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Abstract
We consider the task of learning individual-
specific intensities of counting processes from
a set of static variables and irregularly sampled
time series. We introduce a novel modelization
approach in which the intensity is the solution to
a controlled differential equation. We first de-
sign a neural estimator by building on neural con-
trolled differential equations. In a second time,
we show that our model can be linearized in the
signature space under sufficient regularity condi-
tions, yielding a signature-based estimator which
we call CoxSig. We provide theoretical learn-
ing guarantees for both estimators, before show-
casing the performance of our models on a vast
array of simulated and real-world datasets from
finance, predictive maintenance and food supply
chain management.

1. Introduction
Time-to-event data is ubiquitous in numerous fields such
as meteorology, economics, healthcare and finance. We
typically want to predict when an event - which can be a
catastrophic earthquake, the burst of a housing bubble, the
onset of a disease or a financial crash - will occur by us-
ing some prior historical information (Ogata, 1988; Bacry
et al., 2015; Bussy et al., 2019). This general problem en-
compasses many settings and in particular survival analy-
sis, where every individual experiences at most one event
(Cox, 1972).

For an individual i, we have access to several event times
T i1 < T i2 < . . . and features Wi ∈ Rs measured at time
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0. For instance, in neurology, one might consider the on-
set times of a series of seizures (Rasheed et al., 2020) and
Wi summarizes unchanging characteristics of the individ-
ual (age, gender, ethnicity, . . . ). The physician’s goal is
to determine whether an individual has a high probability
to experience a seizure at time t given their characteristics.
Such a task is most often addressed by modelling the indi-
vidual specific intensity of a counting process of the form∑
j≥1 1T ij≤t, using for instance Cox models (Cox, 1972;

Aalen et al., 2008; Kvamme et al., 2019) or Hawkes pro-
cesses in the case of self-exciting processes (Bacry et al.,
2015). Recent advances in the field have also enriched
these models using deep architectures (Mei & Eisner, 2017;
Kvamme et al., 2019; Omi et al., 2019; Chen et al., 2021;
Groha et al., 2020; Shchur et al., 2021; De Brouwer et al.,
2022; Tang et al., 2022). Once learnt, the intensity of the
process can be used to predict occurrence times of future
events or rank individuals based on their relative risks.

Learning with Time-dependent Data. More realisti-
cally, in addition to the static features Wi, we often have
access to time-dependent features along with their sam-
pling times

Xi =: {(Xi(t1), t1), . . . , (X
i(tK), tK)} ∈ Rd×K ,

where D = {t1, . . . , tK} ⊂ [0, τ ] is a set of measurement
times and τ the end of study. Taking again the example
of seizure prediction, the time-dependent features may rep-
resent some measurements made by a wearable device, as
done for instance by Dumanis et al. (2017). Taking both the
static and time-dependent information into account is cru-
cial when making predictions. This setting calls for highly
flexible models of the intensity which take into account the
stream of information carried by the longitudinal features.

From joint models to ODE-based methods. This prob-
lem has been tackled by the bio-statistics community, in
particular using joint models that concurrently fit para-
metric models to the trajectory of the longitudinal fea-
tures and the intensity of the counting process (Ibrahim
et al., 2010; Crowther et al., 2013; Proust-Lima et al., 2014;
Long & Mills, 2018). Popular implementations include
JMBayses (Rizopoulos, 2016). While being highly in-
terpretable, they do not scale to high-dimensional and fre-
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quently measured data, despite some recent algorithmic ad-
vances (Hickey et al., 2016; Murray & Philipson, 2022;
Rustand et al., 2024) adapted to moderate dimension (up
to ≃ 5 longitudinal features).

Modern deep methods, that can encode complex and mean-
ingful patterns from complex data in latent states, offer a
particularly attractive alternative for this problem. How-
ever, the literature bridging the gap between deep learning
and survival analysis is scarce. Notably, Lee et al. (2019)
tackle this problem by embedding the time-dependent data
through a recurrent neural network combined with an at-
tention mechanism. They then use this embedding in a
discrete-time setting to maximize the likelihood of dying
in a given time-frame conditional on having survived un-
til this time. Moon et al. (2022) combine a probabilistic
model with a continuous-time neural network, namely the
ODE-RNNS of Rubanova et al. (2019) in a similar setup.

Modelling Time Series with Controlled Latent States.
Building on the increasing momentum of differential
equation-based methods for learning (Chen et al., 2018;
De Brouwer et al., 2019; Rubanova et al., 2019; Chen et al.,
2021; Moon et al., 2022; Marion et al., 2022), we propose
a novel modelling framework in which the unknown inten-
sity of the counting process is parameterized by a latent
state driven by a controlled differential equation (CDE).
Formally, we let the unknown intensity of the counting pro-
cess of individual i depend on their covariates Wi and an
unobserved process xi : [0, τ ] → Rd that is the contin-
uous unobserved counterpart of the time series Xi, i.e.,
(Xi(t), t) = xi(t) for all t ∈ D. We model the inten-
sity (i.e. the instantaneous probability of experiencing an
event — see Section 2.2) by setting

λi⋆
(
t |Wi, (xi(s))s≤t

)
= exp

(
zi⋆(t) + β⊤

⋆ W
i
)
, (1)

where the dynamical latent state zi⋆(t) ∈ R is the solution
to the CDE

dzi⋆(t) = G⋆

(
zi⋆(t)

)⊤
dxi(t) (2)

with initial condition zi⋆(0) = 0 driven by xi. Here, the
vector field G⋆ : R → Rd and β⋆ ∈ Rs are both un-
known. This means that the latent dynamics are common
between individuals, but are driven by individual-specific
data, yielding individual-specific intensities. Such a mod-
elling strategy is reminiscent of state space models, which
embed times series through linear controlled latent differ-
ential equations (Gu et al., 2022; Cirone et al., 2024). Our
framework is introduced in more detail later.

Contributions. In an effort to provide scalable and effi-
cient models for event-data analysis, we propose two novel
estimators. We first leverage neural CDEs (Kidger et al.,
2020), which directly approximate the vector field G⋆ with

a neural vector field Gψ . In a second time, following Fer-
manian et al. (2021) and Bleistein et al. (2023), we propose
to linearize the unknown dynamic latent state zi⋆(·) in the
signature space. Informally, this means that at any time t,
we have the simplified expression

zi⋆(t) ≈ α⊤
⋆,NSN (xi[0,t])

where α⋆,N is an unknown finite-dimensional vector and
SN (xi[0,t]) is a deterministic transformation of the time se-
ries xi observed up to time t called the signature transform.
Notice that in this form, the vector α⋆,N does not depend
on t and can hence be learned at any observation time. We
obtain theoretical guarantees for both models ; for the sec-
ond model in particular, we state a precise decomposition
of the variance and the discretization bias of our estimator,
which crucially depends on the coarseness of the sampling
grid D. Finally, we benchmark both methods on simulated
and real-world datasets from finance, healthcare and digi-
tal food retail, in a survival analysis setting. Our signature-
based estimator provides state-of-the-art results.

Summary. Section 2 details our theoretical framework.
In Section 3, we state theoretical guarantees for our model.
Lastly, we conduct a series of experiments in Section 4
that displays the strong performances of our models against
an array of benchmarks. All proofs are given in the ap-
pendix. The code is available at https://github.
com/LinusBleistein/signature_survival.

2. Modelling Point Processes with Controlled
Latent States

2.1. The Data

In practice, an individual can be censored (for example af-
ter dropping out from a study) or cannot experience more
than a given number of events. To take this into account, we
introduce Y i : [0, τ ] → {0, 1} the at-risk indicator func-
tion, which equals 1 when the individual i is still at risk of
experiencing an event. Together with Y i, we define

N i(t) :=
∑
j≥1

1T ij≤tY
i(T ij )

as the stochastic process counting the number of events ex-
perienced by individual i up to time t and while Y i(T ij ) =
1. Our dataset

Dn := {Xi,Wi, Y i(t), N i(t), 0 ≤ t ≤ τ}

consists of n i.i.d. historical observations up to time τ .
Our setup can be extended to individual-dependent grids
(Di)ni=1, but we choose to focus on the former setting for
the sake of clarity. The individual specific time series are
only observed as long as the individual is at risk. We first
make an assumption on the time series.
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Assumption 1. For every individual i = 1, . . . , n, there
exists a continuous path of bounded variation xi : [0, τ ] →
Rd satisfying, for all 0 ≤ s < t ≤ τ ,∥∥xi∥∥1-var,[s,t] := sup

D

∑
k

∥∥xi(tk+1)− xi(tk)
∥∥ ≤ Lx|t− s|

where ∥·∥ is the Euclidean norm and the supremum is taken
over all finite dissections D = {s = t1 < · · · < tK = t}.
The time series Xi is a discretization of xi on the grid D.

Remark that this assumption implies that the paths are Lx-
Lipschitz. We now state a supplementary assumption on
the static features.

Assumption 2. There exists a constant BW > 0 such that
for every i = 1, . . . , n,

∥∥Wi
∥∥
2
≤ BW.

2.2. Modelling Intensities with Controlled Differential
Equations

Intensity of a counting process. We define the
individual-specific intensity λi⋆

(
t |Wi, xi[0,t]

)
of the under-

lying counting process, which we will simply write λi⋆(t)
in the following, as

λi⋆(t) := lim
h→0+

1

h
E
(
N i(t+ h)−N i(t) | F i

t

)
where F i

t is the past information at time t which includes
Wi and xi[0,t] (Aalen et al., 2008).

Controlled Dynamics. Controlled differential equations
are a theoretical framework that allows to generalize ODEs
beyond the non-autonomous regime (Lyons et al., 2007).
Recall that a non-autonomous ODE is the solution to

dz(t) = F(z(t), t)dt

with a given initial value z(0) = z0 ∈ Rp. Here, the
vector field F : Rp × [0,+∞[→ Rp depends explic-
itly on t ≥ 0, allowing for time-varying dynamics un-
like autonomous ODEs whose dynamics remain unchanged
through time. Controlled differential equations can be seen
as a generalization of non-autonomous ODEs. They allow
for the vector field to depend explicitly on the values of
another Rd-valued function x : [0, 1] → Rd through

dz(t) = F̃(z(t), x(t))dt

thus encoding even richer dynamics. Formally, a CDE
writes

dz(t) = G
(
z(t)

)
dx(t)

z(0) = z0 ∈ Rp

where G is a Rp×d-valued vector field. Existence and
uniqueness of the solution is ensured under regularity con-
ditions on G and x by the Picard-Lindelhöf Theorem (see

Theorem A.1). The following assumption is needed in or-
der to ensure that the function

λi⋆(t) = exp
(
zi⋆(t) + β⊤

⋆ W
i
)
,

where the dynamical latent state zi⋆(t) ∈ R is the solution
to the CDE

dzi⋆(t) = G⋆

(
zi⋆(t)

)⊤
dxi(t)

with initial condition zi⋆(0) = 0 driven by xi is well-
defined.
Assumption 3. The vector field G⋆ : R → Rd defin-
ing λi⋆ in Equation (2) is LG⋆ -Lipschitz; β⋆ is such that
∥β⋆∥2 ≤ Bβ,2, ∥β⋆∥1 ≤ Bβ,1 and ∥β⋆∥0 ≤ Bβ,0, where
Bβ,2, Bβ,1, Bβ,0 > 0 are constants.

