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Geometry and Symmetry in Short-and-Sparse Deconvolution®

Han-Wen KuoT, Yugian Zhangi, Yenson LauT, and John WrightT§

Abstract. We study the Short-and-Sparse (SaS) deconvolution problem of recovering a short signal ag and a
sparse signal x¢ from their convolution. We propose a method based on nonconvex optimization,
which under certain conditions recovers the target short and sparse signals, up to a signed shift
symmetry which is intrinsic to this model. This symmetry plays a central role in shaping the
optimization landscape for deconvolution. We give a regional analysis, which characterizes this
landscape geometrically, on a union of subspaces. Our geometric characterization holds when the
length-po short signal ao has shift coherence u, and ¢ follows a random sparsity model with sparsity

c1 co . 1
rate § € [po’ po\/ﬁ-h/po] log? po

solves SaS deconvolution with high probability.

. Based on this geometry, we give a provable method that successfully

Key words. Signal reconstruction, blind deconvolution, non-convex geometry, non-convex optimization.
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1. Introduction. Datasets in a wide range of areas, including neuroscience [37], microscopy
[15] and astronomy [49], can be modeled as superpositions of translations of a basic motif.
Data of this nature can be modeled mathematically as a convolution y = ag * g, between
a short signal ap (the motif) and a longer sparse signal @y, whose nonzero entries indicate
where in the sample the motif is present. A very similar structure arises in image deblurring
[14], where y is a blurry image, ag the blur kernel, and xo the (edge map) of the target sharp
image.

Motivated by these and related problems in imaging and scientific data analysis, we study
the Short-and-Sparse (SaS) Deconvolution problem of recovering a short signal ag € RPY and
a sparse signal o € R (n > pg) from their length-n cyclic convolution y = ag * €y € R™!.
This SaS model exhibits a basic scaled shift symmetry: for any nonzero scalar o and cyclic
shift sg[-],

(1.1) (a sdao]) * (é S_g[$0]> = y.
Because of this symmetry, we only expect to recover ag and xg up to a signed shift (see

Figure 1). Our problem of interest can be stated more formally as:

Problem 1.1 (Short-and-Sparse Deconvolution). Given the cyclic convolution? y = ag * o €
R™ of ag € RP° short (pg < n), and g € R™ sparse, recover ag and xg, up to a scaled shift.

*Submitted to the editors Jan/08/2019; revised Sep/20/2019.
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TDepartment of Electronic Engineering and Data Science Institute, Columbia University.
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n this paper, the cyclic convolution ag * 2o assumes ag to be zeropadded [ag, 0" °] to length n.

2Qur result can be applied to recovering direct convolutions. Let y € RP°*"~1 he the direct convolution
between ag € RP? and xp € R", then y can also be expressed as circular convolution between ag and [zo; 0"071}.
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y = a sylag) * (1/c) s_y[ao]

Figure 1. Shift symmetry in Short-and-Sparse deconvolution. An observation y (left) which is a
convolution of a short signal ap and a sparse signal xo (top right) can be equivalently expressed as a convolution
of selao] and s_¢[xo], where s¢[] denotes a shift £ samples. The ground truth signals ap and xo can only be
identified up to a scaled shift.

Despite a long history and many applications, until recently very little algorithmic theory
was available for SaS deconvolution. Much of this difficulty can be attributed to the scale-shift
symmetry: natural convex relaxations fail®, and nonconvex formulations exhibit a complicated
optimization landscape, with many equivalent global minimizers (scaled shifts of the ground
truth) and additional local minimizers (scaled shift truncations of the ground truth), and a
variety of critical points [63, 64]. Currently available theory guarantees approximate recovery
of a truncation® of a shift s/[ag], rather than guaranteeing recovery of ag as a whole, and
requires certain (complicated) conditions on the convolution matrix associated with ag [63].

In this paper, we describe an algorithm which, under simpler conditions, exactly recovers a
scaled shift of the pair (ag, o). Our algorithm is based on a formulation first introduced in
[64], which casts the deconvolution problem as (nonconvex) optimization over the sphere. We
characterize the geometry of this objective function, and show that near a certain union of
subspaces, every local minimizer is very close to a signed shift of ag. Based on this geometric
analysis, we give provable methods for SaS deconvolution that exactly recover a scaled shift
of (ag,xp) whenever ay is shift-incoherent and x is a sufficiently sparse random vector. Our
geometric analysis highlights the role of symmetry in shaping the objective landscape for SaS
deconvolution.

The remainder of this paper is organized as follows. Section 2 introduces our optimization
approach and modeling assumptions. Section 3 introduces our main results — both geometric
and algorithmic — and compares them to the literature. Section 4-5 describes the main ideas
of our analysis. Finally, Section 7 discusses two main limitations of our analysis and describes
directions for future work.

3Such as matrix lifting relaxation [2, 39], in which ao or @ resides in random subspaces w/o shift symmetry.
“Le., the portion of the shifted signal s¢[ao] that falls in the window {0,...,po — 1}.
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GEOMETRY AND SYMMETRY IN SHORT AND SPARSE DECONVOLUTION 3

2. Formulation and Assumptions.

2.1. Nonconvex SaS over the Sphere. Our starting point is the (natural) formulation

. 2
(2.1) min 3 axz —yll; + Al st [af,=1.
T "Data Fidelity Sparsity

We term this optimization problem the Bilinear Lasso, for its resemblance to the Lasso
estimator in statistics. Indeed, letting

(2:2) Prasso(@) = min {§ lax@ — y|}3 + Alje], |
denote the optimal Lasso cost, we see that (2.1) simply optimizes ¢).s50 With respect to a:

In (2.1)-(2.3), we constrain a to have unit #2 norm. This constraint breaks the scale ambi-
guity between a and . Moreover, the choice of constraint manifold has surprisingly strong
implications for computation: if a is instead constrained to the simplex, the problem admits
trivial global minimizers. In contrast, local minima of the sphere-constrained formulation often
correspond to shifts (or shift truncations [64]) of the ground truth ayg.

The problem (2.3) is defined in terms of the optimal Lasso cost. This function is challenging
to analyze, especially far away from ag. [64] analyzes the local minima of a simplification of
(2.3), obtained by approximating® the data fidelity term as

2 2 2
sllaxe—yl; =3 llaxz|; —{ax=zy) + 3 lyl;,

2 2
(2.4) szl = (axzy) + 5yl

%

This yields a simpler objective function

(25) pn(a) = min {3 w]2 ~ (@xy) + 3yl + Al }

We make one further simplification to this problem, replacing the nondifferentiable penalty
|||, with a smooth approximation p(z).° Our analysis allows for a variety of smooth sparsity
surrogates p(x); for concreteness, we state our main results for the particular pemaﬂty7

(2.6) plx) = 3, (23 +02) "2

For § > 0, this is a smooth function of x; as § \, 0 it approaches ||z||,. Replacing ||-||; with
p(+), we obtain the objective function which will be our main object of study,

(2.7) eo(@) = min{§ 2] — a+@.y) + § lyl3 + Ao(a) }

®For a generic a, we have (s;[a], s;[a]) ~ 0 and hence ||a * x| = 2" C;Cox ~ x* Iz = ||z|5. The use of
¢, performs not as ideal comparing to bilinear Lasso when this approximation is inexact, see Section 7.

8,1 is not twice differentiable everywhere hence can’t be minimized with conventional second order methods.

"This particular surrogate is sometimes being named as the pseudo-Huber function.
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4 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

As in [64], we optimize ¢,(a) over the sphere SP~1:

(2.8) min ¢,(a) st. a €SPl

Here, we set p = 3pp — 2. As we will see, optimizing over this slightly higher dimensional sphere
enables us to recover a (full) shift of ag, rather than a truncated shift. Our approach will leverage
the following fact: if we view @ € SP~! as indexed by coordinates W = {—pg + 1, ..., 2po — 1}
, then for any shifts £ € {—pg+1,...,po — 1}, the support of ¢-shifted short signal sy[ao] is
entirely contained in interval W. We will give a provable method which recovers a scaled
version of one of these canonical shifts.

2.2. Analysis Setting and Assumptions. For convenience, we assume that ag has unit ¢2
norm, i.e., ag € SP°~1.# Our analysis makes two main assumptions, on the short motif ag and
the sparse map xg, respectively:

The first is that distinct shifts ag have small inner product. We define the shift coherence
of u(ap) to be the largest inner product between distinct shifts:

(2.9) p(ao) = max (a0, se[ao])|

The quantity p(ap) is bounded between 0 and 1. Our theory allows any p smaller than
some numerical constant. Figure 2 shows three examples of families of ag that satisfy this
assumption:

e Spiky. When ay is close to the Dirac delta 8y, the shift coherence p(ap) ~ 0.9 Here,
the observed signal y consists of a superposition of sharp pulses. This is arguably the
easiest instance of SaS deconvolution.

e Generic. If ag is chosen uniformly at random from the sphere SP°~!, its coherence is
bounded as p(aop) < v/1/po with high probability.

o Tapered Generic Lowpass. Here, ag is generated by taking a random conjugate
symmetric superposition of the first L length-py Discrete Fourier Transform (DFT)
basis signals, windowing (e.g., with a Hamming window) and normalizing to unit ¢
norm. When L = po+/1 — 8, with high probability u(ag) < 8. In this model, 1 does
not have to diminish as pg grows — it can be a fixed constant'’.

Intuitively speaking, problems with smaller i are easier to solve, a claim which will be made
precise in our technical results.

We assume that xg is a sparse random vector. More precisely, we assume that xq is
Bernoulli-Gaussian, with rate 6:

(2.10) Lo = wigi,

8This is purely a technical convenience. Our theory guarantees recovery of a signed shift (+s¢[ao], +5_¢[xo])
of the truth. If ap does not have unit norm, identical reasoning implies that our method recovers a scaled shift
(aselao], ™t s_¢[xo]) with o = im.

9The use of “a~” here suppresses constant and logarithmic factors.

10The upper right panel of Figure 2 is generated using random DFT components with frequencies smaller
then one-third Nyquist. Such a kernel is incoherent, with high probability. Many commonly occurring low-pass
kernels have p(ao) larger — very close to one. One of the most important limitations of our results is that they
do not provide guarantees in this highly coherent situation. See [34].
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GEOMETRY AND SYMMETRY IN SHORT AND SPARSE DECONVOLUTION 5

Spiky Generic Tapered Generic Lowpass

ao /\n[\ /\l\'\/\/\l\/\«

,WVVVV.VHV -
—-1/2

Po p= B

Q

—3/4 _
9%})0/ 9%1901

(v/Po events every pg)  (¥/po events every pg) (1 event every py)

Figure 2. Sparsity-coherence tradeoff: Top: three families of motifs ao with varying coherence p.
Bottom: mazximum allowable sparsity 6 and number of copies Opo within each length-po window. Here, we
suppress constants and logarithmic factors. When the target motif has smaller shift-coherence p, our result
allows larger 6, and vise versa. This sparsity-coherence tradeoff is made precise in our main result Theorem 3.1,
which, loosely speaking, asserts that when 6 < 1/(po/it + /Do), our method succeeds.

where w; ~ Ber(6), g; ~ N (0,1) and all random variables are jointly independent. We write
this as

(2.11) o ~iid. BG(@)

Here, 6 is the probability that a given entry xg; is nonzero. Problems with smaller 6 are easier
to solve. In the extreme case, when 6 < 1/pg, the observation y contains many isolated copies
of the motif ag, and ag can be determined by direct inspection. Our analysis will focus on the
nontrivial scenario, when 6 Z 1/po.

Our technical results will articulate sparsity-coherence tradeoffs, in which smaller coherence
1 enables larger 6, and vice-versa. More specifically, in our main theorem, the sparsity-coherence
relationship is captured in the form

(2.12) 0 < 1/(pov/it + v/po)-

When the target a is very shift-incoherent (1 ~ 0), our method succeeds when each length-pg
window contains about /pg copies of @g. When 4 is larger (as in the generic lowpass model),
our method succeeds as long as relatively few copies of ag overlap in the observed signal. In
Figure 2, we illustrate these tradeoffs for the three models described above.

3. Main Results: Geometry and Algorithms. In this section, we introduce our main
results — on the geometry of ¢, (Subsection 3.1) and its algorithmic implications (Subsection 3.2).
Finally, in Subsection 3.3, we compare these results with the literature on deconvolution.

This manuscript is for review purposes only.
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6 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

3.1. Geometry of the Objective ¢,. The goal in SaS de-
convolution is to recover ag (and @) up to a signed shift — i.e.,
we wish to recover some +sy[ag]. The shifts +s/[ag] play a key
role in shaping the landscape of ¢,. In particular, we will argue

that over a certain subset of the sphere, every local minimum

of ¢, is close to some £sg]ag).

To gain intuition into the properties of ¢,, we first visualize i
£2

this function in the vicinity of a single shift s/[ag] of the ground
truth ap. In Figure 3, we plot the function value of ¢, over

By, (selao]) NS,

B ) nspt

] . Figure 3. Geometry of ¢,
where By2 ,(a) is a ball of radius r around a. We make tWo near a shift of ao. Bottom: a

observations: portion of the sphere SP~1, colored
e The objective function ¢, is strongly convex in this according to g,. Top: @, visualized

. as height. ¢, is strongly convex in
neighborhood of s [ao]. this region, and it has a minimizer

e There is a local minimizer very close to s¢[ag]. very close to s¢[ao).
We next visualize the objective function ¢, near the linear span of two different shifts

s¢,[ap] and sg,[ap]. More precisely, we plot ¢, near the intersection (Figure 4, left) of the
sphere SP~! and the linear subspace

8{31’52} = { 18y, [a()] + a8y, [ao] \al, Q9 € R}.

We make three observations:

e Again, there is a local minimizer near each shift sy[ag].

e These are the only local minimizers in the vicinity of Sy, 1. In particular, the
objective function ¢ exhibits negative curvature along Sy, 4,3 at any superposition
a5, [ao] + aasy,[ap] whose weights ap and ap are balanced, i.e., || =~ |agl.

e Furthermore, the function ¢, exhibits positive curvature in directions away from the
subspace &y, s, -

8{61732} Qop(a')

Sty [0'0]

S [GO]

8{51 L2} nse-t

Figure 4. Geometry of p, near the span Sy, ¢} of two shifts of ao. Left: each pair of shifts s¢, [ao],
seylao0] defines a linear subspace Sy, 0,1 of RP. Center/right: every local minimum of @, near S, ¢, (Ted
line) is close to either s¢, [ao] or se,[ao]; there is a negative curvature in the middle of se, [ao], se,[ao], and ¢,
is conver in direction away from Sge, ¢,}-
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S{ﬁl JWa,03}

S¢,]a0] se,[ao]

S [aO]

S{Zl,b,@:&} N Sp_l

Figure 5. Geometry of ¢, over the span Sy, s, ¢,} of three shifts of ao. The subspace Sg¢, 50,3 s
three-dimensional; its intersection with the sphere SP~! is isomorphic to a two-dimensional sphere. On this set,
©p has local minimizers near each of the s¢,[ao], and are the only minimizers near S, 05,05 -

Finally, we visualize ¢, over the intersection (Figure 5, left) of the sphere SP~! with the
linear span of three shifts sy, [ao], s¢,[ao], se;[ao] of the true kernel ag:

Sier 00,05y = { @150, [ao] + aasp, [ag] + assyfag] [ar, a2, a3 € R}

Again, there is a local minimizer near each signed shift. At roughly balanced superpositions of
shifts, the objective function exhibits negative curvature. As a result, again, the only local
minimizers are close to signed shifts.

Our main geometric result will show that these properties are obtained from every subspace
spanned by a few shifts of ag. Indeed, for each subset

(31) Tg{_p0+17"'7p0_1}5
define a linear subspace

(3.2) Sy = {Zam[ao]

O potls--e, Qpy—1 € R} .
tet

The subspace Sy is the linear span of the shifts s[ag] indexed by ¢ in the set 7. Our geometric
theory will show that with high probability the function ¢, has no spurious local minimizers
near any Sy for which 7 is not too large — say, || < 46py. Combining all of these subspaces
into a single geometric object, define the union of subspaces

(3.3) S = | Sr

|7 <40po

Figure 6 (left) gives a schematic representation of this set. We claim:
e In the neighborhood of ¥4¢,,, all local minimizers are near signed shifts.
e The value of ¢, grows in any direction away from X49p,.
Our main result formalizes the above observations, under two key assumptions: first, that
the sparsity rate 6 is sufficiently small (relative to the shift coherence u of pg), and, second,
the signal length n is sufficiently large:

This manuscript is for review purposes only.
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Figure 6. Geometry of ¢, over the union of subspaces Xa¢,,. Left: schematic representation of the
union of subspaces Lsop,. For each set T of at most 40po shifts, we have a subspace S-. Right: ¢, has good
geometry near this union of subspaces.

Theorem 3.1 (Main Geometric Theorem). Lety = ag*xo with ag € SPO~11 y-shift coherent
and g ~iiq. BG(0) € R™ with sparsity rate

C1 C2 1
(3.4) 0 € [—, } . .
po’ po/i+ /o] log?po
Chose p(z) = Va2 + 62 and set X = 0.1/y/pof in ¢,. Then there exists 6 > 0 and numerical
constant ¢ such that if n > poly(po), with high probability, every local minimizer a of ¢, over
Yagp, satisfies ||@ — asi[ap)ll, < cmax {u,pal} for some signed shift os¢[ag] of the true kernel.
Above, c1,co > 0 are positive numerical constants.

Proof. This follows from Theorem 4.1. |

The upper bound on # in (3.4) yields the tradeoff between coherence and sparsity described
in Figure 2. Simply put, when ag is better conditioned (as a kernel), its coherence p is smaller
and xy can be denser.

At a technical level, our proof of Theorem 3.1 shows that (i) ¢,(a) is strongly convex in
the vicinity of each signed shift, and that at every other point a near ¥,g,,, there is either
(ii) a nonzero gradient or (iii) a direction of strict negative curvature; furthermore (iv) the
function ¢, grows away from ¥44,,. Points (ii)-(iii) imply that near ¥44,, there are no “flat”
saddles: every saddle point has a direction of strict negative curvature. We will leverage these
properties to propose an efficient algorithm for finding a local minimizer near 44,,. Moreover,
this minimizer is close enough to a shift (here, ||a — s¢[ao]||; < 1) for us to exactly recover
selap]: we will give a refinement algorithm that produces (£s¢[ao], £s—¢[x0]).

Hypically it is possible to provide an overestimate py > po. Our theory and algorithm can be applied
directly to the overestimate pj, with the caveat that the sparsity rate § now scales with p{ rather than po.
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N, g

—
Data y Kernel ag Sparse x

A il

Windowed Data a1 Initialization a(®) aisilag] + a;sjlag]

%

Figure 7. Data-driven initialization: using a piece of the observed data y to generate an initial point
a'® that is close to a superposition of shifts s [ao] of the ground truth. Top: data y = ao * To is a superposition
of shifts of the true kernel ag. Bottom: a length-po window contains pieces of just a few shifts. Bottom middle:
one step of the generalized power method approximately fills in the missing pieces, yielding a near superposition

of shifts of ao (right).

3.2. Provable Algorithm for SaS Deconvolution. The objective function ¢, has good
geometric properties on (and near!) the union of subspaces ¥44,,. In this section, we show
how to use give an efficient method that exactly recovers ag and xg, up to shift symmetry.
Although our geometric analysis only controls ¢, near X4,,, we will give a descent method
which, with appropriate initialization a(®), produces iterates aV),...,a®, ..
close to X4y, for all k. In short, it is easy to start near ¥4, and easy to stay near ¥yqp,. After
finding a local minimizer a, we refine it to produce a signed shift of (ag, o) using alternating
minimization.

The next two paragraphs give the main ideas behind the main steps of the algorithm. We
then describe its components in more detail (Algorithm 3.1) and state our main algorithmic
result (Theorem 3.2), which asserts that under appropriate conditions this method produces a
signed shift of (ag, o).

Our algorithm starts with an initialization scheme which generates a(®) near the union of
subspaces Y40p,, which consists of linear combinations of just a few shifts of ag. How can we
find a point near this union? Notice that the data y also consists of a linear combination of
just a few shifts of ag Indeed:

. that remain

(3.5) Yy=ag*ry = Z xopselag)-

Lesupp(xo)

A length-py segment of data yo... p,—1 = [Yo,--.,Yp,—1]" captures portions of roughly 20py <
40py shifts se[ag].

Many of these copies of ag are truncated by the restriction to {0,...,po — 1}. A relatively
simple remedy is as follows: first, we zero-pad yo,... p,—1 to length p = 3py — 2, giving

(3.6) (077 g5+ s ypp—15 07071

This manuscript is for review purposes only.
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Zero padding provides enough space to accommodate any shift
s¢[ap] with £ € 7. We then perform one step of the generalized
power method'?, writing

(3.7) al” = Py 1Veon (Pe1 [0y 5yp-1:0071])

where Pgp—1 projects onto the sphere. The reasoning behind this
construction may seem obscure. We will explain it at a more
technical level in Section 5 after interpreting the gradient Vi, in
terms of its action on the shifts s[ag] in Section 4. For now, we Figure 8. Growth of ¢,
note that this operation has the effect of (approximately) filling away from Sr. Because ¢,
. .. . . . grows away from Sy, small-
in the missing pieces of the truncated shifts s;[ag] — see Figure 7 .
. . . . ) ; stepping descent methods stay

for an example. We will prove that with high probability a'™ is .4, s,
indeed close to X4¢p,-

The next key observation is that the function ¢, grows as we move away from the subspace
S+ — see Figure 8. Because of this, a small-stepping descent method will not move far away
from X4¢,,. For concreteness, we will analyze a variant of the curvilinear search method [23, 24]
, which moves in a linear combination of the negative gradient direction —g and a negative
curvature direction —wv. At the k-th iteration, the algorithm updates a1 ag

(3.8) a* ) Py, [a(k) —tg®) — t2'v(k)]

with appropriately chosen step size t. The inclusion of a negative curvature direction allows
the method to avoid stagnation near saddle points. Indeed, we will prove that starting from
initialization a(®), this method produces a sequence a¥,a® . ... which efficiently converges to
a local minimizer a that is near some signed shift +s/[ag] of the ground truth.

The second step of our algorithm rounds the local minimizer a =~ osy[ag] to produce an
exact solution @ = osy[ag]. As a byproduct, it also exactly recovers the corresponding signed
shift of the true sparse signal, & = os_y[xg].

Our rounding algorithm is an alternating minimization scheme, which alternates between
minimizing the Lasso cost over a with « fixed, and minimizing the Lasso cost over  with a
fixed. We make two modifications to this basic idea, both of which are important for obtaining
exact recovery. First, unlike the standard Lasso cost, which penalizes all of the entries of x,
we maintain a running estimate [ (k) of the support of zg, and only penalize those entries that
are not in 1():

(3.9) tlasz—yll3+ XD o).
igI(k)

This can be viewed as an extreme form of reweighting [11]. Second, our algorithm gradually
decreases penalty variable A to 0, so that eventually

(3.10) a*xT~y.

2The power method for minimizing a quadratic form &(a) = %a*Ma over the sphere consists of the
iteration @ — —Pgy—1 Ma. Notice that in this mapping, —Ma = —V¢(a). The generalized power method, for
minimizing a function ¢ over the sphere consists of repeatedly projecting —V¢ onto the sphere, giving the
iteration a — —Psp—1V(a). (3.7) can be interpreted as one step of the generalized power method for the

objective function ¢,.

This manuscript is for review purposes only.
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— ay
- /\A
p A A
v~ = — 7a'a
Initial a(©) a(100) Converged a¥)  Est. @ and true ag

Figure 9. Local minimization and refinement. Left: data-driven initialization a'® consisting of a
near-superposition of two shifts. Middle: minimizing v, produces a near shift of ag. Right: rounded solution a
using the Lasso. a 1is very close to a shift of ao.

This can be viewed as a homotopy or continuation method [46, 19]. For concreteness, at k-th
iteration the algorithm reads:

(3.11) Update x: 2* D argmin %Ha(k) v — gyl + A0 Z EZ
* igI(k)

(3.12) Update a: a* Y — Py [argmin 3 [|a = g+ yl3].

(3.13) Update A and I: A+ %/\(k), I*+D  supp (az(’”l)).

We prove that the iterates produced by this sequence of operations converge to the ground
truth at a linear rate, as long as the initializer a is sufficiently nearby.

Our overall algorithm is summarized as Algorithm 3.1. Figure 9 illustrates the main
steps of this algorithm. Our main algorithmic result states that under essentially the same
hypotheses as above, Algorithm 3.1 produces a signed shift of the ground truth (ag, x):

Theorem 3.2 (Main Algorithmic Theorem). Suppose y = ag * xg where ag € SPO~! is -
truncated shift coherent'* such that Max;£; ‘<L;08Z‘ [ao], ), 5; [aom < u and xy ~iiq. BG(9) €
R™ with 0, u satisfying

C1 C2

po’ (pov/Ii + /Do) log® po log® n

for some constant cy,ca,c3 > 0. If the signal lengths n,py satisfy n > poly(pg) and py >
polylog(n), then there exist §,m, > 0 such that with high probability, Algorithm 3.1 produces
(a,x) that are equal to the ground truth up to signed shift symmetry:

(3.20) | (@, ) — o(selaq], S_g[(lio])”Q <e

foro € {£1} and £ € {—po +1,...,po — 1} if K1 > poly(n, po) and Ky > polylog(n, po,e~1).
Proof. See Theorem 5.1 and Theorem 5.2. [ |

When solving SaS deconvolution via minimizing bilinear Lasso objective (2.2) in practice,
the algorithm is analogous to the provable method introduced in Algorithm 3.1, where the

The truncated shift coherence is a stronger condition then natural shift coherence. The statement appears
mainly due to the limitation of prove strategy for algorithm.

This manuscript is for review purposes only.
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Algorithm 3.1 Short and Sparse Deconvolution

Input: Observation y, motif length pg, sparsity 6, shift-coherence u, and curvature threshold
.
Minimization:
Set @l = —Pgy 1V, (Psp-1 [0 g5+ 5 4ypg—1; 0707 1]).
Set A =0.1/y/pof “and § > 0 in ,. For k =1,2,..., Kq, let
(3.14) a" ) Py i[a® — tg®) — 120(R)]
where %) is the Riemannian gradient; v*) is the eigenvector of smallest Riemannian Hessian
eigenvalue if less then —n, with <v(k),g(k)> > 0, otherwise let v*) = 0; and t € (0,0.1/nb]
satisfies
(3.15) (@) < gp(@®™) — St1g™ |5 — 1t*n. 03

to obtain a near local minimizer a < a(k1).

Refinement:
Set a® « a, A0 <« 10(pf + logn)(u + 1/p) and I < Sy [supp(¥ * @]). For k =
1,2,.... Ky, let

(3.16) z* D argmin,, %Ha(k) sx—yl|2 + A% D i |l
(3.17) a* ) — Py, [argmin, 1| x ) yl3],
(3.18) AkHD  \K) o) T supp(a*+1),

to obtain (@, ) « (a(F2), x(K2)),

Output: Return (a, ).

curvilinear descent and the refinement step can be realized as alternating gradient descent of
both variables a,x in (2.2). Unlike Algorithm 3.1, this alternating gradient method has yet
come with theoretical guarantees, but shown to be an effective and efficient method for SaS
deconvolution problems both in simulation and in reality [34].

3.3. Relationship to the Literature. Blind deconvolution is a classical problem in signal
processing [54, 12], and has been studied under a variety of hypotheses. In this section, we first
discuss the relationship between our results and the existing literature on the short-and-sparse
version of this problem, and then briefly discuss other deconvolution variants in the theoretical
literature.

The short-and-sparse model arises in a number of applications. One class of applications
involves finding basic motifs (repeated patterns) in datasets. This motif discovery problem
arises in extracellular spike sorting [37, 20] and calcium imaging [48], where the observed signal
exhibits repetitive short neuron excitation patterns occurring sparsely across time and/or
space. Similarly, electron microscopy images [15] arising in study of nanomaterials often exhibit
repeated motifs.

Another significant application of SaS deconvolution is image deblurring. Typically, the
blur kernel is small relative to the image size (short) [3, 62, 13, 35, 36]. In natural image

Tn practice, we suggest setting A = cx/+/pof with ¢y € [0.5,0.8].
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deblurring, the target image is often assumed to have relatively few sharp edges [21, 27, 36],
and hence have sparse derivatives. In scientific image deblurring, e.g., in astronomy [33, 25, 9]
and geophysics [28], the target image is often sparse, either in the spatial or wavelet domains,
again leading to variants of the SaS model. The literature on blind image deconvolution is
large; see, e.g., [31, 10] for surveys.

Variants of the SaS deconvolution problem arise in many other areas of engineering as well.
Examples include blind equalization in communications [50, 51, 26], dereverberation in sound
engineering [44, 45] and image super-resolution [4, 53, 61].

These applications have motivated a great deal of algorithmic work on variants of the
SaS problem [32, 8, 6, 31, 43, 10, 56]. In contrast, relatively little theory is available to
explain when and why algorithms succeed. Our algorithm minimizes ¢, as an approximation
to the Lasso cost over the sphere. Our formulation and results have strong precedent in
the literature. Lasso-like objective functions have been widely used in image deblurring
[62, 14, 21, 35, 52, 60, 18, 30, 36, 59, 47, 64]. A number of insights have been obtained into the
geometry of sparse deconvolution — in particular, into the effect of various constraints on a on
the presence or absence of spurious local minimizers. In image deblurring, a simplex constraint
(a > 0 and ||a]|; = 1) arises naturally from the physical structure of the problem [62, 14].
Perhaps surprisingly, simplex-constrained deconvolution admits trivial global minimizers, at
which the recovered kernel a is a spike, rather than the target blur kernel [7, 36].

