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Abstract

For the first time in literature, we investigate the capability of Generative Adversarial
Networks (GAN) for synthesizing realistic images of microsurgical procedures and aug-
menting training data for surgical tool detection. We employ videos from practice and
intraoperative neurosurgical procedures to train and evaluate two recent GAN models that
have shown promise in high-resolution image generation: StyleGAN2 with Adaptive Dis-
criminator Augmentation and StyleGAN2 with Differential Augmentation. Models were
trained with limited data for both conditional and unconditional image generation, where
the conditional models generated images with and without surgical tools. Our results show
that the unconditional models achieved FID scores between 6 and 25 units lower than the
conditional models for the two practice datasets. The best performance (FID = 42.16 and
25.17) was achieved in the Go-around practice task and was comparable to the previous
benchmark performance of StyleGAN2 with Differential Augmentation. Experts’ visual
inspection showed that while synthetic images had faults that exposed their true origin to
the human eye, a sizable portion of them included identifiable surgical instruments. Ex-
periments with object detection showed that augmenting the training data with synthetic
microsurgical data improved the mean average precision for detecting tool tips in practice
microsurgery datasets by 3%. Future work will include improving the quality of image
synthesis and investigating key visual cues in expert assessment of surgical scenes for ap-
plications in robust surgical tool detection, bimanual skill evaluation, and surgical phase
understanding in microsurgery.

Keywords: Surgical tool detection, AI-assisted surgery, microsurgery, generative adver-
sarial networks, StyleGAN, data augmentation, limited data, nearest neighbors.

1. Introduction

High-fidelity surgical scene imagery and their abundance are important for developing intel-
ligent medical systems. Clinical applications, such as surgical process understanding, image-
guided navigation, instrument tracking, and telematic surgery demand high-quality images
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(Chadebecq et al., 2020; Kennedy-Metz et al., 2021). Computer vision can drive novel diag-
nostics, uncover a wealth of information during surgical procedures, and power innovative
intraoperative solutions for surgical operation rooms (OR). The successful computer-vision
applications in the OR relies on robust, automated tool detection from surgical recordings
(Philipp et al., 2021). Similar to other medical-imaging applications, surgical-tool detectors
are highly sensitive to the quality and quantity of training data (Torres-Velazquez et al.,
2021). However, even when privacy concerns are resolved, curating reliable surgical datasets
is time consuming and computationally inefficient. These challenges hinder the access to
representative data for developing scalable and intelligent surgical systems (Maier-Hein
et al., 2022).

Automated detection of surgical tools is a novel technique in computer-assisted surgery
that enables action recognition and objective assessment of surgical expertise (Belykh et al.,
2018; Philipp et al., 2021; Davids et al., 2021; Koskinen et al., 2022). Experimental studies
with eye trackers have shown that tool tips are important regions of interest in neurosurgery
due to their role in distinguishing the level of surgical expertise (Eivazi et al., 2012, 2017).
However, operation fields are often highly magnified –as is the case in microsurgery– and
suffer from blurriness, uneven illumination, and tool tip occlusion by tissues and other ob-
jects (Leppänen et al., 2018; Yamazaki et al., 2020; Shi et al., 2020), making tool detection
a significant challenge. In neurosurgery and ophthalmic surgery where a standard approach
is to operate in narrow microsurgical openings with microinstruments, low and non-uniform
illumination, coaxial instrument positions, and excessive instrument movements hinder ro-
bust video-based detection of tool tips (Leppänen et al., 2018).

In daily practices, surgeons record and edit surgical videos to capture the key surgical
phases. However, video editing inadvertently reduces the amount of data available for
training automated instrument detection models (Vedula and Hager, 2017; Koskinen et al.,
2022). Furthermore, the majority of surgical-tool detectors are built upon datasets with
inadequate diversity in tools and settings (Davids et al., 2021). To overcome the limited
size and diversity in microsurgical image datasets, generative adversarial networks (GANs)
have shown remarkable data augmentation capability in applications such as brain-tumor
segmentation (Calimeri et al., 2017; Shin et al., 2018; Quiros et al., 2020).

