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ABSTRACT

Natural Language to SQL (NL2SQL) has seen significant advancements with large
language models (LLMs). However, these models often depend on closed-source
systems and high computational resources, posing challenges in data privacy and
deployment. In contrast, small language models (SLMs) struggle with NL2SQL
tasks, exhibiting poor performance and incompatibility with existing frameworks.
To address these issues, we introduce Feather-SQL, a new lightweight frame-
work tailored for SLMs. Feather-SQL improves SQL executability and accuracy
through 1) schema pruning and linking, 2) multi-path and multi-candidate gen-
eration. Additionally, we introduce the 1+1 Model Collaboration Paradigm,
which pairs a strong general-purpose chat model with a fine-tuned SQL special-
ist, combining strong analytical reasoning with high-precision SQL generation.
Experimental results on BIRD demonstrate that Feather-SQL improves NL2SQL
performance on SLMs, with around 10% boost for models without fine-tuning. The
proposed paradigm raises the accuracy ceiling of SLMs to 54.76%, highlighting its
effectiveness.

1 INTRODUCTION

Table 1: NL2SQL performance on the BIRD DEV
dataset. EXE (Executability) measures successful
query executions, while ACC (Accuracy) measures
correct result matches.

Natural Language to SQL (NL2SQL) is the task
of converting natural language questions into
corresponding SQL queries, allowing users to
retrieve structured data from databases without
requiring proficiency in SQL language. In re-
cent years, the field has seen significant advance-
ments with the emergence of large language
models (LLMs) such as GPT-4 (OpenAI, 2024),
enabling frameworks like CHASE-SQL (Pour-
reza et al., 2024) and XiYan-SQL (Gao et al.,
2025) to achieve state-of-the-art (SOTA) perfor-
mance. However, two limitations hinder their
practical adoption. First, mainstream methods
depend on closed-source models, and their re-
liance on external APIs introduces data privacy
risks in sensitive domains like healthcare and
finance (Liu et al., 2024). Second, most open-
source research focuses on models with 7B–30B
parameters, leaving small language models (SLMs) with 4B or fewer parameters relatively under-
explored. Meanwhile, many relational databases are deployed on high-performance systems with
limited GPU resources. With efficient inference frameworks (e.g. Intel IPEX-LLM (Intel, 2024))
or quantization techniques, SLMs can help drive the broader adoption of NL2SQL in real-world
scenarios while preserving data privacy.

† Corresponding author.
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In this paper, we focus on enhancing NL2SQL performance using SLMs. As shown in Figure
1, SLMs face two key challenges: (1) one critical issue is their sharp decline in executability.
Unlike LLMs, which can effectively handle long-context dependencies, SLMs struggle with complex
database schema and verbose prompts, often leading to confusion or hallucinated outputs (Nguyen
et al., 2024; Qu et al., 2024) (Figure 1); (2) existing frameworks for NL2SQL tasks with LLMs
are incompatible with SLMs, as they rely on strong instruction-following capabilities to produce
intermediate results, which SLMs lack. As illustrated in Figure 2, SLM outputs frequently violate
imposed requirements: they often fail to conform to JSON or array specifications and do not
meet predefined constraints. Directly applying these frameworks to SLMs may further degrade
executability.

Figure 1: Examples of typical syntax errors pro-
duced by small language models (SLMs) in an
NL2SQL scenario.

To address these challenges, we propose
Feather-SQL, a lightweight framework tailored
for SLMs to enhance both executability and ac-
curacy in NL2SQL tasks. Feather-SQL con-
sists of six key components: schema pruning,
schema linking, multi-path generation, multi-
candidate generation, correction, and selection.
Designed specifically for SLMs, schema prun-
ing streamlines input processing by discarding
irrelevant tables, allowing models to concen-
trate on essential database elements. Schema
linking improves alignment between questions
and database schema, ensuring accurate column
selection. To mitigate errors from linking and
pruning, multi-path generation explores diverse
query formulation strategies, enhancing robustness. Multi-candidate generation further improves
the model’s executability and accuracy by enhancing the variety of generated SQL queries, thereby
increasing the likelihood of producing correct candidates. The best candidate is then selected through
execution validation and ranking. Complementing these components, we introduce extraction and
simplification prompting strategies. Extraction selectively retrieves key information, while simpli-
fication removes extraneous prompt details to lower computational overhead. By integrating these
techniques, Feather-SQL enables SLMs to generate SQL queries more reliably despite their inherent
limitations.

Figure 2: Experiments conducted on a CHESS-
provided BIRD subset for schema linking. Models
are required to output a JSON-formatted response
containing no more than five relevant columns re-
lated to the question, without generating any extra-
neous content.

A common approach to enhancing SLMs is
fine-tuning. However, while fine-tuned SLMs
for SQL generation tasks (e.g., Prem-SQL
(Anindyadeep, 2024), CodeS (Li et al., 2024a))
outperform general-purpose chat models on core
NL2SQL tasks, they suffer from catastrophic for-
getting (Luo et al., 2025; Kotha et al., 2024) on
auxiliary tasks—where task-specific fine-tuning
erodes their foundational reasoning abilities. To
counter this, we propose 1+1 Model Collabo-
ration Paradigm, in which a general-purpose
chat model handles reasoning-intensive auxil-
iary tasks (e.g., schema linking and candidate
selection), while a fine-tuned SQL specialist fo-
cuses on query generation. This collaboration
leverages both models’ strengths: the general
model provides broad reasoning ability, while
the specialist delivers domain-specific precision. Experiments confirm that the paradigm improves
overall performance. Our main contributions are as follows:

• We introduce Feather-SQL, an NL2SQL framework for SLMs to address their unique
challenges of low executability and incompatibility with existing LLM-based frameworks.