[59] imposes the £? regularization on a and observes that this alternative constraint gives
more reliable algorithm. [64] studies the geometry of the simplified objective ¢y over the
sphere, and proves that in the dilute limit in which oy has one nonzero entry, all strict local
minima of ¢, are close to signed shifts truncations of ag. By adopting a different objective
function (based on £* maximization) over the sphere, [63] proves that on a certain region of
the sphere every local minimum is near a truncated signed shift of ag, i.e., the restriction of
s¢lap] to the window {0,...,po — 1}. The analysis of [63] allows the sparse sequence x( to be

denser (6 ~ py 23 for a generic kernel ag, as opposed to 6 S py 3% in our result). Both [64]
and [63] guarantee approzimate recovery of a portion of sg[ag], under complicated conditions
on the kernel ag. Our core optimization problem is very similar to [64]. However, we obtain
ezxact recovery of both ag and relatively dense @, under the much simpler assumption of shift
incoherence.

Other aspects of the SaS problem have been studied theoretically. One basic question is
under what circumstances the problem is identifiable, up to the scaled shift ambiguity. [17]
shows that the problem ill-posed for worst case (ag, o) — in particular, for certain support
patterns in which xy does not have any isolated nonzero entries. This demonstrates that some
modeling assumptions on the support of the sparse term are needed. At the same time, this
worst case structure is unlikely to occur, either under the Bernoulli model, or in practical
deconvolution problems.

Motivated by a variety of applications, many low-dimensional deconvolution models have
been studied in the theoretical literature. In communication applications, the signals ag and
xg either live in known low-dimensional subspaces, or are sparse in some known dictionary
[2, 16, 29, 39, 40, 41, 42]. These theoretical works assume that the subspace / dictionary are
chosen at random. This low-dimensional deconvolution model does not exhibit the signed

This manuscript is for review purposes only.
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shift ambiguity; nonconvex formulations for this model exhibit a different structure from that
studied here. In fact, the variant in which both signals belong to known subspaces can be solved
by convex relaxation [2]. The SaS model does not appear to be amenable to convexification,
and exhibits a more complicated nonconvex geometry, due to the shift ambiguity. The main
motivation for tackling this model lies in the aforementioned applications in imaging and data
analysis.

[38, 57] study the related multi-instance sparse blind deconvolution problem (MISBD),
where there are K observations y; = ag * x; consisting of multiple convolutions ¢ = 1,..., K of
a kernel ag and different sparse vectors @;. Both works develop provable algorithms. There are
several key differences with our work. First, both the proposed algorithms and their analysis
require the kernel to be invertible. Second, despite the apparent similarity between the SaS
model and MISBD, these problems are not equivalent. It might seem possible to reduce SaS
to MISBD by dividing the single observation y into K pieces; this apparent reduction fails
due to boundary effects.

3.4. Notations. All vectors/matrices are written in bold font a/A; indexed values are writ-
ten as a;, A;;. Zeros or ones vectors are defined as 0 or 1, and 4-th canonical basis vector defined
as e;. The indices for vectors/matrices all start from 0 and is taking modulo-n, thus a vector
of length n should have its indices labeled as {0,1,...,n — 1}. We write [n] ={0,...,n — 1}.
We often use capital italic symbols I, J for subsets of [n]. We abuse notation slightly and write
[-p]={n—-p+1,...,n—1,0} and [£p] ={n—p+1,...,n —1,0,1,...,p — 1}. Index sets
can be labels for vectors; a; € RI| denotes the restriction of the vector a to coordinates I.
Also, we use check symbol for reversal operator on index set I = —T and vectors a; = a_;.

We let P denote the projection operator associated with a compact set C'. The zero-filling
operator ¢; : Rl — R™ injects the input vector to higher dimensional Euclidean space, via
(tre); = x-1(;) for i € I and 0 otherwise. Its adjoint operator ¢7 can be understood as subset
selection operator which picks up entries of coordinates I. A common zero-filling operator
through out this paper ¢ is abbreviation of ¢, which is often being addressed as zero-padding
operator and its adjoint ¢* as truncation operator.

The convolution operator are all circular with modulo-n: (axx); = > jeln] @jTi—j, also, the
convolution operator works on index set: I % J = supp (17 * 1;). Similarly, the shift operator
s¢[-] : RP — R™ is circular with modulo-n without specification: (s[a]); = (¢p@);—¢. Notice
that here a can be shorter p < n. Let Cq € R™™ denote a circulant matrix (with modulo-n)
for vector a, whose j-th column is the cyclic shift of @ by j: Cqe; = sjla]. It satisfies for any
beR”,

(3.21) Cob=axb.

The correlation between a and b can be also written in similar form of convolution operator
which reverse one vector before convolution. Define two correlation matrices C}; and C4, as
Ciej = sjla] and Cquej = s_j[a]. The two operators will satisfy

(3.22) Cib=da+b, Cgab=axb.

4. Geometry of ¢, in Shift Space. Underlying our main geometric and algorithmic
results is a relationship between the geometry of the function ¢, and the symmetries of the
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GEOMETRY AND SYMMETRY IN SHORT AND SPARSE DECONVOLUTION 15

deconvolution problem. In this section, we describe this relationship at a more technical level,
by interpreting the gradient and hessian of the function ¢, in terms of the shifts s/[ag] and
stating a key lemma which asserts that a certain neighborhood of the union of subspaces X4¢,,
can be decomposed into regions of negative curvature, strong gradient, and strong convexity
near the target solutions +syla].

4.1. Shifts and Correlations. The set Y44, is a union of subspaces. Any point a in one
of these subspaces Sy is a superposition of shifts of ag:

(4.1) a= Zagsdao].

ler

This representation can be extended to a general point a € SP~! by writing

(4.2) a=> ayusiao] + Y ausiag).

let L¢T

The vector a can be viewed as the coeflicients of a decomposition of a into different shifts
of ag. This representation is not unique. For a close to S;, we can choose a particular a for
which ac is small, a notion that we will formalize below.

For convenience, we introduce a closely related vector 3 € R™, whose entries are the inner
products between a and the shifts of ag: B¢ = (a, s¢[ag]). Since the columns of Cy, are the
shifts of ag, we can write

(4.3) B =C,ta
(4.4) = C, 1 Coya = Ma.

The matrix M is the Gram matrix of the truncated shifts: M;; = (¢*s;[ao], t*sj[ao]). When p
is small, the off-diagonal elements of M are small. In particular, on S, we may take a;c = 0,
and B ~ a, in the sense that 3; ~ o and the entries of 3, are small. For detailed elaboration,
see Section SM2.

4.2. Shifts and the Calculus of ;1. Our main geometric claims pertain to the function
©p, which is based on a smooth sparsity surrogate p(-) ~ ||-||;. In this section, we sketch the
main ideas of the proof as if p(-) = || - ||1, by relating the geometry of the function @, to the
vectors a, @ introduced above. Working with ¢, simplifies the exposition; it is also faithful to
the structure of our proof, which relates the derivatives of the smooth function ¢, to similar
quantities associated with the nonsmooth function .

The function ;1 has a relatively simple closed form:

(4.5) pn(a) = =5 [Sr[F+all;.
Here, Sy is the soft thresholding operator, which is defined for scalars ¢ as
(4.6) Si\[t] = sign(t) max {|t| — A, 0},

and is extended to vectors by applying it elementwise. The operator Sy[x] shrinks the elements
of x towards zero. Small elements become identically zero, resulting in a sparse vector.
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Gradient: Sparsifying the Correlations 3. Our goal is to understand the local minimizers
of the function @y over the sphere. The function ¢, is differentiable. Clearly, any point a at
which its gradient (over the sphere) is nonzero cannot be a local minimizer. We first give an
expression for the gradient of ¢y, over Euclidean space RP, and then extend it to the sphere
SP~1. Using y = ag * xo and calculus gives

~~

Vpp(a) = —1"CgyCgp,Sx [\C/mOC’fLOLa}
= _L*Cao \é:lzos)\ [\émoﬁ}
(4.7) = —1"CoyXx|8],

where we have simplified the notation by introducing an operator x : R” — R™ as x[8] =
échSA [éggoﬁ]. This representation exhibits the (negative) gradient as a superposition of

shifts of ag with coefficients given by the entries of x|[3]:
(4.8) ~Vop(a) =Y x[Bleselaol.
4

The operator x appears complicated. However, its effect is relatively simple: when xg is a
long random vector, x[B] acts like a soft thresholding operator on the vector 3. That is,

1 Be — A, Be > A

(4.9) — - X[Ble = Be+ A, Be < —A
nb .

0, otherwise

We show this rigorously below, in the proof of our main theorems. Here, we support this
claim pictorially, by plotting the ¢-th entry x[8], as B¢ varies — see Figure 10 (middle left)
and compare to Figure 10 (left). Because x[B] suppresses small entries of 3, the strongest
contributions to =V, in (4.8) will come from shifts s¢[ag] with large B¢. In particular, the
Euclidean gradient is large whenever there is a single preferred shift s¢[ao), i.e., the largest
entry of B is significantly larger than the second largest entry.

The (Euclidean) gradient Vi, measures the slope of ¢, over R™. We are interested in
the slope of ¢y over the sphere SP~!, which is measured by the Riemannian gradient

grad[pp](a) = Py Vo (a)
(4.10) = —P,. > xu[B] selao).
V4

The Riemannian gradient simply projects the Euclidean gradient onto the tangent space a™*

to SP~! at @. The Riemannian gradient is large whenever
(i) Negative gradient points to one particular shift: there is a single preferred shift
s¢lap] so that the Euclidean gradient is large and
(ii) a is not too close to any shift: it is possible to move in the tangent space in the
direction of this shift.'” Since the tangent space consists of those vectors orthogonal to

15 _so the projection of the Euclidean gradient onto the tangent space does not vanish.
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VPN —A0\ Gradient descent ~ Large gradient region
B; B suppresses small 3; %,3(0) > By > vA

Figure 10. Gradient Sparsifies Correlations. Left: the soft thresholding operator Sx[3] shrinks the
entries of B towards zero, making it sparser. Middle left: the negative gradient —V,1 is a superposition of
shifts se[ao), with coefficients x¢[B] =~ Sx[B¢. Because of this, gradient descent sparsifies 3. Middle right: 3(a)
before, and B(a™) after, one projected gradient step a* = Psy—1[a — t - grad[p,1](a)]. Notice that the small
entries of 3 are shrunk towards zero. Right: the gradient grad[p,i](a) is large whenever it is easy to sparsify 3;
in particular, when the largest entry Bo) > By > 0.

a, this is possible whenever sylag] is not too aligned with a, i.e., a is not too close to

S([ao].
Our technical lemma quantifies this situation in terms of the ordered entries of 3. Write
1Byl = |81yl = .., with corresponding shifts s)[ao], s(1y[@o], - ... There is a strong gradient

whenever |3 | is significantly larger than [B(;)| and |B(1)| is not too small compared to A: in
particular, when %\ ,8(0)| > | ,8(1)| > W' In this situation, gradient descent drives a toward

5(0y[@o], reducing |B(y)|, . .., and making the vector 3 sparser. We establish the technical claim
that the (Euclidean) gradient of ¢, sparsifies vectors in shift space in Section SM3.

Hessian: Negative Curvature Breaks Symmetry. When there is no single preferred shift,
i.e., when |B(y)] is close to |3, the gradient can be small. Similarly, when a is very close
to £s(p)[ao], the gradient can be small. In either of these situations, we need to study the
curvature of the function ¢ to determine whether there are local minimizers.

Strictly speaking, the function ;1 is not twice differentiable, due to the nonsmoothness of
the soft thresholding operator Sy[t] at t = . Indeed, ¢, is nonsmooth at any point a for
which some entry of § * a has magnitude \. At other points a, ¢, is twice differentiable, and
its Hessian is given by

(4.11) V2 (a) = —1*CayCay PrC4,Ci

with I = supp (SA [\C/yl,a} ) We (formally) extend this expression to every a € R", terming

V2p, the pseudo-Hessian of @,1. For appropriately chosen smooth sparsity surrogate p, we
will see that the (true) Hessian of the smooth function V2p, is close to V2,1, and so Vo
yields useful information about the curvature of ¢,,.

As with the gradient, the Hessian is complicated, but becomes simpler when the sample
size is large. The following approximation

(4.12) Vipp(a) ~ — Z se[ao]selao]” (%)@[,@])

¢
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Negative curvature: B(1) > %,3(0)
Bi Strong convexity: B(1) < VA

Figure 11. Hessian Breaks Symmetry. Left: contribution of —s;[ao]si[ao]” to the Fuclidean hessian.
If |B:] > X the Fuclidean hessian exhibits a strong negative component in the s;[ao] direction. The Riemmanian
hessian exhibits negative curvature in directions spanned by s;[ao] with corresponding |B;| > A and positive
curvature in directions spanned by si[ao] with |3;| < . Middle: this creates negative curvature along the
subspace Sr and positive curvature orthogonal to this subspace. Right: our analysis shows that there is always a
direction of negative curvature when By > %ﬂ(o); conversely when B1y <K X there is positive curvature in every
feasible direction and the function is strongly convex.

can be obtained from (4.8) noting that %X@[,@] =28 [ag]%xg[,@], that %Xg[,@] ~ 0 for
j # ¢, and that

(4.13) 1 oxe[B] )]0 (B <A

nd 00 1 |Be| > A

Again, we corroborate this approximation pictorially — see Figure 11.

From this approximation, we can see that the quadratic form v*V2p,1v takes on a large
negative value whenever v is a shift sy[ag| corresponding to some |3¢| > A, or whenever v is a
linear combination of such shifts. In particular, if for some j, |B(o)l; B, - - -, 1B > A, then
oo will exhibit negative curvature in any direction v € span(s(g)lao], s1y[@ol, - - -, 5(;)lao])-

The (Euclidean) Hessian measures the curvature of the function ¢, over R™. The Rie-
mannian Hessian

(414)  Hesslppl(a) =P, | Vieu(a)  +  (-Vep(a),a)-I | P,u.
Curvature of ¢, Curvature of the sphere
measures the curvature of ¢, over the sphere. The projection P,. restricts its action to
directions v L a that are tangent to the sphere. The additional term (—Vp(a), a) accounts
for the curvature of the sphere. This term is always positive. The net effect is that directions
of strong negative curvature of ¢, over R"” become directions of moderate negative curvature
over the sphere. Directions of nearly zero curvature over R™ become directions of positive
curvature over the sphere. This has three implications for the geometry of w1 over the sphere:
(i) Negative curvature in symmetry breaking directions: If |3, [B)l;- - -,
1B()| > A, @p will exhibit negative curvature in any tangent direction v L a which is
in the linear span
span(s(g)[ao], s(1)[ao]; - - -, 5(j)[@o])

of the corresponding shifts of ag.
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(ii) Positive curvature in directions away from S;: The Euclidean Hessian
quadratic form v*%znpgw takes on relatively small values in directions orthogonal to
the subspace Sr. The Riemannian Hessian is positive in these directions, creating
positive curvature orthogonal to the subspace Sr.

(iii) Strong convexity around minimizers: Around a minimizer sy[ag], only a single
entry 3y is large. Any tangent direction v L a is nearly orthogonal to the subspace
span(sylao]), and hence is a direction of positive (Riemmanian) curvature. The objective
function ¢, is strongly convex around the target solutions +sy[ag).

Figure 11 visualizes these regions of negative and positive curvature, and the technical claim
of positivity /negativity of curvature in shift space is presented in detail in Section SM4.

4.3. Any Local Minimizer is a Near Shift. We close this section by stating a key theorem,
which makes the above discussion precise. We will show that a certain neighborhood of any
subspace S can be covered by regions of negative curvature, large gradient, and regions of
strong convezity containing target solutions +sy[ag]. Furthermore, at the boundary of this
neighborhood, the negative gradient points back—retracts—toward the subspace Sr, due to
the (directional) convexity of ¢, away from the subspace.

To formally state the result, we need a way of measuring how close a is to the subspace
S+. For technical reasons, it turns out to be convenient to do this in terms of the coefficients
« in the representation

(4.15) a = ZagSg[ao] + Z Qupr Syr [ao].

ler lere

If a € S;, we can take a with a;e = 0. We can view the energy || <||2 as a measure of the
distance from a to S;. A technical wrinkle arises, because the representation (4.15) is not
unique. We resolve this issue by choosing the a that minimizes || ||, writing:

(4.16) do(a,Sr) = inf {J|are|ly + Y, silag] = a}.

The distance dy(a,Sr) is zero for a € Sr. Our analysis controls the geometric properties of
¢, over the set of a for which d,(a,S;) is not too large. Similar to (3.3), we define an object
which contains all points that are close to some S, in the above sense:

(4.17) S = |J {a:da(a,8r) <o}

|71<40po

The aforementioned geometric properties hold over this set:
Theorem 4.1 (Geometry of ¢, over UoS). Suppose that y = ag * &y where ag € SPO~1 is
w-shift coherent and xg ~iiq. BG(0) € R™ satisfying
1

¢ o v e )
po’ po/B+ /Do log? po

for some constants ¢’,c > 0. Set X\ = 0.1/\/pof in ¢, where p(x) = vVa? + 2. There exist

pg/l"j:fn and n > Cpp0~2log po, then

with probability at least 1 — " /n, for every a € Zzepo, we have:

(4.18)

numerical constants C,c", ", c1-c4 > 0 such that if § <
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(Negative curvature): If ’,6(1)‘ > |B(0)‘, then

(4.19) Amin (Hess[p,](a)) < —cinb);
(Large gradient): If 11 ‘,8(0)} > ‘,6(1)| > va(0)A, then

(4:20) lgradli,](@)lly > canbi s
(Convex near shifts): If va(0)\ > ‘ﬁ(1)|, then

(4.21) Hess[p,](a) > c3nb P, ;

(Retraction to subspace): If
exists ¢ satisfying grad|p,](a)

(4.22) (Cresare) = callGrelly fleerelly;

3 < da(a,Sr) <, then for every o satisfying a = 1*Cqyax, there
a) =

t*Cq,C, such that

(Local minimizers): If a is a local minimizer,

(4.23) min_||a — o s¢fao]ly, < %max{,u,pal},
L€[£p]
oe{£1}
poly(+/1/6, /1
Proof. See Subsection SM6.5. |

The retraction property elaborated in (4.22) implies that the negative gradient at a points in
a direction that decreases d,(a,Sr). This is a consequence of positive curvature away from S;.
It essentially implies that the gradient is monotone in a.rc space: choose any a € Sy NSP~1,
write a to be its coefficient, and let ¢ be the coefficient of grad[¢,](a). Then arc =0, (- =~ 0
and

<C‘rc _chv Qpe — QTC> ~ <CTC - 07 &pe — 0> = <C7'Caa7'c> > 0.

Our main geometric claim in Theorem 3.1 is a direct consequence of Theorem 4.1. Moreover,
it suggests that as long as we can minimize ¢, within the region Ezopo, we will solve the SaS
deconvolution problem.

5. Provable Algorithm. In light of Theorem 4.1, in this section we introduce a two-part
algorithm Algorithm 3.1, which first applies the curvilinear descent method to find a local min-
imum of ¢, within EZ@po’ followed by refinement algorithm that uses alternating minimization
to exactly recover the ground truth. This algorithm exactly solves SaS deconvolution problem.

5.1. Minimization. There are three major issues in finding a local minimizer within Ezgpo.
(i) Initialization. the initializer a©) to reside within EZOPO,
(ii) Negative curvature. the method to avoid stagnating near saddle points of ¢,,
(iii) No exit. the descent method to remain inside Ezepo
In the following paragraphs, we describe how our proposed algorithm achieves the above
desiderata.
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Initialization within ZZ@pg“ Our data-driven initialization scheme produces a(?), where

a” = — Py 1V, (Pt 077 y05 - 5ype—130771])
= —ng71Vg0pPSp71 [P[po](ao * wo)] s
~ —PSp71Vg0p [P[PO] (a,(] * io)] 5
is the normalized gradient vector from a chunk of data a(~1 := Py (ao * o) with o a

normalized Bernoulli-Gaussian random vector of length 2py — 1. Since Vi, ~ V1, expand
the gradient V1 and rewrite the gradient Vi (a(=Y) in shift space, we get

_V(ppl (a,(_l)) ~ L*Cao\c/mos)\ [\C/mOC;OP[pO](ao * %0)]
= L*Caox [CZOP[po]CGOEO]
~ 1" CgyX [T0]
~nd - L*CaOS)\ [50] s

where the approximation in the third equation is accurate if the truncated shifts are incoherent

(5.1) n%%x |(e5,silao], e, silao])| < p < 1.

With this simple approximation, it comes clear that the coefficients (in shift space) of initializer
(0)
a )

(5.2) a” x Pgy-10"Coy Sy [%0]

approximate Sy [Zo], which resides near the subspace Sr, in which 7 contains the nonzero
entries of £y on {—po +1,...,po — 1}. With high probability, the number of non-zero entries
is || < 40po, we therefore conclude that our initializer a() satisfies

(5.3) a®ex, .

Furthermore, since x is normalized, the largest magnitude for entries of |x| is likely to be
around 1/+/2ppf. To ensure that Sy o] does not annihilate all nonzero entries of o (otherwise
our initializer a(®) will become 0), the ideal A should be slightly less then the largest magnitude
of |Zg|. We suggest setting A in ¢, as

C

(5.4) A=

for some ¢ € (0, 1).

Many methods have been proposed to optimize functions whose saddle points exhibit strict
negative curvature, including the noisy gradient method [22], trust region methods [1, 55] and
curvilinear search [58]. Any of the above methods can be adapted to minimize ¢,. In this
paper, we use curvilinear method with restricted stepsize to demonstrate how to analyze an
optimization problem using the geometric properties of ¢, over EZ@pQ — in particular, negative
curvature in symmetry-breaking directions and positive curvature away from S-.
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Curvilinear search uses an update strategy that combines the gradient g and a direction of
negative curvature v, which here we choose as an eigenvector of the hessian H with smallest
eigenvalue, scaled such that v*g > 0. In particular, we set

(5.5) a® + Py [a—tg —t?v]
For small ¢,
(5.6) p(a®) = ¢(a) +(g,&) + ;€ HE.

Since & converges to 0 only if @ converges to the local minimizer (otherwise either gradient g is
nonzero or there is a negative curvature direction v), this iteration produces a local minimizer
for ¢,, whose saddle points near any S; has negative curvature, we just need to ensure all
iterates stays near some such subspace. We prove this by showing:

e When d,(a,S;) < 7, curvilinear steps move a small distance away from the subspace:

(5.7) !da (a+,S7-) —dq (a,S.,-)} < 3.
e When d,(a,S;) € [%, 'y], curvilinear steps retract toward subspace:
(5.8) deo (a*,&r) <dq(a,S7).
Together, we can prove that the iterates a®) converge to a minimizer, and
(5.9) VE=12,..., aPex] .

We conclude this section with the following theorem:

Theorem 5.1 (Convergence of retractive curvilinear search). Suppose signals ag, xo satisfy
the conditions of Theorem 4.1, § > 103¢/py (¢ > 1), and ag is p-truncated shift coherent
max;j | (¢ silao], v silaol)| < p. Write g = grad[p,](a) and H = Hess|p,](a). When the
smallest eigenvalue of H is strictly smaller than —mn, let v be the unit eigenvector of smallest
eigenvalue, scaled so v*g > 0; otherwise let v = 0. Define a sequence {a(k)}keN where a©)
equals (3.7) and for k=1,2,... Kj:

(5.10) a1 — Py [a(k) —tg™®) — tQU(k)}

with largest t € (0, %] satisfying Armijo steplength:

(5.11) 2o(@™D) < gp(a®) = § (tlg®3 + Ft*n. 0™ 3)

then with probability at least 1 —1/¢, there exists some signed shift a = +s;[ag] where i € [£po]

such that Ha(k) — ELH2 < u+1/p for all k > Ky = poly(n,p). Here, n, = ¢nfX for some
¢ < c1 in Theorem 4.1.

Proof. See Subsection SM7.2. |
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5.2. Local Refinement. In this section, we describe and analyze an algorithm which
refines an estimate a ~ ag of the kernel to exactly recover (ag, o). Set

(5.12) a® a, A0 C(pf +logn)(p+ 1/p), 10 supp(Sx [Ciy)).

We alternatively minimize the Lasso objective with respect to a and x:

(5.13) TAGRR argmin%”a(k) s — yl3 + A0 Z ||,
* ig1(k)

(5.14) a* ) Py [argmin §||a * k) y||§],

(5.15) AFHD I gD gupp (2(HD).

One departure from standard alternating minimization procedures is our use of a continuation
method, which (i) decreases A and (ii) maintains a running estimate I*) of the support set.
Our analysis will show that a(®) converges to one of the signed shifts of ag at a linear rate, in
the sense that

5.16 i *) _ . <C'27F,
(5.16) sl o™ = o sdaolll, <

It should be clear that exact recovery is unlikely if &g contains many consecutive nonzero
entries: in fact in this situation, even non-blind deconvolution fails. Therefore to obtain exact
recovery it is necessary to put an upper bound on signal dimension n. Here, we introduce the
notation k; as an upper bound for number of nonzero entries of @y in a length-p window:

(5.17) k1 := 6max {fp,logn},

where the indexing and addition should be interpreted modulo n. We will denote the support
sets of true sparse vector zy and recovered ®) in the intermediate k-th steps as

(5.18) I = supp(xy), Ik = supp(a:(k)),
then in the Bernoulli-Gaussian model, with high probability,

(5.19) max IO (fpl +0)| < &1

The logn term reflects the fact that as n becomes enormous (exponential in p) eventually it
becomes likely that some length-p window of xq is densely occupied. In our main theorem
statement, we preclude this possibility by putting an upper bound on signal length n with
respect to window length p and shift coherence u. We will assume

(5.20) (n+1/p)- K2 <c

for some numerical constant ¢ € (0, 1).
Recall that (4.23) in Theorem 3.1 provides that

(5.21) la —aolly < (k+1/p),
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which is sufficiently close to ag as long as (5.19) holds true. Here, we will elaborate this by
showing a single iteration of alternating minimization algorithm (5.13)-(5.15) is a contraction
mapping for a toward ag.

To this end, at k-th iteration, write T = I®), J = [*+D) and o®) = sign (a:(k)), then first
observe that the solution to the reweighted Lasso problem (5.13) can be written as
(5.22) ) = ¢ (507, C

a

-1
wty) Ly <C:;(k) Cayxo — )\(k)PJ\TU(kJrl)) ;
and the solution to least squares problem (5.14) will be

-1
(5.23) a* ™ = (Cr Cprint) (0 Clhsr) Captan) -
Here, we are going to illustrate the relationship between a**1) — ay and a®) — ag using simple
approximations. First, let us assume that a®® ~ a, Co.Cay ~I,and I = J ~T. Then
(5.22) gives

(5.24) 2T~ a,
(@) —zg) ~ Pr(Cl,Cago — Cliy Coi o)
(5.25) ~ Pi[CoyCatlan —a) .

which implies, while assuming C}, Cg, ~ nflI, that from (5.23):

(a(kH) —ag) ~ (nf)~! LC 1) Carag — L C 1) Cprinytag
~ (n)"'*Cp Cay (0 — aF+0)
(5.26) ~ (n0) 1" CL Coy PrCl Cogt (al¥) — ag).
Now since Cj PrCyq, ~ nf epej, this suggests that (n6)~! 1*Cj Cay PrC;; Ca,yt approximates
a contraction mapping with fixed point ag, as follows:
(n0) ' 1*Cs CagPCy Corgt = *CoyenefCht

(5.27) apay.

Q

Hence, if we can ensure all above approximation is sufficiently and increasingly accurate as
the iterate proceeds, the alternating minimization essentially is a power method which finds
the leading eigenvector of matrix agpaj—and the solution to this algorithm is apparently ag.
Indeed, we prove that the iterates produced by this sequence of operations converge to the
ground truth at a linear rate, as long as it is initialized sufficiently nearby:

Theorem 5.2 (Linear rate convergence of alternating minimization). Suppose y = ag * xg
where aq is p-shift coherent and xy ~ BG(0), then there exists some constants C,c,c, such
that if (u+1/p) /@% <cy andn > CO~2p?logn, then with probability at least 1 — c/n, for any
starting point a® and A\, 1O sych that
(5.28) 1@ —ao|, <u+1/p,  AD =5ri(u+1/p), I =supp (Cloy),

a
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and for k=1,2,...,:

(5.29) 2 argming 3lla® « @ — y[|3 + A®) 32,0 il
(5.30) a* ) Py [argmin, 1|ja + 2+ — y||3],

(5.31) AR+ %)\(k), I*+D  supp (:B(k+1))

then

(5.32) [a®) —ag, < (u+1/p)27*

for every k=0,1,2,....
Proof. See Subsection SM8.3. [ |

Remark 5.3. The estimates x(®) also converges to the ground truth xg at a linear rate.

6. Experiments. We demonstrate that the tradeoffs between the motif length py and
sparsity rate 6 produce a transition region for successful SaS deconvolution under generic
choices of ag and xy. For fixed values of 6 € [1072,1072] and py € [103,10%], we draw 50
instances of synthetic data by choosing ag ~ Unif(SP°~!) and zo € R” with g ~i1q. BG(0)

where n = 5 x 10°. Note that choosing ag this way implies u(ag) ~ \/%.

For each instance, we recover ag and xg from y = ag*x¢ by minimizing problem (2.5). For
ease of computation, we modify Algorithm 3.1 by replacing curvilinear search with accelerated
Riemannian gradient descent method (Algorithm 6.1), which is an adaptation of accelerated
gradient descent [5] to the sphere. In particular, we apply momentum and increment by the
Riemannian gradient via the exponential and logarithmic operators

(6.1) Expa(w) i= cos(uly) - a+sin(lull;) -
— o Farlbza)
(6.2) Log,(b) := arccos((a, b)) B oal,’

derived from [1]. Here Exp, : a® — SP~! takes a tangent vector of a and produces a new
point on the sphere, whereas Log,, : SP~! — a™ takes a point b € SP~! and returns the tangent
vector which points from a to b.