Under these assumptions, the intensity is bounded at all
times.
Lemma 2.1 (A bound on the intensity). For every indi-
vidual i = 1, . . . , n and all t ∈ [0, τ ], the log intensity
log λi⋆(t) is upper bounded by

Bβ,2BW + ∥G⋆(0)∥op Lxt exp
(
LG⋆

Lxt
)

almost surely.

This is a direct consequence of Lemma 3.3 in Bleistein &
Guilloux (2024). Remark that ∥G⋆(0)∥op < ∞ since the
vector field is Lipschitz and hence continuous.
Remark 2.2. By differentiation, one can see that the inten-
sity itself satisfies a so-called controlled Volterra differen-
tial equation (Lin & Yong, 2020). Indeed, differentiating
the intensity λi⋆ yields the CDE

dλi⋆(s) = λi⋆(s)G⋆(z
i
⋆(s))dx

i(s)

with initial condition λi⋆(0) = exp(β⊤
⋆ W

i). Note that this
CDE is path dependent, i.e., its vector field depends on the
path zi⋆ : [0, τ ] → R.
Remark 2.3. This model enforces continuity of the inten-
sity: indeed, the solution of a CDE inherits the regularity of
its driving path. A possible solution to accommodate dis-
continuous intensity functions is to add a jump term to the
generative CDE, which could then be learnt using neural
jump ODEs (Jia & Benson, 2019).

2.3. Neural Controlled Differential Equations

Following the ideas of continuous time models, our first
approach to learning the dynamics is to fit a parameterized
intensity to this model by setting

λiθ(s) = exp(α⊤ziθ(s) + β⊤Wi),

where ziθ(s) ∈ Rp is an embedding of the time series Xi

parameterized by θ ∈ Rv and α ∈ Rp is a learnable pa-
rameter. We propose to use Neural Controlled Differential
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Equations (NCDEs), a powerful tool for embedding irreg-
ular time series introduced by Kidger et al. (2020). NCDEs
work by first embedding a time series Xi in the space of
functions of bounded variation, yielding xi,D : [0, τ ] →
Rd, before defining a representation of the data through

dzθ(t) = Gψ

(
zθ(s)

)
dxi,D(s)

with initial condition zθ(0) = 0. It is common practice
to set Gψ : Rp → Rp×d to be a small feed-forward neu-
ral network parameterized by ψ. The learnable parameters
of this model are thus θ = (α,ψ, β). In our setup, the
embedding must be carefully chosen in order not to leak
information from the future observations. Hence natural
cubic splines, used in the original paper by Kidger et al.
(2020), cannot be used and we resort to the piecewise con-
stant interpolation scheme proposed by Morrill et al. (2021)
and defined as xi,D(s) = (Xi(tk), s) for all s ∈ [tk, tk+1[.
This yields a discretely updated latent state equal to

zi,Dθ (tk) = zi,Dθ (tk−1) +Gψ(z
i,D
θ (tk−1))∆Xi(tk)

where ∆Xi(tk) = Xi(tk) − Xi(tk−1). This architecture
has been studied under the name of controlled ResNet be-
cause of its resemblance with the popular ResNet (Cirone
et al., 2023; Bleistein & Guilloux, 2024).

In order to provide theoretical guarantees, we restrict our-
selves to a bounded set of NCDEs i.e. we consider a set of
NCDE predictors

Θ1 = {θ ∈ Rvs.t. ∥α∥2 ≤ Bα, ∥ψ∥ ≤ Bψ, ∥β∥2 ≤ Bβ,2}

where the norm on ψ refers to the sum of ℓ2 norms of the
weights and biases of the neural vector field Gψ . This
restriction is fairly classical in statistical learning theory
(Bach, 2021).

2.4. Linearizing CDEs in the Signature Space

The Signature Transform. While neural controlled dif-
ferential equations allow for great flexibility in represen-
tation of the time series, they are difficult to train and re-
quire significant computational resources. The signature
is a promising and theoretically well-grounded tool from
stochastic analysis, that allows for a parameter-free em-
bedding of the time series. Mathematically, the signature
coefficient of a function

x : t ∈ [0, τ ] 7→
(
x(1)(t), . . . , x(d)(t)

)
associated to a word I = (i1, . . . , ik) ∈ {1, . . . , d}k of size
k is the function

SI(x[0,t]) :=

∫
0<u1<···<uk<t

dx(i1)(u1) . . . dx
(ik)(uk)
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Figure 1: Sample path x(t) of a 3-dimensional fractional
Brownian motion on top, and three signature coefficients
SI(x[0,t]) associated to different words on the bottom.

which maps [0, τ ] to R. The integral is to be understood
as the Riemann-Stieltjes integral. While the definition of
the signature is technical, it can simply be seen as a fea-
ture extraction step. We refer to Figure 1 for an illustra-
tion. The truncated signature of order N ≥ 1, which we
write SN (x[0,t]), is equal to the collection of all signature
coefficients associated to words of size k ≤ N sorted by
lexicographical order. Finally, the infinite signature is the
sequence defined through

S(x[0,t]) = lim
N→+∞

SN (x[0,t]).

Learning with Signatures. Signatures are a prominent
tool in stochastic analysis since the pioneering work of
Chen (1958) and Lyons et al. (2007). They have re-
cently found successful applications in statistics and ma-
chine learning as a feature representation for irregular time
series (Kidger et al., 2019; Morrill et al., 2020; Ferma-
nian, 2021; Salvi et al., 2021; Fermanian, 2022; Lyons &
McLeod, 2022; Bleistein et al., 2023; Horvath et al., 2023)
and a tool for analyzing residual neural networks in the in-
finite depth limit (Fermanian et al., 2021).

Signatures and CDEs. An appealing feature of signa-
tures is their connection to controlled differential equa-
tions. Indeed, under sufficient regularity assumptions (Friz
& Victoir, 2010; Fermanian et al., 2021; Bleistein et al.,
2023; Cirone et al., 2023), the generative CDE (1) can be
linearized in the signature space. Informally, this means
that there exists a sequence α⋆ such that for all t ∈ [0, τ ]
we have

zi⋆(t) = α⊤
⋆ S(x

i
[0,t]).

The mathematical definition of α⋆ is technical and we refer
to Appendix A.4 for a formal statement and a discussion of
the regularity assumptions. Hence, under the correspond-
ing regularity conditions, the true intensity for individual i
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writes

λi⋆(t) = exp
(
α⊤
⋆ S(x

i
[0,t]) + β⊤

⋆ W
i
)
.

This motivates the use of the signature-based estimator

λi,Dθ (t) := exp
(
α⊤SN (xi,D[0,t]) + β⊤Wi

)
,

where θ = (α, β) ∈ Rq ×Rs, N ≥ 1 is treated as a hyper-
parameter and xi,D corresponds to the piecewise constant
embedding of the observed time series Xi described previ-
ously. The integer q = dN−1−1

d−1 is the size of the signature
truncated at depth N ≥ 1. The superscript in D empha-
sises the dependence of this estimator on the observation
grid D.

Similarly to the NCDE-based estimator, we restrict our-
selves to the bounded set of estimators

Θ2 = {θ s.t. ∥α∥ ≤ Bα, ∥β∥ ≤ Bβ,2}.

2.5. Connections to Cox Models with Time-Varying
Covariates

Cox models with time-varying covariates are the classical
class of models (Therneau & Grambsch, 2000; Aalen et al.,
2008; Zhang et al., 2018), where the individual specific
hazard rate has the form λiθ(t) = λ0(t) exp(α

⊤
⋆ X

i(t) +
β⊤
⋆ W

i), where λ0 : [0, τ ] → R+ is called the baseline
hazard.

For signature-based embeddings, recall that we compute
the signature of a time-embedded time series Xi =
{(Xi(t1), t1), . . . , (X

i(tk), tk)}. In fact, this amounts to

α⊤SN (xi,D[0,t])

=

N∑
k=0

αkt
k

︸ ︷︷ ︸
=log λ0(t)

+α⊤
I1X

i(t) +
∑
I∈I2

αIS
I(xi,D[0,t])︸ ︷︷ ︸

=log of individual specific hazard rate

where αI1 is a subvector of α and I2 ⊂
∏N
k=2{1, . . . , d}k.

Hence our model can be interpreted as a generalized ver-
sion of Cox models with time-varying covariates. A simi-
lar interpretation holds for NCDEs. We detail this link in
Appendix A.6.

3. Theoretical Guarantees
3.1. The Learning Problem

For both models, the parameter θ can be fitted by likelihood
maximization by solving

θ̂ ∈ argmin
θ∈Θ

ℓDn (θ) + pen(θ), (3)

where Θ ∈ {Θ1,Θ2} depending on whether one uses sig-
nature or NCDE-based embeddings, pen : Θ → R+ is a
penalty and ℓDn (θ) is equal to the negative log-likelihood of
the sample Dn evaluated at θ.

Unless specified other, the following statements hold for
both NCDEs and signature-based embeddings (up to dif-
ferent constants given explicitly in the proofs). Following
Aalen et al. (2008), the negative log likelihood ℓDn (θ) of the
sample writes

1

n

n∑
i=1

∫ τ

0

λi,Dθ (s)Y i(s)ds−
∫ τ

0

log λi,Dθ (s)dN i(s),

and we let

ℓ⋆n =
1

n

n∑
i=1

∫
λi⋆(s)Y

i(s)ds−
∫

log λi⋆(s)dN
i(s)

be the true likelihood of the data. Our goal, in this section,
is to obtain a bias-variance decomposition of the difference

ℓDn (θ̂)− ℓ⋆n

between the true likelihood and the likelihood of the learnt
model.

3.2. A Risk Bound

Theorem 3.1 (Informal Risk Bound for the Signature
Model). Consider the signature-based embedding. Let θ̂
be the solution of (3) with pen(θ) = η1 ∥α∥1 + η2 ∥β∥1.
For any N ≥ 1, we have with high probability and an ap-
propriate choice of η1, η2 that

ℓDn (θ̂)− ℓ⋆n ≤ Discretization bias + Approximation bias

+O

(√
logNdN

n

)
+O

(√
log s

n

)
.

For a formal statement, see Appendix B.4. We make a se-
ries of comments on this result.

1. This full risk bound can only be obtained for the
signature-based model. It can also be extended
to other types of penalty such as Ridge or Group
Lasso (see for instance Nardi & Rinaldo (2008)) For
NCDEs, we are able to give precise guarantees on the
bias following Bleistein & Guilloux (2024), but a pre-
cise control of the variance term is out of reach.

2. The discretization bias is proportional to |D| :=
max

i=1,...,K
|ti − ti−1| and hence vanishes as sampling

gets finer.
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3. The approximation bias crucially depends on the reg-
ularity of the unknown tensor field G⋆, and more pre-
cisely on the speed of decay of its derivatives, which
can be seen as a measure of smoothness of the target
function.

