therefore, the
prompt may be located at the beginning of a trajectory or skewed towards the later stages, resulting in
the agent’s state being in a low-speed starting phase or a high-speed running phase in the cases of the
walk/run task.

4https://github.com/FangchenLiu/MaskDP_public
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Evaluation of Goal-conditioned Planning To implement goal-conditioned planning, we randomly
sample a goal context of length 100 from the trajectories in the validation set. The position of the goal
is set at specific locations [20, 40, 60, 80, 100]. The agent is initially placed at the starting position of
the goal context, and the rollout continues for the remaining tokens. We calculate the L2 distance
between each goal state and its closest state token within the rollout length as a metric for evaluation.

Evaluation of Offline RL In offline RL, the main objective is to train a model to maximize the
return for a specific task, as defined by a reward function. This differs from our self-supervised
pretraining objective, so additional finetuning is required. To align with the RL setting, we modify
the bidirectional attention mask in the transformer to a causal attention mask. This change allows the
model to attend only to previous states and actions during training, simulating the sequential nature
of RL tasks. We also utilize a standard actor-critic framework similar to TD3 by incorporating a critic
head and an actor head on top of the pretrained encoder. The actor takes a sequence of states as input,
while the critic takes a sequence of state-action pairs as input. Both components operate without any
masking. Then we perform RL training using the modified architecture.

C SKILL PROMPTING VISUALIZATION

To supplement the evaluation of skill prompting, we provide qualitative results of the generated
actions as shown in Figure 5. One interesting finding is about skill prompting on the run task. Both
agents trained with Random and CurrMask fall down in the initial steps, which could be due to the
high velocity. As the trajectory is rolled out, the agent trained with Random struggles to stand up.
On the other hand, the agent trained with CurrMask manages to stand up and continue running. This
also supports our observation that CurrMask can better leverage information given by the prompt,
even when conducting long-horizon prediction.

D DISCUSSIONS ON NON-STATIONARITY

Non-stationarity is a major challenge for algorithm design in our context. We want to emphasize two
important properties: 1) The reward distribution is non-stationary, and 2) Despite this, the learning
process usually progresses gradually without sudden regime shifts (Zhou et al., 2021).

For the former, we want to emphasize that our method tackles the non-stationarity in two aspects.
Firstly, EXP3, a special case of online mirror descent, is inherently adaptable to reward distributions
that change over time. Secondly, we alleviate this issue by rescaling rewards using historical
percentiles. For the latter, while abrupt distribution changes are not typically observed, we believe
that our framework can easily accommodate other techniques like sliding windows and reward
discounting to address significant non-stationarity.

prompt (walk)

prompt (run)

prompt (top left)

output (top: Random; bottom: CurrMask)

Figure 5: Skill prompting visualization.
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 RESULTS ON HALFCHEETAH

In addition to the environments from the DeepMind control suite, we also conduct experiments on
the HalfCheetah environment from the OpenAI Gym benchmark. We follow the setup described
in Xu et al. (2022). In the HalfCheetah environment, the agent is tasked with achieving certain
goal velocities. We consider three tasks with goal velocities vgoal of 1.0 m/s, 2.0 m/s, and 3.0 m/s
respectively. The reward is calculated by summing two parts and then normalizing the result to [0, 1]:

rgoal = −1.0× |v − vgoal|, rctrl = −0.05× ∥a∥2.
We use the same protocol to collect pretraining data and pretrain the model as we do for the
Walker and Jaco environments. However, when it comes to downstream tasks, we find that using
unsupervised exploratory data for offline RL finetuning does not produce meaningful results. As a
result, we instead subsample the validation data for each environment to construct a higher quality
dataset for offline RL.

The results are shown in Table 5. It is evident that CurrMask outperforms Random across most tasks.
For Mixed-prog, although it excels in goal-conditioned planning tasks, it performs worse than
Random in both skill prompting and offline RL. We believe it is because the manually designed
curriculum used by Mixed-prog forces the model to overfit on long-horizon prediction tasks at
the end of training. In contrast, CurrMask possesses the ability to automatically balance these skills
during training, highlighting its adaptivity and further confirming its advantages over other methods.