For each recovery instance, we say the local minimizer ani, generated from Algorithm 6.1
is sufficiently close to a solution of SaS deconvolution problem, if

(6.3) success(@min,; ag) = {maxy|(s¢[ag], @min)| > 0.95}.

The result is shown in Figure 12. Our source code can be accessed via the following address:
https://github.com/sbdsphere/sbd_experiments.git

7. Discussion. In this section, we close by discussing the most important limitations of our
results when ag is coherent, about scenarios when the signal setting breaches our assumption,
especially when x is either highly sparse or non-symmetric, and highlighting corresponding
directions for future work.
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10—3 10—2.8 10—2.6 10—2.4 10—2.2 10—2
0 (log scale)

Figure 12. Success probability of SaS deconvolution under generic ag, o with varying kernel
length po, and sparsity rate 0. When sparsity rate decreases sufficiently with respect to kernel length,

successful recovery becomes very likely (brighter), and vice versa (darker). A transition line is shown with slope

loepo ~y —2 implying Algorithm 6.1 works with high probability when 0 < —— in generic case.
< Uro

log 6

Algorithm 6.1 SaS deconvolution with Accelerated Riemannian gradient descent

Input: Observation y, sparsity penalty A = 0.5/4/pof, momentum parameter n € [0, 1).
Initialize a(®) <~ —Psy-1V, (P [0P° 7L [yo, - -+, ypy—1]; 0707 1]),
for k=1,2,...,K do
Get momentum w <+ Exp, ) (17 Log,x-1)( ))
Get negative gradient direction: g < — grad[cpp] (w).
Armijo step a*t1) < Exp,,(tg), choosing t € (0,1) s.t. ,(atD) — o, (w) < —t||g]/3.
end for
Output: Return a

k

(K).

The main drawback of our proposed method is that it does not succeed when the target
motif ag has shift coherence very close to 1. For instance, a common scenario in image blind
deconvolution involves deblurring an image with a smooth, low-pass point spread function
(e.g., Gaussian blur). Both our analysis and numerical experiments show that in this situation
minimizing ¢, does not find the generating signal pairs (ao, xo) consistently—the minimizer of
©p is often spurious and is not close to any particular shift of ap. We do not suggest minimizing
¢p in this situation. On the other hand, minimizing the bilinear lasso objective (a5, Over the
sphere often succeeds even if the true signal pair (ag, o) is coherent and dense.
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In light of the above observations, we view the analysis of the bilinear lasso as the most
important direction for future theoretical work on SaS deconvolution. The drop quadratic
formulation studied here has commonalities with the bilinear lasso: both exhibit local minima
at signed shifts, and both exhibit negative curvature in symmetry breaking directions. A
major difference (and hence, major challenge) is that gradient methods for bilinear lasso do
not retract to a union of subspaces — they retract to a more complicated, nonlinear set.

Our model assume xg to be Bernoulli-Gaussian vector, which are sparse and symmetric
iid random variables. When x( is sparse but non-symmetric, (e.g. Bernoulli), one can apply
our result with a simple symmetrization trick, by using the concatenated observation vectors
[y, —y] as an input to our algorithm.

When x is highly sparse and if y is noiseless, it is possible to identify a short copy of ag
via looking for a shortest consecutive non-zero entries within y. When 6 < 1/pg, these isolated
copies are very common. Once 6 exceeds 1/pg, or when support xy is not Bernoulli random
while being more clustered, they become very uncommon. In particular, the probability
of an isolated copy is small unless n Z exp(pp#). Our proposed approach succeeds when
n > poly(po).

In applications involving noisy data, optimization approaches often outperform direct
inspection, even for samples with isolated copies of ag. An intuition for this is that optimization
methods aggregate information across the sample. One practical avenue for obtaining the best
of both worlds is to try to optimize the choice of data segment used for initialization. This can
be a potential improvement for our data-driven initialization scheme, both in theory and in
practice.

Finally, there are several directions in which our analysis could be improved. Our lower
bounds on the length n of the random vector xg required for success are clearly suboptimal. We
also suspect our sparsity-coherence tradeoff between 1, 6 (roughly, § < 1/(,/fpo)) is suboptimal,
even for the ¢, objective. Articulating optimal sparsity-coherence tradeoffs for is another
interesting direction in this line of work. Extending our current result for cases when vy is
affected by noise can also be a natural next step for future work.
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SUPPLEMENTARY MATERIALS: Geometry and Symmetry in
Short-and-Sparse Deconvolution*

Han-Wen Kuof, Yugian Zhangi, Yenson Lau®, and John WrightT§

SM1. Basic bounds for Bernoulli-Gaussian vectors. In this section, we prove several
lemmas pertaining to the sparse random vector &g ~j ;4. BG(0).

Lemma SM1.1 (Support of xg). Let g ~iiq. BG(6) and Iy = supp(xo) C [n]. Suppose
n > 10071, then for any € € (O, %), with probability at least 1 — ¢ we have
(SM1.1) ||To| — nf] < 2Vnfloget.
And suppose n > CO~2logp and 0, then with probability at least 1 — 2/n, we have
(SM1.2) vte 2]\ {0}, inb* <|Ihn(l+1t)| < 2n6?

where C' is a numerical constant.

Proof. Let g = w - g ~iiq4. BG(0), notice that the support of the Bernoulli-Gaussian
vector xq is almost surely equal to the support of the Bernoulli vector w. Applying Bernstein
inequality Lemma SM10.4 with (02, R) = (1,1), then if nf > 10 we have

—4nflog?e!
P wp —nb| > 2vVnhloge 1| < 2ex < <eg
kez[n] g & P 2n6 + 4v/nfloge—1

For (SM1.2), let J; := Io N (lp +t). The cardinality of J; is an inner product between shifts of
w:

(SM1.3) |J¢| = Z WEWE_t,
k€(n]

and define two subset Jy W Jig = J;, as follows:

(SM1.4) { Jn=JNKiy, Ki:=[n]n{0,....t—1,2t,....,3t—1,...}

Jp=JNKey, Ko:=[n|Nn{t,...,2t—1,3t,...,4—1,...}

Here, the size of sets K1, /K2 has two-side bounds 0.4n < (n—2p) /2 < |Kof < K] <
(n+2p) /2 < 0.6n, thus the size of sets Ji1, Ji2 can be derived using Bernstein inequality

*Submitted to the editors Jan/08/2019; revised Sep/20/2019.

Funding: This work was funded by NSF 1343282, NSF CCF 1527809, and NSF IIS 1546411
fDepartment of Electronic Engineering and Data Science Institute, Columbia University.
#Department of Computer Science, Cornell University.

§Department of Applied Physics and Applied Mathematics, Columbia University.
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Lemma SM10.4 with n > C#~2logp as

P| max |/, >n92]—IP’ max WpWp_¢ > nb?
ety 171 2 e\ (0} kez,;l e

< 2p -P Z WrWe i1 > n92
_kEIC1

< 2p -P Z WpWei1 — E Z WEWet1 > n92 - 0.6n92

| keKy keky

— (0.4n62)”
< d4p- = log(4p) — 0.08n0?
S (2-0.6n92+2-0.4n92 exp (log(4p) — 0.08n6”)

(SM1.5) <1/n,

where the last two inequalities hold with C' > 10°. The lower bound can also derived as follows

P min |J; §n024]:IP’ min wrwi_y < nb%/4
ety Pl =1 1ei20\0} ,g,;l Wit <10

< 2])- P Z WrWh41 < n92/4
_kEICl

<2p-P Z wpwpr1 — E Z wWpwpt1 < n02/4 — 0.4n6?
_kGIC1 ke,

( — (0.15n62)? >
<dp-exp

2-0.6n62 + 2 -0.15n62
= exp (log(4p) — 0.0015n6%) < 1/n.

The bound for |J2| can derived similarly to (SM1.5)-(1). [ ]
Lemma SM1.2 (Norms of xg). Let g ~i;q. BG(8) € R™. If n > 100~, then for any

€€ (O, %), with probability at least 1 — €,

(SM1.6) ‘Hwoﬂl - \/2/7m9’ < 2Vnfloge™!, ‘ngﬂg - n@) < 3Vnfloge™!

Proof. To bound ||zo||;, using Bernstein inequality with (2, R) = (6,1) and with n6 > 10

we have
2
P [ o], - \[Tne

_ —4nflog? 1 )
> 2vnfloge ! < 2ex < <e
- 8 ] - P 2n0 + 4vnbloge=1/) —
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Similarly for ||zol|3, from Gaussian moments Lemma SM10.2 , we know the 2-norm > icn) E [@os 1t =
3nf and g-norm 3, E l20:| P < (n0)(2¢— 1)1 < $(3n0)2972¢g! for ¢ > 3. Let (0%, R) = (30,2)
in Bernstein inequality form Lemma SM10.4, nf > 10 we have
—9nflog? ! > <
2(3n6) + 12v/nflog 1 ’
completing the proof. [ ]

Lemma SM1.3 (Norms of x( subvectors). Let &g ~ijq. BG(0) € R" and n > 10, then with
probability at least 1 — 3/n, we have

P H||a:0||3 - nﬁ‘ > 3\/n910g5_1} < 2exp <

(SM1.7) max || Pyaol; < 2p0 + 6 (Vp@ + logn)
U%[2[17]]+j
JEN

and if ag is p-shift coherent and there exists a constance c, such that both 0%p < ¢, and
up*l < Cu, then
(SM1.8) max || Py [ag * xo]||5 < pf + log n.
U=[p]+j
i€l
Proof. Use Bernstein inequality with (02, R) = (36,2) and t = max{\/pe,log n}, with
union bound we obtain:

36 (v/p + logn)*
Pl max ”PUicng > 2p9+6<\/p9+logn> < 2nexp (— (V0 +logn) )

U=[2p]+j 6p6 + 12 (\/pG + log n)
j€n]
36t 2
SM1.9 < 2 1 —_—— ] < =
( ) = eXp<°g” 6t2+12t>—n
For the second inequality, first we know calculate the expectation
E||Py [ao * zo]; = E [2§C}, PyCayzo]
p—1
= 0-tr (C PyCay) llaolls + 0> [le"silao] |3
i=1
(SM1.10) = pb.
Then apply Henson Wright inequality Lemma SM10.6 with HCZO Py C,, H; = HL*CZO CaOLHi_, <

p(1+ up) and also HCZOPUCU«OHQ = ||CaOLH§ =1+ up, we can derive

) log?n logn
P | max |Pylag*xoll? > pf+logn| < nex (—mln{ , })
JEIN
. [log®n logn 1
M1.11 < | — < =
(8 ) = P ( ogn —min { 128¢,,’ 32¢, }) - n

1
when ¢, < 350 [ |
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Lemma SM1.4 (Inner product between shifted x(). Let xg ~jiq. BG(0) € R™. There exists
a numerical constant C such that if n > CO~2logp and phlog? 6~ > 1, with probability at
least 1 — 4/n, the following two statements hold simultaneously:

(SM1.12) ;naé( | (silzo], sj[zo]) < 64/nb?logn;
17£)E|2p,

and for x; = |xo;| € R} the vector of magnitudes of xq,

SM1.13 max (s;[x], s;[x]) < 4nb?.

(SML13) . (sfal, s fa)

Proof. We will start from proving (SM1.13). Write & = |g| o w where g / w are Gauss-
ian/Bernoulli random vectors respectively. Let Iy denote the support of w and ¢t = |j — i| with
0 <t < p. Then (SM1.13) can be written as summation of Gaussian r.v.s. on intersection of
support set between shifts:

(SM1.14) (silelsilzl) = D gkl lgk—|
kelon(Ip+t)

Define J; := Io N (Ip +t) = Ju W Ji2 same as (SM1.4). Notice that both >, - ; [gk||gk—:| and
> keds, |9kl |gr—t| are sum of independent r.v.s.. We are left to consider the upper bound of
> e 195 ‘ g;‘ where g, g’ are independent Gaussian vectors. We condition on the following

event

(SM1.15) Ey = {vt € [2p]\ {0}, nb?/4 < |Jul,|Ji2| < nb°},

which holds w.p. at least 1 —2/n from Lemma SM1.1. Since } . ;. 195l |g;
we use Gaussian concentration Lemma SM10.3 and union bound to obtain

< Hthl H2 Hgf]tl HQ’

P| max > |gigi| > 2|Jal| <20 P [lgsl; 95,11, — Ellgslz 1k, |, > 1Jal]

tef2pl\(0} S5
< 4p-P [lgslly — Ellgslls > vI7al/3]
(SM1.16) < dpexp (—(|Jn| /9)/2) < 4pexp (—nb?/72) < 1/n

where the last inequality is derived simply via assuming n = C#~2logp for some C' > 10%,
such that

C > 400  (4C)"° = Clogp > 400log((4C)/°p)
— Clogp > 72log(4Cp°) > 72log(4Cp? log? p)
— nf? > 72log(p - 4CH *logp) = 72log(4np).

Likewise for sum on set Jy2, we collect all above result and conclude for every i # j € [2p],

(SMLIT)  (silalsilal) = 3 lgel|ghoel + 37 19kl |9hes] < 2 (1] + 1 ig)) < An6?.
keJun keJia
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For (SM1.12) similarly condition on event £y, using Bernstein inequality Lemma SM10.4 with
(0®,R) = (1,1):

—9nb?%logn
gig:| > 3v/nb2logn| <p-exp
Z 75 2|Ju| + 64/n6%logn

—9nh?logn 1
_T )«
3nh? ~n

el {0}
(SM1.18) <p-exp (

thus for every i # j € [2p],

(SM1.19) [(si[@o, sj[sol)| < | D GrGhe| +| D grgh | < 63/nb>logn.

kedun kedio
Finally, both (SM1.17),(SM1.19) holds simultaneously with probability at least
(SM1.20) 1-2/n—1/n—1/n=1-4/n [ |

Lemma SM1.5 (Convolution of xp). Given y = xg * ag where xy ~i;.q. BG(0) € R™ and
ag € RPY is p-shift coherent. Suppose n > CO~2logp for some numerical constant C' > 0, with
probability at least 1 — 7/n, we have the following two statement simultaneously hold:

(SM1.21) |Cyt|l3 < 3(1 + up)nb
and for all J C [n],
(SM1.22) 1Py Cye3 < 14| (1 + pp) (p6 + logn)

Proof. Given any a € SP~!, write 3 = C,.ta where [3] < 2p . Apply Ha:o||§ < 2n6 from
Lemma SM1.2 by choosing € = 1/n, also [(s;[xo], sj[zo])| < 64/nf?logn from Lemma SM1.4
we get:

ICyeall; = 1C=Bl5 < I1BlIz lxolls + > 1B8:iB; (silal. sjlo])
i#j€[£p]
< 2 ||z 2—1— 2 max Si|xo), S5\
< 1811z llzollz + 18117, max_ [(silol, s5(wo])l

< 18Il - 2n6 + p||B|3 - 6+/n62logn < 3|B|3 o

where n = C6~2logp with C > 10%, and the statement holds with probability at least 1 — 5/n.
For the bound of || P, JCyLG,||§. Simply apply Lemma SM1.3 and utilize norm bound of
18]13, with probability at least 1 — 2/n we have:
IPsCyealls = |(silzo], B < 71 max, \|PU«’B0||2||/3H2 < |J]- 14 (pf +1logn) - 8]
1€J
JE[n}

Finally apply Lemma SM2.4 and Gershgorin disc theorem obtain
(SM1.23) 18112 = ||Cealls < [|Chytll = Tmax (M) < 1+ pp.

Remark SM1.6. When ay is a basis vector eq, the result of Lemma SM1.5 gives upper
bound of ||Cy, ||, < 3n6, whose lower bound can be derived similarly with ||Cgyt, > 2n6
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SM2. Vectors in shift space. In this section, we will establish a number of properties of
the coefficient vectors a and correlation vector 3. Generally speaking, when a is close to the
subspace Sy, then both vectors a,3 have most of their energy concentrated on the entries 7.
In this section, we derive upper bounds on a.rc and Brc under various assumptions.

In particular, we will introduce a relationship between the sparsity rate 8, coherence p
and size |7|, which we term the sparsity-coherence condition. In Lemma SM2.2 we prove
that measuring the distance from a to subspace Sy in terms of ||a |2 gives a seminorm. We
then use this distance to characterize a region 8(Sr, v(c,)) around the subspace S;. Later,
in Lemma SM2.4 we illustrate the relationship between a and 3, where 8 = C; tt*Cy, .
Finally in Lemma SM2.5 and Corollary SM2.6, controls the magnitude of a-c and B¢ near
Sr.

Definition SM2.1 (Sparsity-coherence condition). Let ag € SPo~! with shift coherence p.
We say that (ao, 0, |T|) satisfies the sparsity-coherence condition SCC(c,) with constant ¢, if

p’ 4max {I=|, P} . log? =1’

where p = 3pg — 2.

1 1
(SM2.1) 0 e [ u ] E max{\‘r|2 ,p202} log? 67t < %,

Lemma SM2.2 (d,, is a seminorm). For every solution subspace S, the function d,(-,Sr) :
RP — R4 defined as

(SM2.2) do(a,Sr) = inf {||arec|ly | @ = t*Cqa} .

is a seminorm, and for all @ € S7, do(a,S;) = 0.

Proof. It is immediate from definition that d(-, Sy ) is nonnegative and Sy C {a : dy(a,S;) = 0}.
Subadditivity can be shown from simple norm inequalities and our definition of d,, for all a1,
as we have

do(ar + a2, Sr) = inf {||are||y | @1 + a2 = L Coya}
=inf {||aire + aore|ly | @1 = 7 Copar, az =" Coyan}
<inf{|laire|y + [|a2re]ly | @1 = " Coyor,  az =" Coyan}
=inf {||aire|ly | @1 = " Cqpar } + inf {||aare|, | a2 = 1" Coya}

= da(ah ST) + da(GQ’S‘r)-

Similarly the absolute homogeneity, for any ¢ € R:

do(c-a,87) =inf {||ol|, | ¢-a=1"Copa’} =inf {J|c- are|l, | @ =1*Cqyo}

= le[ - inf {Jlare |l | @ = " Cqpa} = |¢] - da(a, S7),
which completes the proof that d, is a seminorm. |

Definition SM2.3 (Widened subspace). For subspace Sy let
(SM2.3) R(Sr,v(cy)) == {a €S " |da(a,Sr) <~}

denote its widening by vy, in the seminorm dg.
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Our analysis works with a specific choice of width v(c,), which depends on the problem
parameters ag, 6, |7| and a constant ¢, via

c 1 1 1
SM2.4 cy) = —L—— min , ,
| : () 4log? 1 {\m VED Mp\/mﬂ}

Lemma SM2.4 (Properties of C}; 1t*Cla,). Let M = Cj 1t*Caq,, with ag € SP~1 pi-shift
coherent. The diagonal entries of M satisfy

M;; =1 i€ [=po+1,p0 — 1] = [£po],
(SM2.5) 0<M; <1  i€[~2po+2,—po]U [po,2po — 2],
M; =0 otherwise,

and the off-diagonal entries satisfy

Ml <p 0<li—j[<po, {i€[-po+1po—1}U{j€E[-po+1po—1]}
(SM2.6) q |M;| <1 {i,j € [~2po+2,—po]} U{i,j € [po,2po — 2]}

0 otherwise

Furthermore, let T C [£po], and 7¢ = [£2pg — 1]\ 7. The singular values of submatriz vt Mu,
can be bounded as:

1—pl|7r| < omin (LiMer) < opax (LiMer) < 1+ p|7|
(SM2.7) Omax (L M) < pn/p 7]
Omax (’/;k-cM’/‘rC) <1+ up

Proof. Recall the definition of ¢, which selects the entries {—po + 1,...,2pg — 2}. The
entrywise properties of M can be derived by carefully counting the entries of the shifted
support. The submatrix M on support {—2pg + 2,...,2p9 — 2} has an upper bound to be
characterized as follows:

(SM2.8) Lf‘ﬂpo_l]ML[ion_”‘g 0--0] [wp] 1 [ue-pu] [0--0]
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Here, the center row/column vector is indexed at 0, the matrices J, I, 1 and 1, are square and
of size (po — 1)2. Among which, I is the identity matrix, 1 is the ones matrix whereas 1, has
all off diagonal entries equal 1. Also |J| has property |J;;| < 1 for all 4, j.

As for the singular values, notice that the first and second inequalities consider submatrix
not containing J since 7 C [£po]; thus the first inequality can be derived with Gershgorin disc
theorem directly, and the second inequality with the upper bound with its Frobenius norm:

(SM2.9) Tmax (e Mtr) < py/(2p — 1) 7] < p/p 7.

Finally by recalling p = 3pg — 2 > 2poy — 1. The last inequality is direct from bound of ¢*Cj,:

(SM2.10)  Omax (theMere) < ||Ch 0" Cayl|, = ||t*CaoCiot], = ||t*Ciay Caot|]y < 1+ pp

where the third equality is derived via commutativity of convolution. |

Lemma SM2.5 (Shift space vectors in widened subspace). Let (ao, 0, |T|) satisfy the sparsity-
coherence condition SCC(c,). Then for every a € R(Sr,v(cu)), every a satisfying a = t*Cq
and llovrely < ¥(cu) has

(SM2.11) llarlly =1 < ¢

moreover, 3 = Cg ta satisfies

SM2.12 1-3c, <||B-2<14+ —#
( ) C,U« —= ||IB ||2 — |T|10g2 971
C
SM2.13 o<
( ) ”:67' ”oo — \/mlogQ 9,1
C
. elly € i .

(SM2.14) 1851 < 1ot ™ (Vo1 }

Proof. Write —1/log 6 = 61,5 and v = y(c,) for convenience. First, by using bounds on ~y
in (SM2.4) and p|7| < 1 we obtain:

L+ pp < v(1 4 up) < cubing/2
(SM2.15) 1+p2p < v (14 Vp?p) < whog (1 Vi | < g
: v +/~L]9_’Y(+ up)_ +vi) <
4\l 2/I7
vou/plTl < v Ep - T

IN

CMelzog/4

Let a = t*Cqyax with |larc||, < 7. Utilize properties of ¢*Cyq, from Lemma SM2.4 and
plT| < cu/4 and (SM2.15), we have:

-1
farly 2 1" Caotr 7" lally — " Caperrell)
—1
> [[t*Cagtrlly (1= [[t"Caylly latrell5)
1 1— /2
(SM2.16) 27(1—7- 1+Mp)2#/21—0#,
Vit al] T+ e/l
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and similarly, the upper bound can be derived as:

AN
q

t*Caytr) ([ally + [[¢" Cagorrell,)
" Cagtr) (L+ [ Clay 5 [[re]l5)

1 P
(1+7'\/1+Mp) < 1re? 14 c,.

1—cu/4

||aTH2 m]n(

Umln (

IN AN

(SM2.17)

1
V1= p|T

The bound of HB,-H% can be simply obtained using p |7| < ¢, /4 and v bound from (SM2.15)
as:

02
(SM2.18) I18r13 < O (67 Cagt) < 1+ pulr| < 14 =0
||:3'r||§ > (Omin (.xMer) ||a,-”2 — Omax (Lz M tre) ||0“rc||2)2
2
(SM2.19) > (1= plrh) (1= ) = m/plrl-7) = 1= 3¢,

As for the upper bound of and ||Br¢||,, follow from (SM2.15), we have:

1Brelloe < llezeMotr|l o + [ltze Mare| o < p/I7] larlly + V1 + p2plare],

C#Gfog(l +cp) 9120
- osr 0 /1 12 g.
4|7 7 b

v

(SM2.20)

IN

the bound for ||B¢||, requires two inequalities, we know

(SM221)  |[Brelly < llezeMarlly + [[tzeMorelly < pv/plTllarlly + (1 + pp) lere|ly

for the first inequality, use (u |7']2)3/ (1 202) = v/l |7P? < Cu log/4 definition of 7
and 0 || < Cu0120g/4 we have:

(SM2.21) < M(Mrc ) + VoIt /Iy n 1pVo || v
T VT NI N
(SM2.22) < 20H0120g + C/Le]gog + Cu‘9120g 9120g

40|7| ~ Vol
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and similarly for the second inequality, use both conditions of u, we have:

(SM2.21)
/0 ||
< 9’|YT|' \[7 (14 cu) + + ppy
Y 4#\[9|T’3/2 NG
S Y 'maX{\/IT\, VHD, pp 9|7-\}
K log
Ol + g el |7
9\ | | |
Y
< —QM-( o max { 7>+ o0, u(p0) 7] /il
H¥]og
3/2 CN0120g Cu‘9120g
p\/po |7 -MPGIT\} Tt )
2 2
Y C,ualog Cﬂelog Cﬂelog Cu010g7
M2.23 < <
(SM2.23) —9\71(4+4+4 S o
which completes the proof. |

Corollary SM2.6 ( [(Bre, xo )| is small).  Given xg ~iiq. BG(0) in R™ and |T|,c, such
that (ao,0,|T|) satisfies the sparsity-coherence condition SCC(cy). Write X = cx/+/|T| with
some ¢y > 1/5, then if ¢, < 5

> ] < 26, P [

N
257
Proof. We bound tail probability of the first result with Gaussian moments Lemma SM10.2
and Bernstein inequality Lemma SM10.4. Via Holder’s inequality, 3 ;¢ .« E(Bizi)? = Eaf||Bre ||l <

0(q — ! [|Brel3 [|Bre[| %2, thus

(SM2.24) l

A
> 10] <@|r|+20

Z ﬁzw(]z

1eTe

> Bixos

—(1\/10)?
(SM2.25) P{|> Bizoi| > A/10| < 2exp .
iere 20(|Brellz +2(A/10) [|Brel o
Write flog = —oig, L SM2.5 imples wh < & have @ 2 _ Gy o Oiog)?
rite flog = — 1oz, Lemma SN imples when ¢, < 3}, we have 0 || 3|5 < < s
and [|Bre||,, < C:‘/e‘:_i“g < 01§§ , therefore,

—\%/1
(SM2.25) < 2exp < /100 >

20105 72/625 + 2(6105A/25) - (A/10)
(SM2.26) < 2exp (logf) < 20
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The second tail bound is straight forward from the first tail bound as follows:

P [ Zﬁiwm
<Plzr #0]+Plz, = 0] P[|Brcxrc| > A/10]
(SM2.27) < 07|+ 26. O

A

Corollary SM2.7 ( ‘<[3T\(0),m077\(0)>| is small near shifts). Suppose that g ~i;q. BG(0) in
R™, and ||, ¢, such that (ao,0,|T|) satisfies the sparsity-coherence condition SCC(c,), then

if ¢, < %0, for any a such that ’,6(1)‘ < 410g$’ we have
(SM2.28) Pl D Biwol| > Al <o
. ' L0 5 >~
€7\ (0)

Proof. For the last tail bound, write * = w o g. Wlog define By be the largest correlation
B(0), define random variables s = <,8.,.\{0}, as.,.\{o}>. Firstly most of the entries of - would be
zero since via Bernstein inequality with 6 |7| < 0.1:

P [Z w; > log 01] <P [Z w; > 0|7+ 0.9log 01]

1ET 1ET
00212 g—1
0.9%log= 0 <9
0lT|+0.9log6-1/3)) —

(SM2.29) < exp (2(

thus with probability at least 1 — 6, we can write s’ as a Gaussian r.v. with variation bounded
- 2
as Es”? < E [Ziozgle ' ,Bigi] = log 9*16(21), then via Gaussian tail bound Lemma SM10.1:

0.4
P[ls'| > 04X\ <P |lg| > —————| +P w; > log9_1]
=000 <0 o> et v 2
(SM2.30) < 2 exp (—1.2log ") + 6 < 20, _

V2r

SM3. Euclidean gradient as soft-thresholding in shift space. In this section, we will
study the FEuclidean gradient (4.7), by deriving bounds showing that the x operator ap-
proximates a soft-thresholding function in shift space (Lemma SM3.2 and Corollary SM3.4).
Furthermore, we will show the operator x|[3;] is monotone in |3;| from Lemma SM3.3. A figure
of visualized x operator is shown in Figure SM1.

To understand the x operator, we shall first consider a simple case—when x( is highly
sparse. By definition of 3 from (4.3) we can see that 3 has a short support of size at most
2p — 1, when x( has support entries separated by at least 2p, the entries of vector x[3]; become
sum of independent random variables as:

x18i = <S—i[$0],5A [e’Bo * BD = (seilwol. Sx[Bis—ilzmol) = D g;-Sxlg; - Bil

x( sep. Jj€supp(zo)
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where (g;), c[n) are standard Gaussian r.v.s.