• We propose a novel 1+1 Model Collaboration paradigm that mitigates catastrophic forgetting
in fine-tuned SLMs by delegating reasoning-intensive tasks to a general-purpose chat model.
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• Extensive experiments on the Spider and BIRD datasets demonstrate that Feather-SQL
consistently achieves strong performance with various SLMs, and when paired with the
paradigm, it yields SOTA results on BIRD within the scope of SLMs.

2 RELATED WORK

2.1 CONVENTIONAL METHODS

Extensive research on NL2SQL has been carried out. Early investigations (Zelle & Mooney, 1996;
Li & Jagadish, 2014; Saha et al., 2016) predominantly employed rule-based or template-based
approaches, necessitating considerable manual effort and thereby limiting both their adaptability and
generalizability.

To address the shortcomings of earlier methods, sequence-to-sequence models have been proposed.
In such models, encoders are responsible for learning the semantic representations of natural language
questions and the associated database schema, while decoders generate the corresponding SQL based
on these representations. Representative approaches in this category include IRNet (Jha et al., 2019),
SQLNet (Xu & et al., 2017), Seq2SQL (Zhong et al., 2017), RyanSQL (Choi et al., 2021), and
RESDSQL (Li et al., 2023a), each contributing to advancements in query generation.

Meanwhile, some methods choose to fine-tune pre-trained language models such as BERT (Devlin
et al., 2019) and T5 (Raffel et al., 2023), leveraging the broad knowledge captured during pre-training
to enhance accuracy and robustness. For instance, Graphix-T5 (Li & et al., 2023) integrates a pre-
trained transformer with specialized graph-aware layers, improving performance on tasks requiring
graph-structured data analysis. Nonetheless, these strategies often demand extensive training data
and face considerable challenges when dealing with complex questions and database schema.

2.2 EMERGING LLM AND SLM APPROACHES

More recently, the emergence of LLMs has marked a watershed moment. LLM-based NL2SQL
methods (Dong et al., 2023; Pourreza & Rafiei, 2023; Gao et al., 2023; Wang et al., 2024; Li et al.,
2024b; Qu et al., 2024; Talaei et al., 2024; Ren et al., 2024; Pourreza et al., 2024; Gao et al., 2025)
have risen to prominence as leading solutions. For example, DIN-SQL (Pourreza & Rafiei, 2023)
decomposes the NL2SQL task into subtasks—such as schema linking, difficulty classification, and
SQL generation—thereby streamlining decision-making and enabling more accurate query outputs.
CHESS (Talaei et al., 2024) adopts a multi-agent framework in which each agent is assigned a specific
model and a few-shot prompting strategy to handle different subtasks. While these approaches offer
impressive performance, they introduce security risks and lead to steep increases in computational
costs.

Employing SLMs to address NL2SQL tasks has the potential to alleviate the aforementioned chal-
lenges. CodeS (Li et al., 2024a) incorporates incremental pre-training and bi-directional data aug-
mentation to fine-tune a series of models (1B, 3B, 7B, and 15B parameters). Models specifically
finetuned for NL2SQL tasks, such as premSQL (Anindyadeep, 2024) and SQLCoder (Defog), have
likewise demonstrated notable success. Nevertheless, these models remain susceptible to the effects
of catastrophic forgetting, which diminishes their capacity to perform general reasoning tasks—such
as schema linking—within the broader NL2SQL workflow.

3 METHODOLOGY

3.1 FEATHER-SQL

As shown in Figure 3, we propose Feather-SQL to enhance the performance of SLMs in NL2SQL.
This framework comprises several components, including Schema Pruning, Multi-Path, and Multi-
Candidate Generation, which are specifically designed to address the challenges of SLMs. We will
elaborate on these components in the following sections.

Schema Pruning. This step dynamically reduces schema complexity by identifying and filtering out
irrelevant tables. Given the complete set of Data Definition Language (DDL) statements for all tables,
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Figure 3: An overview of the Feather-SQL framework for small language models (SLMs) in NL2SQL
tasks. The pipeline comprises six core modules—schema pruning, schema linking, multi-path
generation, multi-candidate generation, correction, and selection—which collaboratively boost query
executability and accuracy. Additionally, the 1+1 Model Collaboration Paradigm pairs a general-
purpose chat model for auxiliary reasoning with a SQL fine-tuned model for query generation,
balancing broad contextual understanding with domain-specific precision.

the model analyzes semantic relevance to determine which tables are pertinent to the question. Only
the DDLs of these relevant tables are retained in the subsequent processing pipeline. This selective
retention mechanism prevents SLMs from processing long inputs, thereby mitigating their limitations
in handling long text while preserving essential information.