Contributions. We are the first to report on the potentials of GANs in microsurgery.
Two variants of the StyleGAN2 are utilized to synthesize images of microsurgical instru-
ments and brain tissues. The images are generated using unconditional and conditional
GANs. In unconditional GANs, the task is to synthesize realistic images, whereas in con-
ditional GANs the synthesized images are also automatically labeled(”with surgical tools”
and ”without surgical tools”). All models are trained on videos from microsurgical practice
and neurosurgery under authentic OR settings (i.e., large variation in illumination, contrast,
color, and instruments). The quality of synthetic images and generated tools is assessed
using Fréchet Inception Distance and Kernel Inception Distance, and by two microsurgeons
manually. To demonstrate that GANs have refrained from simply memorizing input images,
a nearest neighbor-based algorithm compares synthetic images to real training datasets in
the pixel space. Finally, we conduct two classification experiments to demonstrate improve-
ment in tool-tip detection using data augmentation. To our best knowledge, this is the first
attempt to apply GANs in microsurgery and to assess the potentials of conditional and
unconditional image generation in separating the tools from background scenes.
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2. Materials and Methods

2.1. Source Datasets

Two source video datasets from microsurgery were used for image synthesis (Table 1). The
Practice Dataset was collected during microsurgery training where participants completed
various bimanual tasks using microforceps and a needle holder: surgical knotting (or suture
tying), go-around (or bimanual handling), and object alignment under a surgical microscope
(Zeiss Omni Pico, 15 FPS). These tasks represented fundamental components of surgical
skills (Siu et al., 2010). In this work, we used videos from the Knotting and Go-around tasks
of two participants and labeled a total of 3141 images with tools and 310 images without
tools in Knotting, and 3124 images with tools and 235 images without tools in the Go-around
task. The original image size was 720×486 px was downsampled to 512×512 px (denoted
as Practice-512-Train dataset). Next, redundant and unfocused images were discarded that
resulted in a dataset of 655 images with tools and 150 images without tools in the Knotting
task, and 635 images with tools and 170 images without tools in the Go-around task. These
images were downsampled to 256×256 px (denoted as Practice-256-Train dataset).

The Intraoperative Dataset (INT) comprised one video of an authentic neurosurgery with
the anterior transpetrosal approach (Morisako et al., 2019). The INT Dataset contained
complex backgrounds, higher tool variability, and fewer images due to being heavily edited
at the source. In addition, the video included microscope movements and rapid changes in
illumination, color, contrast, motion blur, and partial blockage by surgeons’ hands. After
visual inspection and elimination of low-quality, redundant, and highly blurry images, the
amount of available data became limited. Random cropping with n = 3 was applied on the
original images of 1280×720 px for data augmentation. The images were downsampled to
512 px and 256 px resolutions. Figure 1 demonstrates examples for each task.

(a) Knotting (b) Go-around (c) Neurosurgery

(d) Knotting (e) Go-around (f ) Neurosurgery

Figure 1: Source images from Practice and Intraoperative microsurgical datasets. The top
row illustrates high-quality images while the bottom row displays various image
artifacts: (d) blurriness and out-of-focus, (e) complex poses, close tool tips, and
low needle visibility, and (f) multiple tools in complex anatomical backgrounds.
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2.2. Data Augmentation using StyleGAN2 Extensions

StyleGAN and StyleGAN2 represent state-of-the-art architectures in high-resolution im-
age synthesis (Karras et al., 2019, 2020b). StyleGAN2 relies on large computational re-
sources and training datasets (105-106 images). In small training datasets, StyleGAN2
adapts too quickly which can lead to ”Mode Collapse” (Goodfellow et al., 2020; Arjovsky
et al., 2017). In addition, data augmentation (i.e., cropping, flipping, scaling, and color
transformation) used by StyleGAN2 can leak into synthesized images. To overcome these
shortcomings, StyleGAN2+Ada adaptively stabilizes during training (Karras et al., 2020a).
StyleGAN2+DiffAugment augments both real and generated samples used in the discrim-
inator and propagates the gradients of augmented samples to the generator. Both models
have demonstrated their success by achieving FID scores 2-4 times lower than the original
StyleGAN2 once trained with 1000 samples (Zhao et al., 2020).

Table 1: Characteristics of microsurgery training datasets. Images in Knotting, Go-around,
and authentic neurosurgery were manually labeled and used in image synthesis.