The following lemma describes the behavior of the summands in the above expression:

Lemma SM3.1 (Gaussian smoothed soft-thresholding). Let g ~ N(0,1). Then for every
b,seR and A > 0,

(SM3.1) Ey[gSi[b-g+s]| =b(1—erfy(\,5)),
where

1 A+s 1 A—s
(SM3.2) erfy(A, s) = ierf (\/5“)‘) + ierf <\/§\b\> :

Furthermore, for s =0, b € [—1,1] and € € (0,1/4), letting o = sign(b) we have

(SM3.3) 08,0 [b] < oK, [QSA [b- 9]] S oS el te

where vi(e) = 1/(2v/=1loge) and vl = \/2/m.
Proof. Wlog assume b > 0. Write f as the pdf of standard Gaussian distribution. With
integral by parts:

t t , 1
/ tf(t)dt = —f(t), /_ t2f(t)dt' = gerf <> —tf(t)
Integrating, we obtain

E[gSA [b-g+s]] :/t>>‘5 (bt* — (A — s)t) f(t)dt+/

< AEs

by writing L = A — s, the integral of first summand

[y som =iy on(G5) 3 (5)] -1 ()

_b_berf<L>
22 V2b)'’

and similarly for the second summand, which gives

b b A— b b A
]E[gS,\ b-g+ s]} =5~ ierf <S> + 3 ierf <\/g;> =0b(1 —erfy(N,s))

For b < 0, alternatively we have

E[gSi— 1ol g+ 5] = ~ElgSallbl - g — 5] = ~[bl(1 — erfy (A, —5)) = b(1 — exfy(A, ),
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To show (SM3.3), via definition of error function, for x > 0, we know:

. 1—¢
(SM3.4) min {1 — €, log(l/s)ac} erf(x \f/ P at <

where the lower bound is derived by first knowing erf is increasing thus for all z > (/log(1/¢),
erf(z) >1—e ™ >1—e% =1—¢

and from concavity of erf we have for 0 < z < y/log(1/e) =T
f(T) — erf(0 1-—
erf(T") — erf(0) o+ erf(0) > e .
T—0 log(1/2)

Lastly plug (SM3.4) into (SM3.1) and apply condition [b| < 1 and € < 1/4 we have

\b[—\/EA§|b| |b\erf<\f|b|>

< max\ |b|e \b\—)\(li_g) < max{ e ]b[—#
- ’ 2log(1/z) | ~ 2 /log(1/e) [

which completes the proof. |

erf(x) >

This lemma establishes when xq is separated, then x is soft thresholding operator on 3 with
threshold about A/2. This phenomenon extends beyond the separated case, as long as when
@ is sufficiently sparse (when Definition SM2.1 holds). Recall that x : R” — R"™ is defined as

(SM3.5) X18] = Ca Sy [CaB]
The following lemma bounds its expectation:

Lemma SM3.2 (Expectation of x(83)). Let &g ~iiq. BG(0) and A > 0, then for every
a € SP71 and every i € [n], define the operator x as in (SM3.5), then
(SM3.6) nEx(B]; = 08; (1 — Eg,erfg, (), si))

where 8; =3, 4; Bexor. Suppose (ao, 0, |T|) satisfies the sparsity-coherence condition SCC(cy,)

and X\ = cx/+/|T| for some cx > 1/5 and o; = sign(B;), then there exists some numerical
constant ¢ such that if ¢, < ¢ then for every a € R(Sr,v(c,)) and every i € [n], (SM3.6) has
upper bound

2 .
(SM37) O'inilEX[,@] < on *1EX[IB] {4‘9 |T| |:Bz| ’Bz| <UiA

0(18:] —v1A/2)  |Bi] = A’

and lower bound

(SM3.8) o Ex[]; > oin” Ex[B], =: 6S,,x (18],

where v; = 1/ (2 logefl), vy =+\/2/7.
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0.5 0.5 I
m— )y = (.4
ExI); A3 = 0.6
EX[B]@'
0f | 0f |
_05 | | | _05 | | | |
-0.5 0 1 A1) 0.5 -0.5 0 19A1 92 193
Bi Bi

Figure SM1. A numerical example of Ex[8];. We provide figures for the expectation of x when entries
of ®o are 2p-separated. Left: the yellow line is the function B; — B; (1 — erfg, (X, 0)) derived from (SM3.1), and
the blue/red lines are its upper/lower bound (SM3.3) utilized in the analysis respectively. Right: functions of
Bi — Bi (1 —erfg, (X, 0)) with different A, the section of function of B; > 2\ are close to linear.

This lemma shows the expectation of x[3]; acts like a shrinkage operation on |3;|: for large
|Bi], it acts like a soft thresholding operation, and for small |3;|, it reduces |3;| by multiplying
a very small number 460 || < 1. We rigorously prove this segmentation of x operator as
follows:

Proof. First, since s;[xo] =4 sj[xo],
x[8)i = €] Cay Sy [\C/woﬁ} = <S—z‘[-’lfo]73A [«’L‘o *ED
=, <s,j [o], Sx [Sz;j[wo] * E]> = x[sj—ilB]l;

Thus wlog let us consider ¢ = 0 and write « as xp. The random variable x[3]o can be written
sum of random variables as:

x By = <w,5A Bowo + > _ Brs_ix] > =Y x5 [Box; + > Brxje]

0 i€l 0
and a random variable Z;(3) is defined as
(SM3.9) Zi(B) = ;S\ |Bow; + Y Bimje|

Le[+p]\0

gives x[Blo = Zje[n} Zj(B) as sum of r.v.s. of same distribution and thus n™'Ex[8]o = EZy(3).
Define a random variable sp =, £0 Bexy, which is independent of xy. From Lemma SM3.1,
we can conclude

(SM3.10) nEx[Blo = Ea,s0T0Sx [Boxo + s0] = 080 (1 — Esperfg, (A, s0))
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so that (SM3.6) holds for ¢ = 0, and hence for all 4.

1. (Upper bound of EZ) Wlog assume By > 0 and write Z = Zy. We derive the upper bound
on EZ in two pieces.

(1). First, since ExoSy [0 - xo + sp] = 0, we have

d
EZ(B) < By sup d*Emo,s()woS,\ [Bxo + s0]
Bel0,80] 4B

d .
=080 suwp -5 g (Bg + so — sign(Bg + so) - ) du(g)dp(so)
Be[0,80] 4B J|8g+s0/>2

=080 sup By [971(5g1s0/52})
B€[0,80]

2
=00 ol 1 (Y02} * Lsui> 1)

(SM3.11) < 068, <(Eg6)1/3IP’ [1Bog| > (9A/10)]/% + P [|so| > /\/10])
We bound the tail probability of so using Corollary SM2.6 where
(SM3.12) P[lso| > A/10] < P[>, Bixs| > A/10] < || +20 < 30 |T|.

On the other hand, the first term in (SM3.11) can be derived by pdf of Gaussian r.v.
Lemma SM10.1 as:

6\1/3 23 _ 3 108y \** N (_)\2>
(£6%) "2 g > OM10)* < V35 (00 ) e (5

3 (Bo\Y? A2

a2
Combine (SM2.26), (SM3.13), when By < 11\, we know e *% < €l°2¢ < @|7|. The first type
of upper bound EZ is derived as

2
(SM3.14) VB € [0,11\, EZ(B) <68 <3yf/3 exp (—&) + 36 |Ty> < 46%|7| Bo.
0

(2). The second type of upper bound can be derived directly from Lemma SM3.1:
EZ(B) < EzEs,xoSy [Boxo + 80] < Eay@oSy [Boxo] + Ezy [o| Es, |S0]
(SM3.15) <0 (82180 + ¢+ V2/7 Elsol)

where E |s| can be bounded with [|3||, and 6 |7| < .10 from Lemma SM2.5. When ¢, < 15,
observe that

0 2¢,0
(SM3.16)  Els] < W < VBBl + 18rel) < VB (14 c,) + T8 < “HEE.
14 \/
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Cuelog

Now choose & = 6 < =%, so that vy = v = Y522 in (SM3.15). Since ¢, < 5 we gain

¢, 2 2¢,6 3cubho
EZ(B) <6 (S, + g+\/>- L8 ) <p (S, + ==
V0o 1
(SM3.17) <46 (5,,1)\ [Bo] + 51g/\> <46 (S,,l)\ [Bo] + 2V1)\)
(3). Combine both (SM3.14) and (SM3.17), we can thus conclude that
46° <A
(SM3.18) EZ(3) = EZ(B) < =] 53 Bo < mh
0 (B0 — %) Bo > 1A

2. (Lower bound of EZ) On the other hand, for the lower bound for EZ, use the fact that
erfg(\, s) is concave in sg, we have

EZ(,@) = ESOEwa()S)\ [,30:130 + 80}

_ 0. @ )\—So _@ )\‘FSO
=0 Ba [ﬂo 2 ef(ﬂwo\) 2 erf(ﬁ\ﬂo!)]

(SM3.19) >0 (ﬁo — By - erf <¢;‘50,>> > 0.5, [B0] = EZ(B).

The proof of By < 0 is in the same vein. For cases of i # 0, since x[8]; =4 x[s—i[B3]]o, replace
Bo with 3; we obtain the desired result. |

Another convenient fact of Ex[B]; is that it is monotone increasing w.r.t. |3;|. The
monotonicity is clear in Figure SM1; it is demonstrated rigorously with the following lemma:

Lemma SM3.3 (Monotonicity of Ex(3)). Suppose xg ~iiq. BG(0) in R™, and |7|,c, such
that (ao, 0, |T|) satisfies the sparsity-coherence condition SCC(c,). Define A = cx/~/|T| in op
where ¢y € [O, 4] then there exists some numerical constant ¢ > 0, such that if ¢, < ¢, the
expectation |E[x[B]];| is monotone increasing in |B;|. In other words, if |B;| > |B;| then

(SM3.20) oiEx[B]i > o;Ex[0];
where o; = sign(3;).
The proof first operate simple calculus and then followed by studying cases of |3;| — |3;| when

either it is smaller are larger then .

Proof. 1. (Monotonicity by gradient negativity) Wlog assume 8; > 3; > 0, and from
Lemma SM3.2 we can write (nf) 'Ex[8]; = B; (1 — Es,erfg, (), s;)). Consider ¢ € [0,1] and
define £(t) = tB; — t@;. Write the random variable s;; = Ee#’j B¢xy. Define h as a function
of ¢t such that

B(t) = Epoyy (1= )85 +185) (1= erfa_pya a8, (0, (1= £)8; +8)z + 517) )|
(SM3.21) =Ez s, [(Bi — (1)) (1 — erfg, —ey (N - (B + (1)) + sij))] -
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Notice that Ex[3]; = h(0) and Ex[8]; = h(1) respectively, thus it suffices to prove h'(t) < 0
for all t € [0,1]. Write f as pdf of standard Gaussian r.v. where

erfﬁ<)\73ij):/0 ’ f(z)dz—i—/ ’ f(z)dz,

0

and use chain rule:

h/(t) = Ez,sij [(,6] — ,31) (1 — erfﬁi_g(t) ()\,CC . (,6] + E(t)) + sij))
d (A+z-(8;+L1)) + s Atz (B + L)) + sij
—(Bi —L(t)) - at ( Bi — ((t) > g ( Bi — L(t) >
d (N—xz-(Bj + () — sij A=z (Bj+ L) — si
_(ﬁz_g(t))dt< ﬁi_g(t) > f( ,Bi_g(t) >:|
= (Bj = Bi)Ea,s;,; [1— erfg_gy(N, - (B + () + s45)
(B o) (B )+ 00)

Bi — (1) Bi — (1)
(e )T )]

(SM3.22)
— (8; - B)E,., [1— /0 7 p(2)dz - /0 T i) ds + (s 2 f(2a,) + (22 —x)f(zu].

Consider the term only related to z),, condition on cases that it is either positive or negative,
observe that

{M+ = Em,sij|z)\+§0 {IOZAJF f(Z) dz — Z>\+f(z>\+) = Ew,s|zk+§0 [_ fo_zA+ f(Z) dz — Z)\+f(z)\+)] < 0

: 1 1
S min {57 \/T?IEI,S”|Z>\+>O Z)\+ }

)

o f(z)dz — 2, f(zay)

Myt = Em,sij|z>\+>0

where the negativity of the first equation can be observed by writing v = —z,, and take
derivative:

—Jo f()dz+v - f(v) =0 v=0

% {—fovf(z)dz+v . f(v)} =—fW)+fw)+v-f(v)<0 v>0

and similarly for zy_:

IN

0

9

1 1
min {57 mE:v,Si]‘|Z)\7 >0”A— }

IN

He— = El‘,sij\zx,go fOZ)\_ f(z) dz — Z)\_f(z/\_)
Jo ' f(2)dz = 2x_f(2n)

lu’*+ = E.T,Sij ‘Z/\7>0
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then combine every term to (SM3.22) using tower property and from assumption 3; — 3; < 0
we obtain

(SM3.22) < (B — Bi) (1 =P [2a, > 0] - pgs
P [2n > 0] - pey +Eusyy [2(f(2n) — f(2a))])

<5 (1T 0] B

2 7 Vor
(SM3.23) — min {P [7‘“2 > 0] : E\‘/’%‘ } - \/9277 E g\) ,

where ¢ is standard Gaussian r.v..

2. (Cases of varying B;,3;) Let c\ < %. Suppose 3;—£(t) <

1 2
> 11— .
Wk Recall that ||3-||5 > 1-3¢,
We are going to show there is at least one of the entry B € {Br}, ey, ; W{B; + £(t)} is greater

than 285 First, if both 4, j & 7, the lower bound is immediate since 82 = Br5% 2 e
] 7 ' i

On the other hand if at least one of 4,5 is in 7 and all other 3, entries are small where
H Br\{ij} H % then we know via norm inequalities,

1—3¢,
||

(SM3.24) (Bi+B5)° > B2+ 82> B3 — (17| = V) ||Brgiy |12 >

)

which implies if ¢, < &5,
=3, 1 _ 07
Vitlh Ayt Vi
In this case, adopt result from Corollary SM2.6 such that P[|> Bexe| > A/10] < 30 |7| < .01,
we have
Ploa. > 0] =P[zn, >0] =1-Pz(8; +{(t) + si5 < =]
<1—-Plx,B < —11X/10] - P[z(B8; + £(t)) + sij — .8+ < A/10]

0.72 —11cy A
s1orE [g*' /i 10%] (1-P [0 )

<1-0-P[0.72-g. < —1.1-0.25] - (1 — 3¢,,)

(SM3.25) B =B +L(t) = (B + Bj) — (B —L(t)) >

(SM3.26) <1-0.350.
1 .
On the other hand, when 3; — £(t) > =l both 2y, , zx_ are upper bounded via |7]60 < g55
such as:
A+ |z(B; +L(t)) — 845
Ex’sij Z)‘*‘ = Exvs’ij Z>\+| S ]Ea:,sij | ( J ( )) Z]’

Bi — L(t)
1/2
<1+ 4[] (Ba,, [2(8; + £08) — 55

(SM3.27) <1+4+4/|7|0]8ll, <1+ 44/|7]06 <1 +cu+

N ’><12.
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Combine (SM3.23), (SM3.26) we have

(SM3.28)  I'(t) < (B; — Bi) (1 P 2'359) —~ \/92? : \/z) < 0.030(8; — Bi) <0,

and combine (SM3.23), (SM3.27) and 6 < ¢, we have

' gy (1o X2 0 ]2 3
(SM3.29) W(t) < (85 — Bi) (1 2 e e \/;><0.03(ﬁj B;) <0,

which proves the monotonicity. |

When the signal length of y is sufficiently large, operator x will be enough close to its
expected value.

Corollary SM3.4 (Finite sample deviation of x(3)). Suppose xg ~iiq. BG(0) in R", and
k,c, such that (a,0,k) satisfies the sparsity-coherence condition SCC(c,,). Define A = cx/V'k
in @p for some cy > 1/5, then there exists some numerical constants C,c,¢ > 0, such
that if n > Cp°0~2logp and ¢y < €, then with probability at least 1 — 3/n, for every a €
Ujr|<kR(Sr,v(cu)) and every i € [n], we have:

(SM3.30) In~'x(8l; — n"Ex(8li] < c0/p*?,

Proof. See Subsection SM9.1 |

SM4. Euclidean Hessian as logic function in shift space. We can express the (pseudo)
curvature (4.11) in direction v € SP~! in terms of the correlation v = C,,tv between v and
ag, giving

U*%%@Zl (a)v = _7*\0/310131\0/:80%
where

(SM4.1) I(a) = supp (S,\ [\C/wOCZOLaD = {z € [n]| ‘mo « B

i>>\}.

The i-th diagonal entry of \C’/wo P](a)\C/wO is

* PN -~ ~ 2 2
(SM4.2) —€;CgPrq)Ca€i = — HPI(a)Cwoei L= | Priays—ilzol |5, »

which is the core component for us to study the curvature of objective ¢,1. We illustrate the
expectation of diagonal term of Hessian in Lemma SM4.2 and Corollary SM4.3, whose figure
of visualized HPI(a ilxo] H2 is shown in Figure SM1. Lastly, we also prove the off-diagonal

~~

)8_
terms €] Cy, Pr(q)Cz,€; of Hessian is likely inconsequential in calculation of curvature in
Lemma SM4.4.

We expect the Hessian to have stronger negative component in the s;[ag] direction as

|{P1(a)s_i[mo] H; becomes larger. This term can by tremendously simplified when x( is very
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sparse: suppose all entries of its support Iy are separated by at least 2p — 1 samples, then by
implementing the definition of support from (SM4.1), we can derive

2 _ 2 _ 2
(SM4.3) - ”PI(G)S—i[wO] H2 - Z m0j1{|22 Bewo(etj—i)|>A e Z RS UTHENE
j€ly sep. j€ly

where 1 is the indicator function and g; are independent standard Gaussian r.v.s.. In expecta-
tion, the summands in (SM4.3) acts like a smoothed logic function on entry S3;:

Lemma SM4.1 (Gaussian smoothed indicator). Let g ~ N(0,1), then for any b,s € R and
A>0.

(SM4.4) Eg [0°L{jpgtsi=ay) =1 —erfy (A, 8) + fo(A, 5),

where

1 A+s\ _O+s? A—s\ _0-9?
SM45 )\7 = — 2 _|_ 2 .
(SM4.5) fods) = an [( 0] ) B <rb| > B ]

Proof. The proof can be derived via same calculation of integrals in Lemma SM3.1. N

Although the definition (SM4.4) seems incomprehensible at first glance, we can actually
interpret it as a smoothed indicator function which compares |b| to the threshold /2/7A\.
Once we assign s = 0, then we can see that Eg21{|b,g|>>\} is be an increasing function of |b|.
Moreover by assigning different values for |b| we obtain:

L b
(SM4.6) Eg21{|b.g‘>>\} ~<{1/2, |b] = \/2/7T\ .
0, |b] =~ 0

Relate (SM4.6) to (SM4.3), when |3;] is close to 1 then we expect —- | Prs_i[xo]||5 to be
close to —1, and it increases to 0 as |3;| decreases, suggests that the Euclidean Hessian at point
a has stronger negative component at s;[ao] direction if |(a, s;[ao])| is larger. See Figure SM2
for a numerical example. This phenomenon can be extend beyond the idealistic separating
case as follows:

Lemma SM4.2 (Expected Hessian diagonals). Let @y ~iiq. BG(0) and A > 0, define the set
I(a) in (SM4.1), write s; = Y _;,; Bexoe, then for every a € SP~Y and i € [n]:

(SM4.7) 0B || Prays—i[@o]||s = 0 [1 — Es,ertg, (A, s:) + Es, f5, (\, 5)]

Proof. Write @ as @. Observe that y = & = @ * 8 = > ¢ Bes—g[xo]. Thus for any j € [n]
and 7 € [£p|:

(SMA48)  (ywa); ;= (Bisilal + 3 Brsilal) = iy + 3 Bejiss = By + 55,
06 04
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| |
-1 0 I/2>\1U2)\2V2)\3 1
Bi

Figure SM2. A numerical example for E ||P1(a)si [0] ”2 We provide a figure to illustrate the expectation
of —ﬁ HP](a)si [mo]Hz when entries of xg are 2p-separated, as a function plot of B; — 1 —erfg, (A,0) + fa,(A,0)
from (SM4.4) with different A\. When |B;| = v2 X\ where va = \/2/m, then the its function value is close to 0.5. If

|Bi| is much larger then X\ its value grow to 1, implies there is a negative curvature at si[ao] direction. Similarly
if |Bi| is much smaller then X the function value is O thus the curvature is positive in s;[ag] direction.

where x; is independent of s;, and both x;, s; are symmetric and identically distributed for
all j € [n]. Rewrite the random variable using (SM4.1) as

| Py(ays—ilo] || = HPI(a) e (®ojes—i)| = > o1 {jyral, >3}

J€[n]

2
= Z T0;1{18,20;+8;1>7}
JE[n]

Write & = g o w as composition of Gaussian/Bernoulli r.v.s., the expectation has a simple
form:

E ||PI(a s—i[xo H2 =nb - Eggl{|ﬁigo+30|>)\} =nf-E(1- erfﬁi()\, si) + fgi()\, Si))

where s; =), i T0iBi With @o; ~iid. BG(#), yielding the claimed expression. [ |

When the Slgnal length of y is sufficiently large, then i-th diagonal term for Hessian
HPI(a)s_ xo H2 will be close enough to its expected value.

Corollary SM4.3 (Large sample deviation of curvature). Suppose xg ~iiq. BG(0) in R™, and
k,c, such that (a,0,k) satisfies the sparsity-coherence condition SCC(c,,). Define X = cx/V'k
in pp for some cy > 1/5, then there exists some numerical constant C, ¢, ¢ > 0, such that if n >
Cp'0~'logp and ¢, < ¢, then with probability at least 1 —3/n, for every a € Ujr|<kR(Srsv(cp))
and every i € [n], we have:

(SM4.9) 2| Prgays-ilwoll[; = nE| Prays—ilaol 3] < 8/p

Proof. See Subsection SM9.2. |
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The off-diagonal entries of Hessian in general are much smaller then the diagonal entries;
however, it affects the region near sign shifts of ag the most where we need to show strong
convexity in the region. We provide an upper bound for off-diagonal entries in the vicinity of
signed shifts. In these regions, only one entry of the correlations ‘ ,8(0)} is large and the rest is
small.

Lemma SM4.4 (Hessian off-diagonal term near solution). Suppose g ~iiq. BG(0) in R",
and k, ¢, such that (ao, 0, k) satisfies the sparsity-coherence condition SCC(c,,). Let A = cA/\f
with cy > 1/5, then there exists some numerical constant C,¢ > 0 such that if n > C0~*logp
and ¢, < ¢, then with probability at least 1 —4/n, for every a € U+ <xR(Sr,v(cu)), where

|5(1)‘ < @A and every i # j € [£p] \ {(0)}, we have
(SM410) |S7][$0] |PI |Sj [mOH < 8n03

Proof. Write 0ios = —1/1logf and xg as € = w o g. Wlog let By be the largest correlation
B(o)- Define random variables s = <,8.,.\{0 ij1s T .,.\{O’l-7j}>. Firstly via Corollary SM2.7 we have
P[|s'| > 0.4\] < 26; also define s = (8, (0,04} Tre\{o, Z]}>, and base on Corollary SM2.6 we
have P[|s| > A/10] < 20. Expand the (—i, —j)-th cross term with § < 0.1 we have:

E|s—i[@]"| Pra) [s—jlx]l = E X pepn) [®h+i®h;] L1\ Bows+ i i+Bymn s -5+ >A}
=no” - E |99, L{Boao+Bigi+B;g,+s+s'|>7}
< n0” - E [l9ig;] (21(8.9.1>7/4)
+P[xo # 0] + P[|s| > 0.1A] + P [|s'| > 0.4)])]
<nb? - (exp (—log?07") + 6 + 20 + 20)
(SM4.11) < 6n6°.

Write (SM4.10) as two summation of independent random variables with ¢ = j —i by separating
sum into two sets Ji1, Jio defined in (SM1.4) with both |Jy1|, |Ji2] < nf? with probability at
least 1 — 2/n from Lemma SM1.1

Els_i[@]"| Pray |s—jlzll = > |wal|@rl
(k—i)€l(a)
= > grllgrsd = D0 gkl gl
(k—i)el(a)NJg1 (k—i)el(a)NJz2

whose first summands can be upper bounded with high probability Via Bernstein inequality
Lemma SM10.4 with (02, R) = (1,1) and writes C := U<, R(Sr, 7( {a ‘ |B(1)’ < 4log9 ST TT )\}
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then we have

B o o Yoo grllgrl =B D7 gkllgral | = n6?
_Z ! ae% (k—i)eI(a)NJu (k—i)eI(a)NJy

Pl jmas | > gellged —E 0 lgel gl | = nd’
L TR (k—i)eNnJe (k—i)NJs1 |

—n26% —n266 n@?* 1
SM4.12 < 4p?. v < 81 - < | < =
( ) i p eXp (2 |Jt1| + 277/03) — eXp < ng 3,n02 > — eXp < 10 ) = n

when n = CH~*logp with C' > 10% and #log® =" > 1/p. Thus for all i # j € [+p] \ {0} and a
satisfies our condition of lemma, from (SM4.11) and (SM4.12) we can conclude :

|s_ila]*| Pray Is—j[®]l < D Elgellgrsel + D> Elgel|grsel +2n6° < 8n6?
I(a)ﬂJtl I(a)ﬁth

which holds with probability at least 1 —2/n —2-1/n=1—4/n base on Lemma SM1.1 and
(SM4.12). m

SM5. Geometric relation between p and /!-norm. In this section, we discuss how to
ensure that the smooth sparsity surrogate p approximates || - ||; accurately enough that
guarantees ¢, inherits the good properties of p,1. We prove several lemmas which allow us to
transfer properties of ¢ to ¢,. Our result does not pertain to the suggested pseudo-Huber
surrogate p(x); = \/xg + 02 in the main script, and is general for a class of function class

defined in Definition SM5.2 that is smooth and well approximates ¢* when the proper smoothing
parameter 0 is chosen from the result of Lemma SM5.6. In particular we ask the regularizer
ps(z) to be uniformly bounded to |z| by 4/2:

(SM5.1) VeeR,  |ps(x) —|z]| <0/2

then if 6 — 0 we have for every a near subspace,

(SM5.2) [[proxye [@ * y] — prox,,, [@* y]||, — 0,
(SM5.3) IV (a) = Vps(a)ll, — 0,
(SM5.4) V20 (a) = Vg (a)]l2 = 0.

An example choices of eligible smooth sparse surrogate is demonstrated in Table SM1.
The marginal minimizer over @ in (2.7) can be expressed in terms of the proximal operator
[SM2] of p at point @ * y:

proxy, [+ y] = argmin { \o(e) + 2]} — (@ x2.9) |
xreR™

Plugging in, we obtain
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(SM5.5)  ¢p(a) = Ap(prox,,[@ < y]) + 5 [|@ «y —prox,, @« y|[, — 3 lld = yl; + 3 llyll;

The objective function ¢,(a) is a differentiable function of a. This can be seen, e.g., by noting
that

(SM5.6) pola) = e(Mp)(@*y) — Ll[@=ylls+ 3 yll3,

where €(g)(2) = g (prox,(z)) + 1z - proxg(z)Hz is the Moreau envelope of a function g. The
Moreau envelope is differentiable:

Fact SM5.1 (Derivative of Moreau envelope, [SM2], Prop.12.29). Let f be a proper
lower semicontinuous convex function and A > 0 then the Moreau envelope e(Af)(z) =

Af(proxyf[z]) + 5 ||z — proxy; [z]Hz is Fréchet differentiable with Ve(Af)(z) = z — prox, ,[z].

Furthermore, ¢, is twice differentiable whenever prox,, is differentiable. In this case, the
(Euclidean) gradient and hessian of ¢, are given by

(SM5.7) Ve,(a) = —L*b/y prox,, [éyba] ,
(SM5.8) Vip,(a) = f,,*éyv prox,, [\C/y/,a] \C/yb.
The Riemannian gradient and hessian over SP~! are

(SM5.9) grad[p,|(a) = —Palb*\éy Proxy, [EyLa} )

(SM5.10) Hess[p,](a) = =P, (/,*Eyv prox,, [\C’/yba} \éyl, —(Vyp(a),a) I) P,..

Our analysis accommodates any sufficiently accurate smooth approximation p to the ¢!
function. The requisite sense of approximation is captured in the following definition:

Definition SM5.2 (d-smoothed ¢! function). We call an additively separable function p(x) =
S pi(mi) : R" — R, a §-smoothed (' function with 6 > 0 if for each i € [n], p; is even,
conver, twice differentiable and V?p;(x) being monotone decreasing w.r.t. |z|, where, there
exists some constant c, such that for all x € R:

(SM5.11) |pi(2) — x| + ¢ < 6/2

The proximal operator of the ¢! norm is the entrywise soft thresholding function Sy;
the proximal operator associated to a smoothed ¢! function turns out to be a differentiable
approximation to Sy. In particular, we will show that it approximates Sy in the following
sense:

Definition SM5.3 (v/6-smoothed soft threshold). An odd function S§[-] : R — R is a v/3-
smoothed soft thresholding function with parameter § > 0 if it is a strictly monotone odd
function and is differentiable everywhere, whose function value satisfies

(SM5.12) 0 < sign(z) (Sf\[z] — Sy [z]) <V, VzeR
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Surrogate class pi(z) Vpi(z) V2pi()
Log hyperbolic cosine glOg <e2“/5 + 6_235/5) ii;i; 5(644’”6/45?51)2
Pseudo Huber \/m ﬁ = +(522)3/2

Gaussian convolution / |z — t| fs(t)dt erf(x/v/20) 2f5(x)

Table SM1
Classes of smooth sparse surrogate p and how to set its parameter. Three common classes are
listed with parameter & to tune the smoothness. All the listed functions are greater then |x| pointwise and has
largest distance to |z| at origin where p(0) — |z| < 6, satisfies the condition (SM5.11). Also its second order
derivatives V2p;(z) are monotone decreasing w.r.t. |z|, hence are certified to be eligible §-smoothed £* surrogates.

and its derivative satisfies for any given B € (0,\):

(SM5.13) VSi[z] — VSa[2]| < VAG/B,  ||z| — A\ > B.

If p is a 6-smooth ¢! function, then for all i € [n], we have that prox, ,[z]; is a v/d-smoothed
soft threshold function of z;. This can be proven with the following lemma:

Lemma SM5.4 (Proximal operator for smoothed /).  Suppose p is a 6-smoothed £* function,
then z; — prox, ,[2]; is a Vd-smoothed soft threshold function.

Proof. We know that

(SM5.14) T, 1= prox,,[z| = argmin A\p(x) + 3l — 2|3 .

xcR™
This optimization problem is strongly convex, and so the minimizer x, is unique. Using the
stationarity condition and since p is separable, for all i € [n], we have AV p;(x.;) + . — z; = 0,
implies

(SM5.15) x,; = (Id + A\Vp;) " (z).