Schema Linking. This step aligns the question with the database schema by identifying relevant
columns through semantic analysis. As a commonly adopted practice, schema linking extracts
pertinent columns from the complete schema based on the given question, facilitating downstream
processing. By establishing precise mappings between natural language expressions and database
elements, this process significantly enhances SQL generation accuracy.

Multi-Path Generation. This step employs four distinct prompt types: (1) with both schema
linking and pruning, (2) linking only, (3) pruning only, and (4) without either operation. The multi-
path design mitigates the risk of information loss caused by pruning errors and reduces potential
misunderstandings arising from linking inaccuracies.

Multi-Candidate Generation. This step generates multiple SQL queries in parallel to increase the
likelihood of producing a correct result. To ensure diversity, beam search is employed alongside
carefully tuned temperature and top-p parameters. Each path consistently generates a fixed number
of candidate queries, maintaining a balanced exploration of possible solutions. Notably, while LLMs
often generate executable answers on the first attempt with minimal accuracy improvement from
additional candidates, SLMs benefit significantly from multi-candidate generation, which enhances
both executability and accuracy (Appendix B).

Correction. This step executes each generated query and handles it based on the outcome. If a query
executes successfully, it is directly added to the array of executable SQL queries. For failed queries,
error feedback is used to revise the query through a self-correction approach, generating two new
candidate queries. If any of these revised queries are executable, they are also stored in the array of
executable SQL queries.

Selection. This step employs a selection ranking method to evaluate all executable queries based on
their alignment with the expected answer. If a query yields a limited number of results, the evaluation
considers both the query and its execution outcome. In contrast, the evaluation focuses solely on the
query itself. The selection process is repeated three times, and the mode of the rankings is returned as
the final result.

3.2 PROMPTING STRATEGIES

Extraction. As mentioned in Section 1, SLMs struggle to meet structural constraints, thus we
propose an extraction strategy to avoid rigid structural outputs by allowing SLMs to freely generate
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responses. This improves accuracy on reasoning tasks by bypassing syntactic constraints. We have
two methods to achieve that: (1) Lexical Matching: This method identifies valid schema elements
by matching table/column names explicitly mentioned in the natural language response against the
database schema. For instance, when the SLM outputs "The required tables include customer and
orders", the system verifies and extracts customer/orders only if they exist in the schema. (2) Pattern
Matching: This method extracts the final answer by identifying predefined patterns in the model’s
output, such as "answer is" or "Answer:". For example, if the model generates “The answer is 128",
the framework detects the pattern and extracts "128" as the final result.

Simplification. The simplification strategy reduces computational overhead by minimizing prompt
verbosity. In Feather-SQL, we achieve this by removing superfluous details and using concise
instructions with the fewest effective examples (Appendix C). This approach refines the input by
eliminating unnecessary complexity, avoiding the need for SLMs to process lengthy inputs while
maintaining the clarity of the task.

3.3 1+1 COLLABORATION PARADIGM

Our paradigm categorizes NL2SQL pipeline tasks into two types: reasoning-intensive tasks and
SQL generation tasks. Reasoning tasks, such as schema linking and candidate evaluation, require
strong contextual understanding and adaptability, while SQL generation demands precision in query
synthesis. To optimize performance, we employ two specialized models: the general-purpose chat
Model for reasoning tasks and the SQL fine-tuned model for SQL generation. By leveraging their
complementary strengths, our approach improves overall NL2SQL accuracy and robustness.

General-purpose Chat Model. This model is designed for reasoning-intensive tasks, leveraging
broad linguistic and contextual comprehension without domain-specific fine-tuning, which helps
prevent catastrophic forgetting. Compared to the SQL Specialist Model, it is more effective in
schema linking and evaluating SQL candidates, ensuring that the SQL generation process is guided
by accurate and well-structured contextual information.

SQL Fine-tuned Model. Optimized exclusively for SQL generation, this model is extensively trained
on large-scale NL2SQL datasets, allowing it to achieve superior performance on SQL-specific tasks.
Its focused training reduces hallucinations and enhances both query executability and accuracy.

4 EXPERIMENTS

4.1 SETTINGS

4.1.1 DATASETS

BIRD (Li et al., 2023b) as a representative and challenging benchmark dataset for NL2SQL, encom-
passes databases over 37 professional domains. Due to the proprietary nature of the BIRD TEST
dataset, we conduct our experiments using the publicly accessible BIRD DEV subset, which contains
1,534 unique question-SQL pairs.

Spider (Yu et al., 2019) is another large-scale benchmark dataset for cross-domain SQL generation,
covering 138 different domains. Compared to BIRD, Spider is relatively simpler, as its SQL structures
and schema are generally less complex. Our experiments utilize the SPIDER TEST set, comprising
2,147 question-SQL pairs.

4.1.2 EVALUATION METRICS

Execution Accuracy (EX) (Li et al., 2023b) is a widely adopted metric in NL2SQL evaluations,
measuring whether the result of executing the generated query matches the result of the ground truth
query. This metric allows for different query formulations that yield the same result. It is calculated
as:

EX =
|{n ∈ N | E(Qgen) = E(Qgt)}|

N
× 100%

where N denotes the number of questions. Qgen represents the SQL query generated by the model,
while Qgt is the ground truth answer. E is the execution function.
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Execution Proportion (EP) is an auxiliary metric we proposed, evaluating the proportion of generated
SQL queries that can be executed on the corresponding database without syntax errors. This metric
reflects the model’s upper-bound capability by assuming that any executable query is potentially
correct. It is defined as:

EP =
|{n ∈ N | E(Qgen) ̸= error}|

N
× 100%

4.1.3 BASELINES

Direct Response (DR) directly generates an SQL query from the natural language question without
applying any refinement techniques. The process follows a single-turn interaction.