Dataset Task Tools [n] No Tools [n] Total [n] Synthesized

Practice-256-Train Knotting 655 150 805 200
Practice-256-Train Go-around 635 170 805 200
INT-256-Train Neurosurgery 237 - 237 50

Practice-512-Train Knotting 3141 310 3451 301
Practice-512-Train Go-around 3124 325 3449 301
INT-512-Train Neurosurgery 232 - 232 301

2.3. Problem Formulation: Conditional and Unconditional Image Synthesis

GANs are unsupervised models while conditional GANs (CGAN) are supervised models
that can output data with given class labels (Mirza and Osindero, 2014). This additional
information enables the networks to learn the simplified, class-conditional distributions
instead of the overall distribution of entire training sets (Kaneko et al., 2017). In this
work, experiments are run with both unconditional and conditional models to test if class
information helps training GANs with small datasets. Selecting two classes for images with
and without tools is motivated by a previous work where the model had limited exposure
to ”empty” images (Koskinen et al., 2022), and is expected to tackle the imbalanced class
distribution.

2.4. Evaluation Metrics

Three quantitative (FID, KID, and average Manhattan distance) and one qualitative metrics
were used to compare the synthesized images to real images. FID measures the difference
between synthetized and real images as a distance between two multivariate Gaussian dis-
tributions and KID measures the dissimilarity between two probability distributions using
samples drawn independently from each distribution. Lower FID and KID scores correspond
to higher similarity between the real and synthetic images. We also evaluated synthetic im-
ages in terms of their distances from training images in the pixel space (Brock et al., 2019;
Zhao et al., 2020). The main challenge in GAN training occurs when the generator D mem-
orizes the input images rather than learning to generate new instances. We calculated the
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L1 distance between each synthetic image y and its three nearest neighbors in the training
set, NND(y). Images were first converted to gray-scale (pixel values in [0, 255]), and the
Manhattan distance between image pairs was computed as the sum of absolute values in
pixel intensities; the sum was normalized by the number of pixels and averaged among all
generated images for each task and dataset.

Finally, synthesized images were evaluated in a blinded randomized test by two mi-
crosurgeons - one neurosurgeon and one otosurgeon- in terms of image authenticity and
appearance. These experts first scored whether ”this view was similar to what they would
see under a microscope during training” in terms of tissues, instrument appearance (e.g.
shadows cast by the instruments), and continuity of surgical sutures. Second, they assessed
if they could ”clearly detect and label the left- and right-hand tools in the image.”

2.5. Downstream Task: Surgical Tool Detection

Finally, we examined whether the synthesized images improve tool tip detection. Total of
122 frames from the Practie-256-Train dataset was used to train the unconditional Style-
GAN2+DiffAugment for 1044 kimg. Next, 1200 synthetic images were generated, of which
557 images with successful generation of left- and right hand surgical tools were selected.
Tool tips were annotated with bounding boxes using LabelImg (Tzutalin, 2015). Finally,
a YOLOv5-nano v.6.0 network (Jocher et al., 2021) was trained for 300 epochs five times
separately using 1) the real-image dataset and 2) the combination of real- and synthetic-
image dataset. Model hyperparameters are presented in Table S.2 in Appendix D. The
input images were divided into training (n=102) and validation sets (n=20), and evaluated
on a test set (n=488) using the unseen images from the Practice dataset. Mean average
precision was compared at 0.5 threshold (mAP@0.5) from the two sets of five training runs
with real and real+synthetic images.

3. Experiments and Results

Experiments were first conducted with 256-px samples to test the usefulness of incorporating
class information (Section 3.1). The best architecture was selected for image synthesis at
the 512-px level (Section 3.2). Appendix A provides the implementation details for each
architecture and hyperparameter tuning. Table 2 summarizes all the results.

Table 2: FID and KID for Practice and INT datasets. Lower scores indicate more stable
image generation.

Experiment
Knotting Go-around Neurosurg.
FID KID FID KID FID KID

256 px
Unconditional w tools 69.03 0.056 49.09 0.045 73.22 0.031
Unconditional w and w/o tools 61.25 0.042 42.16 0.034 73.22 0.031
Conditional w and w/o tools 67.94 0.051 68.01 0.065 - -

512 px Unconditional with and w/o tools 33.43 0.021 25.17 0.021 90.94 0.053
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3.1. Low-Resolution Image Synthesis: Conditional and Unconditional Models

First, we experimented with DiffAugment and trained two unconditional models using 1)
all the images and using 2) only the tool images. Initially, the conditional model resulted
in low and highly unstable peformance during training as observed in the FID graph of
the first 120 thousand images. The mini-batch size was adjusted so that the discriminator
received samples with low variation and penalize or provide feedback to the generator to
avoid the mode collapse (see Table S.1). Once training with DiffAugment achieved a stable
GAN, each model was trained for 24 hours and the diversity and quality of synthesized
images were evaluated using FID and KID. Figure S.1 in Appendix A demonstrates sample,
without-tool images from conditional image generation experiments with the Knotting task.