Since p; is convex and even , Vp; is monotone increasing and odd. By inverse function theorem,
we know that strict monotonicity and differentiability of Id + AVp; implies its inverse is
differentiable and is a strictly monotone increasing odd function. Furthermore, it implies Va,;
has the form

1

—— < 1.
AV2p;i(x) + 1

(SM5.16) Va.; = Vi(ld + \Vp;) " H(z) =

Notice that since V2p;(x) is monotone decreasing when x > 0, hence Vx.; is monotone
increasing in z; > 0.
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Now we are left to show that (SM5.12) and (SM5.13) hold, and since prox,,[-]; is an odd
function it suffices to consider the case when the input vector z; is nonnegative. Firstly, via
convexity and entrywise bounded difference |p;(x) — |z|| < §/2 we are going to show

(SM5.17) Vpi(z)] <1 VzeR,  Vpi(z)>1—+6/x Ya>VAd

Consider a positive z with Vp;(z) > 1 + ¢ for some € > 0, by convexity if £ > z then
Vpi(Z) > 1+ ¢, hence

pi(x +9/e) > pi(x) + Vpi(x) - (0/e) >x—0/2+ (1+¢)-(6/e) = (x+/e) + /2,

contradicts the boundedness condition. Secondly, use mean value theorem we know for all

xzm:

, pi(VA) — pi(0) _ (VA6 —6/2)—(0+6/2) _ |8
Vpi(z) > NV > 50 >1 \K

To prove (SM5.12), when 0 < z; < A, then S)\[z;] = 0 and x,; < VA since if x,; > VA,
by (SM5.17):

AV i) + 2 > AL —/6/X) + VA6 = X > z;

then x,; violate the stationary condition in (SM5.15), resulting 0 < x,; — Sy [z:)] < VA
whenever 0 < z; < . Likewise in the case of z; > \ where S) [z;] = z; — A, (SM5.17) provides:

VI, >z, — A+ VA, )\Vpl(a:m) + Xy > )\(1 — \/5/)\) +2zi— A+ VA = z;
YV, <z;— A\, )\sz(mm) F Xy <Atz — A=z

again violates (SM5.15) and therefore (SM5.12) holds for all z; € R.

Lastly (SM5.13) is a direct result of (SMb5.12). For all z; < A — B, recall that Va,; is
monotone increasing in z;:
T — T(A—B)i < (\/)\(5+S>\ [)\])—S)\ [)\—B] VA0

- < 1 - < .
VIS VTS N0 -B) © B B

and similarly for all z; > A+ B:

TO1BY — Tai _ SA[A+ B] — (Sa[A] + VAI) VA6
zi 2 i > > =1-—,
Va2 e VI 2 TRy B B
implies (SM5.13) holds. [ ]

Based on (SM5.9)-(SM5.10) and denote éyba = a vy, the only differences of Riemannian
gradient and Hessian between ¢, and ¢, comes from the difference of prox,, [@ * y] and
PIOXy|.|, [@ * y]. Thus for the purpose of obtaining good geometric approximation of ¢, with
that of objective @1, we may apply both Definition SM5.3 and Lemma SM5.4, together suggest
if p is a §-smoothed ¢! function, then the i-th entry of prox, [@ * y] will be V/Ad-close to the
authentic soft thresholding function Sy [@ * y];, and its gradient V prox, ,[@ *y] is VA6 /B-close
to VS, [a * y] as long as (@ * y), is not close to £\ by distance B.

Firsly, we will show by utilizing the random structure of y, such that with high probability,
only a fraction of entries of @ * ¢y will be close to .



SUPPLEMENTARY MATERIALS: GEOMETRY AND SYMMETRY IN SHORT AND SPARSE DECONVO-
LUTION SM27

Lemma SM5.5 (Gradients discontinuity entries). For each a € SP™1, let

(SM5.18) Jp(a) = {z

(éyba) € [—)\—B,—A+B]U[)\—B,)\+B]}.

i
Suppose the subspace dimension is at most k and signal y satisfies Definition SM2.1. Let
A= cy/Vk and B < d\0%/plogn for some cy,c € (0,1), then there is a numerical constant

C > 0 such that if n > Cp°0~2logp, then with probability at least 1 — 3/n, for every a €
Ujr <R (Sr,v(cn)), we have

24c'n6?
plogn
Proof. See Subsection SM9.3. |

The geometric approximation between ¢, and ¢, necessarily consists of three parts: the
gradient, the Hessian, and the coefficients. Here we conclude the approximation result with
the following lemma:

(SM5.19) J5(a)| <

Lemma SM5.6 (¢ approximates ¢,). Suppose xg ~iiq. BG(6) in R", and k,c,, such that
(ap, 8, k) satisfies the sparsity-coherence condition SCC(c,). Let p € R" — R be a d-smoothed
0' function with

e 0/498
SMS5.20 A= v
( ) Vi ~ p2log®n

with some ¢, ¢y € (0,1), then there is a numerical constant C;¢ > 0 such that if n >
Cp°0—2logp and ¢y <€, then with probability at least 1 — 10/n, the following statements hold
simultaneously for every a € U+ |<xR(Sr,v(cu))-

(1). The coefficients has norm difference

~ ~

(SM5.21) Hbfip} Ca, proxy [@ = y| — ¢, Ca, Prox,,[a * y] H2 < dnb*.
(2). The gradient has norm difference
(SM5.22) IVen(a) = Ve,(a)ll, < ¢nd™.
(3). The (pesudo) Riemmannian curvature difference is bounded in all directions v € SP~! via
(SM5.23) Yo e SPl "v* (ﬁés/sw](a) - Hess[cpp](a)) 'v‘ < 200¢'n62.
Proof. 1. (Coefficients) From Lemma SM5.4, the proximal §-smoothed ¢! function satisfies
)SA Gy — S [Zi*y]‘j <VX  Vjen.
Since the support of coefficient vectors are contained in [+p], using simple norm inequality:

-~ J

(SM5.24) Hbf;pﬁm& (@ y] — 1, CayS3 [t 9] H2 <o -

Lp) Cmo 9
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Apply Lemma SMIL.5 by replacing ao with standard basis ep and extend support of ¢ to ¢[4,),
notice that in this case we have p = 0. Condition on the event

H"Tip]b/mo ) < V/3(1 4 2up)nf < V3nb,

9 < ‘ ‘ L>[kip] Cmo Czo

and we gain

SM5.24) < VAdn - V3n0 < nV3\06 < 'no?.
( )

2. (Gradient) From definition of Riemannian gradient (SM5.9) and apply similar norm bound
of (SM5.24), and condition on the following events of Lemma SM1.5 holds, obtain

L*\C/yHZ < n/3M(1 + up)d < nb?.

3. (Hessian) For every realization of Jp(a) from a € Uj|<,9R(Sr,v(cy)), base on Lemma SM5.5,
condition on the event such that

(SM5.25) IVee(a) = Vey(a)ll, < VAdn -

'\6? 24¢/n0?
(SM5.26) B< SN g < 2T
plogn plogn
and rewrite Jp(a) as J. Also condition on the event using Lemma SM1.5 and (14 up)f@log 6~ <
1
(SM5.27) L*\C/yH2 < V3n, L*\C/yPJH2 < /8|J|plogn,

then the difference of Hessian (SM5.10), in direction v € SP~! can be bounded as
" (Hesslp](a) — Hesslg,(a) ) o]

(SM5.28) < U*L*\C/y (PI(G) — diag {VS?\ [\C/yl,aH) \éyw‘ +[Von(a) = Vo,(a)l,

where I(a) is defined in (SM4.1). Let D = Pyq) — diag {VS‘Q [b/yba” and notice that D is a
diagonal matrix, which suggests (SM5.28) can be decomposed using

(P;+ Pje)D(Pj + Pjc) = PyDPj + PjcDPje,
where, from with property of v/d-smoothed ¢! function Lemma SM5.4:

max |[PyDPy|;; <1, max |Pje DPje|,; < VAJ/B.
J J

Finally, once again apply ¢ bound from (SM5.20) and bounds for B, |J|,y from (SM5.26)-
(SM5.27), we gain

* P 2 m *CY 2
(5M5.28) < |Gy Py + 22 €y | + 1V 00 (@) - Vey(@l,
Ad
< 8|J|plogn + 3n§ + ¢'nb?
24/ n6? 3n (0,4)‘298/102 log? n) V2
g, . / 02
plogn p Ogn+ C/)\Hg/plogp +Cn

< 200¢'n?,
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where all above result holds with probability at least 1 — 10/n from Lemma SM5.5 and
Lemma SM1.5. u

SM6. Analysis of geometry. In this section we prove major geometrical result in Theo-
rem 4.1. This lemma consists of three parts of geometry of ¢,; including the negative curvature
region Corollary SM6.2, large gradient region Corollary SM6.4, strong convexity region near
shift Corollary SM6.6, and retraction to subspace Corollary SM6.8, which are respectively
base on geometric properties of ¢, in Lemma SM6.1, Lemma SM6.3, Lemma SM6.5 and
Lemma SM6.7. We will handle each individual region in the following subsections. To shed
light on the technical detail of the proof, we will begin with two figures for illustration of a toy
example, which demonstrate the geometry near a two dimension solution subspace Sy; j1, as
follows:

Retrac;tive Gra%dient
Large Negative Large
Gradient Curvature: Gradient

o2

Sun(1Bil; 1841)

o2

Y

S{L,'_J}(Haff”z)

Figure SM3. The top view of geometry over subspace Sy; ;3. We display the geometric properties
in the neighborhood of subspace Sy; ;3 (horizontal axis) which contains the solutions silao] and s;[ao]. When a
lies mear middle of two shifts (light green region) such that |3;| = |3;|, then there exists a negative curvature
direction in subspace Sg; ;3. When a leans closer to one of the shifts si[ao] (blue green region), its negative
gradient direction points at that nearest shift. When a is in the neighborhood of the shift s;[ao] (dark green
region) such that |B;| < A, it will be strongly convez at a, and the unique minimsizer within the conver region
will be close to si[ao]. Finally, the negative gradient will be pointing back toward the subspace S; jy if near
boundary (grey region).

SM6.1. Negative curvature . For any a € SP~! near the subspace S, such that the
entries of leading correlation vector Bg), B(1) have balanced magnitude, the Hessian of ¢,(a)
exhibits negative curvature in the span of s)[aol, s1)[ao]. We will first demonstrate the
pseudo negative curvature of ¢, in Lemma SM6.1, then show ¢, approximates ¢, in terms
of Hessian in Corollary SM6.2 when p is properly defined as in Section SMb.

Lemma SM6.1 (Negative curvature for pp1). Suppose that xo ~iiq. BG(0) in R, and
k,c, such that (ag,0,k) satisfies the sparsity-coherence condition SCC(c,). Set A = cx/Vk
m @ with ¢y € [é,ﬂ There exist numerical constants C,c,c’,¢ > 0 such that if n >
Cp°0~2logp, and ¢y < G, then with probability at least 1 — ¢ /n the following holds at every

a € U7 <xR(Sr,v(cu)) satisfying |B(1)‘ > % ‘,6(0)‘: for v € Sg),1); N sP~'nat,
(SM6.1) v*Hess|op](a)v < —cnb.
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Psr Hess[@](a)PS{; : =0
i

Sl

Figure SM4. The side view of geometry of subspace Sy; ;; on sphere. We illustrate the geometry
of S(i,j3 over the sphere, in which the properties of the three regions are denoted. In negative curvature region,
there exists a direction v such that v*Hess[p](a)v is negative. In large gradient region, the norm of Riemannian
gradient ||grad[p](a)||, will be strictly greater then O and pointing at the nearest shift. Finally there is a convex
region near all shifts such that Hess[yp](a) is positive semidefinite.

Proof. First of all the regional condition ‘@

B < % provides a two side bound for the two

leading B’s

B(0)
\/5 5(1)

4 |8,
(SM6.2)  0.79 > 2. 181l

1812 = |Bwoy| = |Bay| = ’ﬂ = NG f

Set J = {(0), (1)}, choose v = ¢t*Cgqytyy with ||v||, = 1 then ‘||'7||g - 1‘ < p. There exists
such v satisfies condition above with a L v by choosing ~ as

a*v = a*t" Caytjy = Y0)Bo) + Y1)Ba) =0,

Yy
(o)
gives the lower bound of Y(0) &

IN

hence ‘

< 5 . This 1mphes 'y( 0 = 2g'y(2) —g(l — - 'y( )) where p

1—p)-16
MS6. 2 >(7>.
(SM6.3) Vo) 2 ot 1g 2 038

1. (Expand the Hessian) The (pseudo) curvature along direction v is written as

(SM6.4)
v Hess[pp](a)v = v*V2pp (a)v — (Vpp(a),a) = —7"15MCy Pya)Ca My + B[]
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expand the first term of (SM6.4) we obtain
— 5 MC o Py(q)Cu My
= —’Y*LT]M (P(O) + P(l) + PJC) \éa:PI(a)\éa: (P(O) + P(l) + PJ{:) MLJ’)’

- 2 - _
< - Z HPI(a)Cmei , (efMuyy)® +2 Z }e;‘CmPI(a)Cmej’ |(ef M) (e;fMLny)‘

icJ (4,9)e{J,J°}
(4:5)=((0),(1))
<=3 | PriwCoei (bl = )?

e
(SM6.5)

+ Q#T;leéﬁp] e;‘k\C/wPI(a)b/wej‘ (e Mgyl e Ml + (v + 1) (| + 1)
Consider the following events
(SM6.6)

Ecross 1= {Va e sp1, MaxX;4jc|+p| e;"\C’/mP[(a)vmej‘ < 4n02}

Encury = {Va S 9%(8 ( M))7 min;e g HPI(a)S i HQ > nb (1 - S¢(>‘a Si) +ES¢(>‘7 Sl)) - Cupfne}

and from Lemma SM2.4 we know

JsMully < Dl +20 < 15, 5 Mgyl < ol < 1o,
on the event Ecross N Encury, we have

- 'Y*LT]MCwPI(a)CmMLJ’Y
(SM6.7)

<—nf-> (lvil — 1) (1 = Egerfg, (A si) + Es, f5,(\, 8:)) + (18up + 8) nb” +

e Vv ‘T’
91(B)

Meanwhile, for the latter term of (SM6.4), consider the following event & where we write
o; = sign(G;) as:

0 - i s f )\7 i c;ﬂl@j Vi€
(SM6.8) e = {ondl < "0 1P ﬁrn%( s+ R,

n - B 40 || + = VierTe
and use both ||8]|; < \c/"ﬂ 1Br|l3 < 9 . On this event we have

c,nb
(8] <nb ) B7 (1-Egerts (N ) +4n6° | 7] [|Bre 5 + = I8,
€T
2 ( 5c,nb

(SM6.9) <nf-) B (1 —Egerfg (X 1)+

ier Virl

92(B)
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2. (Lower bound Efg,) Combine the first term from each of the (SM6.7) and (SM6.9). Use
p<ey < ﬁ and (SM6.3) to obtain ("y(o)‘ — u)z > 0.38, we have

2 (01(8) + 92(8)) < = 3 (1l = 1) = 8] (1~ Eserfp, (A, 5,))

i€J
(SM6.10) + Y B (1-Egerfg (X 5:) = 0.38)  Eq, f5,(\, 5i),
ieT\J ieJ

now use Taylor expansion ! for fg,, and apply the upper bound where Es? < 6|3 Hg -
cu _Cu_ 3u
0 (1 AT 0r2> =T
1 (2n N3 ( 332))
Es f3i(A81) 2 B, = 57— 5 (1 + 3
s f,@( 2) s \/ﬂ <’Bz’ ’ﬁz‘g A2
> =\ arWV >>
Vor (![3i| 18 7|

f(8)

where f(3) is concave at stationary point since

F(B) =0 —> 2282 = 3\ ()\2 + 9—)

|7

1"(B) = (4A -2 (A2 + ?T—T)) = 5ip (4A - %)\) <0

then combine with regional condition (SM6.2), and also apply assumption ¢y < % and ¢, <
we gain

L
300°

038> Es, fs,(\,8) =03 min  f(B)

ey B=575.0.79
. 2c\ ci + 9cucn 2 c%\ + 9¢,
> 0.3 - A -
= Tt { 079 079 "\079 0798
(SM6.11) > 0.3 min {2cy, 2A} > 0.6).

3. (Upper bound Ex|[3];) When 5(20) = (!’y(o)‘ — u)2 —n for some 7 > 0. With monotonicity
Lemma SM3.3, which implies:

(1 - ES(O)erf@w) ()\, S(m)) > (1 - ESu)eI‘fg(l) ()\, 8(1))>
(SM6.12) > (1 — Eg,erfg, (A, s5)),

L Apply exp [—IQ/Q] >1-—2%/2
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then combine (22)-(SM6.12) and use u < —%— from Lemma SM2.5

Wi

2
(SM6.10) < — <<‘7<0)}2 _ M) _ ﬁ(QO) — n) <1 —E8<O>erf@(0)()\,8(o))>

=0

+ ( Z B; — (‘7(1)‘ - “)2 - 77) (1 - ES(nerfﬂ(l)(}"s(l)))

1eT\(0)

<1

— 038 Es, fg,(M i)

icJ
< (18215 = 1 + 201l ) — .61
2
(SMG6.13) < \/%—0.6)\.
T

On the other hand, when ,3(20) > (”y(o)‘ — u)z > (.38, combining (22)-(SM6.12) gives:
2 2 2 2
(sM6.10) < (118+13 = 1713 + 22 71 ) + (([vo)| = 1)* = By ) Esioyerfag, (A 5(0)

+ (‘7(1)‘ - M)2 - Z ﬂ? Es(l)erfﬁ(l) ()\, 8(1)) —0.38 ZEsifBi(A7 Si)
1€\ (0) eJ

C
(SM6.14) < ( E- + 4#) + ('7(21) - ||B‘r||§ _'—/6(20)) Es(l)erfﬁu)()‘v 8(1)) — 0.6,

v

where Lemma SM3.2 provides the upper bound for Es, erfg, (A, s(1)) as

1 (1)
Eoperfg,, (A sq) =1 — ———Ex[Blq) <1- — U F
1 2 2 A
(SM6.15) =1— — (\5(1)|—\[/\> < \[
B m ™ B
then calculate the constant for the second term in (SM6.14) by writing kK = ’% = ‘% < %,

2.2
which provides ’7(21) < % and 5(20) < ”'i ;!_21“ where p < %‘, and by applying ‘ ,8(1)‘ >
% ’,3(0)‘ > 0.3, we have

('7(21) - 1) + Cu + /6(20) K
< - + K |Boy| +
1By (k2 +1) [Bo)] ol

k2 —1
SM6.16 <
(3M6-10) S Vel

M+ Cu
0.3

+r (HBTHS - 1) +4.2¢,, < 0.36 + 6cy,
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and finally combine (SM6.15)-(SM6.16), follow from (SM6.14) and use ¢y < 3:

2
(SM6.10) < —&

_l’_

2N

A
£ (7(21) S 5(20)) Bl 0.6)

9 6
< 2% 2 (0360 + 2N _0.6A
T 0.3

Vil

dcy,

&

[\

(SM6.17)

N

5

—0.3X

|7

3. (Collect all results) Combine the components of pseudo Hessian (SM6.7), (SM6.9) with
bounds for ¢g; + g2 from (SM6.13) and (SM6.17), and use Lemma SM2.5 which provides both
ppf || < % and 0 |7 < % where ¢, < 55 and ¢y > 1, we can obtain:

+ (18up + 8) nd?

4 .
gn9.< n —0.3/\>+n9- | g 55

VIl 7l

—— (0.059 — 0.06) < —0.001nHX

7]

(SM6.18)

Finally, the curvature is negative along v direction with probability at least

(SM6.19) 1- PlEGos] — Pléfen] — Pl -
——

——
Lemma SM1.4  Corollary SM4.3  Corollary SM3.4

Similarly for objective ¢,, we have that

Corollary SM6.2 (Negative curvature for ¢,). Suppose that xo ~ijq. BG(0) in R", and
k,c, such that (ao,0,k) satisfies the sparsity-coherence condition SCC(c,). Define A = ex/Vk
in @, where c\ € [%, i], then there exists some numerical constants C,c,c,c”,¢ > 0 such that
if p is 6-smoothed ¢* function where § < '\08 /p? log?n, n > Cp®0=2logp and ¢y <€, then
with probability at least 1 — ¢’ /n, for every a € U7 <,xR(Sr,v(cu)) satisfying |,6'(1)‘ > % ‘,6(0)‘:

forv e S{(O)v(l)} NnsP~1n aL,
(SM6.20) v*ﬁggs[cpp](a)v < —cenb

Proof. Choose v € SP~! according to Lemma SM6.1 and (SM5.23) from Lemma SM5.6
with constant multiplier § satisfies ¢"1/4 < 1073¢, we gain

(SM6.21) v*Hess[p,](a)v < —cnf + 200¢n? < —cnh)/2 [ ]
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SM6.2. Large gradient. For any a € SP~! near subspace and the second largest correlation
B(1) much smaller then the first correlation By while not being near 0, the negative gradient
of p,(a) will point at the largest shift. We show this in Lemma SM6.3, and the ¢, version in
Corollary SM6.4 when p is properly defined as in Section SM5.

Lemma SM6.3 (Large gradient for ¢,1). Suppose that xo ~iiq. BG(0) in R", and k,c,
such that (ag,0,k) satisfies the sparsity-coherence condition SCC(c,). Define X\ = cx/Vk
m pp with some ¢y € [%,ﬂ, then there exists some numerical constants C,d,c,¢ > 0,
such that if n > Cp°0~2logp and c, < ¢, then with probability at least 1 — ¢/ /n, for every

a € Ur <k R(Sr,1(c) satisfying 5 |Bo)| > [B)| > qrggrd
(SM6.22) (o(0)t"s(0)[a0], —grad[pp](a)) > cnd (log*2 9*1) A2

where o; = sign(G;).
Proof. 1. (Properties for a, 3) Define 65, = 9 —,

dominant entry ‘ B(o) ‘ as follows. Write the geodesm distance between a and ¢*s;[ag] as a
function of 3; as dg(a, +1*si[ap]) = cos™1(B;), then by triangle inequality we have:

we first derive upper bound on the

dg(a, :EL*S(O) [ao]) > dg(ﬂ:L*S( )[ao] L (1)[(10]) — dg(a, L*S(l)[ao])
= cos ! +B) > cos™ p —cos” }ﬁ(l){

= £ f(g) < cos (cos™' u—cos™ [Byy|) = 1 [Bpy| + \/(1 — 1) (1 - B(Ql))
<1-3(1Bw|-m".

Use the regional condition ! B ’ > elog)\ and since |T|3/ 2 165010g from Definition SM2.1,
implies

Glogc)\

2
(SM6.23) 1By <1- @ (1 — W) <1- 0.495%1) =: Bub-

Meanwhile a lower bound for B(g) can be easily determined by the other side of regional
condition:

(SM6.24) Bl = 7 18] =: B

Also since 3 = M a, based on properties of M from Lemma SM2.4. When [la|l, <14¢,
2
Cu log

dp/plT]?

and [[arelly <7 < g we gain:

Bio) = o) + ey Mo (o)
= |ao) — Bo)| < VIl llerlly + py/plloell,

6?2 6?2
(SM6.25) S N
log 910g 2 Cﬂelog
and therefore ’a(o)’ < |[3(0 ’ 4 £ <1—-49(-3A) + e < 1.
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2. (Upper bound of 3*x|[3]) Define a piecewise smooth convex upper bound h for B;x[8]; as:

B? VM 1B 1Bi| > 1A
h i) — 9
(B) {%@2 1Bi| < 1A

then Lemma SM10.7 tells us since Hﬁ,.\(o) HOO < Bay:

2 Vl)\ﬁ(]_) cuefog 2 ( Vl)\ )
h(Bi) < ||B~ 1- <|[1+—%2-p 1-—
> 18r\@ I ( 35, 7 Po 280

€7\ (0)
2
ZP) 2 Cuelog
< 2/3(1)) (1) 7]

then condition on the following event using Corollary SM3.4,

B8, < nb - h(B:) + % 1Bl vie T\ (0)
ix 94520|T|+C;/i|ﬂi|, Vi T ’

which provides the upper bound of 3*x[8] by applying 5p > logs/ 3(plog?p) > (leog)‘l/ 3 from

lower bound of # from Definition SM2.1, ||Bre|y < i“ﬂlog‘ from Lemma SM2.5 , |7| < /p from

. 1 .
lemma assumption and let ¢, < 155:

B x18] < x[BloBo) + D BixIBli + (Bre, x[B] <)

€7\ (0)
< X188y +n(0 Y B +46% 7118, 3
€7\ (0)
C
+ 3#2 (VI 8elly + VB 18rl5) )
.0} 46% || .07,
SX[m(o)ﬁ(o)+n<0'77(1—:3(20))+0' ‘T’og 0|72 >
1+¢ c.0
e | e 08 )
* <p3/4 | " pVa)r| )
) 6cu9120g
(SM6.26) < x[Bl(0)B) +nb | n(1 - Bp,)) + )

where n =1 — 2’3(’}).

3. (Align the gradient with ¢*s(gy[aq]) Base on the definition 3, since By = (a,t*s(g)lao]),
we can expect that the negative gradient is likely aligned with direction toward one of the
candidate solution +¢s(q) [ag]. Wlog assume that both B(o); B1) are positive, then expand the
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gradient and use incoherent property for ag Lemma SM2.4 we have:

<L*S(O) [0,0], _gradapel [a’]> <L*5(O) [a0]7 L*Cao (X[IB] - B*X[IB]O‘)>
(SM6.27) > (x[Bl0) — B x[Blo)) — || x[B\0) — B*xIB

where \(0) is an abbreviation of the complement set [£2po] \ (0). The latter part of (SM6.27)
has an upper bound using bounds of B*x[8] < 222, ||x[B]+|, < nggz from (SM6.62), and
Hx[,@].,.\(o) H2 < nf HBT\(O)HZ in event &, we obtaln

1 || x Bl o) — B*x[Blev o)

< M(\MHXW]T\(O)HQ + B XxBIVI7| |eer o)
+ VP Ix[Blrelly + B*x[B]v/P lare|, Big)
<0 (/171 (187 ll; — 1B)) + 1171 (leee = o))

1
+ %u\/i)’yz + §u\/13'yz]

b 1 3
gne.ihl_‘g [Q(I—i-cu 1Boy| — |exo |+<20+>c4

CMHIQO
(SM6.28) <nf- 7] £ (0.5 4 ¢, — 0.58(g)) -

On the other hand, the former term of (SM6.27) possesses a lower bound using (SM6.25)-
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(SM6.26), x[8](0) > nf (ﬂ(o) — YA ?ﬂ) > n (B(o) — 0.511)) and aq) < 1:
X[B(0) — B*x[Blex (o)

6c,02,
> (1 - a)Bo)) x[Bl0) — nb - [77 (1 - ﬂ?o)) + |HT,1 g] (o)

cub?
> nd (1 - <B(0) + T’Tlg> B(O)) (,3(0) - 0511/1)\)

(®)
. ¢, 02
> nH[ (1 - B(O)) (Bo) — 05101 \) —

(a)

- <1 - ,3(20)) nBo) — nc;ﬁbg <1 B ’6(20)) -~ 60M0120g ]

7| 7|

(0)
2

o
(SM6.29) > nf [(1 = 8%)) (L= By — 0.51m)) - c‘[;fg (1 =may+7)

combine (SM6.27) with (SM6.28)-(SM6.29) and 1 > 0, we have

)

92
(SM6.27) > nf [(1 = 8%)) (=) By — 051m)) - C”Tlfg (1 =mBg) +7)

CH9120
—nf - ——2(0.5+ ¢, — 0.580))

7]
A 8,62
. > 32 V1 —o. " Vlog 1 .
(SM6.30) > 9| (1-8%)) <2 300 =0 511/1)\> e B
1)

4. (Lower bound of f()) Given a fixed B(1), the cubic function f(Bg)) has zeros set B €

{:l:l, 1.02,6(1)} and has negative leading coefficient. Combine with the condition of B €
{Bib, Bub } from (SM6.23)-(SM6.24), we can observe that

)
Boy € B, Bun] = | 78), 1 = 0498 | < [1.028), 1],
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therefore the cubic term is always positive and minimizer is either one of the boundary point.

When By = B, use (1 + %2) 6(21) < 1.01, and use 1\ < ”\jlig 2\1/5, since |T| > 2, we have:

B, — 0. 511/1)\) > (1-0.616) - <2 — 0.51> A

VlA
2B

1 62
SM6.31 > A > 8\
On the other hand when By = Bupb:

f(Buw) = (1= 5%) <

f(Bw) > (1 - B4) (

1A
280

A
280
which is a cubic function of 31y with negative leading coefficient, whose zeros set is {-0.73,0,2.81}.

1} C [0,2.81], thus assign

/Bub - 0.511/1)\)

> 04967, - ( (1-04982)) - 0.51V1A> :

Thus it minimizes at the boundary points of B € [410g$7

5(1) 4log0 —=2—— we have:

> 0.49 A i L 1—-0.49 A i 0.51v1A
1002009 () - 5 (12009 (qgr) ) 051

1 A 2 0
M6.32 >- (2 ) > 98,52
(SM6-32) ~ 6 <4log0‘1) ~ 96

Finally combine (SM6.30) with the lower bound of cubic function (SM6.31)-(SM6.32) together

vV 910g

2

2
with condition ¢, < SC—A and v = , obtain

00

. 8cubis
<I’*S(0) [aO]a —gradsoel [a]> >nb - (mln{f(ﬁub) (Blb)} - ’ | g)
02 c2 862 2
SM6.33 >nf | —= 82 ) >6x 107nb6 3.
( ) =" <96 lr[ 80| ) =0 PPl
The proof for the case where 3¢y negative can be derived in the same manner. |

As a consequence, we have that

Corollary SM6.4 (Large gradient for ¢,). Suppose that xg ~iiq. BG(0) in R™, and k,c,
such that (ao,0,k) satisfies the sparsity-coherence condition SCC(c,). Define X\ = c\/Vk
in @, with ¢y € [%, i], then there exists some numerical constants C,c,c’,c’, ¢ > 0 such
that if p is d-smoothed ' function where 6 < c"\0%/p*log®n with n > Cp°0~2logp and
¢y < €, then with probability at least 1 — ' /n, for every a € Ui j<pR(Sr,v(cu)) satisfying

5 1B > 1Bw)| > 1go-x

(SM6.34) <U(O)L*3(O)[ o), —grad[p,](a)) > cnf (log™ 2 9_1) A2
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where o; = sign(G;).