4. The regularity assumptions made on G⋆ are not nec-
essary to bound the approximation bias of the NCDE
model: in this case, this bias term depends on the ap-
proximation capacities of the neural tensor field.

5. Remarkably, we obtain classical rates in n−1/2 for the
variance term. For signature based methods, fast rates
in n−1 are yet to be obtained.

4. Experimental Evaluation
We now focus on the survival analysis setup. We hence let
T i be the unique time-of-event, which may eventually be
censored, of individual i. ∆i is the censorship indicator,
equal to 1 if the individual experiences the event and to 0
otherwise.

4.1. Training Setup

We train on a dataset Dn of the same structure than de-
scribed in Section 2.1 and learn the parameter θ̂ by solving
the optimization problem (3). NCDEs are trained without
penalization, while we use a mixture of elastic-net penalties

pen(θ) := η1penEN(α) + η2penEN(β)

for training the signature-based model, where penEN(·) =
γ ∥·∥1 + (1 − γ) ∥·∥2. The hyperparameters (η1, η2, N)
are chosen by cross-validation of a mixed metric equal to
the difference between the C-index and the Brier score (see
below) and we set γ = 0.1. We refer to Appendix C.1
for a detailed description of the training procedures. We
evaluate our model’s capacity to predict events in [t, t+ δt]
by leveraging values of the longitudinal features up to t (see
Figure 2) through a ranking metric and a calibration metric.
This evaluation procedure is standard (Lee et al., 2019).

4.2. Metrics

We compute four metrics using the individual specific sur-
vival functions as estimated by our model with parameters
θ. At time t + δt for δt > 0 conditional on survival up to
time t, and on observation of the longitudinal features up
to time t, it is defined as

riθ(t, δt) = P
(
T i > t+ δt |T i > t, (Xi(s)) s≤t

s∈D
,Wi

)
.

We describe its detailed computation in Appendix C.2.
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Figure 2: On the top, observed time series up to time t in
bold colors and true time series in faded colors. When eval-
uating our models, we fill-forward the last observed value
from t on. On the bottom, signatures of the true path (left),
of the observed path (center) and difference in ℓ2 norm
(right) — xFF (t) denotes the filled-forward time series.

Time-dependent Concordance Index. Following Lee
et al. (2019), we measure the discriminative power of
our models by using a time-dependent concordance index
C(t, δt) that captures our models ability to correctly rank
individuals on their predicted probability of survival. The
concordance index C(t, δt) is then finally computed as

n∑
j=1

n∑
i=1

1riθ(t,δt)>r
j
θ(t,δt)

1T i>T j , T j∈[t,t+δt],∆j=1

n∑
j=1

n∑
i=1

1T i>T j , T j∈[t,t+δt],∆j=1

.

This metric captures the capacity of our model to discrimi-
nate between j and another individual i through the condi-
tional probability of survival.

Brier Score. While the concordance index is a ranking-
based measure, the Brier Score measures the accuracy
in predictions by comparing the estimated survival func-
tion and the survival indicator function (Lee et al., 2019;
Kvamme et al., 2019; Kvamme & Borgan, 2023). For-
mally, we define the Brier score BS(t, δt) as

1

n

n∑
i=1

1T i≤t+δt,∆i=1r
i
θ(t, δt)

2

+
1

n

n∑
i=1

1T i>t+δt(1− riθ(t, δt))
2.

Contrarily to the C-index, the Brier score is a measure
of calibration of the predictions: it measures the distance
between the estimated survival function and the indicator
function of survival on the interval [t, t+ δt].

Averaged performance. Additionally, we evaluate the
average prediction performance of our models over a set
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Figure 3: Time series Xi of a randomly picked individual on
bottom and unobserved SDE wi(t) on the top. The red star indi-
cates the first hitting time of the threshold value w⋆ = 2.5.

of different prediction times. The averaged C-index and
Brier score on the interval [t1, t2] along with the window
time δt are defined respectively as

1

t2 − t1

∫ t2

t1

C(s, δt)ds and
1

t2 − t1

∫ t2

t1

BS(s, δt)ds.

Comparison with static metrics. A crucial difference
with static survival analysis metrics is that our metric only
compares the individuals who experienced the event in this
time window to all the ones who are still at risk at time
t. This can lead to a C-index below 0.5 and Brier scores
above 0.25 without the model being worse than random.

Additional metrics. We furthermore report AUC and
weighted Brier score in Appendix D.

4.3. Methods

We propose three distinct methods. In addition to the
signature-based model, which we call CoxSig, we also con-
sider CoxSig+ which adds the first value of the time series
to the static features. This is motivated by the translation
invariance of signatures (see discussion below). Our last
method is the NCDE embedding of the longitudinal fea-
tures. We benchmark our three models against a set of
competing methods. All methods are detailed in Appendix
C.1.

Time-Independent Cox Model. As a sanity check,
we implement a simple Cox model with elastic-net
penalty which uses the parameterized intensity λiθ(t) =
λ0(t) exp(β

⊤Wi) using scikit-survival (Pölsterl,
2020). This baseline allows to check whether our pro-
posed methods can make use of the supplementary time-
dependent information. If no static features are available,
we use the first observed value of the time series, i.e.,
Wi = Xi(0).

Name n d Censoring Avg. Times

Hitting time 500 5 Terminal (3.2%) 177
Tumor Growth 500 2 Terminal (8.4%) 250
Maintenance 200 17 Online (50%) 167
Churn 1043 14 Terminal (38.4%) 25

Table 1: Description of the 4 datasets we consider. The
integer d is the dimension of the time series including the
time channel. Terminal censoring means that the individu-
als are censored at the end of the overall observation period
[0, τ ] if they have not experienced any event. It is opposed
to online censoring that can happen at any time in [0, τ ].
The reported percentage indicates the censoring level i.e.
the share of the population that does not experience the
event. The last column reports the average number of ob-
servations times over individuals.

Random Survival Forest (RSF). We use RSF (Ishwaran
et al., 2008) with static features Wi as the only input. Sim-
ilarly to our implementation of the Cox model, we use the
first value of the time series as static features if no other
features are available.

Dynamic DeepHit (Lee et al., 2019). DDH is a state-of-
the-art method for dynamical survival analysis, that com-
bines an RNN with an attention mechanism and uses both
time dependent and static features.

SurvLatent ODE (Moon et al., 2022). SLODE is a re-
cent deep learning framework for survival analysis that
leverages an ODE-RNN architecture (Rubanova et al.,
2019) to handle the time dependent features.

4.4. Synthetic Experiments

Hitting time of a partially observed SDE. Predicting
hitting times is a crucial problem in finance — for in-
stance, when pricing so-called catastrophe bounds trigger-
ing a payment to the holder in case of an event (Cheridito
& Xu, 2015; Corcuera & Valdivia, 2016). Their relation
to survival analysis is well documented, see e.g. (Lee &
Whitmore, 2006). Building on this problem, we consider
the Ornstein-Uhlenbeck SDE

dwi(t) = −ω(wi(t)− µ)dt+

d∑
j=1

dx(i,j)(t) + σdBi(t)

where d = 5, σ = 1, µ = 0.1 and ω = 0.1 are fixed pa-
rameters. xi(t) = (x(i,1)(t), . . . , x(i,d−1)(t)) is a sample
path of a fractional Brownian motion with Hurst parame-
ter H = 0.6, and Bi(t) is a Brownian noise term. In this
setup, our data consists of Xi which is a downsampled ver-
sion of xi and the Brownian part is unobserved. Our goal
is to predict the first hitting time min{t > 0 |wt ≥ w⋆}
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Figure 4: Brier score δt 7→ BS(t, δt), evaluated at t = 0.23,
for the partially observed SDE experiment. Confidence intervals
indicate 1 standard deviation.

of a threshold value w⋆ = 2.5. We train on n = 500 in-
dividuals. Figure 3 shows the sample paths and SDE of
a randomly selected individual. This setup is close to a
well-specified model since signatures linearize controlled
differential equations.

Tumor Growth. We similarly aim at predicting the hit-
ting time of a stochastic process modelling the growth of a
tumor (Simeoni et al., 2004), where xi represents a drug-
intake. In this experiment, the time series Xi is very-low
dimensional (d = 2, which includes the time channel).

4.5. Real-World Datasets

Predictive Maintenance. (Saxena et al., 2008) This
dataset collects simulations of measurements of sensors
placed on aircraft gas turbine engines run until a threshold
value is reached. In this context, the time-to-event is the
failure time. This dataset features a small sample size, con-
siderable censoring rates and a high number of time chan-
nels.

Churn prediction. We use a private dataset provided by
Califrais, a food supply chain company that delivers fresh
products from Rungis to food professionals. The company
has access to a variety of features observed through time
for every customer. Its goal is for example to predict when
the customer will churn. The time series in this setup are
high dimensional but sampled at a low frequency.

Further details on all datasets are provided in Appendix D.
Overall, our datasets are diverse in terms of sample size,
size and length of the time series and censoring type.

4.6. Results

General performance of CoxSig. Overall, the signature-
based estimators outperform competing methods. We ob-
serve that CoxSig and CoxSig+ improve over the strongest

Algorithms Avg. C-Index ↑ IBS ↓

O
U

CoxSig 0.857±0.010.857±0.01 0.091±0.010.091±0.01
CoxSig+ 0.857±0.01 0.095±0.01
NCDE 0.517±0.04 0.103±0.01
DDH 0.545±0.02 0.094±0.01

SLODE 0.621±0.05 0.253±0.03

Tu
m

or

CoxSig 0.696±0.02 0.138±0.01
CoxSig+ 0.797±0.03 0.137±0.01
NCDE 0.827±0.02 0.130±0.010.130±0.01
DDH 0.941±0.050.941±0.05 0.133±0.01

SLODE 0.601±0.07 0.136±0.01

N
A

SA

CoxSig 0.858±0.04 0.154±0.03
CoxSig+ 0.867±0.040.867±0.04 0.154±0.03
NCDE 0.541±0.09 0.178±0.04
DDH 0.813±0.06 0.156±0.02

SLODE 0.438±0.14 0.145±0.020.145±0.02

C
al

if
ra

is CoxSig 0.741±0.01 0.130±0.01
CoxSig+ 0.751±0.010.751±0.01 0.129±0.010.129±0.01
NCDE 0.529±0.05 0.152±0.01
DDH 0.570±0.03 0.139±0.01

SLODE 0.542±0.03 0.193±0.03

Table 2: Averaged value of our metrics for 4 considered
dataset over set of 10 different values of t chosen from the
5 to the 50th percentile of the distribution of event times.
The values of δt for each dataset is chosen to be the same
as that shown in Figure 5.

baselines in terms of Brier scores. Contrarily to the strong
baseline DDH, this improvement is consistent over larger
prediction windows [t, t+δt] as δt increases (see Figure 4).
They provide even stronger improvements in terms of C-
indexes (see Figure 5 and Appendix D). This suggests that
they are particularly well-tailored for ranking tasks, such
as identifying the most-at-risk individual. Including the
first observed value of the time series generally improves
CoxSig’s performance: this is possibly due to the fact that
signatures are invariant by translation (i.e. the signature of
x : t 7→ x(t) is equal to the signature of x : t 7→ x(t) + a),
and hence including the first value of the time series pro-
vides non-redundant information.