Results in Table 2 indicate training the unconditional model with all the images resulted
in generating more realistic images in comparison to the other two experiments for both
practice tasks. While the conditional model performed slightly better than the uncondi-
tional with-tool model in Knotting, images generated for Go-around using the unconditional
model were generally more diverse; images synthesized for Go-around demonstrated better
diversity than the other two tasks using unconditional training.

3.2. High-Resolution Image Synthesis: Unconditional Models

Considering the success of unconditional models with the low-resolution images, the differ-
entiable augmentation model was separately trained using Practice-512-Train and INT-512-
Train datasets. Final FID and KID values obtained from these experiments are presented
in Table 2. These metrics generally improved for Practice dataset but show a deteriorated
performance in the INT dataset. Images synthesized for Go-around received the best di-
versity scores. In perspective, FID scores of 42.16 and 25.17 are close to values reported for
benchmarked DiffAug experiments with 1000 samples from LSUN-cat and FFHQ datasets
(Zhao et al., 2020). Figure 2 presents sample synthetic images from low-resolution and high-
resolution training sets and demonstrate successful examples as well as challenges such as
partial tool generation and deformations.

Expert Evaluation A total of 602 512-px images generated by unconditional Style-
GAN2+DiffAugment models from the Practice Dataset were submitted to two specialist
microsurgeons for visual inspection. In response to question 1, on average, 40.03± 34.53%
and 32.56 ± 42.76% of images generated for Knotting and Go-around, respectively, looked
similar to what these experts would expect to observe under a surgical microscope. Fig-
ure S.2 in Appendix B includes eight sample images evaluated as realistic by both surgeons.
Cohen’s kappa, was below 0.02 for both tasks, showing these experts did not have similar
expectations of synthetic images. To analyze responses to question 2 regarding the eval-
uation of individual surgical tools, Table 3 presents the number of synthesized images for
high-resolution Practice datasets; the average detection of no-tool and correct labels are
also presented. Tool detection was more successful for Knotting images and Cohen’s kappa
indicated a moderate level of agreement.

3.3. Nearest Neighbors Analysis in the Pixel Space

Manhattan distance was calculated between each synthetic image and nearest real im-
ages in the training sets of unconditional GAN experiments. Figure S.3 and Figure S.4
in Appendix C present images with the largest normalized L1 distance from their 3 near-

6



Image Synthesis in Microsurgery

(a) 256px (b) 256px (c) 512px (d) 512px

(e) 256px (f ) 256px (g) 512px (h) 512px

(i) 256px (j ) 256px (k) 512px (l) 512px

Figure 2: Synthetic images generated by unconditional GANs from low-resolution, and
high-resolution images. The first and third column illustrate successful synthesis,
while the images in the second and forth column show partial tool generation,
deformation of tool tips and bodies, and unclear or blurry synthesis.

Table 3: Distribution of high-resolution images synthesized for Knotting and Go-around,
and average ratio of correct detection from expert evaluations of surgical tools.

Knotting Go-around
Left-Hand Right-Hand Left-Hand Right-Hand

With and Without Tool (240, 61) (249, 52) (253, 48) (250, 51)
Mean Detection 0.49 ± 0.03 0.44 ± 0.04 0.32 ± 0.03 0.32 ± 0.07
Kappa 0.70 0.61 0.58 0.65

est neighbors in different tasks and resolutions. Results of averaged normalized distances
for each task and resolution in Table 4 indicate that GANs were, on average, more likely
to generate new samples when trained by images of intraoperative procedures despite their
challenging background and textures. The average, normalized distances were slightly larger
when high-res images were used in the training sets. To provide a baseline for L1 distances
among real images, average values of 3NN-L1 distances were computed. These distances
were equal to 7.25 ± 3.63 (SE=0.13), 6.22 ± 2.97 (SE=0.11), and 28.82 ± 7.29 (SE=0.47)
for Knotting, Go-around, and Neurosurgery training datasets. These within-real distances
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Table 4: Mean and standard deviation for normalized L1 distances between synthetic im-
ages and their three nearest neighbors. Standard errors are in the parentheses.