First Executable Query (FEQ) leverages the model’s ability to generate multiple SQL candidates.
Among candidates, the first executable query is selected without any refinement. This approach
simulates multi-turn query generation.

MAC-SQL (Wang et al., 2024) is an LLM-based multi-stage framework, featuring a core Decomposer
agent for SQL generation supported by auxiliary agents for sub-database acquisition and query
refinement. It also utilizes few-shot chain-of-thought reasoning to enhance generation processes.

CHESS (Talaei et al., 2024) comprises four specialized agents: Information Retriever, Schema
Selector, Candidate Generator, and Unit Tester. Notably, it employs locality-sensitive hashing and
vector databases to efficiently retrieve relevant data from extensive database values and catalogs.

4.1.4 IMPLEMENTATION DETAILS

Backbone Models. Our implementation leverages both general-purpose chat models and SQL
fine-tuned models. The chat models include Qwen2.5-0.5B, Qwen2.5-1.5B, Qwen2.5-Coder-1.5B
(Hui et al., 2024), Yi-Coder-1.5B (AI et al., 2025), DeepSeek-Coder-1.5B (DeepSeek-AI, 2024),
Phi3-mini-3.8B (Abdin et al., 2024), and MiniCPM3-4B (Hu et al., 2024), while the SQL-tuned
models consist of Prem-SQL-1.3B (Anindyadeep, 2024) and CodeS-3B (Li et al., 2024a).

Candidate Size. In the multi-candidate generation stage, we generate 4 candidates per path, resulting
in a total candidate pool of 16. During the correction stage, the candidate size is reduced to 2.

Selection Rounds. During the selection stage, we perform 3 rounds for each selection. The final
choice is the majority vote across the three rounds, ensuring consistency of the selected candidate.

Table 2: Comparison of EX (Execution Accuracy) and EP (Execution Proportion) across different
methods on the BIRD DEV dataset. The best and second-best results are highlighted by Bold and
underline, respectively. ∗ denotes results with the extraction strategy.

Method Qwen2.5-1.5B Yi-Coder-1.5B Phi3-Mini-3.8B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 19.36 53.52 15.84 54.82 27.44 71.90
FEQ 21.51 68.25 18.71 73.60 30.12 67.93
MAC-SQL 18.06 52.28 7.63 59.52 29.99 77.64
CHESS 18.71 43.55 2.48 7.82 18.12 39.70
Feather-SQL (Ours) 31.81 88.33 25.23 90.61 36.64 83.70

Method MiniCPM3-4B Prem-SQL-1.3B CodeS-3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 27.57 69.30 47.07 88.14 24.19 59.32
FEQ 29.34 63.89 51.63 92.70 25.03 57.50
MAC-SQL 37.35 81.68 8.67 (8.87*) 17.01 (19.23*) 10.10 (13.23*) 40.87 (56.26*)
CHESS 28.42 54.43 24.64 43.22 26.53 56.91
Feather-SQL (Ours) 40.09 87.02 49.28 98.04 33.96 85.31
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Table 3: Comparison of EX (Execution Accuracy) and EP (Execution Proportion) across different
methods on the Spider TEST dataset. The best and second-best results for EX are highlighted by
bold and underline, respectively. ∗ denotes results with the extraction strategy.

Method Qwen2.5-0.5B Yi-Coder-1.5B DeepSeek-Coder-1.3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 28.50 56.45 45.23 87.24 49.28 90.68
FEQ 36.53 67.35 48.30 86.77 45.46 89.89
MAC-SQL 29.06 89.61 13.04 21.70 52.12 93.62
CHESS 15.42 29.16 3.68 10.29 30.18 46.30
Feather-SQL (Ours) 36.98 75.08 49.56 92.04 51.19 94.13

Method MiniCPM3-4B Prem-SQL-1.3B CodeS-3B
EX (%) EP (%) EX (%) EP (%) EX (%) EP (%)

DR 55.10 93.71 60.92 85.79 47.74 64.23
FEQ 55.75 89.52 64.23 85.75 49.60 64.65
MAC-SQL 25.01 38.47 0.14 (67.91*) 0.14 (100*) 0 (74.48*) 0 (100*)
CHESS 56.73 89.99 63.86 92.08 66.65 88.54
Feather-SQL (Ours) 58.92 94.18 66.60 92.78 63.25 88.96

4.2 MAIN RESULTS

4.2.1 FEATHER-SQL

To validate the general effectiveness of Feather-SQL for SLMs, we conducted experiments on two
datasets across a range of models (all results here were obtained using a unified model without
adopting the collaboration paradigm).

BIRD Results. As shown in Table 2, Feather-SQL demonstrates superior performance across all
general-purpose chat models, achieving the highest scores in both EX and EP, with EX showing an
average increase of approximately 10% and EP exceeding a 20% improvement compared to FEQ. For
SQL fine-tuned models, Feather-SQL combined with CodeS achieves substantial gains in both EX
and EP, while Prem-SQL shows notable improvements specifically in EP, with an average increase of
around 5% compared to FEQ. Besides, we explored the upper bound of Feather-SQL on this dataset
(Appendix D).