Performance on low-dimensional data. A notable ex-
ception is the tumor growth simulation, in which CoxSig is
generally outperformed (see Figures 15 and 16 in the ap-
pendix). The competitive performance of signatures for
moderate to high dimensional data streams and its below
average performance on low dimensional data is a well-
studied feature (see Fermanian (2021) for an empirical
study). A possible solution to handle low-dimensional data
is to use embeddings before computing signatures to make
them more informative (Morrill et al., 2020).
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Figure 5: C-Index (higher is better) on top and Brier score (lower is better) on bottom for hitting time of a partially
observed SDE (left), churn prediction (center) and predictive maintenance (right) evaluated at chosen points (t, δt). t is
chosen as the first decile of the event times i.e. 90% of the events occur after t. Hollow dots indicate outliers, and error
bars indicate 80% of the interquartile range. We report detailed results for numerous points (t, δt) in Appendix D.

NCDEs. On the other side, NCDEs generally tie or per-
form worse than competing methods. Notably, when con-
sidering C-indexes, they even perform worse than random
on the predictive maintenance dataset. This stands in stark
contrast to their good performances on classification or re-
gression tasks (Kidger et al., 2020; Morrill et al., 2021;
Vanderschueren et al., 2023).

Running times. Finally, we observe that our methods
run in similar times than DDH, while including cross-
validation (see Figure 13 in the appendix). Models that do
not use time dependent features (RSF and Cox) are 2 orders
of magnitude faster to train.

5. Conclusion
We have designed and analyzed a model for generic count-
ing processes driven by a controlled latent state, which can
be readily estimated using either NCDE or signature-based
estimators. CoxSig in particular offers a parsimonious al-
ternative to deep models and yields excellent performance
for survival analysis. Future research efforts will be tar-
geted at extending our model to competing risks and mul-
timodal data.

Limitations. While our model shows competitive per-
formance on moderate to high-dimensional data, one cen-
tral limitation is its below average performance on low di-
mensional data. We also stress that the extension to very
high dimensional time series is computationally prohibitive
since the signature scales exponentially with the dimension
of the time series. Finally, our experimental setup is lim-

ited to the survival analysis case: we plan on extending it
to general counting processes in future work.
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Supplementary Material

A. Supplementary Mathematical Elements
A.1. Supplementary elements on survival analysis

The counting process associated with the observation of T i1 < T i2 < . . . is denoted by Ñ i. The observed counting process
is t → N i(t) =

∫ t
0
Y i(s)dÑ i(s). The integral against the counting process N i is to be understood is to be understood

as a Stieltjes integral, i.e.,
∫ t
0
λi⋆(s)dN

i(s) =
∑
Ti≤t λ

i
⋆(Ti) — see Aalen et al. (2008, p.55-56). Its intensity writes

λi⋆(t |Wi, (xi(s))s≤t)Y
i(t), which we simply write λi⋆(t)Y

i(t) to alleviate notations.

To the observations, we associate the filtration F , with all σ-fields at 0 ≤ t ≤ τ defined as

Ft =
⋃

i=1,...,n

F i
t

where F i
t = σ

(
xi(s),Wi, N i(s), Y i(s), 0 ≤ s ≤ t

)
. We assume in addition that Y i is F i-predictable.

Using the Doob-Meyer decomposition of counting processes - see Aalen et al. (2008, p. 52-60) - we have

N i(t) =

∫ t

0

λi⋆(s)Y
i(s)ds+M i(t) (4)

where M i is local square integrable martingale with respect to F i.

A.2. Picard-Lindelhöf Theorem

Theorem A.1. Let x : [0, τ ] → Rd be a continuous path of bounded variation, and assume that G : Rp → Rp×d is
Lipschitz continuous. Then the CDE

dz(t) = G(z(t))dx(t)

with initial condition z0 ∈ Rp has a unique solution on [0, τ ].

A full proof can be found in Fermanian et al. (2021, Theorem 4). Remark that since in our setting, NCDEs are Lipschitz
since typical neural vector fields, such as feed-forward neural networks, are Lipschitz (Virmaux & Scaman, 2018). This
ensures that the solutions to NCDEs are well defined.

A.3. Continuity of the Flow of CDEs

We state a result on the continuity of the flow adapted from Bleistein & Guilloux (2024), Theorem B.5.
Theorem A.2. Let F,G : Rp → Rp×d be two Lipschitz vector fields with Lipschitz constants LF, LG > 0. Let x, r :
[0, τ ] → Rd be either continuous or piecewise constant paths of total variations bounded by Lx and Lr. Consider the
controlled differential equations

dw(t) = F(w(t))dx(t) and dv(t) = G(v(t))dr(t)

with initial conditions w(0) = v(0) = 0 respectively. It then follows that for any t ∈ [0, τ ]

∥w(t)− v(t)∥ ≤

(
∥x− r∥∞,[0,t]

(
1 + LFLrK

)
+max

v∈Ω
∥F(v)−G(v)∥op Lr

)
exp(LFLx),

where

K =

[
LF

(
∥F(0)∥op Lx

)
exp(LFLx) + ∥F(0)∥op

]
exp(LFLx)

and

Ω =
{
u ∈ Rp | ∥u∥ ≤ (∥G(0)∥op Lr) exp(LGLr)

}
.
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A.4. Linearization in the Signature Space

A.4.1. GENERAL RESULT

In this section, we give additional details on the linearization of CDEs in the signature space. We first define the differential
product.

Definition A.3. Let F,G : Rp → Rp be two C∞ vector fields and let J(·) be the Jacobian matrix. Their differential
product F ⋆ G : Rp → Rp is the smooth vector field defined for every h ∈ Rp by

(F ⋆ G)(h) =

e∑
j=1

∂G

∂hj
(h)Fj(h) = J(G)(h)F (h).

We now consider a tensor field F : Rp → Rp×d which we write

F =

 | . . . |
F 1 . . . F d

| . . . |

 ,
where for every 1 ≤ i ≤ d, F i : Rp → Rp, and we define

Γk(F) := sup
∥h∥≤M, i1≤···≤ik≤d

∥∥F i1 ⋆ · · · ⋆ F ik(h)∥∥
2
.

Consider the solution z : [0, τ ] → Rp to the CDE

dz(t) = F(z(t))dx(t) (5)
z(0) = 0 ∈ Rp

where x : [0, τ ] → Rd is a continuous path of finite total variation bounded by Lxτ > 0. We recall the following result
from Fermanian et al. (2021), Proposition 4.

Proposition A.4 (Fermanian et al. (2021), Proposition 4.). We have

∥∥zi⋆(t)− α⊤
⋆,NSN (x[0,t])

∥∥ ≤ (dLxt)
N+1

(N + 1)!
ΓN+1(F)

As a consequence, we have the following theorem.

Theorem A.5. Let F : Rp → Rp×d be a C∞ tensor field. If

(dLxt)
N+1

(N + 1)!
ΓN+1(F) → 0

as N → +∞, then the solution z to the CDE (5) can be written as

z(t) =
∑
k≥1

∑
I∈{1,...,d}k

SI(x[0,t])F
i1 ⋆ · · · ⋆ F ik(0).

A.4.2. APPLICATION TO OUR MODEL

Recall that we have defined our generative model through the CDE

dzi⋆(t) = G⋆(z
i
⋆(t))dx

i(t)

with initial condition zi⋆(0) = 0, where G⋆ : R → Rp is a LG⋆
-Lipschitz vector field. Since in our case, the vector field

G⋆ maps R to Rd, it can be written as

G⋆(z) =
[
G1
⋆(z) . . . Gd⋆(z),

]
,
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where for every 1 ≤ i ≤ d, Gi⋆ : R → R. In this setup, for 1 ≤ i1, i2 ≤ d the differential product collapses to

(Gi1⋆ ⋆ G
i2
⋆ )(h) = (Gi2⋆ )

′(h)×Gi1⋆ (h) ∈ R.

For 1 ≤ i1, i2, i3 ≤ d, it writes

(Gi1⋆ ⋆ G
i2
⋆ ⋆ G

i3
⋆ )(h) = (Gi2⋆ ⋆ G

i3
⋆ )

′(h)×Gi1⋆ (h)

=
(
(Gi3⋆ )

′(h)×Gi2⋆ (h)
)′ ×Gi1⋆ (h)

=
(
(Gi3⋆ )

(2)(h)×Gi2⋆ (h) + (Gi3⋆ )
′(h)× (Gi2⋆ )

′(h)
)
×Gi1⋆ (h) ∈ R.

One can derive similar expression for 1 ≤ i1, . . . , ik ≤ d. In line with Theorem A.5, we make the following Assumption
on the vector field G⋆.

Assumption 4. The vector field G⋆ satisfies

(Lxτd)
N+1

(N + 1)!
ΓN+1(G⋆) → 0

as N → ∞.

We can write the ℓ2 and ℓ1 norms of α⋆,N as functions of the differential product of G⋆.

Lemma A.6. We have that

∥α⋆,N∥2 ≤
( N∑
k=1

dkΓk(G⋆)
2
)1/2

and

∥α⋆,N∥1 ≤
N∑
k=1

dkΓk(G⋆).

Proof. Starting with the ℓ2 norm, one has

∥α⋆,N∥2 =
( N∑
k=1

∑
1≤i1,i2,...,ik≤d

Gi1⋆ ⋆ · · · ⋆ Gik⋆ (0)2
)1/2

≤
( N∑
k=1

dk max
1≤i1,i2,...,ik≤d

|Gi1⋆ ⋆ · · · ⋆ Gik⋆ (0)|2
)1/2

≤
( N∑
k=1

dkΓk(G⋆)
2
)1/2

.

Moving on to the ℓ1 norm, we similarly obtain

∥α⋆,N∥1 =
( N∑
k=1

∑
1≤i1,i2,...,ik≤d

|Gi1⋆ ⋆ · · · ⋆ Gik⋆ (0)|
)

≤
( N∑
k=1

dk max
1≤i1,i2,...,ik≤d

|Gi1⋆ ⋆ · · · ⋆ Gik⋆ (0)|
)

≤
N∑
k=1

dkΓk(G⋆).
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A.5. Signature of a Discretized Path

We recall the following result from Bleistein et al. (2023).

Theorem A.7. Let x : [0, τ ] → Rd be a path satisfying Assumption 1. Let D = {t1, . . . , tK} ⊂ [0, τ ] be a grid of
sampling points, and xD the piecewise constant interpolation of the path x sampled on the grid D. For all α ∈ Rq , where
q := dN−1

d−1 , we have

|α⊤(SN (x[0,t])− SN (xD[0,t])
)
| ≤ c3(N) ∥α∥ |D|,

where

c3(N) = 2e
(Lxt)

N−1 − 1

Lxt− 1
Lx.

A.6. The Cox Connection

Signature-based embeddings. Consider a continuous path of bounded variation x : t 7→ (x(t), t) ∈ Rd. First, remark
that for every word of size one I ∈ {1, . . . , d}, the signature writes

SI(x[0,t]) =

∫
0<u1<t

dx(I)(s) = x(I)(t).