Dataset Knotting Go-around Neurosurgery

256 px 18.98 ± 7.80 (0.55) 17.81 ± 7.21 (0.51) 25.29 ± 5.48 (0.78)
512 px 21.09 ± 8.07 (0.47) 19.68 ± 7.26 (0.42) 31.9 ± 7.11 (0.41)

are smaller than distances between the generated and real images in the first two Practice
tasks but comparable to the normalized distances reported for the Intraoperative dataset.

3.4. Downstream task: Classification Results

Results from five runs showed the real training dataset achieved an average mAP@0.5 of
0.63 ± 0.03 and 0.68 ± 0.01 for left- and right-hand tools, respectively. After augmenting
the training set with synthetic data from StyleGAN2+DiffAugment, average mAP@0.5
improved to 0.69± 0.02 and 0.68± 0.03. The improvement was statistically significant for
the left-hand tool (t = 3.82, p < 0.001), but not for the right-hand tool (t = 0.32, p = 0.75).
Mean mAP@0.5 for both hands improved by 0.03 (t = 2.61, p = 0.03).

4. Discussion and Conclusion

We present a novel work to investigate whether GANs can generate realistic images from lim-
ited datasets of microsurgical practice and intraoperative videos. We employed two variants
of StyleGAN2, specifically designed for limited-data augmentation without mode collapse
and training leakage. Experiments show that StyleGAN2+DiffAugment was more reliable
than StyleGAN2+ADA in avoiding model collapse and generating realistic tool images. To
investigate whether prior information about the tools in the image improves the generation
results, we compared unconditional image synthesis with binary conditional GANs. Synthe-
sis with 256-px datasets showed that using all training samples with unconditional models
achieved better FID and KID scores.

Visual evaluations of 512-px images by two microsurgeons indicated a fidelity of over
30% for synthesized practice images. Different specializations and approaches in assessing
regional features -–such as sharpness of background objects and tools and continuity of thin
threads and background dots– could be key factors for this low agreement. However, they
had moderate to high agreement in detecting and labeling left- and right-hand tools. Our
analysis showed variations in the pose, shadows, and tool tip deformation in Go-around had
hindered the detection of exact microinstruments. In a recent work, experts’ performance
was close to random in detecting real and fake histopathological images (Quiros et al., 2020).
Existence of surgical instruments with well defined and familiar features in our images makes
distinguishing the synthetic images easier. More investigation is needed to understand the
nature and importance of visual features in expert assessment of surgical scenes.

Finally, our tool tip detection experiments using robust object detectors showed the
feasibility of augmenting real images with synthesized data from unconditional GANs to
improve tool tip detection in practice microsurgery datasets. Future work will include
using transfer learning, exploring more variability in intraoperative images, and analyzing
the latent space to verify diversity of synthetic image generation.
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Appendix A. Image Synthesis: Implementation Details

Experiments for StyleGAN2 are run in TensorFlow and PyTorch. Images were preprocessed
to assure all entries had the same square shapes and color space. Next, a folder of TFRecord
transformed from images was generated for the purpose of efficient storage in TensorFlow
version. For the Pytorch version with the class-conditional model, a metadata that con-
tained label information was prepared, along with the uncompressed images before fitting
the model. Codes used for image processing, creating labels, and calculating pixel-wise
distances are publicly available at https://github.com/aprilycliu/GAN_toolkit.

Two open-source modules were utilized for running experiments in TensorFlow and Py-
Torch. Details of unconditional and conditional image synthesis with StyleGAN2+Ada are
as follows. The Adaptive discriminator augmentation(ADA)1 provides options to adjust
augmentation setting on discriminator, including fixed or adaptively changed augmentation
probability. From the diverse set of implemented transformations, we utilize the default
'Blit'+ 'Geom'+ 'Color' options where blit refers to pixel blitting with x-flips, 90-degree
rotations, and integer translation. Furthermore, for the Intraoperative Dataset, the hori-
zontal mirror augmentation was enabled as it will double the training set and, in real life,
surgeons may use their left hand as their dominant hand.