Moreover, we observe that CHESS and MAC-SQL do not perform effectively on SLMs, with their
results on Qwen2.5 and Yi-Coder showing even lower EX and EP scores compared to DR. Their
performance also falls behind that of FEQ.

Spider Results. Similarly, Table 3 highlights the results on the SPIDER TEST dataset, further
confirming that our framework consistently and substantially enhances the NL2SQL performance of
SLMs.

Table 4: Paradigm performance under Feather-
SQL on the BIRD DEV dataset. When no chat
model is specified, the SQL model is also used as
the chat model.

Chat Model SQL Model EX (%) EP (%)

– Prem-SQL 49.28 98.04
Qwen Prem-SQL 52.44 ↑ 94.08
Qwen Coder Prem-SQL 52.83 ↑ 98.31
Yi Coder Prem-SQL 54.76 ↑ 93.94

– CodeS 33.96 83.31
Qwen CodeS 35.79 ↑ 80.05
Qwen Coder CodeS 37.03 ↑ 81.10
Yi Coder CodeS 39.43 ↑ 80.44

Although MAC-SQL and CHESS show incon-
sistent performance across models, MAC-SQL
generally performs well. Notably, SQL fine-
tuned models, achieve the best EX when ex-
traction is applied, highlighting the necessity of
this step for SLMs. This may be attributed to
MAC-SQL’s Selector mechanism, which also
employs schema pruning. Unlike our table prun-
ing approach, MAC-SQL adopts column prun-
ing, which may be more effective for SPIDER’s
relatively simple schema structures.

4.2.2 1+1 COLLABORATION PARADIGM

As observed in Table 2, although Feather-SQL
improves the EP of Prem-SQL, its EX shows a
2% decrease compared to FEQ. This decline is primarily due to Prem-SQL’s inability to handle
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auxiliary reasoning tasks. To address this limitation, we propose a division of tasks where the
general-purpose chat model handles auxiliary reasoning, while the SQL fine-tuned model focuses on
SQL generation.

As shown in Table 4, our 1+1 collaboration paradigm under Feather-SQL achieves a 3–6% improve-
ment in EX for both Prem-SQL and CodeS, with Prem-SQL reaching SOTA performance among
existing SLMs (Appendix E). However, we observe a decline in EP when paired with a chat model.
This is because when the SQL model is also used as the chat model during schema pruning, it returns
a query instead of the expected answer. But our extraction strategy sitll retrieves table names from
the output, often resulting in an overly pruned schema-containing only one or two tables. While a
simplified schema can occasionally boost EP, it frequently leads to lower overall EX.

Table 5: Paradigm performance under CHESS on
the BIRD DEV dataset. When no chat model is
specified, the SQL model is also used as the chat
model.

Chat Model SQL Model EX (%) EP (%)

– Prem-SQL 24.64 43.22
Qwen Prem-SQL 49.28 ↑ 82.07
Qwen Coder Prem-SQL 49.61 ↑ 79.60
Yi Coder Prem-SQL 47.65 ↑ 79.79

– CodeS 26.53 56.91
Qwen CodeS 28.55 ↑ 56.19
Qwen Coder CodeS 28.88 ↑ 63.04
Yi Coder CodeS 27.44 ↑ 55.22

Additionally, Table 5 shows that our paradigm
improves both Prem-SQL and CodeS in CHESS,
with EX increasing by ~20% and EP by over
~35% for Prem-SQL, while CodeS sees a
smaller but consistent EX gain with no clear
trend in EP.

However, the two models benefit differently
due to their handling of auxiliary tasks. Prem-
SQL attempts to answer linking questions but
often does so incorrectly, whereas CodeS, due
to severe catastrophic forgetting, fails to provide
valid responses. As a result, CHESS defaults to
using the original schema with CodeS, reducing
linking errors.

Furthermore, since CHESS constructs long
prompts without schema pruning, introducing a
chat model increases input length and complexity. While this improves reasoning, it does not fully
offset CodeS’s limitations in processing extended inputs, restricting its EX improvement.

4.3 ABLATION STUDIES

4.3.1 COMPONENT CONTRIBUTION

We conducted an ablation study to quantify the impact of each framework component by remov-
ing them one at a time and measuring changes in EX and EP on the BIRD DEV dataset, using
QWen2.5-1.5B (Table 6).

Table 6: Ablation Study on Framework Compo-
nents.

Framework EX (%) EP (%)

Full Model 31.81 88.33
–w/o Schema Pruning -4.63 ↓ -20.34 ↓
–w/o Schema Linking -3.45 ↓ -20.92 ↓
–w/o Multi-Candidate -2.47 ↓ -17.99 ↓
–w/o Correction -0.20 ↓ -12.58 ↓
–w/o Selection -2.21 ↓ -10.36 ↓

We can see from the ablation results that remov-
ing any of the components causes a drop in both
EX and EP. This underscores that each step in
our pipeline contributes to overall performance,
and omitting even one module leads to notice-
ably reduced accuracy or executability.