skill ↑ v = 1.0 v = 2.0 v = 3.0
Random 107.9±0.2 95.1±0.3 81.0±0.3

Mixed 106.5±0.2 92.6±0.2 77.1±0.4

Mixed-prog 102.9±0.2 88.8±0.2 69.1±0.6

CurrMask 108.8±0.1 97.3±0.2 82.7±0.4

goal ↓ v = 1.0 v = 2.0 v = 3.0
Random 4.34±0.06 5.82±0.13 7.78±0.13

Mixed 4.52±0.10 5.91±0.11 7.68±0.11

Mixed-prog 3.95±0.08 4.98±0.07 6.12±0.07

CurrMask 4.49±0.08 5.98±0.10 7.60±0.11

offline RL ↑ v = 1.0 v = 2.0 v = 3.0
Random 812.8±12.9 759.6±61.2 495.5±77.5

Mixed 820.1±17.3 725.7±110.4 530.5±88.2

Mixed-prog 817.9±15.5 712.6±72.1 490.9±82.4

CurrMask 817.5±7.7 776.6±35.8 515.7±72.0

Table 5: Halfcheetah results.

E.2 IMPACT OF MASKING CURRICULA

In Figure 6, we plot the cumulative reward of each 30 steps of the generated trajectory. The patterns
of Mixed-prog and CurrMask are substantially different. During the initial stage of pretraining,
Mixed-prog (trained with small blocks only) struggles to learn skills at all levels of temporal
granularity. CurrMask however exhibits faster skill acquisition and adapts its masking scheme
dynamically during training.

Figure 7 illustrates the mean block size used by CurrMask while pretraining on reach_top_left,
as a function of training steps. We notice an upward trend in block size, suggesting that CurrMask
progressively enhances masking difficulty.

E.3 RESULTS OF USING CONSTANT BLOCK SIZES

Table 6 compares CurrMask and Mixed-k, which employs a fixed block size k but with uniformly
sampled masked ratios. We can observe that the optimal value of k for Mixed-k varies depending
on the downstream task, whereas the results of CurrMask are more consistent.
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Figure 6: Skill prompting performance on Walker run in the pretraining phase.
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Figure 7: Mean block size vs. training steps during pretraining.

E.4 ALTERNATIVE AUTOMATED CURRICULUM LEARNING METHODS

To strengthen our evaluation, we conduct experiments on another curriculum learning method (Mati-
isen et al., 2019). We consider two variants that “are competitive in both and has least hyperparam-
eters”: Sampling which keeps a buffer of last K rewards for each task and samples the new task
using Thompson sampling. The two variants differ only in whether tasks are sampled according to
the absolute reward values (Sampling-T) or not (Sampling-F). Table 7 shows that CurrMask
achieves better performances in the considered tasks. This indicates that EXP3, with normalized
rewards, better handles the non-stationarity of training dynamics.

skill ↑ reach-bl reach-br reach-tl reach-tr run stand walk
Mixed-1 64.3±5.5 63.1±4.2 62.4±4.3 67.4±3.9 30.4±0.9 105.1±3.4 58.7±4.0
Mixed-5 31.4±2.7 29.9±2.4 32.6±2.4 34.9±1.4 14.1±0.3 97.4±2.6 29.4±1.5
Mixed-10 63.5±6.6 62.0±2.4 65.0±4.3 72.1±4.5 18.2±0.6 106.2±4.8 34.8±1.5
Mixed-15 75.2±6.6 72.4±4.7 72.4±4.0 75.1±4.6 33.0±1.0 110.3±3.1 80.5±1.5
Mixed-20 79.4±6.4 77.6±4.5 79.0±4.9 83.4±3.6 33.5±1.4 111.8±2.9 73.3±4.0
CurrMask 81.7±7.4 84.5±2.9 78.7±6.1 83.5±3.7 37.1±1.4 109.7±3.3 90.6±2.4
goal ↓ reach-bl reach-br reach-tl reach-tr run stand walk
Mixed-1 1.50±.06 1.51±.04 1.45±.05 1.44±.06 15.45±.47 4.83±.44 10.11±.21
Mixed-5 2.26±.08 2.28±.06 2.29±.08 2.36±.12 18.66±.58 5.66±.56 12.62±.33
Mixed-10 1.61±.06 1.63±.04 1.59±.05 1.55±.08 15.80±.48 4.90±.44 10.51±.28
Mixed-15 1.72±.05 1.80±.03 1.75±.06 1.77±.07 15.37±.61 4.82±.44 10.20±.25
Mixed-20 1.51±.07 1.55±.04 1.49±.06 1.48±.07 15.56±.59 4.86±.44 10.17±.12
CurrMask 1.45±.05 1.47±.05 1.41±.06 1.38±.08 15.48±.49 4.80±.44 10.05±.20
offline RL ↑ reach-bl reach-br reach-tl reach-tr run stand walk
Mixed-1 151.8±48.8 170.4±45.4 152.7±57.4 166.9±23.5 159.1±49.0 684.7±188.5 440.0±226.0
Mixed-5 175.2±25.7 169.9±45.7 177.8±14.2 193.6±19.7 212.8±52.9 866.7±78.7 316.3±118.8
Mixed-10 126.3±101.0 196.4±35.0 187.7±24.8 181.5±68.0 183.9±15.2 847.7±100.1 321.9±124.5
Mixed-15 177.9±66.3 193.2±11.2 163.6±23.1 167.9±30.0 122.2±79.7 722.9±68.5 447.4±144.2
Mixed-20 193.8±15.0 207.4±16.9 178.4±38.2 191.0±11.7 212.4±55.8 829.9±78.2 437.8±253.1
CurrMask 186.0±12.9 158.9±55.0 199.6±20.0 154.4±48.4 258.5±45.5 843.3±84.6 610.9±76.9