Furthermore, for any word I = (d, . . . , d) of size k made only of the letter d, i.e., words that only include the time channel,
we have

SI(x[0,t]) =

∫
0<u1<···<uk<t

du1 . . . duk =
1

k!
tk.

This shows that for x = xi,D

α⊤SN (xi,D[0,t]) = α⊤
I1(1, t, t

2, . . . , tN ) + α⊤
I2X

i(t) +
∑
I∈I3

αIS
I(xi,D[0,t])

where αI1 is the subvector of α collecting all coefficients associated to the words {d}, {d, d}, . . . , {d, . . . , d} containing
only the letter d, αI2 is the subvector collecting all coefficients associated to the d− 1 words {1}, {2}, . . . , {d− 1} of size
1, and αI3 collects the remaining coefficients.

NCDEs. For any N ≥ 1, consider the augmented vector field

G̃ψ(z) =

[
Gψ(z) 0p×(N−1)

0(N−1)×d I(N−1)×(N−1)

]
∈ R(N−1+p)×(N−1+d), z ∈ Rp,

and an embedding of the time series Xi of the form x̃i,D(s) = (Xi(tk), s, s
2, . . . , sN ) ∈ Rd+N−1 for s ∈ [tk, tk+1[. The

latent state of the NCDE model is now updated as

z̃i,Dθ (tk+1) = z̃i,Dθ (tk) + G̃ψ(z̃
i,D
θ (tk))∆X̃i(tk+1)

= z̃i,Dθ (tk) +


Gψ(z

i,D
θ )∆Xi(tk+1)
∆tk+1

...
∆tNk+1

 =


zi,Dθ (tk) +Gψ(z

i,D
θ )∆Xi(tk+1)

tk+1

...
tNk+1

 .
This proves that in the NCDE based model, the intensity can similarly be written as

α⊤z̃i,Dθ (t) = α⊤
I1z

i,D
θ (t) + α⊤

I2(1, t, t
2, . . . , tN )

where α = (αI1 , αI2), and α1 ∈ Rp and α2 ∈ RN .
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A.7. Self-concordance

We now state a self-concordance bound, which can be found along with its proof in Bach (2010).

Lemma A.8. Let g : R → R be a convex, three times differentiable function such that

|g(3)(x)| ≤Mg(2)(x)

for all x ∈ R and for some M ≥ 0. Then it follows that

g(2)(0)

M2
Φ(−Mt) ≤ g(t)− g(0)− tg′(0) ≤ g(2)(0)

M2
Φ(Mt)

for all t ≥ 0, where

Φ : t 7→ exp(t)− t− 1.

A.8. Decomposition of the difference in likelihoods

We first define the empirical KL-divergence between the true and parameterized intensity associated to the sample Dn as

KLn(λ⋆, λDθ ) :=
1

n

n∑
i=1

∫ τ

0

log
λi⋆(s)

λiθ(s)
λi⋆(s)Y

i(s)ds− 1

n

n∑
i=1

∫ τ

0

(
λi⋆(s)− λiθ(s)

)
Y i(s)ds.

This definition is classical for intensities of counting processes (Aalen et al., 2008; Lemler, 2016). We now show that
minimizing the empirical KL-divergence between the true and the parameterized intensity amounts to minimizing the
empirical log likelihood, ignoring a noise term that will be canceled by setting the penalty accordingly.

Proposition A.9. For every θ ∈ Θ, the difference in likelihoods ℓDn (θ)− ℓ⋆n decomposes as

KLn(λ⋆, λDθ )−
1

n

n∑
i=1

∫
log

λi,Dθ (s)

λi⋆(s)
dM i(s),

where M i : [0, τ ] → R is a local square integrable martingale.

This proposition is a consequence of the Doob-Meyer decomposition N i(t) =
∫ t
0
λi⋆(s)Y

i(s)ds+M i(t) of the counting
process (Aalen et al., 2008). We now furthermore define the total variation divergence as

TVn(λ⋆, λDθ ) :=
1

n

n∑
i=1

∫ τ

0

|λi⋆(s)− λi,Dθ (s)|Y i(s)ds

and the quadratic log divergence D2
n(λ⋆, λ

D
θ ) as

1

n

n∑
i=1

∫ τ

0

(
log λi,Dθ (s)− log λi⋆(s)

)2
λi⋆(s)Y

i(s)ds.

Proposition A.10. There exist two constants c1, c2 > 0 such that

c1TVn(λ⋆, λDθ )
2 ≤ KLn(λ⋆, λDθ ) ≤ c2D2

n(λ⋆, λ
D
θ ).

More precisely, the constants c1, c2 are functions of Θ, Lx, τ and LG⋆
and are given explicitly in Appendix B.2.

This bound is obtained by combining a Pinsker-type inequality (Proposition B.1) and a self-concordance bound (Proposi-
tion B.2). It is informative in two ways. First, it shows that minimizing the negative empirical log-likelihood and hence
the KL-divergence between the true and parameterized intensity will lead to a minimization of the total variation between
the two intensities. Secondly, it shows that the KL-divergence is upper bounded by a term involving the difference of the
logarithms of the intensities. We make use of this second bound to obtain a bias-variance decomposition.
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B. Proofs
B.1. Proof of Proposition A.9

Proof. Thanks to the Doob-Meyer decomposition of Equation (4), the log-likelihood associated to individual i is

ℓDi (θ) =

∫ τ

0

λi,Dθ (s)Y i(s)ds−
∫ τ

0

log λi,Dθ (s)dN i(s)

=

∫ τ

0

(
λi,Dθ (s)− log λi,Dθ (s)λi⋆(s)

)
Y i(s)ds−

∫ τ

0

log λi,Dθ (s)dM i(s).

Similarly, the log-likelihood associated to the true intensity λi⋆ writes

ℓ⋆n =

∫ τ

0

λi⋆(s)Y
i(s)ds−

∫ τ

0

log λi⋆(s)dN
i(s)

=

∫ τ

0

(
λi⋆(s)− log λi⋆(s)λ

i
⋆(s)

)
Y i(s)ds−

∫ τ

0

log λi⋆(s)dM
i(s).

Hence, we get

ℓDn (θ)− ℓ⋆n

=
1

n

n∑
i=1

∫ [
λi,Dθ (s)− λi⋆(s)− λi⋆(s) log

λi,Dθ (s)

λi⋆(s)

]
Y i(s)ds− 1

n

n∑
i=1

∫
log

λi,Dθ (s)

λi⋆(s)
dM i(s)

= KLn(λ⋆, λDθ )−
1

n

n∑
i=1

∫
log

λi,Dθ (s)

λi⋆(s)
dM i(s).

This concludes the proof.

B.2. Proof of Proposition A.10

To prove Proposition A.10, we essentially combine a Pinsker-type inequality and a self-concordance bound. We prove
these two bounds separatly bellow. Combining them yields the double inequality of Proposition A.10. In the following,
for all t ∈ [0, τ ], we let

Λi,Dθ (t) =

∫ t

0

λi,Dθ (s)Y i(s)ds

and

Λi⋆(t) =

∫ t

0

λi⋆(s)Y
i(s)ds

be the cumulative hazard functions.
Proposition B.1 (Pinsker’s inequality.). Let λ⋆ be the true intensity defined in Equations (1) and (2), and λθ be an intensity
parameterized by θ ∈ Θ. Under Assumptions 1, 2, and 3, we have that

c1TVn(λ⋆, λDθ )
2 ≤ KLn(λ⋆, λDθ ),

with

c1 :=
1

τ
exp(−Bβ,2BW)

[4
3
exp

(
∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))

+
2

3
exp

(
Bα exp(Lxτ)

)]−1

for signature-based embeddings and

c1 :=
1

τ
exp(−Bβ,2BW)

[4
3
exp

(
∥G⋆(0)∥op Lxτ exp

(
LG⋆Lxτ

))
+

2

3
exp

(
∥Gψ(0)∥op Lxτ exp

(
LGψ

Lxτ)
)]−1

for NCDEs.
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Proof. We have

TVn(λ⋆, λDθ ) =
1

n

n∑
i=1

∫ τ

0

|λi⋆(s)− λi,Dθ (s)|Y i(s)ds = 1

n

n∑
i=1

∫ τ

0

∣∣∣∣ λi⋆(s)λi,Dθ (s)
− 1

∣∣∣∣λi,Dθ (s)Y i(s)ds

=

∫ τ

0

√√√√( λi⋆(s)

λi,Dθ (s)
− 1

)2

λi,Dθ (s)Y i(s)ds,

where we have used that |x| =
√
x2. Note that by definition, λi,Dθ (s) = exp

(
zi,Dθ (s) + β⊤Wi

)
> 0 for all s ∈ [0, τ ]: we

can thus safely divide by this term. Now, since for all x ≥ 0

(x− 1)2 ≤
(4
3
+

2

3
x
)
ξ(x)

with

ξ(x) := x log x− x+ 1,

one obtains

TVn(λ⋆, λDθ ) ≤
1

n

n∑
i=1

∫ τ

0

√(4
3
+

2

3

λi⋆(s)

λi,Dθ (s)

)
ξ
( λi⋆(s)

λi,Dθ (s)

)
λi,Dθ (s)Y i(s)ds.

Using the Cauchy-Schwarz inequality yields

TVn(λ⋆, λθ) ≤
1

n

n∑
i=1

[∫ τ

0

(4
3
+

2

3

λi⋆(s)

λi,Dθ (s)

)
λi,Dθ (s)Y i(s)ds

]1/2[∫ τ

0

ξ
( λi⋆(s)

λi,Dθ (s)

)
λi,Dθ (s)Y i(s)ds

]1/2

≤ 1

n

n∑
i=1

[
4

3
Λi,Dθ (τ) +

2

3
Λi⋆(τ)

]1/2[∫ τ

0

(
λi⋆(s) log

λi⋆(s)

λi,Dθ (s)
+ λi,Dθ (s)− λi⋆(s)

)
Y i(s)ds

]1/2

≤ max
i=1,...,n

[
4

3
Λi,Dθ (τ) +

2

3
Λi⋆(τ)

]1/2√
KLn(λ⋆, λDθ ).

Taking the square on both sides yields

TVn(λ⋆, λDθ )
2 ≤ max

i=1,...,n

[
4

3
Λi,Dθ (τ) +

2

3
Λi⋆(τ)

]
KLn(λ⋆, λDθ ).

Bounding the true cumulative hazard function. We have

max
i=1,...,n

[
4

3
Λi,Dθ (τ) +

2

3
Λi⋆(τ)

]
≤ 4

3
max

i=1,...,n
Λi,Dθ (τ) +

2

3
max

i=1,...,n
Λi⋆(τ).

Moreover, Lemma 2.1 yeilds that, for all s ∈ [0, τ ],

log λi⋆(s) ≤ Bβ,2BW + ∥G⋆(0)∥op Lxs exp
(
LG⋆

Lxs
)

≤ Bβ,2BW + ∥G⋆(0)∥op Lxτ exp
(
LG⋆

Lxτ
)
.