Among these, schema pruning is shown to be
the most critical: when it is removed, EX falls
from 31.81% to 27.18%, the single largest drop
in our study. This highlights how focusing on
only the relevant tables and columns helps the
model concentrate on essential schema elements,
thereby yielding more accurate SQL generation. In contrast, removing correction only reduces EX by
0.20%, indicating that it has a relatively minor impact on the framework’s effectiveness.

4.3.2 PATH CONTRIBUTION

We analyzed the origins of SQL answers from four models to understand how each processing path
affects the final output. As shown in Figure 4, our multi-path framework includes four paths: one
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using both schema linking and pruning, one using only schema linking, one using only schema
pruning, and one without either.

For all four models, the path Full Schema & Linking is consistently the largest contributor, followed
by Pruned Schema & Linking. This ranking underscores the critical role of linking in the framework,
regardless of whether the schema is pruned or not.

Figure 4: Distribution of correct SQL answers con-
tributed by each path across four different SLMs.

Additionally, we find that schema pruning col-
lectively accounts for over 25% across the mod-
els. These observations are consistent with the
ablation findings in 4.3.1, further illustrating the
essential roles of each component in ensuring
executable and accurate query generation.

We further investigated the impact of different
candidate sizes. Figure 5 presents the results
based on our four paths. In our experiments,
the total candidate size increases from 4 to 24,
which corresponds to the number of candidates
generated per path increasing from 1 to 6. The
figure illustrates how EX changes as the overall
candidate size grows from 4 to 24.

4.3.3 CANDIDATE SIZE

Figure 5: Effect of candidate size on EX perfor-
mance.

We observe a concave trend, consistent with Ap-
pendix B: EX steadily increases as the candidate
size rises from 4 to 16 but then plateaus from 16
to 24. Once the model reaches its approximate
upper bound, further increases in candidate size
result in only a marginal difference in perfor-
mance. Therefore, we select a candidate size of
16, as it is the earliest point at which EX satu-
rates, thus balancing computational efficiency
and model performance.

CONCLUSION

In this work, we introduced Feather-SQL, the first lightweight framework designed to enhance
NL2SQL performance for SLMs. We conduct comprehensive evaluations on the challenging BIRD
and Spider datasets, where Feather-SQL yields improvements in both executability and accuracy.
Additionally, we present the 1+1 Model Collaboration paradigm—a novel approach that pairs
a general-purpose chat model with a SQL specialist to combine robust reasoning with precise
query generation. Our evaluation results show that this paradigm boosts accuracy across different
frameworks, demonstrating its consistent effectiveness. Moreover, the flexibility of our approach
provides a robust foundation not only for advancing NL2SQL but also for application to other
structured tasks and domains.
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A EXPERIMENTAL SETTINGS

All experiments were conducted on 4 NVIDIA A6000 GPUs using the vLLM inference acceleration
framework to improve model efficiency. For stages that produce multiple answers, such as candidate
generation and selection, we primarily used a temperature of 0.2 and a top_p of 0.8 to balance
diversity and accuracy. In contrast, for tasks requiring a single answer, such as schema pruning and
schema linking, we employed greedy search to ensure deterministic outputs.

B MULTI-CANDIDATE MOTIVATION

Table 7: Comparison of Accuracy (ACC) and Execution (EXE) on the BIRD DEV Subset from
CHESS using multi-candidate generation strategy.

Top-N Yi-Coder-1.5B MiniCPM3-4B Prem-SQL-1.3B
ACC (%) EXE (%) ACC (%) EXE (%) ACC (%) EXE (%)

1 15.65 46.26 26.53 65.31 55.78 92.52
3 24.49 70.75 35.37 76.87 59.86 97.28
5 30.61 78.91 36.05 82.31 62.59 97.96
7 33.33 82.31 37.41 84.35 65.31 97.96

Top-N CodeS-3B GPT-4o Claude-3.5-Sonnet
ACC (%) EXE (%) ACC (%) EXE (%) ACC (%) EXE (%)

1 24.49 61.90 51.70 93.20 40.82 86.39
3 27.21 68.71 53.74 94.56 41.50 87.76
5 29.93 72.11 56.46 94.56 42.18 88.44
7 29.93 73.47 56.46 94.56 42.18 88.44

1 3 5 7
Top-N Candidates

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ac
cu

ra
cy

 G
ai

n 
(

AC
C,

 %
)

Improvement in Accuracy ( ACC)
Yi-Coder-1.5B
MiniCPM3-4B
Prem-SQL-1.3B
Codes-3B
GPT-4o
Claude-3.5-Sonnet

1 3 5 7
Top-N Candidates

0

5

10

15

20

25

30

35

Ex
ec

ut
ab

le
 R

at
e 

Ga
in

 (
EX

E,
 %

)

Improvement in Executable Rate ( EXE)
Yi-Coder-1.5B
MiniCPM3-4B
Prem-SQL-1.3B
Codes-3B
GPT-4o
Claude-3.5-Sonnet

Figure 6: Improvement in Accuracy (∆ACC) and Executable Rate (∆EXE) compared to Top-1
candidates

The results demonstrate that SLMs exhibit a performance gap between TOP-1 and TOP-7 results.
This indicates that employing a multi-candidate generation strategy can effectively improve the
accuracy and execution rates by selecting the best result. In contrast, larger models already perform
robustly with TOP-1 outputs, and therefore, the additional benefit from multi-candidate generation is
limited. Additionally, the fine-tuned SQL model CodeS-3B shows some improvement, but the gains
are not as pronounced as those observed in the other SLMs.
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C PROMPT LENGTH COMPARISON

On average, CHESS uses notably longer prompts due to detailed instructions and complex examples,
while MAC-SQL has fewer words overall. Feather-SQL demonstrates the smallest average prompt
length, indicating that concise design can effectively balance context and complexity.