Proof. Choose t*s[ao] as in Lemma SM6.3, and apply (SM5.22) from Lemma SM5.6
with the constant multiplier of § satisfies ¢’* < ¢/4, then utilize 6|7|log? 0! < ¢, from
Definition SM2.1 we have

L*s(p)ao], —gra > cnb(log —c'nbd” > cnb(log “ 60~
SM6.35) (o (o)t s(0) dlp,)(a f(1 201)\ "ng? > cnf(log >0 )A/2 W

SM6.3. Convex near solutlons For any a € SP~! near subspace and the second largest
correlation B(1) smaller then - ga Tieop=T A, then ¢, will be strongly convex at a. We show this
in Lemma SMG6.5, and the ¢, version in Corollary SM6.6 when p is properly defined as in
Section SM5.

Lemma SM6.5 (Strong convexity of ¢, near shift).  Suppose that g ~iiq. BG(0) in
R™, and k,c, such that (ag,0,k) satisfies the sparsity-coherence condition SCC(c,). Define

A= C)\/\/E in pp with c\ € [%, %], then there exists some numerical constants C,c,c'c > 0

such that if n > Cp®0~2logp and ¢y < €, then with probability at least 1 — ' /n, for every
a € U< R(Sr,v(cu)) satisfying |,6'(1)‘ < Z“Og%)\: for all v € S~ Nwt,

(SM6.36) v*Hess[pp](a)v > cnb;

furthermore, there exists a as an local minimizer such that

(SM6.37) m[in |a — selao]|ly < 3 max {u,p~'}.

Proof. 1. (Expectation of x near shifts) We will write & as xp through out this proof.
When a is near one of the shift, the x operator shrinks all other smaller entries of correlation
vector B\ (o) in an even larger shrinking ratio. Firstly we can show |<,8\(0), x\(0)>} is no larger
then \/2 with probability at least 1 — 46, since

A
P [KB\(@» z\0))| > 2]
2

(SM6.38) <P [|<5T\ T\ (0))] > ] +P [\(ﬁfc,xTcH > 1A0] < 40

via Corollary SM2.6 and Corollary SM2.7. Now recall from Lemma SM3.2 and the derivation
of (SM3.10)-(SM3.11), we know for every i # (0),

UiEX[IB]i =nf ‘,@Z| Es, [1 - erfﬁi ()‘7 SZ)]

<nf |:61| Eg,w\i [921{

>A}]

Big+B0)(0) T8 (0),:3 T\{(0),3}

+P (|8 @) > 3])
<018 ((Bs?) " P[1Byg| > 31" + 0+ 19)

< nf |G| (exp (— log? 9_1) + 50)
(SM6.39) < 6162 |3
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where the third inequality is derived using union bound; the the fourth inequality is the result
of (SM6.38), and the fifth inequality is derived from Gaussian tail bound Lemma SM10.1.

2. (Local strong convexity) Let v = Cj tv, for any |v[|, = 1 we have 73 < 1+ pp.
Furthermore:

Yo | = (s [acl,v)| = [(Part™s()laol, v)| = [("5(0)lac] — By, v)|
(SM640) < HL*S(O) [ao] - ,B(O)GHQ < 1-— ,6(20)
Consider any such v, the pseudo Hessian can be lower bounded as

17*62@[1 (a)v = —’y*\C/ P[(a)\C/

2

> <2y || Pra) Caeqo H Z | PrayC 7
e;éma(a)cmej\ m| i1
i]
2
> — (1—ﬁ(o)> 15 — gnaxHPI S—i ]HQH’Y”g
(SM6.41) —2max |e] 1CaPy Czej‘ [R1R
i#£]

where the second term is bounded by using its expectation derived in Lemma SM4.2, and utilize
P[|si| > A/2] < 46 from (SM6.38), Ex from (SM6.39) and regional condition ‘ﬁ(l < W
to acquire

E HPI(G)S_i[w] Hz =nb[l - Egerfg, (A, 8i) + Es, /3, (A, 8i)]
< ‘E\),C['}[I?M +nb - <max e, (A, si) +P [\sz\ > A})
( [s:]<

2n6 A+ s (A — |si])?

< 6n6? + —— max < - ex [— + 4n?
V2T isi<3 \ 1Bl P 2037

< 10162 4+ nb - log 6~ exp (—2log2 9_1)

(SM6.42) < 11n#?,

and define the events EHmHQ, Ecross and Epcurv as follows:

(SM6.43)
= 2 2 cunb
Epcury 1= {Va € Ujr|<kR(Sr,v(ew)), HPI(a)s,i[az]H2 < 11n6* + T}
gcross = Vac U|T|§km(8‘r77(cu))) /B e:\éazp[(a)\éwe]‘ < 87’203}
Ella, = Hng < nf + 3vnblog n}

A
1)} < Tlogs=T» MAXixje[+p]

For the Hessian term on the event Epcury N Ecross N gllmll , and use all up?6?, upf |T| and 0/p

are all less then from Lemma SM2.5, and from lemma assumptlon with sufficiently
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large C' we have n > 671361og? n, thus v*V2p,1 (a)v can be lower bounded from (SM6.41) as
'v*%?gpgl(a)'v > — (1 — ,6(20)> (n@ + 3v'nblog n)

— (14 pp) <11n«92 + C“;LQ> — 8p (1 4 pp) - 8n6?

1 9 1le, o 64c,  64dcy
1
(SM6.44) > —onf- (1- 88 +20c,).

The bounds of 3*x[3] can be derive on the event whose expectation is drawn from Lemma SM3.2
and (SM6.39) as

. {{aix[ﬁ]i > n8S, [1Bil] — 222, Vi€ [ip]}
X ’

aix[B: < 6n6? |Bi| + %47z, Vi # (0)

then use ||8]|; <1+ 410;%,1 < %,

implies:
B*x18] = nd|B()| (|80 — 2A) — cu 1Bl 22

> nb <5(20) - \/g)‘ - C2M)‘>

(SM6.45) > nf (,3(20) - A) :
Finally via the regional condition } ,8(1)| < 41%%, the absolute value of leading correlation
(SM6.46) By = 1B-15 = 1718y = 1= 2c, — 0.12 > 0.9,

then we collect all above results and obtain:

(SM6.47)
v Hess|py, | (a)v = v" Vi (a)v — B*x[8] > (1.5ﬂ(20) 05— A— 200M> né > 0.3n,

with probability at least

(SM6.48) 1= PlEos] — P[] — P[sﬁwu — P[] >1-{/n.

Lemma SM4.4  Corollary SM4.3 Lemma SM1.2  Corollary SM3.4

3. (Identify local minima) Wlog let a. be a local minimum where its gradient is zero that is

close to ag. The strong convexity (SM6.47), provides the upper bound on ||a. — aol|3 via

pri(as) = pp(ao) + (ax — ao,gradlpp](ao)) + %2nb||a. — aoll3
(SM6.49) = ||grad[pp](ao)l|; > 0.15n0 ||a. — ao||,



SUPPLEMENTARY MATERIALS: GEOMETRY AND SYMMETRY IN SHORT AND SPARSE DECONVO-
LUTION SM43

Thus we only require to bound the gradient at ag, whose coefficients o« = ey and correlation 3
has properties By = 1 and H,B\OHOO < u hence HB\OH< v2pu. Expand the gradient term and

condition on &, since up?6? < %‘ and 0 < 46%, we can upper bound the gradient at ag as

lgrad[e](@o)lly = [[¢*Ca, (x [B] = B*x[Bleo) ||y < [[¢*Cas 2 || X80l
< VT 1ap (6062 [|Broll, + 0 - 5 - /20)
< n9x/1+up<6u\/%-0+ 2%)
< nh <3cu,u+6u-\/ﬂ‘p9+ 2%4— 26\%/’7)

(SM6.50) < 7,/¢unb - max {M, %} .

Thus we conclude that with sufficiently small c,:
(SM6.51) las — aolly < 50,/ max {p,p~ '} < 3max {u,p'}. [ ]

and we complete the proof by generalize this result from minima near ag to any of its shifts
silao].

Similarly, for objective ¢, we have

Corollary SM6.6 (Strong convexity of ¢, of near shift). Suppose that xo ~iiq. BG(8) in
R™, and k,c, such that (ag,0,k) satisfies the sparsity-coherence condition SCC(c,). Define

A =cy/Vk in p, with ¢y € [%, i], then there ewists some numerical constant C,c,c',c",c¢ >0
such that if p is 6-smoothed 0* function where § < ¢/ \0%/p?log®n and n > Cp°0~2logp and
cu < ¢, then with probability at least 1 — " /n, for every a € Ui <xR(Sr,v(cu)) satisfying

|ﬁ(1)‘ <wviA: forallv e ST nat,
(SM6.52) v*ﬁggs[cpp] (a)v > cnb;

furthermore, there exists a as an local minimizer such that

(SM6.53) mﬂin la — selao]|ly < 3 max {u,p~'}

Proof. The strong convexity (SM6.52) is derived by combining (SM6.36) and (SM5.23) by
letting constant multiplier of § satisfies ¢/ < 1073¢. On the other hand the local minimizer
near solution (SM6.53) is derived via combining (SM6.49), (SM5.21) and utilize both 6,/p < ¢,
and up?0* < ¢, such that:

levadieyl(@)ll, < ll¢* Cagll [X18] ~ CayS3 [Cyeal || + 16" Caqlla IxIBl10]

<1+ pup-nb>+ 7\/cun0 - max{,u,p_l}
(SM6.54) < 8nf,/c,, - max {,u,pil} [ |
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SM6.4. Retraction toward subspace. As in Figure SM4, the function value grows in
direction away from subspace Sr, we will illustrate this phenomenon by proving the negative
gradient direction —g will point toward the subspace Sr. To show this, we prove for every
coefficients of a as a, there exists coefficients of g as ¢ satisfies

(SM6.55) (are(g), are(a)) > cllorelly [[Grell,

whenever d,(a,S;) € [%,fy]. Apparently, the gradient will decrease d,(a,S;), hence being
addressed as retractive toward subspace Sr. This retractive phenomenon is true for gradient of
both ¢, and ¢,.

Lemma SM6.7 (Retraction of ¢, toward subspace).  Suppose that xy ~iiq. BG(0) in
R", and k,c, such that (ag,0,k) satisfies the sparsity-coherence condition SCC(c,). Define
A= c)\/\/% m pp with ¢y € (O, %], then there exists some numerical constants C,c,¢ > 0
such that if n > Cp°0~2logp and ¢y < €, then with probability at least 1 — ' /n, for every
a € U <;R(Sr,v(cn)) such that if

(SM6.56) do(a,S7) > y(cu)/2

then for every av satisfying a = t*Cgq,a, there exists some ¢ satisfying grad[pp](a) = t*Cqy¢
that

(SM6.57) (Cre, ape) > ﬁ ||C'rc||§
Proof. Write v = y(c,) Recall the gradient can be derived as

(SM6.58)
grad|pp|(a) = —P,11"CaX[B] = (aa” — I) 1" Coyx[B] = t"Ca, (B"x[Blex — x[8]) ,

for every a satisfies a = ¢*Cy, . Now via Corollary SM3.4, condition on the event:

(SM6.59)

nG'\,BZ-]—i—C“nQ, VieT
& =R oixIBli < L , oix|Bli=nb-S ill ¢
X {U x(0] {n& 18;]46 7| + Mpo’ Vie 7 oix|B] n 2/7A [1B4l]

and on this event, utilize Lemma SM2.5, bounds of 3*x[3] and || x[B]+<||, can be derived with
cu < o5 as:
(SM6.60)
* 2 2 2 3

BXI8) < 10 (118113 +40 171 Br<ll3 + ) = 6 (14 ¢, +4¢ + c,) < 4
(SM6.61)

B8x18] = 6 (118113 = V2/mA1Brll, = ) = nb (1= 4c, = V/2[mer ;) = dnb
(SM6.62)

0
[x[8]7elly < 4n6” |7 [|Brel, + Cu; VP < nb (deyy + epy) < %ng%
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Let a(g) = B*x[Bla — x[B], derive

(a(g)re, are) — 115 [l(g) el
= B'X[8] llore |3 — (are, x[Blre)
— 55 18" x[Blere — x[Bl+3
> BX[8] llore |3 = llevrelly [[X[B] <l
— 555 1B XIBI? lorell5 — 555 X8
(SM6.63) > (B*XIB] — 525 (B°XI8)?) llare ]l — 35107 ezl — o507,

notice that this is a quadratic function of 8*x|[3] with negative leading coefficient and zeros at
{0,2n0}, hence (SM6.63) is minimized when 8*x[8] = %n@. Plugging in,

(SM6.64) (SM6.63) > 3nf ||arel3 — gm0 [|ctre ||y — 7107

then again this is a quadratic function of ||ar<||, with positive leading coefficient and zeros at
{0, %7}, thus (SM6.64) is minimized at ||arc||, = 3. Plugging in again,

(SM6.65)
/ 2
(SM6.64) > 2nf ||lare|ls — 510y loerelly — 555707 > (35 — 55 — 1o00) 707> > 0

which concludes our proof. |

As a consequence, we have that

Corollary SM6.8 (Retraction of ¢, toward the subspace). Suppose that xg ~iiq. BG(0) in
R", and k,c, such that (ag,0,k) satisfies the sparsity-coherence condition SCC(c,). Define
A =/ k| in ¢, with ¢y € (0, %] , then there exists some numerical constants C,c,c,c’, ¢ >0
such that if p is 6-smoothed £* function where § < c"\0%/p? log?n and n > Cp°0~2logp and
cu < T, then with probability at least 1 — ¢’ /n, for every a € Ui j<pR(Sr,v(cu)) such that if

(SM6.66) da(a,Sr) > y(cu)/2

then for every o satisfying a = t*Cqax, there exists some ¢ satisfying grad[p,|(a) = t*Cq,¢
that

(SM6.67) (Cresoure) > L5 [|Crelf5 -
Proof. Write v = 7(c,,). Define
X [B] = \C/mos)\ [ax*y], XP[B] = \C/mosi [axyl,
which, and on event (SM6.59) and Lemma SM5.6, we know

(SM6.68) B xn[B] < 3nb,
(SM6.69) %1 [Blrelly < 257,
(SM6.70) Ixe [8] — x,[8]ll, < c1n?,
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for some constant c; > 0. Now given any « satisfies a = ¢*Cyq,cx, the gradient of both objective
can be derived as

grad[pp](a) = =P, 10" Cq, proxy ., [@ * y] = (aa™ — I) " Cayx01 [B]
(SM6.71) =1"Caq (B"xn [Blo — x[B]) ,

gradlpp](a) = —P,11"Cq, prox,,[a * y] = (aa” — I) 1" CayXx,[B]
(SM6.72) = 1"Ca, (BBl — x,[8]) -
In the same spirit, define the coefficient of each gradient vector
(SM6.73) Cn = B"xn[Bla — xn[B],
(SM6.74) Cp = 5*Xp[5]a - Xp[ﬂ]a
which, by norm inequality from (SM6.68)-(SM6.70) and Lemma SM6.7 | we can derive
(SM6.75) 1€ = Cplly < I = aB*) (x,[B] = x [B]) [l < cand?,
(SM6.76) 1(Ce)relly > 18" xe [Bll [lerelly = [[xer [Blrelly > §167,

(SM6.77) ((Co)res are) > o5 (1o )rell3
where the first inequality is derived by observing (I — a/3*) is a projection operator, as such:
B'a=a"1"Coyax =a*a =1,
(I —aB*)?=1-2aB" +a(f*a)s* =1 - af".

Now we are ready to derive (SM6.57):

((Cp)res are) = ((Cr)re, re) — [lare|y [[€p = Carll,
2 (Gt )rell3 — exnd*y
12 (e el

+ 55 (1o rells = 20(Ce)rella 16 = Golly = 1o = Gl2) — crnd™y

> 59 1 Co)rells + 13 (5n67)” = 50 (3167) (cant”)

— 6% (cln04)2 — cln94'y
(SM6.78) > 527 1Go)ell3-

(AVARRAY]

Vv

where the last inequality is true since 6% < 7. |

SM6.5. Proof of Theorem 4.1. By collecting result from above, we are ready to prove
the acclaimed geometric result in Theorem 4.1. It guarantees that for every a near S, either
one of the following in true
(SM6.79) Amin (Hess[p,](a@)) < —ci1nfA,

(SM6.80) <0’(0)L*S(0) [ao], —grad[p,](a)) > conb (log 0~ 1) A2,
(SM6.81) Hess[gp,](a) > c3nb - Py,
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all local minimizer a satisfies for some a, € {+¢*s/[a] ’ { € [£po]},

(SM6.82) @ — ax|ly < csy/epmax {1, py '},

and whenever 3 < d, (a,S;) < v, coefficient of @ and its gradient g, a, written as ¢, satisfies
2
(SM6.83) (Crer 0tre) > S5 [ Crel|2.

To connect the geometric results introduced in Lemma SM6.1, Lemma SM6.3, Lemma SM6.5
and Lemma SM6.7, we are only required to prove the required signal condition claimed in
Theorem 4.1 is necessary from Definition SM2.1. In particular, when the subspace dimension
|7| < 4ppd. On top of that, we are also required to show the chosen smooth parameter ¢ in
the pseudo-Huber penalty p(z) = v2? + 62 approximate |x| sufficiently well, hence results of
Corollary SM6.2, Corollary SM6.4, Corollary SM6.6 and Corollary SM6.8 also holds.

Proof. Firstly we will show when largest solution subspace dimension k = 4py6, the signal
condition of Definition SM2.1 will be satisfied. Recall that the signal condition of Theorem 4.1
requests

2

——— <0<
po log” po

(SM6.84) ¢ —,
(po/B + /Do) log” po

since p = 3pg — 2, this implies the lower bounds for sparsity 6 as:

1 1
(SM6.85) 0> 5> ————i
2po (5logpe)”  plog” 6~

the upper bound of 4 via «9\/17010g2 po < c:

9¢ 16¢ 4c? 362 36¢2

SM6.86) 6 < < , 0 < < < :
( ) b< VPo(3logpo)? — | /plog? 61 ~ klog'py ~ k(3logpo)? T klog? o1

and the upper bound for coherence u as:

L ax {kz, (p9)2} log? 0! < pmax {16(p09)2, 9(p09)2} log? 6!
(SM6.87) < 16 (\/pod)? log? po < 16¢.
Therefore Definition SM2.1 holds if max {16¢, 36¢?} < ¢,,/4 via (SM6.85)-(SM6.87).

Furthermore, we know from lemma assumption all interested a are near subspace S; by

do(@Sr) < —0 —mind — L1
Vo log? 07! VO VI 1 (pot)*
Cc

2 1 4
SM6.88 <—— min{—,——,—— V<
( ) ~ log? 61! {\/E VDol upox/@g} 7

where 7 is defined in Definition SM2.3 of widened subspace R(S-, v(cy))-
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Lastly, the pseudo-Huber function p(x) = v/22 + 62 is an ¢! smoothed sparse surrogate
defined in Definition SM5.2, by observing that it is convex, smooth, even, whose second order

derivative (according to Table SM1) VZp(z) = ﬁ is monotone decreasing in |z|. More
x
importantly
(SMG6.89) Sup () — |[| = |p(0) — [0]] = 6.
x
Hence, by choosing § < %)\, for some sufficiently small constant ¢’ and letting

A=0. 2\f = 0.1/v/pof in ¢,. We obtain the geometrical results in Corollary SM6.2 when
|B(1 | >3 ‘,6 ‘ Corollary SM6.4 when 2 z ‘,6 } > ‘6 > 4log Ti25=r and Corollary SM6.6 when

W’Q\%l > ‘B 1 |, and the retraction result in Corollary SM6.8. |

SM7. Analysis of algorithm — minimization within widened subspace. In this section,
we prove convergence of the first part of our algorithm—minimization of ¢, near Sr. We begin
by proving the initialization method guarantees that a(?) is near S,, in the sense that

(SM7.1) do(a®),8,) <,

where the distance d,, is defined in (4.16). We then demonstrate that small-stepping curvilinear
search converges to a desired local minimum of ¢, at rate O(1/k), where k is the iteration
number. To do this, it is important to utilize(i) the retractive property to show that the
iterates stay near Sy and (ii) the geometric properties of ¢, near S;.

SMT7.1. Initialization near subspace. The following lemma shows that the initialization
a®) = Py [le(a(_l))], where
(SM7.2) al™V = Pyi [Ye, moet, selao]]
and is very close to the subspace Sr:

Lemma SM7.1 (Initialization from a piece of data). Let ® € R?0~! indexed by [+po], with
T; ~iiq. BG(0). Define y =T * ag, and a® gs
(SM73) a( ) - —PSp 1Vg051 (PSp 1 [OpO [yo, b ’yp() 1] OpO 1]) B

with X = 0.2/+/pf in p1. Set T = supp(T). Suppose that (ao,0,k) satisfies the sparsity-
coherence condition SCC(c,) and ag satisfies maxiz; (¢4 silao], o5 sjlao])| < p. Then there
exists some constant ¢, ¢ > 0 such that if pgf > 1000c and cy < ¢, then with probability at least
1—1/c, we have

1 1 1
SMT.4 do (a9.8,) < —%
( ) (a ) )— 410g g1 /’T ﬁ Mp\f|7.|

Proof. 1. (Distance to Sy from a(?)) Let n = HL;O (ag * :z:)H2 = HL Ca093H2 and v = y(cy),
as in (SM7.4). Expand the expression of a(®) from (SM7.3) we have

a® = Py, 10°C S, [C Lpo Pipo-11, (ao*m)}

(SM7.5) = PSp—lL*CQOX[ Coolroly C’aom]
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To relate a(© to its coefficient, introduce the truncated autocorrelation matrix M = Caotpotp,Caos

define a, 5 as

(SM7.6) B= Mz, &a=x [%M-’v} = x[6]

and note that M is bounded entrywise as

1 i=j€[-po+1,po—1]
<qp i#FjEl-po+1l,p0—1], |i— il <po-
0 otherwise

(SM7.7) ‘1\7]

From (SM7.5), we can write a(?) = Pg—10*Cy, @&, meaning that the normalized version of & is
a valid coefficient vector for a(?). Let 7¢ = [+2pg] \ 7. The distance dg to subspace Sy (4.16)
is upper bounded as

&l e
d a(O)S S || T~2 < _ 2 _
(@7 80) S i Caly < TCadinlly — " Candirelly

[Qrelly

< — =
V1=plrlllarlly = VI + ppllare|l,

where the last inequality is derived with Lemma SM2.4. Therefore, it is sufficient to show

(SM7.8) (14 /T ) Grelly < yv/T= el el

to complete the proof that dy(al?),S;) < .

2. (Bound 7)) Condition on the following two events

(SM79) 57- = {|T| < 4p09}, EHZHQ = {\/1009 < ”:L'H2 < 3p0(9}

and utilize g bound from Lemma SM2.5 such that u|7| < 0.1. An upper bound on 7 can be
obtained using properties of M of (SM7.7):

(SM7.10) 0= 45, Cantll, < 16" Caglly < I+ 7] ], < 2v/pof

To lower bound 7, use n? = g*PTM Prg where g is the standard Gaussian vector. Observe
the submatrix of M is diagonal dominant:

(SM7.11)
M;; = o5, silaol; € [0.1]

po—1

tr (M) = > e,silaolly = laol3+ > (llepsilacl|l; + [[egsi-polaoll3) =po
i€[+po] =1
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Write & = gow where w and g are Bernoulli and Gaussian vector respectively with supp(w) =
T, then the trace of P M P, can be written as sum of independent r.v.s as:

tr (P.,.MP.,.> = Z w; HL silao H27
1€[xpo]

Bernstein inequality Lemma SM10.4 and (SM7.11) gives

= < — < ——
P {tr (P,.MPT> < 1 } P [tr (PTMPT) b 1 ]
—(]009/4)2 —pob
M7.12 <2 — ) <2
(SM7.12) eXp <2p09 + pob/2 eXP 40 ’

thus condition on w satisfies tr <P.,-M P1-> > 3ppf/4 and &, expectation n? has lower bound

Eg|w772 = IEg\w [g P‘I'MPTg:| =tr (P-,—MPT) > opoY

then apply Bernstein inequality again by first Writing svd of PTM P, =UXU* with X being
rank |7| < 4ppf and square orthobasis U. Let ¢’ = U*g, then ¢’ is standard i.i.d. Gaussian
vector, provides alternative expression n? < pr 019 92’20Z where 0; <1+ p|7| < 1.1. We obtain
probability of 72 to be small as

Pobt Pobf
Pgjw [77 < ; ] < Pgjw [77 — Eglwn” < — Z ]
—(pof/4)? —pob
M7.1 <92 <2
(SM7.13) =P <2(1-+/L‘TD(12p09-%zm0/2) =P w0

by applying moment bounds (o2, R) = (12pof(1 + u|7|), 2(1 + p|7|)). We thereby define event

(SM7.14) { <n< 2\/1@} :

which holds w.h.p. based on (SM7.9), (SM7.12) and (SM7.13).

3. (Bound a) Condition on &, N &)z, N E-. Use definition 8= %M:c from (SM7.6), and
properties of M from (SM7.7) we can obtain:

1Brells < |ereMec | 1, < B2 ¢@w<ww@ur
(SM7.15)

1Brlls = & e Mo | ll2lly = Y5727 - v/pol = 0.45
Use definition |lal, = Ix[8]l2, condition on event

c, 2 no i
E = UiX[ﬁ] 2 n08V2>\ H:@ZH s YieT
: oix[Bli < 4nb? |7||Bs| + Cﬂ;w, viere [’
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also from Definition SM2.1 we have p (pf)Y/? 7>/ < 4logc§ ;-1 and from lemma assumption

A= ﬁ, provides bounds of |||, via triangle inequality as:

(SM7.16)
~ 3 c,nb c
[Grell < 4n6? 7] el + %22 - /2 < e (¥ + )

p

&rlly = 00 (1852 = vaAV/I7] = %\/I7]) = o (0-45 ~V2L- ) > 0200
since both 8 ||, upf |T| < cu, we have

V 1+ pp|laqre|ly < 3cunb/1+ pp (\/§+p_1> < 6eynb

6c5/%n0

& 6/ mb ol 111 ’
@re|y < logZg—T in { e Vi up\/él‘rl} < 24, /c,nby
which satisfies (SM7.8), since p1|7| < ¢, < g5

(L+9y/1+ pp) ||Gerely < (244/cn + 6c,) nfy < 0.1n6y

(SM7.17) < /1= plr] @],

Finally, given ppf > 1000¢, this result holds with probability at least

1- Pl - Ple,] - Ple] - Pleg]
S—— N ) ~~—— ~——
Lemma SM1.1 - MoMi1o  (SM7.14)  Corollary SM3.4
2 1 —pob 1
SM7.18 >l1—-——-=-—-4 >1—-- [ |
( ) - pof  n exp( 440 ) - c

SM7.2. Minimization near subspace (Proof of Theorem 5.1) . Before we start the proof
of theorem, writing g = grad[p,](a) and H = Hess[p,](a), we will first restate the results of
Theorem 4.1 in simplified terms. The theorem shows that for any a € SP~! whose distance to
subspace dy(a,Sr) < 7, then at least one of the the following statement hold:

(SM7.19) glly = ng
(SM7.21) H>1n.-P,..

Furthermore, ¢, is retractive near Sr: wherever dy(a,S;) > 3, writing a(a), a(g) to be the
coefficient of a, g, we have

(SM7.22) (a(a)re, a(g)re) = 1r [la(g)rell; -

Also, the the gradient, Hessian and the third order derivative are all bounded as follows:
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Remark SM7.2. With high probability, for every a whose d,(a,S:) < 7, its
max {||glly, [ H|l;, [[VH]l,} <7 = poly(n,p).
We state Remark SM7.2 without explicit proof since its derivation is similar to the proof in
Theorem 4.1.

We prove that if the negative curvature direction —wv is chosen to be the least eigenvector
with v* Hv < —n, and v*g (if cannot, let v = 0), then the iterates

(SM7.23) a® = Py, [a®) — tg®) — t%(’ﬂ

converges toward the minimizer @ in £>-norm with rate O(1/k). Notice that here all 55, 7y, N, 7, 7]
are all greater then 0 and are rational functions of the dimension parameters n, p.

Finally, we should note that ag being p-truncated shift coherent implies that ag is at at
most 2u-shift coherent. Hence we utilize the usual incoherence condition in the proof.

Proof. Notice that when a is in the region near some signed shift a of ag, the function
p is strongly convex, and the iterates coincide with the Riemannian gradient method, which
converges at a linear rate. Indeed, if for all k larger than some k, a®) is in this region, then
Ha(k) - dH2 < (1—tn.)~*=k)||a®) —a|5 [SM1](Theorem 4.5.6) where the step size t = Q(1/nf)
hence tn, = Q(1). We will argue that the iterates a(*) remain close to the subspace Sy and
that after k = poly(n, p) iterations they indeed remain in the strongly convex region around
some @.