Hence for all i = 1, . . . , n, it holds that

Λi⋆(τ) =

∫ τ

0

λi⋆(s)Y
i(s)ds ≤ τ sup

s∈[0,τ ]

λi⋆(s) ≤ τ exp
(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))
.
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Since this last bound does not depend on i, this gives us that

2

3
max

i=1,...,n
Λi⋆(τ) ≤

2τ

3
exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))
.

Similarly, one obtains that

4

3
max

i=1,...,n
Λi,Dθ (τ) ≤ 4τ

3
max

i=1,...,n
sup
s∈[0,τ ]

λiθ(s).

Signature-based embeddings. For signature-based embeddings, we have

sup
s∈[0,τ ]

λiθ(s) ≤ exp(Bβ,2BW)
[
exp(Bα exp(Lxτ))

]
.

NCDEs. For NCDEs, one obtains

sup
s∈[0,τ ]

λiθ(s) ≤ exp
(
Bβ,2BW) exp

[
∥Gψ(0)∥op Lxτ exp

(
LGψ

Lxτ)
]
.

Final Bound. Putting everything together, one finally has that

c1TVn(λ⋆, λDθ )
2 ≤ KLn(λ⋆, λθ),

where

c1 =
1

τ
exp(−Bβ,2BW)

[4
3
exp(∥G⋆(0)∥op Lxτ exp

(
LG⋆Lxτ

)
) +

2

3
exp(Bα exp(Lxτ))

]−1

when using signatures and

c1 :=
1

τ
exp(−Bβ,2BW)

[4
3
exp(∥G⋆(0)∥op Lxτ exp

(
LG⋆Lxτ

)
) +

2

3
exp

[
∥Gψ(0)∥op Lxτ exp

(
LGψ

Lxτ)
]]−1

when using NCDEs.

We also prove the following self-concordance bound, a close result can be found in Lemler (2016).

Proposition B.2 (A self-concordance bound.). Let λ⋆ be the true intensity defined in Equations (1) and (2), and λθ be a
intensity parameterized by θ ∈ Θ. Under Assumptions 1, 2, and 3, it holds that

KLn(λ⋆, λθ) ≤ c2D2
n(λ⋆, λ

D
θ ),

where

c2 :=
expM −M − 1

M
,

and

M := exp(Bβ,2BW)

[
exp

(
∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))

+ exp
(
Bα exp(Lxτ)

)]
when using signatures and

M := exp(Bβ,2BW)

[
exp

(
∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))

+ exp
(
∥Gψ(0)∥op Lxτ exp

(
LGψ

Lxτ)
)]

when using NCDEs.
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Proof. Define

g : t 7→ 1

n

n∑
i=1

∫ τ

0

[
exp

(
t(log λi,Dθ (s)− log λi⋆(s))

)
− t log

λi,Dθ (s)

λi⋆(s)
− 1
]
λi⋆(s)Y

i(s)ds.

This function satisfies all assumptions needed in Lemma A.8. The function f : t 7→ exp(γt) − γt − 1 is convex for all
γ ∈ R. Convexity is preserved by integration against a positive function: indeed, if f(t, s) is convex in t for all s and
h(s) ≥ 0 for all s ∈ A, then ∫

A
f(t, s)h(s)ds

is convex in t (see Boyd & Vandenberghe, 2004, Page 79). The function is also clearly C∞. Finally, remark that by
differentiating the integral, one obtains

g′(t) =
1

n

n∑
i=1

∫ τ

0

[(
log λi,Dθ (s)− log λi⋆(s)

)
exp

(
t(log λi,Dθ (s)− log λi⋆(s))

)
− log

λi,Dθ (s)

λi⋆(s)

]
λi⋆(s)Y

i(s)ds,

g(2)(t) =
1

n

n∑
i=1

∫ τ

0

(
log λi,Dθ (s)− log λi⋆(s)

)2
exp

(
t(log λi,Dθ (s)− log λi⋆(s))

)
λi⋆(s)Y

i(s)ds,

g(3)(t) =
1

n

n∑
i=1

∫ τ

0

(
log λi,Dθ (s)− log λi⋆(s)

)3
exp

(
t(log λi,Dθ (s)− log λi⋆(s))

)
λi⋆(s)Y

i(s)ds.

Hence

|g(3)(t)| ≤ 1

n

n∑
i=1

∫ τ

0

∥∥∥λi,Dθ − λi⋆

∥∥∥
∞

(log λi,Dθ (s)− log λi⋆(s))
2 exp

(
t(log λi,Dθ (s)− log λi⋆(s))

)
λi⋆(s)Y

i(s)ds

=Mg(2)(t)

for all t ∈ R with

M := max
i=1,...,n

∥∥∥λi,Dθ − λi⋆

∥∥∥
∞
.

Using now Lemma A.8, we get at t = 1

g(2)(0)

M2
Φ(−M) ≤ g(1)−g(0)− g′(0)︸ ︷︷ ︸

=0

≤ g(2)(0)

M2
Φ(M).

We have

g(2)(0) =
1

n

n∑
i=1

∫ τ

0

(
log λi,Dθ (s)− log λi⋆(s)

)2
λi⋆(s)Y

i(s)ds

Finally, remark that

g(1) = KLn(λ⋆, λθ),

and hence

KLn(λ⋆, λθ) ≤
expM −M − 1

nM

n∑
i=1

∫ τ

0

(
log λi,Dθ (s)− log λi⋆(s)

)2
λi⋆(s)Y

i(s)ds.

Turning to the constant M , remark that

M := max
i=1,...,n

∥∥λiθ − λi⋆
∥∥
∞ ≤ max

i=1,...,n

∥∥λiθ∥∥∞ + max
i=1,...,n

∥∥λi⋆∥∥∞ . (6)
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Similarly to what is done in the proof of Proposition B.1, we have

max
i=1,...,n

∥∥λi⋆∥∥∞ ≤ exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))
,

and

max
i=1,...,n

∥∥∥λi,Dθ ∥∥∥
∞

≤ exp(Bβ,2BW)
[
exp

(
Bα exp(Lxτ)

)]
when using signatures and

max
i=1,...,n

∥∥∥λi,Dθ ∥∥∥
∞

≤ exp
(
Bβ,2BW) exp

[
∥Gψ(0)∥op Lxτ exp

(
LGψ

Lxτ)
]

when using NCDEs.

B.3. Formal Statement and Proof of the Risk Decomposition

Proposition B.3. Let λ⋆ be the true intensity defined in Equations 1- 2 and λDθ be the intensity parameterized by θ ∈ Θ.
Under Assumptions 1, 2, 3 and 4, for signature-based embeddings and θ = (α⋆,N , β⋆), it holds that

D2
n(λ⋆, λ

D
θ ) ≤ 2τ exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆Lxτ

))[ (dLx)N+1

(N + 1)!
ΛN+1(G⋆)

]2
τ2N+3

2N + 3︸ ︷︷ ︸
Approximation bias

+ 2τ exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆Lxτ

))
c3(N)2

N∑
k=1

dkΓk(G⋆)
2|D|2︸ ︷︷ ︸

Discretization bias

whereas for NCDEs, for θ = (α,ψ, β⋆), it holds that

D2
n(λ⋆, λ

D
θ ) ≤ 2τ exp(2LGψ

Lx)

[(
Bα
(
1 + LGψ

LxK
)
Lx|D|

)2
︸ ︷︷ ︸

Discretization bias

+
(
max
v∈Ω

∥∥α⊤Gψ(v)−G⋆(v)
∥∥)2︸ ︷︷ ︸

Approximation bias

]

× exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))
.

Proof. We have the following.

NCDEs. We first consider the case where the individual time series are embedded using NCDEs. Considering a general
θ ∈ Θ, we then have

D2
n(λ⋆, λ

D
θ ) =

1

n

n∑
i=1

∫ τ

0

(
α⊤zi,Dθ (s) + β⊤Wi − zi⋆(s) + β⊤

⋆ W
i
)2
λi⋆(s)Y

i(s)ds

=
1

n

n∑
i=1

∫ τ

0

(
α⊤zi,Dθ (s)− zi⋆(s) + (β − β⋆)

⊤Wi
)2
λi⋆(s)Y

i(s)ds

≤ 2

n

n∑
i=1

∫ τ

0

(
α⊤zi,Dθ (s)− zi⋆(s)

)2
λi⋆(s)Y

i(s)ds+
2

n

n∑
i=1

∫ τ

0

(
(β − β⋆)

⊤Wi
)2
λi⋆(s)Y

i(s)ds,

where the last inequality is obtained using (a + b)2 ≤ 2a2 + 2b2. Since this is true for all θ ∈ Θ, we first chose β = β⋆,
hence cancelling the second term. Turning to the remaining term, we have

α⊤zi,Dθ (s)− zi⋆(s) = α⊤zi,Dθ (s)− α⊤ziθ(s) + α⊤ziθ(s)− zi⋆(s),
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where ziθ(s) is the solution to the CDE driven by continuous unobserved path

dziθ(t) = Gψ(z
i
θ(t))dx

i(t)

with initial condition zi(0) = 0 ∈ R. Using the continuity of the flow (Theorem A.2), one obtains

|α⊤zi,Dθ (s)− α⊤ziθ(s)| ≤ ∥α∥
∥∥zi,Dθ (s)− ziθ(s)

∥∥
≤ Bα exp(LGψ

Lx)
(
1 + LGψ

LxK
) ∥∥xi − xi,D

∥∥
∞ .

Using the fact that ∥∥xi − xi,D
∥∥ ≤ Lx|D|,

one finally obtains

|α⊤zi,Dθ (s)− α⊤ziθ(s)| ≤ Bα exp(LGψ
Lx)
(
1 + LGψ

LxK
)
Lx|D|.

Using again the continuity of the flow, one also has that

|α⊤ziθ(s)− zi⋆(s)| ≤ exp(LGψ
Lx)max

v∈Ω

∥∥α⊤Gψ(v)−G⋆(v)
∥∥

since α⊤ziθ(s) is the solution to the CDE

dui(t) = α⊤Gψ(u
i(t))dxi(t)

with initial condition ui(0) = 0. Putting everything together, one obtains

(α⊤zi,Dθ (s)− zi⋆(s))
2 ≤ 2 exp(2LGψ

Lx)

[(
Bα
(
1 + LGψ

LxK
)
Lx|D|

)2
+
(
max
v∈Ω

∥∥α⊤Gψ(v)−G⋆(v)
∥∥)2].

Plugging this result in the original inequality on the squared log-divergence yields

D2
n(λ⋆, λ

D
θ ) ≤2τ exp(2LGψ

Lx)

[(
Bα
(
1 + LGψ

LxK
)
Lx|D|

)2
+
(
max
v∈Ω

∥∥α⊤Gψ(v)−G⋆(v)
∥∥)2]

× exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))
.

Signature-based embeddings. We proceed in a similar fashion. We have for any θ ∈ Θ that(
log λi,Dθ (s)− log λi⋆(s)

)2
=
(
α⊤SN (xi,D[0,s]) + β⊤Wi − α⊤

⋆ S(x
i
[0,s])− β⊤

⋆ W
i
)2

=
(
α⊤SN (xi,D[0,s])− α⊤

⋆ S(x
i
[0,s]) + (β − β⋆)

⊤Wi
)2
.