Table 6: Comparison between CurrMask and Mixed-k.
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skill ↑ reach-bl reach-br reach-tl reach-tr run stand walk
Sampling-F 55.7±5.6 53.6±3.5 56.8±3.3 60.9±3.3 31.8±1.1 110.6±3.7 53.9±2.7
Sampling-T 59.9±5.0 58.6±3.4 62.2±3.8 67.2±3.3 25.6±0.5 109.3±4.1 52.6±2.0
CurrMask 81.7±7.4 84.5±2.9 78.7±6.1 83.5±3.7 37.1±1.4 109.7±3.3 90.6±2.4
goal ↓ reach-bl reach-br reach-tl reach-tr run stand walk
Sampling-F 1.48±0.08 1.48±0.03 1.45±0.07 1.43±0.06 15.84±0.55 4.93±0.44 10.22±0.24
Sampling-T 1.50±0.08 1.57±0.04 1.46±0.06 1.47±0.09 15.94±0.52 4.90±0.45 10.21±0.22
CurrMask 1.45±0.05 1.47±0.05 1.41±0.06 1.38±0.08 15.48±0.49 4.80±0.44 10.05±0.20
offline RL ↑ reach-bl reach-br reach-tl reach-tr run stand walk
Sampling-F 181.7±20.6 167.7±18.6 176.0±28.8 146.8±52.3 247.9±53.9 675.7±281.1 350.7±248.5
Sampling-T 175.8±8.3 188.4±17.3 174.4±23.5 164.7±19.8 207.6±31.7 781.0±88.8 574.0±249.4
CurrMask 186.0±12.9 158.9±55.0 199.6±20.0 154.4±48.4 258.5±45.5 843.3±84.6 610.9±76.9

Table 7: Results of automated curriculum learning methods in Matiisen et al. (2019).

F ATTENTION VISUALIZATION

In this section, we provide more details about our attention map visualization and additional results.

Setup To provide a clearer visualization of the differences between CurrMask and other baselines
in zero-shot skill prompting and goal reaching, we visualize the attention maps of their first layer
decoders.For comparison purposes, we employ two masking techniques: prompt masking and goal
masking. Prompt masking masks all tokens except the first 8 tokens, while goal masking masks all
tokens except two randomly sampled state tokens.

Specifically, we evaluate the aforementioned masking methods on 10 trajectories randomly sampled
from validation sets using the pretrained model. We then compute the average attention map for each
technique, and finally apply L2 normalization to the attention maps of all four heads to obtain the
first layer attention map. We focus on a truncated token sequence of length 32, resulting in a final
attention map of size 32× 32 for clearly demonstrating the differences.

Additional Results We provide additional visualization results in Figure 8-9. Apart from the
observation that CurrMask better captures long-term dependencies than Random, we find that
increasing the block size for Block-wise leads to greater capabilities in long-term prediction,
which supports our intuition regarding the benefits brought by block-wise masking.
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Random Mixed Mixed-prog CurrMask (ours)
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Figure 8: Attention visualization with prompt masking.
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Random Mixed Mixed-prog CurrMask (ours)
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Figure 9: Attention visualization with goal masking.
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