Table 8: Stages and corresponding word counts for each baseline.

Method Stage Word Count

CHESS

Information Retriever 423
Schema Selector 2522
Generate Candidate 4888
Revise 1835

MAC-SQL
Selector 552
Decomposer 836
Reviser 174

Feather-SQL

Schema Pruning 267
Schema Linking 287
Generation 190
Correction 106
Selection 271

D FRAMEWORK UPPER BOUND

To explore the upper bound of the Feather-SQL framework, we also evaluated its performance using
cumulative accuracy, which measures whether the correct SQL query is present within the Top-n
generated results. Specifically, we retained the top 4 candidates after the selection ranking in this
experiment, rather than solely selecting the top 1 candidate in default.

As indicated in Table 9, Top-3 is approximately 10% higher than Top-1 (EX). This suggests that
there is room for further improvement in the selection mechanism. If the selection can be refined to
accurately identify the optimal SQL query, the performance gap between Top-N and Top-1 could be
considerably reduced.

Table 9: Cumulative Accuracy on BIRD DEV.

Model Top-1(%) Top-2(%) Top-3(%)

Qwen 31.8 39.0 40.5
Yi Coder 25.2 32.6 34.5

Prem-SQL 49.2 60.2 62.6

14



E SOTA RESULT ILLUSTRATION

Figure 7: Accuracy (%) versus model size (in billions of parameters) for various small language
models. Fine-tuned models are shown in yellow, general-purpose chat models in blue, and ours
(Feather-SQL + Model Collaboration Paradigm) is marked with a red star.

F PROMPTS

F.1

Schema Pruning Prompt

prompt_pruning_system = """
You are an agent designed to find all related tables to generate SQL query
for question based on the database schema and hint.

## Requirements
1. You don't need to answer the question, your task is only finding all related

tables .
2. Consider all constraints of each table, including primary keys, foreign keys,

and data types.
3. You can generate chain of thoughts, but ensure all tables mentioned truly

exist.
4. Successfully answer related columns could help you win $100000 dollars.
"""

prompt_pruning = """
## Instructions
1. Prioritize the table that most directly contains the information needed to

answer the question, considering:
- Table relationships such as foreign keys.
- Whether the table has columns directly related to the entities or actions
in the question.

2. Reasoning like two shown examples.

----------Example----------
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## Database Schema
CREATE TABLE Employees (

employee_id INT PRIMARY KEY,
name VARCHAR(100),
department VARCHAR(100),
salary DECIMAL(10, 2)

);

CREATE TABLE Departments (
department_id INT PRIMARY KEY,
department_name VARCHAR(100),
location VARCHAR(100)

);

## Question
What is the salary of the employee named 'Alice'?

## Relevant Tables
This table directly contains the columns name and salary, which are the only

necessary fields to answer the question.
The name column is used to locate the specific employee named 'Alice', and the

salary column provides the required
salary information. The Departments table is irrelevant because it does not store

employee-level data like salaries
or names, and its information is unrelated to this specific query.
The relevant table is Employees.

----------Task----------
## Database Schema
You are provided with the structure of the database "{database_name}":
{database_schema}

## Question
{question}

## Hint
{hint}

Among the following tables: {tables}, which tables are relevant for addressing
the question?

## Relevant Tables
"""

F.2

Schema Linking Prompt

prompt_linking_system="""
You are an agent designed to find all related columns to generate SQL query for

question based on the database schema and the hint.

## Requirements
1. You don't need to answer the question, your task is only finding all related

columns.
2. Hint could help you to find the correct related columns.
3. Consider all constraints of each table, including primary keys, foreign keys,

and data types.
4. You can generate chain of thoughts, but ensure all columns mentioned truly

exist.
7. Successfully answer related columns could help you win $100000 dollars.
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"""

prompt_linking="""
## Instructions
1. Select columns that relates to information requested by the question,

considering:
- Whether the column is key to filtering results (used in WHERE clauses).
- Whether the column should be part of the SELECT statement to fulfill the
user query.
- The relationship of the column to other parts of the question, such as
groupings, aggregations, or direct match to entities mentioned.

2. Reasoning like two shown examples.

----------Example----------
## Database Schema
CREATE TABLE Employees (

employee_id INT PRIMARY KEY,
name VARCHAR(100),
department VARCHAR(100),
salary DECIMAL(10, 2)

);

CREATE TABLE Departments (
department_id INT PRIMARY KEY,
department_name VARCHAR(100),
location VARCHAR(100)

);

## Question
What is the salary of the employee named 'Alice'?

## Relevant Columns
The name column is essential to filter the employee named 'Alice' in the WHERE

clause, ensuring we identify the correct individual. The salary column is
needed to extract the requested information, which is the employee's salary.
Since the question does not involve departments, the Departments table and
its columns are irrelevant.