1. (Existence of Armijo steplength). First, we show there exists a nontrivial step size t at
every iteration, in the sense that for all @ € SP~!, there exists 7" > 0 such that for all
t € (0,7), the Armijo step condition (5.11) is satisfied. Note that since ¢, is a smooth function,
a — ¢, 0 Ps-1(a) admits a version of Taylor’s theorem (see also [SM1](Section 7.1.3)): for
any £ L a, writing a® = Pg1 [a + €],

(SM7.24) ep(at) = (pp(a) + (gradlp,](a), €) + 3¢ Hesslp,|(a)€) | < €3,

using |VH||, <. Now, let £ = —tg — t?v as in the iterates (5.10). Suppose the Armijo step
condition (5.11) does not hold, so

(SM7.25) eola®) > pola) = 4 (¢llgls + 5t'n. 0]3)

Since g*v > 0 and v*Hv < —n, ||[v||3 or v = 0, using |la + b3 < 4|la|3 + 4||b] (Holder’s
inequality) and ||H||, < 7, we can derive

(g, —tg — t?v) + (tg + t*v)*H (tg + t*v)
+cltg + oy > 3 (gl + St*n. 1v]3)

= —3tlgl; + 3t°g"Hg + t*v" Hg
— gt loll; + 43t | gll5 + 47t° [[oll3 > 0
—> —$tllgl; +* (3ullg1 +tn vl g, + 4t g3)
(SM7.26) — §t*no [|v[|3 + 47t [|v]|3 > 0.
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If

(SM7.27) t<T=min{ glly 5, \/T ,
7 llglly + 27t [vll, + 87t lgll; V 167 [[vll;

then (SM7.26) < 0 contradicting (SM7.25). Using our bounds on ||g||2, 7, 7, and |lv|], it
follows that T is lower bounded by a polynomial poly (nil, pil)

2.(Bounds on dy(g, Sr), do(v,Sr)) We will show there are numerical constants ¢4, ¢, such
that

(SM7.28) do(g,S7) < cgnby and do(v,S7) < ¢ynbp.

Define

~ ~

X [B] = Cg, proxya (@ * y], Xp[B] = Cx, prox,, [a* y],

then the gradient can be written as (SM6.58)

(SM7.29) grad[pp|(a) = t"Co, (B xp [Blae — x[B]) ,
(SM7.30) grad[ppl(a) = " Ca, (B x,[Bla — x,[8]) -

Use the following inequalities:

10 < [B*xn[B]] < 3nd,
Ixe[Blrelly < 5507,
1T —af*|l, < 4/p,

Ixer [8] = x, 81, < nb*,

where the first and second bounds of x[3] based on event (SM6.59); the third by observing
el <2 and |8y < 2+ cuy/p; the last from (SM5.21) of Lemma SM5.6 when § is sufficiently
small. Hence, by definition of d,(-,S;) (4.16) and knowing a is close to subspace ||o |, < 7,
via triangle inequality, we get

da(9,Sr) < da(grad|ppl(a), Sr) + da(grad[p,](a) — grad[pp](a), Sr)
< [18"xe [Blare = xo [Blrelly + (T — aB”) (xo[B8] = xa2 [BD) 5 -
< %n@'y + 7101107 + 4\/13n94
(SM7.31) < 3nb.

To bound the d, norm of least eigenvector v, note that 8*x,[8] > 0, we can conclude
v*V3ip,(a)v < v P, V¢ (a)P,iv+ B x,[8] = v Hv < —n,,
expand V2, (a) as in (SM5.8), and since v is the eigenvector of smallest eigenvalue Amin < —7u,

(SM7.32) P,.V%*p,(a)Pyiv = (I —aa”) L*Cao\émova'OXAp (@ * y] \C/mOC;:Ow = Amin?,
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hence there exists a(v) satisfies v = t*Cg,ax(v) and

a(v) = AL

min

[\C/mOVprox)\p [@ % y] Ca, Co,tv — (,3*\0/930 Vprox,, [@ * y] Caz, C';Ow) a} .
Now since Vprox, , [@ * y] is a diagonal matrix with entries in [0, 1],

—1 2
(SM7.33) da(v,87) < [a®)lly < minl " 1eCaolly Izl olly (1 + ladlly [1B,) < c.nép.

where we use upper bound of ||zo||; < enf from Lemma SM1.2 and |Amin| > 7y > enbX from
Corollary SM6.2.

3. (Iterates stay within widened subspace). Suppose (SM7.22) holds. We will show that
whenever

1
M7.34 <7 =—
(SM7.34) b= 10n6’
then setting a* = Pgp—1 [a —tg — tzv], we have
(SM7.35) |do (a™,Sr) — da (a,8-)] < 3,
and whenever do(a,Sr) € [3,7]
(SM7.36) d (a®,8;) < d2 (a,Sr) —t- nby’.

If both (SM7.35) and (SM7.36) hold, then all iterates a*) will stay near the subspace:
da(a® S;) < 7.
To derive (SM7.35), since both g 1 @ and v L a we have ||a —tg —t2vH§ = |lal? +

Htg + t%H; > 1, and since dy(+,S7) is a seminorm Lemma SM2.2:

d,, (a+,87-) = do(Pgp—1 [a —tg — t2v] ,Sr) < d, (a —tg — th,S.,-)

(SM7.37) < dy(a,Sy) + tda(g,Sr) + t?da(v,Sy)

suggests (SM7.35) holds via (SM7.28) and let n > Cp°0~2, we have
cgnb »

(SM7.38) tda(g: Sr) + tda(v, Sr) < Soug + Fomdhr < 3

with sufficiently large C.
To derive (SM7.36), let a(a) to be a coefficient vector satisfying dq(a,Sr) = ||a(a)<||,,
and based on (SM7.30) and (32), define

(SM7.39) a(g) = B x,[Bla(a) — x,[0]

(SM7.40) a(v) = /\I;iln\émo Vprox,, [@ * y] Ca, Cg, L.
By the retraction property and norm bounds,

(SM7.41) (@)re, x(g)re) > 55 llcd(g)re 2
(SM7.42) le(@)relly < v

(SM7.43) |la(v)|ly < cynbp.
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Since [atrelly > 3,

la(g)relly = [18"xa[Blore — xo [Blrelly — (T — aB”) (x,[B] — xer [B)l,
> B xe (Bl lleerelly = lxe [Blrelly = [( = aB7) 2 (X, 18] = xer (Bl

> Inf x I — 5nfy + 2n6*
>

(SM7.44) T5nby.

Finally, we can bound d,(a*,Sr) as
d(a*,S;) < d%(a —tg — t*v,S;)
< |[e(a) - ta(g) — t2a(v)] ;
— la(@)ee]2 — 2t (@), [ax(g) + ta(w)] ) + 12| [axlg) + tax(v)] .
< [la(@)rell; = 2t ((@)re, a(g)re) + 267 (@) relly [lex(v)
+26 [|ax(g)rellz + 2t ex(w) 3
< d¥(a,8;) = 2t | (5 — ) llelg)rell} — tndpy — t(condp)?]
(SM7.45) < d*(a,S;) —t-nb~?

-’—C
2
2

where the last inequality holds when ¢ < % with sufficiently large n.

4. (Polynomial time convergence) The iterates a*) remain within a ~ neighborhood of S, for

all k. At any iteration k, a®) is in at least one of three regions: strong gradient, negative
curvature, or strong convexity. In the gradient and curvature regions, we obtain a decrease
in the function value which is at least some (nonzero) rational function of n and p. On the
strongly convex region, the function value does not increase. The suboptimality at initialization
is bounded by a polynomial in n and p,poly(n, p), and hence the total number of steps in the
gradient and curvature regions is bounded by a polynomial in n,p. After the iterates reach
the strongly convex region, the number of additional steps required to achieve ||a¥) — al| < e
is bounded by poly(n, p) loge™!. In particular, the number of iterations required to achieve
|la®) —a|ly <+ 1/p is bounded by a polynomial in (n,p), as claimed. [ ]

SM8. Analysis of algorithm — local refinement. In this section, we describe and analyze
an algorithm which refines an estimate a® ~ a of the kernel to exactly recover (ag, xg). Set

(SM8.1) MO 5k and 1O« supp(Sy (CE0y]),

a

where as each iteration of the algorithm consists of the following key steps:
e Sparse Estimation using Reweighted Lasso: Set

(SM8.2) TAGRRD argmin%”a(k) xx—yl3+ Z AE) |
* ig I

e Kernel Estimation using Least Squares: Set

(SM8.3) a*™) « Py, [argmin §|a 2D — y3];
a



SM56 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

e Continuation and reweighting by decreasing sparsity regularizer: Set
(SM8.4) A+D) %)\(k) and T0HD  supp(a®+h),

Our analysis will show that a®) converges to ag at a linear rate. In the remainder of this
section, we describe the assumptions of our analysis. In subsequent sections, we prove key
lemmas analyzing each of the three main steps of the algorithm.

Below, we will write

(SM8.5) fi = max {u,p '} .
Our refinement algorithm will demand an initialization satisfying
(SM8.6) 1a’® — gl < 7.

Our goal is to show that the proposed annealing algorithm exactly solves the SaS deconvo-
lution problem, i.e., exactly recovers (ag, o) up to a signed shift. We will denote the support
sets of true sparse vector xy and recovered ®) in the intermediate k-th steps as

(SM8.7) I = supp(zy), Ik = supp(sc(k)).

It should be clear that exact recovery is unlikely if &y contains many consecutive nonzero
entries: in this situation, even non-blind deconvolution fails. We introduce the notation k; as
an upper bound for number of nonzero entries of &g in a length-p window:

(SM8.8) k7 = 6max {fp,logn},
then in the Bernoulli-Gaussian model, with high probability,

(SM8.9) max I ([p] +€)] < kr.

Here, indexing and addition should be interpreted modulo n. The logn term reflects the fact
that as n becomes enormous (exponential in p) eventually it becomes likely that some length-p
window of x( is densely occupied. In our main theorem statement, we preclude this possibility
by putting an upper bound on n (w.r.t 7). We find it useful to also track the maximum ¢?
norm of xy over any length-p window:

(SM8.10) |olles 1= max || P 2o, -

Below, we will sometimes work with the [J-induced operator norm:

(SM8.11) IMllgg = sup [[Mez|g

lzllo<i

For now, we note that in the Bernoulli-Gaussian model, ||zl is typically not large

(SM8.12) lzolly < V&1
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SM8.1. Reweighted Lasso finds the large entries of xy3. The following lemma asserts
that when a is close to ag, the reweighted Lasso finds all of the large entries of xg. Our
reweighted Lasso is modified version from [SM3], we only penalize & on entries outside of its
known support subset. We write T" to be the subset of true support I, and define the sparsity
surrogate as

(SM8.13) pRE

1€Te

The reweighted Lasso recovers more accurate & on set 1" compares to the vanilla Lasso problem,
it turns out to be very helpful in our analysis which proves convergence of the proposed
alternating minimization.

Lemma SM8.1 (Accuracy of reweighted Lasso estimate). Suppose that y = ag * €y with ag
is fi-shift coherent and ||zo||q < /K1 with kp > 1. If ik? < ¢, then for every T C I and a
satisfying ||a — agl|2 < [, the solution ™ to the optimization problem

(SMS.14) mwin{ Haxz—yl3+7)" |zl }
ieTe

with

(SM8.15) A > bkrlla — aolf2,

is unique with the form

(SM8.16) 't = 1) (CCay) " ¢y (Chy — AP 10)
where o = sign(x™). Its support set J satisfies

(SM8.17) (TUIzs\) € J C I

and its entrywise error is bounded as

(SM8.18) |zt — ol < 3X.

Above, ¢, > 0 is a positive numerical constant.

We prove Lemma SMS.1 below. The proof relies heavily on the fact that when ag is shift-
incoherent and a =~ ag, a is also shift-incoherent, an observation which is formalized in a
sequence of calculations in Subsection SM8.4.

Proof. 1. (Restricted support Lasso problem). We first consider the restricted problem

(SMS.19) min {flaxew =yl + A3 [(rw)il }.
weRI | ieTe
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Under our assumptions, provided ¢ < %, Lemma SMS.6 implies that
(SM8.20) L?C;Cal,] = [C;CG]IJ >0,

and the restricted problem is strongly convex and its solution is unique. The KKT conditions
imply that a vector wy is the unique optimal solution to this problem if and only if

(SM8.21) L7CCotiw, € L1CLYy — A0 || Pre -] ||; (wy).
Writing J = supp(¢jwy) C I, Cqy = Caty, wy = therw, the corresponding sub-vector
containing the nonzero entries of w, and oy = ¢’y Pre [sign(t;ws)], the condition (SM8.21)

is satisfied if and only if

(SM8.22) CojCajwy = Coly — Ao,
(SM8.23) 1Cal\y (Cajws —Y) s < .

We will argue that under our assumptions, J necessarily contains all of the large entries of xq:
(SM8.24) Loy ={t €| |zol > 3N} C J.

We show this by contradiction — namely, if some large entry of x( is not in J, then the dual
condition (SM8.23) is violated, contradicting the optimality of w,. To this end, note that by
Corollary SM8.7, Cg;Cq s has full rank. From (SM8.22),

(SM8.25) w; = [Ca’Cay] " [Caiy — Aonr].

Write oy = tjxo and (xo)p ; = Ppyxo. We can further notice that

Casw; =y = (Cay[Ca’Caysl ™ Cal = 1)y = A\Cay[Ca’Cayl ' oz
= (CaJ [CaCay) ' Caly - I> Cao %07
+ (CaJ [Ca’iCay] ' Caly — I) Coaor\s(To)p\ s
~XCay[CaliCayl topT
= (Cas[Ca’Casl™ Cay ~ I) Cag-asmos
+ (CaJ [Ca5Cayl ' Cay — I) Coaon\s(To) g
(SM8.26) ~ACay[Ca’Casl ™ o1,
where in the final line we have used that

SM8.27 Coj[Ca’Cayl Co% —I)Cqy =0.
J J

Suppose that J is a strict subset of I (otherwise, if J = I, we are done). Take any i € T\ J
such that |xg;| = H(wO)I\JHOO, and let & = sign(xp;). Using (SM8.26), Corollary SM8.7 and
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Lemma SMS8.8, and simplify the induced norms ||-||
have

~¢sila]" (Casws —y) = &sila)’ (I = Cay [Ca’Cay] ™' Cal) silaclao,
+ &silal” (I —Cay[CaiCay)™ Ca’f]) Cay (o) 1\(JU{i})
+¢sifa)* (T = Cay [Ca’5Cas) ' Ca’) Cay-asmos
(SMS.28) +EXsi[a]* Cay [Ca’yCay) o pr
> ((silal, silao))
~ lIsila)* Caylly [1Ca’Casl ™| _ ICaTsilanlll ) | (@o)nsl..
- 1
+l1sila]* Caslh |[CaiCasl ™| _ | CaiCarns] ) ll@odrsll..
~ (Isila)* Cag-ayl;
+ lIsila]*Caylly | [Ca’iCas | 1Ca3Ca-aslla ) V2 Ii@oll-

(SM8.29) — Mlsila]*Cayll; H[Ca?}CaJ]_lHoo lonrll

so—soe N [-lgp as [ and [|-]|g, we

sila]"Cao 1}

> (1= lla—aoll2) = Crrri x 1% i) || (@o)
~ Cowafi+ i x 1 st ) || (@o)

— (2vAilla = aolla + Cs /i x 1 % illa = aollz) ol

(SM8.30) —ACukifi

> (1 = Cirafi = Ca (k2]i)?) | (@0) 1y oo
(SM8.31) — k1]l — aolfs — (03@/2,7) k1 lla — aolly — (Carrfi) A
(SM8.32) > 1 H(CCO)I\JHOO - \/2,

where the last line holds provided fm% < ¢, to be a sufficiently small numerical constants.
If ||(z0) \ slloo > 3A, this is strictly larger than A, implying that |a; (Cayws —y)| > A, and
contradicting the KKT conditions for the restricted problem. Hence, under our assumptions

(SM8.33) (o) ||, < 3A

2. (Solution of Full Lasso problem) We next argue that the solution of the restricted support
Lasso problem, w s, when extended to R" as & = ¢ jw, is the unique optimal solution to the
full Lasso problem

(SM8.34) mwin Plasso(T) = % laxx — yHg + A Z EA
ie€Te
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To prove that ™ is the unique optimal solution, it suffices to show that for every i € I¢,
(SM8.35) | sila]*(axxt —y)| < \.

Indeed, suppose that this inequality is in force. Write & = X\ — max;ese |s;[a]*(a x x™ — y)],
and notice that from the KKT conditions for the restricted problem,

(SM8.36) 0 € Pi0z{rasso(®)

Combining with (SM8.35), we have that for every vector ¢ with supp(¢) C I¢ and [|{]|cc < 1,
then e¢ € Oplasso(x™). Let ' be any vector with «/. # 0 and set ¢ = Presign(z’), then from
the subgradient inequality,

Qplasso(m,) > Qolasso(m—i_) + <8C, z — 33+>
(SM8.37) > Solasso(m+) +e Hﬁfljc

1 )

which is strictly larger than ppas0(@). Hence, when (SM8.35) holds, any optimal solution
& to the full Lasso problem must satisfy supp(z) C I. By strong convexity of the restricted
problem, the solution to (SM8.34) is unique and equal to x™.

We finish by showing (SM8&.35). Using the same expansion as above, we obtain

Si[a]* (I —Cay [Cagcaj]_l Caj}) CaOI\J(mO)I\J‘
sila]” (I = Cas[Ca’iCasl ™" Ca}) Cag-asm0|
(SM8.38) + A

<(
CaiCas) || || CaiCaurs|_ ) I@odrsll
+ (llsila)*Cag-a,ll;
(CaiCas) ™| I1Ca7Cas-asly ) V2 12l

|5i[a]*(Caw; —y)| <

+

sila]*Cq; [Ca’Cay)™! O'J\T‘

sila]"Caap |,

+ [lsila]*Casl,

+ |[sila]*Casll,

(SM8.39) +Alsilal*Cayl; ‘ [Cai’}CaJ]*l‘ Nonell,

< Cy (pkr + pkr X 1 X fikr) X 2X
+ (2\//€[Ha — ang 4+ Co/krp x 1 X /i[”a — ang) X /KT

(SM8.40) + AC3 X kg
(SM8.41) < ((C1+ Cs) s + Cl(ﬁ/ﬁ])Z))\ + (24 Caopirr)kr |la — ao,
(SM8.42) <A,

where the last line holds as long as ¢, is a sufficiently small numerical constant. This establishes
that T is the unique optimal solution to the full Lasso problem.
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3. (Entrywise difference to @) Finally we will be controlling Hm} — (x0) JHOO. Indeed, from
Corollary SM8.7, Lemma SM8.8,

&} = @0)al., = ||[Ca’sCas) ™" CaiCaso = A[Ca’iCas ™ o — (o) _
H[Cayca(]]_1Cajﬂlca07aJ(m0)JHoo +A H [CajKICaJ]_laj\THOO

+ H[Ca?}CaJ]71C’a?<]CaI\J(wO)I\JHoo

<2 HCaﬁcao—aJHD%o H(CBO)JHD +

2+ 2[|CaCanl|, [[(o) ]l

<2261 ||a —aglly |0l + 21 + 2 X 31 X 2K 5 X 3X

< 3k1lla — agll2 + 2X\ + 36Afiks
(SM8.43) < 3,

establishing the claim. [ |

SM8.2. Least squares solution a'¥) contracts. In this section, given @ to be the solution
to the reweighted Lasso from a, we will show the solution of the least squares problem

(SM8.44) a* « argminl||a’«x — yl|;
a’ ERP

is closer to ag compared to a. Observe that in Lemma SMS.1, the solution of (SM8.16)
(SM8.45) 2 = 17(C4;Cas)”" ¢ (CoCaso — APp 1),

by assuming C} ;Cqy ~ I, a = ag and J\ T = 0, is a good approximation to the true sparse
map o

(SM38.46) x ~ I(xg—0) = xo;

furthermore, its difference to the true sparse map ||x¢ — x||, is proportional to ||ag — a||, as
(SM8.47) x—xg & P;(CiCaywo — CihCaxg) ~ P [Ch Crt(ag—a)].

To this end, since we know the solution of least square problem a™ is simply

(SM8.48) at = (L'CECL) ! (L CECLa),

this implies the difference between the new a™ and ag, has the relationship with a — ag roughly

at —ag = (L'CLCH) ! (LFCLChytag — t*CLiCrag)
~ (n)"'*Cp Cay(zo — )
(SM8.49) ~ (nh)! 1" Ch Cay P1CG Cyot(a — ap).

To make this point precise, we introduce the following lemma:
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Lemma SM8.2 (Approximation of least square estimate). Given ag € RP° to be p-shift
coherent and xog ~ BG(0) € R". There exists some constants C,C’,c,c, ¢, such that if
A\ < kg, fik? < ¢y and n > Cp®logp, then with probability at least 1 — ¢/n, for every a
satisfying ||a — aol|ly < [t and x of the form

(SM8.50) x = 17(C};Cay) ' vy (Chy — APp70)

where the set J, T satisfies Isgy €T C J C I, we have

1
oy | CCrmotag — 1*Cj CayPiC; Coyt(ag — a) H2

~ 1
<’ 1 — lla —
(SM8.51) _CA(A+um)+32 la — aqll,

Y logn
with A = X+ NeTER

Proof. We will begin with listing the conditions we use for both & and x¢. First, we know
from Lemma SMS&.1 and our assumptions on the set T', then & approximates x( in the sense
that

(SM8.52) |l — o], < 3A
(SM8.54) [(xo)nr||, < 6A

Write g = g o w with g iid standard normal, w iid Bernoulli and g and w independent. From
(SM8.53) we know |1\ J| = [{i] |gi| < 3\, w; # 0}]. Since Plw; # 0] = 6 and P[|g;| < 3\] <
3\, Lemma SM1.1 implies that with probability at least 1 — 2/n:

(SM8.55) 1\ J| < 3Anf +6VAnflogn < 3Xnf
(SM8.56) II\T| < 6Anf + 12/ nflogn < 6And,
and

(SM8.57) I(I\ J) N slI| < 3 nb% + 6V And2logn < 3Anb?;

together with base on properties of Bernoulli-Gaussian vector xg from Section SM1 and we
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conclude with probability at least 1 — ¢/n, all the following events hold:

(SM8.58) nd < [I| < 2nb,
(SM8.59) %%ymse[m < 2nb?
(SMS.60) r???g(KI\J)ﬁsz[IH < 6Anb?,
(SM8.61) lzoll? < ki,
(SM8.62) @0 * xo|3, < kI,
(SM8.63) lzoll5 < 2n6,
(SM8.64) lzoll, < 2n6,
(SM8.65) 1?28(||P1ﬁ34[1]m0”§ < 2n6?,
.02
(SM866) IE?‘S(HPIQSZ[I\J}:BOHl < 12)\71(9,
(SM8.67) |Caotls < 3n6,

provided by n > C~2logp for sufficiently large constant C.

1. (Approximate C, with Cg,) Since

(SM8.68) "CpCq gotag = t'Cy Cy gorag + L°Cy_, Cyp zirag
where
[6°Ci— 2y Ca—motaoll, < llaolly |z —zoll3 + [|Captll, v2prg§5<|<se[w—wo],w—wo>!

< llo = aall x 1] + VB (o~ aoll,  max 51
< €1 (Wnd + V/2jip? (Ano?))

(SMS8.69) < 2C1\*né,

we have that

(SM8.70) | L*ChCraotag — t*Cph Cor_gorag |2 < 2C1A°nd.

2. (Extract the ap — a term) Observe that
'Cp Cxgotag = t"Cy Cay(x — x0)

= 1°C%,Ca (,,J (Cis7Cas) 45 (CCaymo — AP 1)

~ 45 (C2sCar) ™ (CayCas) (@0)s = Pryao)
= 1"C;,Cay1(C4 Cas) ' Cqy (Cay—ao)
+ L*C;OCGOJ(C;JCGJ)_I 0 (Cazo — Cay(T0) )
— L*C;OCGOPI\JmD
(SM8.71) — M*C} Cays(Ch;Cay) "Wy Ppro,




SM64 H.-W. KUO, Y. ZHANG, Y. LAU, AND J. WRIGHT

where, the second term in (SM8.71) is bounded as

|¢*Cy Cas(CiayCas) ' Coay (Caxo — Ca(wo) )|,
< Caotlly X [|Caslly || (CasCar) 7',

X HCZJCaI\JHQ X H($O)I\JH2

< (4 (\/nH X 3 X fiky X AV Xn&)
(SM8.72) < 3C Kk And;

the third term in (SM&8.71) is bounded as

|16 C Cao Prysoll, = [|¢"Caq (Prypo + eoes) Cop Prisaoll,
< [laoll, || (zz0) r\ s |3
+ 1 Cagtlly x v/2p x x| Prog,in ol < [|(@o)n |l
< O4 <A2 x Anf + /fip? x Anb? x )\)
(SM8.73) < 203 \\nb;
and finally, write A = (C ;Cqay)~ " — I, then the forth term in (SM8.71) is bounded as
M|e*Cyy Caots(Ch s Car) 'y Prra,
= A HL*CaO (-P[ip]\o + 6068) C;;OLJ (I + A) LT]PJ\TO'HQ
<A HCZOLHQ \/%%?8( HPmszU\T]a’O”l + Allaoll HPI\T:COH1

+ MGl V2 [ Prosynoll 1A oo
+ Mlaolly [[@olly | Al VIS T
< C4A<\/ﬁp2 % Anf? + Ané
+ Vip? x nb% X kg +Vnb x fik; Xn@)

(SMS.74) < 204 (X + ﬁm) Ané.

Therefore, combining (SM8.72)-(SM8.74) we obtain

|t*Cs Ca—aotao — t*Cp Cays(Cih1Cas) ' ChhyCay—aol|,
(SMS.75) < O (X + [m,) Ané.

3. (Extract the set J) Lastly, we will further simplify the term with a — ag in (SM8.75) by
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extracting the set J:

t*C} Cays(Cl 1Cay) ' Cl ;Cag—a®o
=1"C3 Cays (I +A)Cy 4 (a—qy)
=1"Cp Cqo, P1C, Cyyt(ag — a)
+1°Cy CoysAC,, ;Crt(ag — a)
+1°C} Cays (CiyCas) ' Ci_ gy 1Caytlao — a)
(SM8.76) —1"CL, Coy P\ jCG Cyot(ap — a),

JCHBOL (aO - a)

where, the latter terms in (SM8.76) are bounded as

HL*C::OCaoJAC;oJCwoLHQ < ||Ca=oLH§ HCaoJHg HAH2 < Cgprgnd
" C;,Cag (CayCas) ™' Ca—agsCont|

< [Caotll3 [Caoills [|(CiyCas) ||, |ICag—atslly < Crfin/Ernd
1P sCiy Cagt 5 < T\ J| [[d0 * 2ol

(SM8.77) < Cghnf x ki < Cy (Am + “Q%”) né,

. 2 1 1
whence we conclude, that since c,r7 < ¢, and Ay < ¢y, as long as ¢, < 155 (C—ﬁ +&+ %)

and n > 10C20~2x2 log? n, we gain:

HL*C;O CaoJ(C*JCaJ)ilc;JCao—awO

a

—1"C Coy PIC, Cyt(ap — a)ll2

(105 + 1055) 70 llao — al,

<
< 3—12n9 lao — all, .

(SMB.78)

The claimed result therefore is followed by combining (SM8.70), (SM8.75) and (SM&8.78). MW

The next thing is to show the operator
(SM8.79) (n0) ™! (¢*C} Cay PiCli Cayt)
contracts a toward ag. We first will show that
(SMS8.80) (n0) ™! (¢*C,Cay PiC Caot) ~ aoay

by seeing ¢*Cy PrCy,t =~ (n0) epef via sparsity of xg. Finally since the local perturbation
on sphere is close to a quadratic function in £2-norm of difference, we have

(SM8.81) (a0, a —ao)| < Llla—aolf3.

Again, we introduce the following lemma to solidify our claim:
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Lemma SM8.3 (Contraction of a to ap). Given ag € RPO to be p-shift coherent and
xo ~ BG(0) € R™. There exists some constants C,C’,c,c, ¢, such that if N < dfikr, fik? < ¢,
and n > CO~2p?logp, then with probability at least 1 — c/n, for every ||a — aoll, < [,

* * * 1
(SM8.82) | ¢*Cy, Cay PiCy Cayt(ag — a) H2 < 3 lla — agl|, nb.
Proof. Since E (Prs;[xo], sj[xo]) = 0 for all i # j and set I, we calculate

E {Lfﬂ:p} C;opfcwob[ip}] = Z E [ejC;, PiCqei] €€}
i€[xp]

= Elzoll3e0e5 + D E|Prsifzo]l; e
i€[+p]\0

= nbepe; + nGQPH[p}\O
(SM8.83) = nb*T + nd(1 — 0) ege}.
whence
E[¢*Cy Cay PiC; Corot] = 1*Cp E [Cy PrCqy) Cayt

(SM8.84) = nHZL*C:;OCGOL + nf(1 — O)aopay,
implying the expectation is a contraction mapping for ap — a when ¢, < ﬁ:

H E [L*C;OCQOPICZOCwOL] (ap — a) H2

< 062 |[u*C, Cant, llao — ally + 6 [laoll, |(ao, ao — a)

< nb? x 2fip x [lao — all, + tné |lag - a2

< (2% + %Cu) lap — all,nb
<

(SM8.85) a1 llao — all,nb.