Now, we furthermore have

α⊤SN (xi,D[0,s])− α⊤
⋆ S(x

i
[0,s]) = α⊤SN (xi,D[0,s])− α⊤

⋆,NSN (xi[0,s]) + α⊤
⋆,NSN (xi[0,s])− α⊤

⋆ S(x
i
[0,s]).

In particular, taking α = α⋆,N , we have

α⊤
⋆,NSN (xi,D[0,s])− α⊤

⋆ S(x
i
[0,s]) = α⊤

⋆,N

(
SN (xi,D[0,s])− SN (xi[0,s])

)
+ α⊤

⋆,NSN (xi[0,s])− α⊤
⋆ S(x

i
[0,s]).

Using Proposition A.4, one obtains

|α⊤
⋆,NSN (xi[0,s])− α⊤

⋆ S(x
i
[0,s])| ≤

(dLxs)
N+1

(N + 1)!
ΛN+1(G⋆).
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Additionally, using Theorem A.7, we have∣∣α⊤
⋆,N

(
SN (xi,D[0,s])− SN (xi[0,s])

)∣∣ ≤ ∥α⋆,N∥ c3(N)|D|.

We obtain for θ = (α⋆,N , β⋆) that

(
log λi,Dθ (s)− log λi⋆(s)

)2 ≤ 2
[ (dLxs)N+1

(N + 1)!
ΛN+1(G⋆)

]2
+ 2 ∥α⋆,N∥2 c3(N)2|D|2

using the fact that (a+ b)2 ≤ 2a2 + 2b2. Finally, integrating yields

D2
n(λ⋆, λ

D
θ ) ≤

1

n

n∑
i=1

exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))

2τ
[ (dLx)N+1

(N + 1)!
ΛN+1(G⋆)

]2 ∫ τ

0

s2(N+1)ds

+
1

n

n∑
i=1

exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))

2τ ∥α⋆,N∥2 c3(N)2|D|2

≤ 2τ exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))[ (dLx)N+1

(N + 1)!
ΛN+1(G⋆)

]2
τ2N+3

2N + 3

+ 2τ exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆Lxτ

))
∥α⋆,N∥2 c3(N)2|D|2.

Using Lemma A.6, we can furthermore simplify the bound to

D2
n(λ⋆, λ

D
θ ) ≤ 2τ exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))[ (dLx)N+1

(N + 1)!
ΓN+1(G⋆)

]2
τ2N+3

2N + 3

+ 2τ exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆Lxτ

))
c3(N)2

N∑
k=1

dkΓk(G⋆)
2|D|2.

B.4. Proof of Theorem 3.1

Theorem B.4 (Formal statement of Theorem 3.1). Consider the signature-based embedding. Let θ̂ = (α̂, β̂) be the solution
of (3) with pen(θ) = η1 ∥α∥1 + η2 ∥β∥1. Under Assumptions 1, 2, 3 and 4, and writing β⋆ = (β

(1)
⋆ , . . . , β

(s)
⋆ ), we have

for any N ≥ 1 and any x > 0 that with probability greater than 1− 4e−x

ℓDn (θ̂)− ℓ⋆n ≤2τ exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))[ (dLx)N+1

(N + 1)!
ΓN+1(G⋆)

]2
τ2N+3

2N + 3︸ ︷︷ ︸
Approximation bias

+ 2τ exp

(
Bβ,2BW + ∥G⋆(0)∥op Lxτ exp

(
LG⋆

Lxτ
))

c3(N)2
N∑
k=1

dkΓk(G⋆)
2|D|2︸ ︷︷ ︸

Discretization bias

+ 4
(Lxτ)

k⋆

k⋆!

√
2
(
x+ log(NdN )

)
λ∞

n

N∑
k=1

dkΓk(G⋆) + 4Bβ,0 sup
k=1,...,s

|β(k)
⋆ |BW

√
2τλ∞(x+ log s)

n
.

Proof. By optimality of θ̂, we have for all θ ∈ Θ that

ℓDn (θ̂) + pen(θ̂)− ℓ⋆n ≤ ℓDn (θ) + pen(θ)− ℓ⋆n
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and hence, using Proposition A.9, one obtains

KLn(λ⋆, λDθ̂ ) ≤ KLn(λ⋆, λDθ ) + pen(θ)− pen(θ̂) +
1

n

n∑
i=1

∫
log

λi,D
θ̂

(s)

λi,Dθ (s)
dM i(s).

Using Proposition A.10, the KL-divergence on the right hand side can be bounded by the squared log divergence, yielding

KLn(λ⋆, λDθ̂ ) ≤ c2D2
n(λ⋆, λ

D
θ ) + pen(θ)− pen(θ̂) +

1

n

n∑
i=1

∫
log

λi,D
θ̂

(s)

λi,Dθ (s)
dM i(s). (7)

The “bias term” c2D2
n(λ⋆, λ

D
θ ) can be bounded thanks to Proposition B.3. We shall now derive a bound for the term

pen(θ)− pen(θ̂) +
1

n

n∑
i=1

∫
log

λi,D
θ̂

(s)

λi,Dθ (s)
dM i(s).

Since Equation (7) holds true for all θ ∈ Θ, we can set θ = (α⋆,N , β⋆). We now study the term

1

n

n∑
i=1

∫ τ

0

log
λi,D
θ̂

(s)

λi,Dθ⋆N
(s)

dM i(s) =
1

n

n∑
i=1

∫ τ

0

(
α̂⊤SN (xi,D[0,s]) + β̂⊤Wi − α⊤

⋆,NS(xi[0,t])− β⊤
⋆ W

i
)
dM i(s) (8)

= (α̂− α⋆,N )⊤
1

n

n∑
i=1

∫ τ

0

SN (xi,D[0,s])dM
i(s) + (β̂ − β⋆)

⊤ 1

n

n∑
i=1

WiM i(t). (9)

which appears in Proposition A.9 when considering signature based embeddings. We make a repeated use of the following
lemmas in our derivation of a bound for this term.

Lemma B.5. Let S[k],j(x
i,D
[0,t]) ∈ R be the signature coefficient associated to the j-th word of the k-th signature layer of a

time series xi,D[0,t] evaluated at time t ≤ τ . Then we have∥∥∥S[k],j(x
i,D
[0,·])

∥∥∥
∞,[0,t]

= max
s∈[0,t]

|S[k],j(x
i,D
[0,s])| ≤

(Lxt)
k

k!
≤ (Lxτ)

k

k!
.

Proof. For all s ∈ [0, t], we have

|S[k],j(x
i,D
[0,s])| ≤

∥∥∥S[k](x
i,D
[0,s])

∥∥∥ ≤

∥∥∥xi,D[0,t]∥∥∥k1-var

k!

where S[k](x
i,D
[0,s]) refers to the full signature layer of depth k, and the last inequality can be found in Fermanian (2021).

Using Assumption 1, we have ∥∥∥xi,D[0,t]∥∥∥k1-var

k!
≤

∥∥∥xi[0,t]∥∥∥k1-var

k!
≤ (Lxt)

k

k!
≤ (Lxτ)

k

k!
.

The following deviation inequality is a direct consequence from the one in Van de Geer (1995) and derives from inequalities
for general martingales that can be found in Shorack & Wellner (2009) for instance.

Lemma B.6 (Deviation inequality for a martingale). Let Υ be a locally square integrable martingale .Then, for any x > 0
and t ≥ 0, the following holds true for

P
(∣∣Υ(t)

∣∣ ≥√2v(t)x+
B(t)x

3
, ⟨Υ(t)⟩ ≤ v(t), sup

s∈[0,t]

|∆Υ(s)| ≤ B(t)
)
≤ 2e−x, (10)

where ⟨Υ(t)⟩ is the predictable variation of Υ and ∆Υ(t) its jump at time t.
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Going back to Equation (8) and decomposing on the signature layers, we can write

∣∣∣(α̂− α⋆,N )⊤
1

n

n∑
i=1

∫ τ

0

SN (xi,D[0,s])dM
i(s)
∣∣∣ = ∣∣∣ N∑

k=1

(α̂[k] − α⋆,[k])
⊤ 1

n

n∑
i=1

∫ τ

0

S[k](x
i,D
[0,s])dM

i(s)
∣∣∣

≤
N∑
k=1

∥∥α̂[k] − α⋆,[k]
∥∥
1

sup
1≤j≤dk

∣∣∣ 1
n

n∑
i=1

∫ τ

0

S[k],j(x
i,D
[0,s])dM

i(s)
∣∣∣.

Because the martingales M i are independent, and the signature coefficients bounded, the term

χn(τ) =
1

n

n∑
i=1

∫ τ

0

S[k],j(x
i,D
[0,s])dM

i(s)

is itself a martingale. Moreover, since each M i comes from a counting process via a Doob Meier decomposition, its jumps
are bounded by 1 and, at a given time, there is (almost surely) at most one M i that jumps. As a consequence, we get the
following bound with jumps bounded by

sup
t∈[0,τ ]

∣∣∆χn(t)∣∣ ≤ 1

n
sup

i=1,...,n

∥∥S[k],j(x
i,D
[0,·])

∥∥
∞,[0,τ ]

≤ (Lxτ)
k

nk!
,

and quadratic variation given at time t ∈ [0, τ ] by

⟨χn(t)⟩ =
〈 1
n

n∑
i=1

∫ t

0

S[k],j(x
i,D
[0,s])dM

i(s)
〉
=

1

n2

n∑
i=1

∫ t

0

S[k],j(x
i,D
[0,s])

2λi⋆(s)Y
i(s)ds

≤ sup
i=1,...,n

∥S[k],j(x
i,D
[0,·])∥

2
∞,[0,τ ]

1

n2

n∑
i=1

Λi⋆(t)

≤ 1

n
sup

i=1,...,n
∥S[k],j(x

i,D
[0,·])∥

2
∞,[0,τ ] sup

i=1,...,n
Λi⋆(t)

≤ L2k
x τ

2k+1λ∞
n(k!)2

, (11)

where we have used Lemma B.5 and the fact that

Λi⋆(t) =

∫ t

0

λi⋆(s)Y
i(s)ds ≤ t sup

s∈[0,t]

λi⋆(s) ≤ τ sup
s∈[0,τ ]

λi⋆(s) ≤ τλ∞,

with
λ∞ = exp

(
Bβ,2BW) exp

(
∥G⋆(0)∥op Lxτ exp

(
LG⋆Lxτ

))
according to Lemma 2.1. Lemma B.6 now warrants that for any ε > 0 with a probability greater than 1− 2e−ε

∣∣∣ 1
n

n∑
i=1

∫ τ

0

S[k],j(x
i,D
[0,s])dM

i(s)
∣∣∣ ≤√2εL2k

x τ
2k+2λ∞

n(k!)2
+
ε(Lxτ)

k

3nk!
≤ (Lxτ)

k⋆

k⋆!

(√2ετ2λ∞
n

+
ε

3n

)
where

k⋆ = argmaxk≥1

(Lxτ)
k

k!
.