The related columns are Employees.name and Employees.salary.

----------Task----------
## Database Schema
You are provided with the structure of the database "{database_name}":
{schema}

## Question
{question}

## Hint
{hint}

Among the columns, which are relevant for addressing the question?
## Relevant Columns
"""
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F.3

Multi-path Generation Prompt

system_prompt_sql_generation = """
You are an expert SQL assistant tasked with generating precise SQL queries based

on given database schemas, questions, and hint.

## Responsibilities
1. Analyze the **database schema** and **hint** to determine relationships,

including **primary keys, foreign keys, data types, and constraints**.
2. Generate a single, valid **SQLite SQL query** to answer the question, using

provided schema linking information for table and column selection.
3. Your response should contain only the **SQL query**, using standard SQL syntax

with correct use of table/column names and SQL clauses.

## Requirements
- Respond with only one SQL query, formatted as ```SQL```.
- Use clauses like **SELECT**, **FROM**, **WHERE**, **JOIN**, **GROUP BY**, **

ORDER BY**, etc.
- Ensure SQL is efficient and respects **Important Columns**, table relationships,

and relevant constraints.
"""

prompt_generation_with_linking = """
You are given a database schema, question, important columns and hint. Generate a

valid SQLite query that answers the question.

## Instructions
1. Your response should only contain one SQL query, in standard SQL syntax.
2. Consider all **table relationships**, **primary/foreign keys**, **data types**,

and **Important Columns** while generating the query.

## Database Schema
Database "{database_name}":
{database_schema}

## Important Columns
{schema_linking}

## Question
{question}

## Hint
{hint}

## Output Requirement
Format the response as:
```sql
[SQL query]
```
"""

prompt_generation_without_linking = """
You are given a database schema, question, and hint. Generate a valid SQLite

query that answers the question.

## Instructions
1. Your response should only contain one SQL query, in standard SQL syntax.
2. Consider all **table relationships**, **primary/foreign keys**, **data types**

while generating the query.

## Database Schema

18



Database "{database_name}":
{database_schema}

## Question
{question}

## Hint
{hint}

## Output Requirement
Format the response as:
```sql
[SQL query]
```
"""

F.4

Correction Prompt

prompt_answer_correction_system ="""
Suppose you are an expert in SQLite and database management.

## Instructions
1. Based on the database structure provided, previous answer and its error

messages, generate one SQL query that answers the question.
2. You should try to fix the error of the previous answer and avoid it from

happening again.

## Requirements
1. Your response should consist of only one SQL query, don't generate anything

else.
3. Consider all constraints of each table, including primary keys, foreign keys,

and data types.
4. Provide your query in standard SQL format with appropriate use of SQL

functions, joins, and conditions.
"""

prompt_answer_correction = """
## Database Schema
Given the structure of database:
{schema}

## Question
{question}

## Hint
{hint}

## Previous answer
{prev_ans}

## Error
{errorMsg}

## New Answer
"""
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F.5

Selection Prompt

system_prompt_query_selection = """
You are an expert in analyzing SQL queries and determining their relevance to a

given question. Your task is to evaluate multiple SQL queries and select the
one that best answers the question based on the provided database schema and
context.

## Responsibilities
1. Analyze the given question: Understand the intent of the question and its

expected output.
2. Evaluate each SQL query: Consider the correctness, relevance, and completeness

of each query in relation to the question.
3. Select the best query: Choose the query that most accurately answers the

question, while considering database structure, table relationships, and
query efficiency.

## Requirements
- Respond with the most relevant SQL query, and nothing else.
- Ensure the selected query is valid for the given database schema and directly

addresses the question.
"""

query_selection_prompt = """
You are given a question, a database schema, and multiple SQL queries. Your task

is to select the SQL query that is most relevant and best answers the
question.

## Instructions
1. Analyze the Question: Understand what the user is asking and identify the

information that needs to be extracted from the database.
2. Evaluate SQL Queries: For each provided SQL query, determine its relevance

based on:
- Accuracy: Does the query correctly match the question's intent?
- Completeness: Does the query retrieve all the necessary information without
omitting important details?

- Efficiency: Is the query optimized for the task, avoiding unnecessary joins
or conditions?

3. Select the Most Relevant Query: Choose the query that is the best match for
the question.

## Database Schema
Database "{database_name}":
{database_schema}

## Question
The question is:
{question}

## Hint
{hint}

## SQL Queries
{queries}

## Output Requirement
Reply the query Index in the format of "Index: ".

## Output
"""
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query_with_response_selection_prompt = """
You are given a question, a database schema, multiple SQL queries, and their

execution results. Your task is to select the SQL query that best answers the
question based on the query and its result.

## Instructions
1. Understand the Question: Determine what the user is asking and identify the

specific information that needs to be retrieved.
2. Evaluate Each Query and Response Pair: For each provided SQL query and its

result, determine:
- Query Accuracy: Does the query correctly represent the user's intent?
- Result Relevance: Does the result contain the data needed to answer the
question completely and correctly?
- Efficiency: Is the query optimized, avoiding unnecessary complexity?

## Database Schema
Database "{database_name}":
{database_schema}

## Question
{question}

## Hint
{hint}

## SQL Queries and Execution Results
{queries}

## Output Requirement
Only reply the query Index in the format of "Index: ".
"""
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