For each entry of Cj PrCyg,, again from Section SM1 we know with probability at least
1—c/n:

. . C'\/nflogn i=j=0
€7 CaoPrCayej — E €] CF, PrCaej]| < { C’\/nf%logn otherwise

Thus via Gershgorin disc theorem, when n > 103C"20~2p? log n:
Amas (U1 Cang PrConatiiy) — B [t Cisy PrCoagtisy) | ) < C'pv/nlogn
(SM8.86) < &nb.
Finally we combine (SM8.85), (SM8.86) and get
| £*C3, Cao PiCly Cngtlag — a) ||, < (én@ + dnb? \|caobip||§) lao — all,
(SM8.87)

IN

3%||a0—aH2n9. [ ]
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Lemma SMS&.1-SM8.3 together implies the single iterate contract of alternating minimization
contracts a toward ag. We show it with the following lemma;:

Lemma SM8.4 (Contraction of least square estimate). Given ag € RP° to be pi-shift coherent
and xo ~ BG() € R™. There exists some constants C,C’,c,c,, such that if fm% < ¢, and
n > 00 2p%logn, then with probability at least 1 — c/n, for every A and a satisfying

(SM8.88) Spkr > A > bkrlla — aglly,

and suppose x has the form of (SM8.16), then the solution a™ to
SMS.89 in {|la" 2" - y|;}

( ) Juin | [la"« 2"yl

18 unique and satisfies
1
(SM8.90) | Psp-1 [@®] — a0H2 < 5 lla —aoll, -
Proof. Write & as &, then

A (L*CECHL) = 024 (Cpt + Co—got)

min

r 2
> |ouin(Caot) = | Cosytll]
- 2
> Umin(CazoL) - 2\/"7 Hm - (120H2} n
- 2
> [3Von - 8AyVon| X
(SM8.91) > 1on,

where the fourth inequality is derived from using the upper bound of sparse convolution matrix
from Remark SM1.6, and the last line holds by knowing A < 5c,k; . From (SM8.91) we know
the least square problem of (SM8.89) has unique solution a™, written as

(SM8.92) at = (LCiC) N Cly,
whence
at —ag = (L'CLCH) ! (L*CLCryt) ag — ag
(SM8.93) = (L'CLCL) (L CEC oy ot) ag.
Combine Lemma SMS8.2 and Lemma SM8.3, we know
(SMS.94) |5 CLCoy—at |y < (Cl)\ (X + ﬁn;) + L a— a0||2) né

for some constant C7. Combine (SM8.91), (SM8.93), (SM8.94) and since A < ik, by letting
ey < ﬁ, we gain

[¢"C3Cay—at|
— M(rCECre)

la™ — aol|

_ 1 1
(SM8.95) < 200\ (X + i ) t5la—aly < .
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For the final bound,

at

— ay la™ — aolly +[lla™ [l = 1|
la* ]2

2 ||a+||2

2[la* — aoll,

8 +
= 1—|a* —ao, < §Ha —ao,,

- 1
(SM8.96) Co\ (A + um) + glla—aols,,

IN

and since A > Ky |la — ap||,, finally we gain

wrlogn  _ 1
(SM8.96) < Cj <)\m + 1% + um) la—aoll, + 5 lla — aoll,
1
(SM8.97) < 5 la — aol|, [ ]

as long as n > 20020~ 'prylogn and Cu < 20102'

SM8.3. Linear convergence of alternating minimization (Proof of Theorem 5.2 ). In
the first two sections we have shown the iterate contract a toward agp, under our signal
assumption. We tie up these result by showing the following theorem which proves that the
iterates produced by alternating minimization converge linearly to ag:

Proof. We will prove our claim by induction on k. Clearly, when & = 0, we have
5K Ha(o) —a0H2 < A9 = 5hk; and 1O = {z : !si[a(o)]*L*Caoa:O‘ > )\(0)}. Then for all
|z;| > 60 we have

(0] Cago| 2 (1= [(@a0)]) 23] = || Pragp ) Caoess [, < V2 ool
> (1—20)6A0 — 20\/kT x \/2ky
> 500 — 40O

(SMS8.98) 2O,

hence I gy € I (), therefore the condition of Lemma SMS8.4 is satisfied, implies (5.32) holds
for k£ = 0.
Suppose it is true for 1,2,...,k — 1, such that
(SM8.99) mHa(k) —a0||2 < %)\(k_l) = )\(k), and I sg\k-1) C 1%
and since I gy = Iy gy-1) C I®) we can again apply Lemma SM8.4, resulting

(SM8.100) mHa(kH)—aH2 < %mﬂa(k)—ao‘b < %)\(k)

as claimed. [ |
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SM8.4. Supporting lemmas for refinement. The following lemma controls the shift
coherence of a:

Lemma SM8.5 (Coherence of a near ag ). Suppose that aq is ji-shift coherent, and ||a — ap|, <
. Then

(SM8.101) Joff [CClay . < 2
(SM8.102) Joff [C4Culll, < 3

Proof. Notice that for any ¢ # 0, |(a,sslao])| < |{ao, selao])| + | (@ — ao, s¢lag]) | <
i+ lao—all> < 27 Similaly, | (@, selal) | < | (@ — ao, selan]) [+ (@, selao]) | < la—aoll2-+2% <
31, as claimed. [

From this we obtain the following spectral control on CjC4, to simply the notations, we will
write

(SM8.103) C

Qa

1Car = L7CLC L = [CiCalr,1

in the latter part of this section.

Lemma SM8.6 (Off-diagonals of [C;Cqlr 1 ). Suppose that aq is ji-shift coherent and
la —aqlly < . Then

(SMS.104) H C:C, — I MHQ < 9krfi.

We prove this lemma by noting that C;Cq = C., , is the convolution matrix associated with
the autocorrelation rq o of a. Since supp(rqq) € {—p+1,...,p — 1} is confined to a (cyclic)
stripe of width 2p — 1, we can tightly control the norm of this matrix by dividing it into three
block-diagonal submatrices with blocks of size p x p. Formally:

Proof. Divide I into r = [n/p]| subsets Iy,..., I,_1 such that for all £ =0,...,r — 1:
L=In{pl,pt+1,....pl+(p—1)} =IN([p]+pl).

Notice that for each ¢:

supp ([C5Cal1,.1) C Iy % (fe—l Wi Ie+1)7

where £ 4+ 1 and ¢ — 1 are interpreted cyclically modulo r.
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For an arbitrary v € Rl we calculate

\3
|
—

2 2
(SM8.105) H[c;ca - I]MvH2 -3 icze. - I]WvHZ
=0
r—1 9
(SM8106) = Z [C;Ca - I]I@,Ig,1ﬂﬂ](tt'[[+1 v[g,1&JI[LﬂIg+1 9
=0
r—1 9 ,
(SM8107) S [C;Ca - I][[,I[,:{Lﬂ[[&)[@+1 F HIUIZ—I&JIZ&JIZ—O—I H2
=0
r—1 )
(SM8.108) < 3r7 x (31)% x > [vr_wrer |3
=0
(SMS8.109) < 3k7 x 9% x 3||v||3,
giving the claimed result. |

As a consequence, we have that

Corollary SM8.7 (Inverse of [CCyq) 7). Suppose that ag is p-shift coherent, that ||a — agl|, <
fi and that ki < 5. Then for every J C I and any norm Il € {-llamms I
we have

00—+00 HHQ }7

(SM8.110) H[c;;ca—ﬂ(,ﬁ,H<> < 9kl
(SM8.111) H[C’;Ca]jf,—IHO < 18k771
(SMS.112) H[C;C’Jﬂ“o < 2.

Proof. First we prove

(SM8.113) H[C:;Ca - I]J,JH2 < 9k,
(SM8.114) H[c;;ca 1], )OMO < 6r1fi,
(SM8.115) H[C;;Ca - I]J»JHDAD < 6rril

Where the first claim follows from Lemma SMS&.6. The second follows by noting that the ¢*°
operator norm is the maximum row ¢! norm, and that each row has at most 2x; entries, of
size at most 3. The last follows by noting that

H[CZCa _I]J,JH

‘[CZCa ~ lsegi+o, @) |

(SM8.116) < 6k]i.
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Then we prove

H[C;Ca];}, _ IH2 < 18k17,
H[C{’;Ca]jlj . IH < 12677,
’ 00—00

(SM8.117) H[C;Ca]; < 126171,

71
O—0

which are followed from the fact that if || - [|¢, is a matrix norm and [|A[|, < 1, then

_ [PAN[PS
I+A) ' -1, < —"-9% |
H( ) HO L—[Allg

Finally, (SM8.112) follows from the triangle inequality. [ |

Also, we need to bound the convolution of ag — a with |lag — al|, requiring for bounds of the
lasso solution:

Lemma SM8.8 (Convolution of ag—a). Suppose that ag is p-shift coherent and ||a — agl|, <
1, then for every J C I,

(SM8.118) 11CsCag-alsilons < V51 lla— ol
(SM8.119) I1CCap-alasll sy < V261 lla —aoll,
Proof. For the first inequality, we have
I[CaCao-alsivlln,e = max [(sjlal], (ao — a) * v)|
jed, |lvllg=1
< max HP[,,]_H- [(ap — a) * v]H2

~ j€n), [vllg=1

< |la — aol|, x je[nﬁﬁfﬁgzl HP[iP]HvH1

(SM8.120) < V261 [lag — all,

The second inequality is derived by

lICaCap-alssllp o = max |[CsCao—alsn(wi+o),n 201+ ||

< /2w Vsl 3y o — )P

(SM8.121) < V2kr |la — aglly,
finishing the proof. |

Again, using a variant of the argument for Lemma SM8.6, we have the following:
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Lemma SM8.9 (Off-diagonal of submatrix of C;Cly,). Suppose that ag is p-shift coherent
and ||a — agll, < p. For any J C I, if

(SM8.122) ko= max |J {60+ 1,. . 04+ p—1}]
(SM8.123) Frng = max|(T\J) O {641, 0+ p—1)]
Then

(SM8.124) H[C;CGO]JJ\J‘L e N

Proof. Take r = [n/p] and for £ =0,...,r — 1, write
Je=J0([p]+pb),  Le=I\J)N([p] +po),
Take v € RI\| arbitrary and notice that

2

* 2 — *
liCsCaansv], = 2 CsCasnsv],
=0

r—1
2
= Z H[CZC‘J'O]J[7LK,1ULZUL[+1 vLZ—IULZULl+1 2
£=0
r—1 )
< AR* X Ky X 3k g X Z oL, uzoore, |5
£=0
(SM8.125) < A4p* x kg X 3kp g % 3|03,
giving the result. |

Lemma SM8.10 (Perturbation of vector over sphere). If both a,aqy are unit vectors in inner
product space, then

(SM8.126) a,a—ao)| < Lla—aol;.
Proof. Via simple norm inequalities:

(SM8.127) %Ha—aoﬂg =1-(a,a0) = 1-(a,ap—a+a) = (a,a—ay) >0 N

Lemma SM8.11 (Convolution of short and sparse). Suppose € RP, and v € R™ where
supp(v) = I satisfies

(SM8.128) Enz[u]c [ IN([p]+0)]| < &
€mn

then

(SM8.129) 16 +vlly, < V266l [lv],
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Proof. Since every p-contiguous segment of I has at most s elements, by splitting I =
I Wby, . .., Wi, W R such that each sets I; are p-separated:

I = {ilviﬁ+1ai2n+1,-..}ﬂ{o,.._,n—p_1},

12 = {i27if€+27i2n+2,--.}m{o,...,n—p_1},
(SM8.130) I, = {ix ion,i3e, ...} N{0,...,n—p—1},
(w8131 R = 100 pein 1),

Then the p-separating property gives ||d * Pr,v|, = ||d||5 || Pr,v||,. Hence:

|0 * Proll, = 26 * Pr,v+ & % Ppo|| < Z |6 * Prv||y + ||0 * Prol|
1ER 2 1ER
= 116l oz lly + l18l; | Prolly
1€ER
< VElvnw,.onl: 10, + Ve lvell 6],
(SM8.132) < V2k ]y [10]l;,
where the last two inequalities were coming from Cauchy-Schwartz. |

SM9. Finite sample approximation. In this section we collect several major components
of proof about large sample deviation. In particular, the concentration for shift space gradient
x(3)i, shift space Hessian diagonals HPI(a)s,i[mO] and the set of gradients discontinuity
entries |Jp(a)|.

SM9.1. Proof of Corollary SM3.4.

>

Proof. 1. (e-net) Write @ as xo and [|3||, = n through out this proof, firstly from

C

Definition SM2.1 for every a € U} <xR(Sr,v(cu)), we know n < 1+ ¢, + Wg@* < /b

Define & = 57—~ and consider the e-net N for sphere of radius 7. From Lemma SM10.5 we
n3/2p

know for any co < 1:

2p 3/2,2\ 2P 2\ 3p
(SM9.1) INL| < <377> < <3n P ) < <3np )
£ Co C2

for each ¢ € [n] define such net as N ;, and define an event such that all center of subsets in
N ; are being well-behaved:

T2 1

(SM9.2)  Eer = {\ﬁ elnl, on 'x[Beli — oin T 'Ex[B:]; < pg,g Ve € N}

2. (Lipschitz constant) The Lipschitz constant L of x[]; w.r.t 3 is bounded in terms of @
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regardless of entry :

|X[ﬂ]i - X[:@/]i’ <

< ”wHQ

- CuS) [5 [3} — e LSy [\C/wﬂ’”

(2

51 [CoBl]| - 3 [Cas]

< %J >

J€n]

2

2

5\ [Cof| 81 |Catt]

J J

< lall, | CoB - CaB |
(SM9.3) <lzly-lzl,- |88, = L|B-81,
Define the event that x|[3]; that has small Lipschitz constant as

(SM9.4) ELip 1= {L < 2n3/20}

on the event iy, for every points in R(Sr,v(cy)) and ¢ € [n], there exists some 8. € N ;
such that

@0

(SM9.5) ‘(amflx[ﬁ]i — UmflEx[ﬁ]i) — <amflx[ﬁe]i — Uinflm»‘ <2Le < T

On event Erip N Enet, (SMI.2), (SMI.5) implies x[B] is well concentrated entrywise and
anywhere in Uj- < R(Sr, v(cp)):

_ = c1 +c2)f ]
(SM9.6)  |gin~'x[8]i — oin 'Ex[8];| < (129?,/22)a Va € Up<kR(Sr, v(cw)), Vi € [n]
as desired, where, using Lemma SM1.2,
(SM9.7) Pleg,] <P [qug > 2n9} <1/n;
and using union bound,
P[] <P o x(Be)i — o Ex[B, > S
[ERet) < a?é?\}ii oin” x[B:)i —on X[ﬁs]i > W
i€[n] ]
_ _ c10 ]
(SM9.8) < n|NP [aon X[B:]o — oon 'Ex[B:]o > Iﬁ )

3. ( Bound P[&,]) Wlog write n =t - (2p) for some integer ¢t and 2p > 4py — 3 and replace
xo with . Observe that Z;(3) from (SM3.9) is independent of Z;9,(3) for all j € [n] while
all Z; are identical distributed. We write x[B]o as sum of iid r.v.s. as

n/2p—1

xBlo=>_2iB)= > | Y. Zirow(B)
t=0

J€n) ke[2p]
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wlog let g = 1 and split the independent r.v.s, write EZy = [EZ, bound the tail probability of
x[B]o as

n/2p—1
C1

(SM9.9) P |n~'x[Blo > n 'Ex(8), + pg/i] <%-P| S Zoyp(B) > %Ez(ﬁ) 4 and

2p5/2

The moments of Z can be bounded by using |Zy(8)| < |zo| |Boxo + s0| < Box3 + |To| 0]
where sg = 2#0 By, write = w o g ~j;q. BG(6). For the 2-norm we know

2
1
<OIBIE <6 (1+cu+

< —

2
(SM9.10) E |so|? = ) <3

As for the g-norm, use the moment generating function bound, such that for all ¢ > 0:

E |so|? < qlt "Eexp [t[sol] < ¢/t~ [ ] Buy.g, exp [twe|gel |Be]
‘

< 2q't™14 HE“’L’ exp [wgtzﬁl?/?]
V4

(SM9.11) <2gt™ ][ (1 -6+ 0exp [t2587/2])
L

notice that the entrywise twice derivative of (SM9.11) w.r.t. 32’s are always positive, this
function is convex for all 3Z. Constrain on the polytope 3, ,Bg <l ,8”2, the maximizer of
(SM9.11) w.r.t. 32’s occurs and a vertex point where 32 = H,@H2 Thus

(SM9.11) < 241t~ (1 — 0+ 0exp [t2 1812 /2}) [t — 6+ 06¢%) < 2qt9(1 + g exp[|BII2 2/2).
(40

Choose t = \/q/ ||B|l5, use ¢!! > (q!/2) - (e/q)%?, we have

(SM9.12) E|[sol? < 2¢!q~ 72 ||B]|% (1 + 0 exp [q/2]) < 8|8]|9 max {efq/Z, 9} q'l.

Apply Jensen’s inequality (ZZ]\L 1 z,) < Na—1 ZZ Lz}, use Gaussian moment Lemma SM10.2
, (SM9.10) and (SM9.12), obtain for ¢ > 3,
EZ(8)” < E (Bowj + |wol |sol)” < 2E [Baf + xis] < 66 + 26 |83 < 79,
EZ(B)" < E (Bowf + |wo| [sol)” < 27" (B! + E |20l E |s|7)
<0271 (2q — 1)+ 629 (g — 1) (8 18]/ max {e a/2 9} qu)
< 04!+ 627|813 q"-
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Thus, recall that ||B|, = n, use (02, R) = (80n%,4n), from (SM9.8)-(SM9.9), apply Bernstein
inequality Lemma SM10.4 with n > Cp®0~2logp, and ¢, ca € [0, 1] we have

n/2p—1

cinb
P [gl%et] S 2np ‘NS, -P Z ZQtP EZ(B) 21195/2
2 3P _ 5/2\ 2
<9 3np ox (c1nb/2p°/?)
=P 7, P 16n6n?/2p + 8ncind /2p>/?
< i1 np2 cln¢9/2p5/2)2
R og 2 16n6n?/p
2 2
np cinb
4pl
( e ( 2 > 64y’ >
—c2nb? 1
SM9.13 <e L -
( ) - < 100p* > n

when log -

SM9.2. Proof of Corollary SM4.3.

Proof. Write x as xg though our this proof. Write B;x; + s; = Eze[ip} Bexy_ir; =
(B, @(1p—i1;), and the support w.r.t. some a as I(3). Define the random variable Z;;(8) as

(SM914) HPI(ﬂ)S_’[m]HQ Z s 1{| ﬁw[j:p ity |>)\} = Z Zzg
JEM] JjE€[n]
and define {Z,,] } eln] that are independent r.v.s. and as a upper bounding function of
Z;(B) as
B z5, (8, Bp-ins)| > A
(SM9.15) Zij(B) == {0, (B, @ pap)ins)| < N/2,

:13

(Kﬂ? T+p| z+]>| )\/2), otherwise

chA
24np\/p0 lognlogf—1
some ¢ > 0 and consider the e-net N; for sphere of radius 7. From Lemma SM10.5 we know

2p 2p
(SM9.16) IN:| < <377> < <c7§ np*+/0 || lognlog - ) < < 72 > ,
2 C

26X
for each i € [n] define such net as N; ;, and define an event such that all center of subsets in
./\/57,- are being well-behaved:

Similar to proof of Corollary SM3.4. Let 8|, < n < (/p. Define ¢ = for

(SMO.17)  Exe:={Vi€n], |n' > Zi(B) —EZi(Be)| <
Jj€n]
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Also, >, Z;;(B) is a Lipchitz function over 3 for every i € [n] as

Y ZyB) - ) Ziy(B) < Z )\/2 <5 B @it

J€[n] J€[n] J€E[n]
< 2] ||@p) il — g,
z{ r e,

< )\/2 ||ac|]2 maXHﬂ%pHJHz HB BH2

(SM9.18)

and define event &1, such that the Lipchitz constant is bounded as

(SM9.19) ELip == {L < 12n6+/pb lognlogH—l)\_l} ,

then on event &rp, for any points 8 in R(Sr,v(c,)) and ¢ € [n], there exists some B; in
with ||8 — B[, < €, and thus

/

— — — — 9

(SM9.20) || n ' Zy(B) ~EZi(B) | - |n 'Y Zij(B:) —EZi(B:) || < 2Le < 2
seln) seln) P

On event Erip N ENet, from (SM9I.17), (SM9.20), we can conclude that for all 3 € R(Sr,v(cy))

and ¢ € [n] that:

nt HPI s_i[xo H2 -n 1IEHPI S_; :co n1 Z ZU Z(,8)
J€[n]
S (Cl +02)9

SM9.21
( ) ’

as desired, where the error probability of £f; is bounded using Lemma SM1.2 and Lemma SM1.3,
which give

P [Ef;,) <P [H:c”% > 2n9} +P [rréz[n]( Hac[iijH2 > 34/phlognlogf—1!
j€[n
(SM9.22) < 3/n,

when n > 1030~!. As for &fet use union bound and split the r.v.s since Zj, Z; 2, are
independent for all j:

w2 n_— cinb
]P)[glsfet] < 2np- |'/\/’€| P Z Zi,2kj(5) - %EZZ(/B) = 2172

k
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Now we calculate the variance and L9-norm of ), kaj for ¢ > 3:

EZ;; < Ea? <30

(SM9.23) { — -
EZ}; <Ex? <0(2¢ — )1 < § - (30) - 207!

and apply Bernstein inequality with (o2, R) = (36, 2), then use n > Cp*0~!logp and ¢}, ¢, < 1
to obtain
n/2p

2np |N:| P Z Z;215(B) —
k

n | cnb
2p2 ' T 2p2

72 (c\nd/2p?)?
< log(2 2pl ?1 - 1
= CXP [og( np) + 2plog (0’20,\ P08 n) 610/2p + 4\ nb /2p?
2 Enb
< exp [Bp log <c’20)\ np~ log n) — 2453
(SM9.24) < exp|—cfnb/(50p%)] < 1/n,
where the last two inequalities holds when & > %. The other side of inequality of
1 =2
(SM4.9) can be derived by defining Z,; as
ot (B, ®Lap)-i5)| > 3N/2
(SM9.25) Z,(8) =0, (B pp—ing)| <X,
)\—/2 (K,@, :c[ip]_iﬂﬂ - ), otherwise

and define Enet, Erip similarly, such that on intersection of these events,

0| Prgysilal|; — n B || Pygys il > 07t Y Z,(8) — EZ,(8)

JEn]
(SM9.26) > @+ a)
p
as desired. [ |

SM9.3. Proof of Lemma SM5.5 .

Proof. 1. (Expectation upper bound) We will write & as xp. Similar to proof of Corol-
lary SM3.4 let ||8]|, < n < \/p. For each i € [n], define the random variable

(SM9.27) Xi(B) = L{(s[2],8)-r<B} + 1{|(sif] B)+A<B}

then number of indices for vector x x ,E that are within B of £\ is a random variable
>_icfn) Xi(B). For each of the X;(8)’s consider an upper bound X ;(B) defined as

(Ksilz], B) — (A =B = M)) [(si[z],B)| € [\ = B— M, - B]
|(sil«], B)| € [\ = B, A + B]
(A+ B+ M) = [{sifz], B)]) [{si[z],B)| € [\ + B, A+ B+ M|

(SM9.28)  X:(8) =

=
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where B < M = c\0?/ (plogn) < A/4 for some constant 0 < ¢ < 1.

Notice that & ~j;4. BG(0) is equal in distribution to Py(g)g, where g ~i;.q. N(0,1), and
I(a) C [n] is an independent Bernoulli subset. Conditioned on I(a), (z,8) = (g, Pj(4)8) ~
N(0, HPI(G)ﬁHz). For all realizations of I(a), the variance HPI(G)’B‘E is bounded by HPI(a)lguz <
||,3||§ < p. Using these observations, and letting f,(t) = ( 27ra)71 exp (—t2/202) denote the
pdf of an N(0,0?) random variable, the expectation of 3. X;(8) can be upper bounded as

Y E[Xi(B)] <(@2n)-P[(x,8) € [A\—B—MA+ B+ M|

i€[n]
<(@2n)-2(B+M t
< (2n) - 2B+ )steltlgp] te[A— Bm]\/E[D)S—Q-B-i-M]f o(t)
<4n(B+ M) sup fo(A—B—-M)
a2€(0,p]
(SM9.29) <dn(B+ M) sup fs(N/2).
a2€(0,p]

Notice that

d f A d 1 A2 A2 — 40? A2
—folz|=——exp|—=—= ]| =——exp|—== |,
do 2 do /2o P 802 44/ 2ot P 8o?
and hence f,(\/2) is maximized at either 02 = 0, 02 = p or 02 = A\?/4. Comparing values at
these points, we obtain that

1 1
(5M9.30) S L0/ < ) € e (~3) < r

whence, by letting B < cA§?/ (plogn), the upper bound of expectation become:

4enb? ——
SM9.31 E < — B M) < =:nEX(B).
(SM9.31) S E[X(8 LA < S EX(B)

1€[n]
2. (e-net) Define ¢ = 3p24510g022‘é\231‘2g0,5 -1~ Write A = ¢,/4/|7[ and consider the e-net N for
sphere of radius n < ,/p. From Lemma SM10.5 we know
3n 81 |7| plog® nlog H—* 2plogn\ P
M9.32 < <

(s9.32) < (2)” < (B < (s

and define an event such that all center of subsets in N; are being well-behaved:

18¢nh?

VIBE € NE)
plogn

(SM9.33) Exet =4 Y Xi(B:) — nEX(8:) <

i€[n]
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3. (Lipschitz constant) Furthermore, the function Y ) X;(3) is Lipchitz over 3 such that

S XiB) - Y X8| < 1 (silal. 5 8]
1€[n]

i€[n] i€[n]
n
< 7?&% H‘P[ip]JrinQ H,C—} - ﬁle
=L Hﬁ - B/H2

define the set N. where Lipschitz constant is well bounded:

\/—,1
Erip = {ngn pflognlog }7

M

then on event &, for every B in R(Sr, v(cu)), there exists some 3. in N ; with |8 — B ||, < €,
thus

2enh?

plogn’

(SM9.34) > Xi(B) -nEX(B) | - | Y Xi(B:) - nEX () || < 2Le <

i1€[n] i€[n]

On event Erip N ENet, from (SM9.31), (SM9.33) and (SM9.34), we can conclude that for every
B € R(Sr,7(cy) and i € [n)],

— 24cn6?
SM9.35 Xi(B) <
(SM9.35) S X< e

as desired, where the error probability of Sﬁip is bounded using Lemma SM1.3, which gives
(SM9.36) P[&f,) <P [mzﬁ | 2p)+5]l, > 3VpOlognlogh=—1| < 2/n,
JE€n

4. (Bound P[£f,]) Wlog let us assume that 2p divides n. By applying union bound and
observing that X,(3) is independent of X ;12,(3) for any i € [n], we split >, X;(3) into n/2p
independent sums of r.v.s, we have

n2p-l _ 9cnh?
PleRal S DN P | 3 (Xa(B) -2 [X(B)) > S
=0

where each summand has bounded variance and L%-norm derived similarly as its expectation
such that

1 AcH?
EXi(B)! <2 -P[(sife].B) e A =B~ M A+ B+ M <2 50 -2(B+M)< plf)gm
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and apply Bernstein inequality Lemma SM10.4 with (02, R) = (4c6?/ (plogn), 1), obtains

n/2p—1

— — 9cnb? —(9en®? /p?log n)?
P Xoy; —-E|X B
jz::o ( 2pj (16) [ (/6)]) > p2 IOgTL p |:20n92/p2 logn + 2(967192/]72 10g n):|
—4cnb?
< exp ,
p?logn
thus when n = Cp°0—2 log p:
2plogn 4enb?
. Ci < — < [ |
(SM9.37) P [ERet) < exp |log(2p) + 13plog ( oo > Plogn| = 1/n

as long as logc >10°/ (c* - ¢y).

SM10. Tools.

Lemma SM10.1 (Tail bound for Gaussian r.v.). If X ~ N(0,0?%), then its tail bound for
t >0 can be

(SM10.1) P[X > 1] <

o_. ( t2 >
< [ — ——
tV2m P\ 202
Lemma SM10.2 (Moments of the Gaussian random variables). If X NN(O,O'Q), then for
all integer p > 1,

(SM10.2) E[|X[] < o® (p — 1)1,

Lemma SM10.3 (Gaussian concentration inequality). Let € = (x1,...,%,) be a vector of n
independent standard normal variables. Let f : R™ — R be an L-Lipschitz function. Then for
allt >0,

2
(SM10.3) P[|f(@) — Ef(x)| > ] < 2exp <_2th> .

Lemma SM10.4 (Moment control Bernstein inequality for scalar r.v.s). ([SM4], Theorem 7.30)
Let @1, ..., x, be independent real-valued random variables. Suppose that there exist some
positive number R and o such that %Z?:l E [Xf] < o? and

LS L ElekF) < $0%RP2pl, for all integers p > 3.

Let S =" | @i, then for all t > 0, it holds that

2
SM10.4 Pl|S—E[S]|>t] <2 - .
(SM10.4) 15~ BIS) > d < 200 (-5 )
Lemma SM10.5 (e-net on sphere). [SM6] Let (X,d) be a metric space and let ¢ > 0. A
subset Nz of X is called an e-net of X if for every point x € X there exists some point y € N
so that d(z,y) < e. There exists an e-net N for the sphere S"~1 of size |INZ| < (3/e)".
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Lemma SM10.6 (Hanson-Wright). [SM5] Let @1, . . . , @, be independent, subgaussian random

variables with subgaussian mnorm sup,, p 12 (E |xf])1/p < o. Let A € R"™*", then for every
t>0,

12 t
6404 || All7 8v202 | All

(SM10.5) Pllz*Ax — Ex*Ax| > t] < 2exp [ —cmin

Lemma SM10.7 (Maximum of separable convex function). Let f: Ry — Ry be a convex
function of the form f(x) =z — s(x) with s : Ry — R satisfying
s(y)

5(@) < =22, forallz >y >0.
Z Yy

Then forn € N and 0 < N <nlL,

(SM10.6) max Zf(xl) <N (1 — S(LL)>

0<z<L, ||z||; <N

Proof. Since the feasible set is a convex polytope; the convex function ;" , f(x;) is
maximized at a vertex, and that its vertices consist of 0 and permutations of the vector
[L, o, Lr 0, ..., 0], where r = N—|N/L| L < L. Then the function value at the maximizing

———

[N/L]

vector x, can be derived as:
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