Lastly, the following transforms were used for unconditional and conditional image syn-
thesis using StyleGAN2 with differentiable augmentation2: Translation within [−1/8, 1/8]
of the image size, padded with zeros; Cutout as masking with a random square of half image
size; and Color, including random brightness within [−0.5, 0.5], contrast within [0.5, 1.5],
and saturation within [0, 2]. In Zhao et al. (2020), the combination of Color + Translation
+ Cutout was especially effective and resulted in largest improvements from the baseline
on CIFAR-10 benchmarks; this transformation was used in our experiments as well.

All experiments were conducted with two GPUs to ensure training stability. Train-
ing time was limited to 24 hours for each run. To control for model overfitting, the R1

regularization term is applied to penalize the gradient in the discriminator D in case real

data are generated by the generator G, i.e. R1(ψ) =
γ

2
EPD(x)

[
∥∇Dψ(x)∥2

]
(Mescheder

et al., 2018). The term ψ represents the discriminator weights, EPD(x) represents sampling
from real samples, and γ represents a tunable hyperparameter. Other parameters included
the mini-batch size of 32, learning rate of 0.001, R1 regularization γ of 10, and a map-
ping net depth of 2. Table S.1 present the values of hyperparameters used for training the
StyleGAN2-DiffAugment models. Networks were trained between 2200 and 2770 thousand
images for generation of 256-px images. For generation of 512 images, models in tasks 1
and 2 were trained for 2760 kimg and the model of Neurosurgery for 3400 kimg.

Appendix B. Synthesized Images from Low- and High-Resolution
Datasets

As discussed in Section 3.1, Figure S.1 demonstrates sample Knotting images generated
using the conditional models of StyleGAN2+DiffAugment in the no-tool class.

Furthermore, as explained in Section 2.4, two microsurgeons were asked to evaluated
301 high-resolution images from Knotting and 301 high-resolution images from Go-around

1. https://github.com/NVlabs/stylegan2-ada
2. https://github.com/mit-han-lab/data-efficient-gans
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Table S.1: Hyperparameters tuned for training unconditional and conditional GAN archi-
tectures. SD: Standard deviation; kimg: thousand trained images.

Parameter
Knotting Knotting Go-around Go-around Neurosurgery
Uncond. Cond. Uncond. Cond. Uncond.

Learning rate 0.001 0.002 0.001 0.001 0.001
Mini-batch SD 4 4 4 8 4

tasks according to two criteria. Figure S.2 presents eight synthesized images that both
experts evaluated as looking realistic or close to what they would expect to observe under
a surgical microscope during a training session.

Figure S.1: Sample 256-px images generated by conditional models of Style-
GAN2+DiffAugment from the no-tool class of the Knotting dataset. Numerical
results of conducted experiments are presented in Table 2.

Figure S.2: Sample 512-px images from the Practice dataset that were unanimously evalu-
ated as realistic by both experts.
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Figure S.3: Low-resolution images with largest normalized L1 distances from their 3 nearest
neighbors. Column one demonstrates sample synthetic images from the Knot-
ting, Go-around, and Neurosurgery tasks. The three corresponding nearest
neighbors are presented in columns two to four.

Appendix C. Presentation of Nearest Neighbors in Pixel Space

Figure S.3 and Figure S.4 demonstrate images with the largest normalized L1 distance from
their 3 nearest neighbors in different tasks and resolutions. In the case of Knotting and
Go-around tasks in Figure S.3, the length and shape of tool tips has been modified but the
poses still indicate a realistic use. In images synthesized from neurosurgery procedures in
these figures, camera angles and tool poses are different from the original images used in
the training sets.

Appendix D. Surgical Tool Detection: Implementation Details
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Figure S.4: High-resolution images with largest normalized L1 distances from their 3 near-
est neighbors. Column one demonstrates sample synthetic images from the
Intraoperative Dataset and three nearest neighbors are presented in columns
two to four.

Table S.2: Hyperparameters tuned for surgical tool detection using the YOLOv5-nano v6.0.
network

Hyperparameter Value Hyperparameter Value

lr0 0.01 fl gamma 0
lrf 0.1 hsv h 0.015
momentum 0.937 hsv s 0.7
weight decay 0.0005 hsv v 0.4
warmup epochs 3 degrees 0
warmup momentum 0.8 translate 0.1
warmup bias lr 0.1 scale 0.5
box 0.05 shear 0
cls 0.5 perspective 0
cls pw 1 flipud 0
obj 1 fliplr 0
obj pw 1 mosaic 0
iou t 0.2 mixup 0
anchor t 4 copy paste 0
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