A double union bound on the signature layers and the signature coefficients within each layer ensures that for any ε > 0
with a probability greater than 1− 2e−ε

sup
1≤k≤N

sup
1≤j≤dk

∣∣∣ 1
n

n∑
i=1

∫ τ

0

S[k],j(x
i,D
[0,s])dM

i(s)
∣∣∣ ≤ (Lxτ)

k⋆

k⋆!

(√2
(
ε+ log(NdN )

)
τ2λ∞

n
+
ε+ log(NdN )

3n

)
.
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As a consequence

∣∣∣(α̂− α⋆,N )⊤
1

n

n∑
i=1

∫ τ

0

SN (xi,D[0,s])dM
i(s)
∣∣∣ ≤ ∥α̂− α⋆,N∥1

(Lxτ)
k⋆

k⋆!

(√2
(
ε+ log(NdN )

)
τ2λ∞

n
+
ε+ log(NdN )

3n

)
for any ε > 0 with a probability greater than 1− 2e−ε.

We apply the same line of reasoning to

∣∣∣(β̂ − β⋆)
⊤ 1

n

n∑
i=1

WiM i(t)
∣∣∣ ≤ ∥β̂ − β⋆∥1 sup

1≤m≤s

∣∣∣ 1
n

n∑
i=1

W i
mM

i(t)
∣∣∣.

For each m, the term
n∑
i=1

W i
mM

i(·) is a martingale with predictable variation less than

n∑
i=1

(W i
m)2Λi⋆(t) ≤ B2

Wτλ∞.

Its jumps are bounded by BW, and therefore Lemma B.6 applies. Via an union bound, we deduce that for any ε > 0 and
with a probability greater that 1− 2e−ε

∣∣∣(β̂ − β⋆)
⊤ 1

n

n∑
i=1

WiM i(t)
∣∣∣ ≤ ∥β̂ − β⋆∥1

√
2B2

Wτλ∞(ε+ log s)

n
+
BW(ε+ log s)

3n
.

Now defining the penalty

pen(θ) = ∥α∥1
(Lxτ)

k⋆

k⋆!

(√2
(
ε+ log(NdN )

)
τ2λ∞

n
+
ε+ log(NdN )

3n

)
+ ∥β∥1

(√2B2
Wτλ∞(ε+ log s)

n
+
BW(ε+ log s)

3n

)
,

we obtain

pen(θ⋆,N )− pen(θ̂) +
1

n

n∑
i=1

∫
log

λi,D
θ̂

(s)

λi,Dθ (s)
dM i(s)

≤ 2∥α⋆,N∥1
(Lxτ)

k⋆

k⋆!

(√2
(
x+ log(NdN )

)
τ2λ∞

n
+
x+ log(NdN )

3n

)
+ 2∥β⋆∥1

(√2B2
Wτλ∞(x+ log s)

n
+
BW(x+ log s)

3n

)
with a probability greater that 1− 4e−ε for any ε > 0. For n large enough, we can write

2∥α⋆,N∥1
(Lxτ)

k⋆

k⋆!

(√2
(
ε+ log(NdN )

)
τ2λ∞

n
+
ε+ log(NdN )

3n

)
+ 2∥β⋆∥1

(
BW

√
2τλ∞(ε+ log s)

n
+
BW(ε+ log s)

3n

)
≤ 4∥α⋆,N∥1

(Lxτ)
k⋆

k⋆!

√
2
(
ε+ log(NdN )

)
τ2λ∞

n
+ 4∥β⋆∥1BW

√
2τλ∞(ε+ log s)

n
.
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Finally, using Lemma A.6 and Assumption 3, we can bound the ℓ1 norms of α⋆,N and β⋆,N and obtain that for large n, for
any ε > 0 we have with probability greater than 1− 4e−ε that

4∥α⋆,N∥1
(Lxτ)

k⋆

k⋆!

√
2
(
ε+ log(NdN )

)
τ2λ∞

n
+ 4∥β⋆∥1BW

√
2τλ∞(ε+ log s)

n

≤ 4
(Lxτ)

k⋆

k⋆!

√
2
(
ε+ log(NdN )

)
τ2λ∞

n

N∑
k=1

dkΓk(G⋆) + 4Bβ,0 sup
k=1,...,s

|β(k)
⋆ |BW

√
2τλ∞(ε+ log s)

n
.
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C. Algorithmic and Implementation Details
In this Section, we provide extra information about learning algorithms described in the main paper and their hyperparam-
eters optimization by gridsearch.

C.1. Description of Competing Methods

C.1.1. COXSIG AND COXSIG+

Implementation. We use iisignature (Reizenstein & Graham, 2020) to compute signatures. Alternatives for com-
puting signatures include the signatory library (Kidger & Lyons, 2020).

Training. We minimize the penalized negative log-likelihood (defined in 3 in the main paper) using a vanilla proximal
point algorithm (Boyd & Vandenberghe, 2004).

Hyperparameters. The initial learning rate of the proximal gradient algorithm is set to e−3 and the learning rate for
each iteration is chosen by back tracking linesearch method (Boyd & Vandenberghe, 2004). The hyperparameters of
penalization strength (η1, η2) and truncation depth N are chosen by 1-fold cross-validation of a mixed metric equal to the
difference between the C-index and the Brier score. We select the best hyperparameters that minimize the average of this
mixed metric on the validation set. We list the hyperparameters search space of this algorithm below.

• η1: {1, e−1, e−2, e−3, e−4, e−5};

• η2: {1, e−1, e−2, e−3, e−4, e−5};

• N : {2, 3}. Larger values were considered in the beginning of experiments but were removed from the cross-validation
grid because they yielded bad performance and numerical instabilities.

C.1.2. NCDE

Implementation. We implement the fill-forward discrete update of NCDEs in Pytorch.

Structure. The neural vector field is a feed-forward network composed of two fully connected hidden layers whose
hidden dimension is set to 128. We choose to represent the latent state in 4 dimensions—the number of nodes in the input
layer is therefore set to 4. The dimension of the output layer is equal to the multiplication of the dimension of the hidden
layer (128) and the dimension of the sample paths of a given data set. tanh is set to be the activation function for all the
nodes in the network.

Training. The model was trained for 50 epochs using the Adam optimizer (Kingma & Ba, 2015) with a batch size of 32
and cross-validated learning rate set to e−4.

C.1.3. COX MODEL

Implementation and Training. We use a classical Cox model with elastic-net penalty as a baseline, which is given either
the first measured value of the individual time series or the static features if they are available. The intensity of this model
has then the form

λiθ(t) = λ0(t) exp(β
⊤Wi),

where Wi = Xi(0) if no static features are available. We use the implementation provided in the Python package
scikit-survival and called CoxnetSurvivalAnalysis (Pölsterl, 2020).

Hyperparameters. The ElasticNet mixing parameter γ is set to 0.1. The hyperparameter of penalization strength η is
chosen by cross-validation as described above. We crossvalidate over the set {1, e−1, e−2, e−3, e−4, e−5} to select the
best value.

C.1.4. RANDOM SURVIVAL FOREST

Implementation. We use the implementation of RSF (Ishwaran et al., 2008) provided in the Python package
scikit-survival (Pölsterl, 2020).
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Training. We train this model with static features Wi as the only input. Similarly to our implementation of the Cox
model, we use the first value of the time series as static features if no other features are available.

Hyperparameters. We cross-validate two hyperparameters on the following grids.

• max features: {None, sqrt};

• min samples leaf: {1, 5, 10};

C.1.5. DYNAMIC DEEP-HIT (LEE ET AL., 2019)

DDH is a dynamical survival analysis algorithm that frames dynamical survival analysis as a classification problem. It
divides the considered time period [0, τ ] into a set of contiguous time intervals. The network is then trained to predict a
time interval of event for every subject, which is a multiclass classification task.

Network Architecture. Being adapted to competing events, Dynamic Deep-Hit combines a shared network with a cause-
specific network. The shared network is a combination of a RNN-like network that processes the longitudinal data and
an attention mechanism, which helps the network decide which part of the history of the measurements is important. The
cause-specific network is a feed-forward network taking as an input the history of embedded measurements and learning a
cause-specific representation. See Figure 6 for a graphical representation of the network’s structure.

Figure 6: Network structure of Dynamic DeepHit. Figure is taken from Lee et al. (2019).

Loss Function. The loss function of DDH is a sum of three loss functions

ℓDynamic DeepHit = ℓlog-likelihood + ℓranking + ℓprediction.

The first loss maximizes the conditional likelihood of dying in the interval [tk, tk+1[ given that the individual has survived
up to time tk. On a side note, we notice that the claim of Lee et al. (2019) that this loss corresponds to “the negative
log-likelihood of the joint distribution of the first hitting time and corresponding event considering the right-censoring” of
the data is hence inexact. This might explain the results observed in Figure 4: DDH’s performance, in terms of Brier score,
strongly degrades as δt increases because the model is only trained to predict one step ahead, instead of maximizing the
full likelihood.

The second loss favors correct rankings among at risk individuals: an individual experiencing an event at time T i should
have a higher risk score at time t < T i than an individual j for which T j > T i.

The third loss is a prediction loss, which measures the difference between the value of the time-dependent features and a
prediction of this value made by the shared network. The loss is minimized using Adam (Kingma & Ba, 2015).

Hyperparameters. In our setting, we use the network in its original structure. The learning rate is set to e−4 and the
number of epochs to 300.
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C.1.6. SURVLATENT ODE (MOON ET AL., 2022)

Network Architecture. SurvLatent ODE is a variational autoencoder architecture (Kingma & Welling, 2013). The en-
coder embeds the entire longitudinal features into an initial latent state, and the decoder uses this latent state to drive the
latent trajectory and to estimate the distribution of event time. In this framework, the encoder is an ODE-RNN archi-
tecture (Rubanova et al., 2019), which handles the longitudinal features sequentially backward in time and outputs the
posterior over the initial latent state. The decoder, which is adapted to competing events, consists of an ODE model and
cause-specific decoder modules. The latent trajectory derived from the ODE model is shared across cause-specific de-
coder modules to estimate the cause-specific discrete hazard functions. See Figure 7 for a graphical representation of the
network’s structure.

Figure 7: Network structure of SurvLatent ODE. Figure taken from Moon et al. (2022).

Loss Function. The loss function is a combination of the log-likelihood and the Kullback-Leibler divergence between
the approximate and the true posterior over the initial latent state.

Hyperparameters. In our setting, we use the network in its original structure. The learning rate is set to e−2 and the
number of epochs to 15, as in the original paper. The training of this framework cannot use subjects whose last longitudinal
measurement time is equal to the event time, which is not the case for our proposed methods as well as other competing
methods. In order to avoid this problem, we then stop observing the longitudinal measurement before the time-to-event for
a period equal to 80 % of the event time of these subjects when training the model of this framework.

C.2. Computation of the Different Metrics

The following lemma details the computation of the conditional survival function.

Lemma C.1. For any i ∈ {1, . . . , n},

riθ(t, δt) = exp
(
−
∫ t+δt

t

λiθ(u, x
i,D
[0,u∧t])du

)
,

where riθ(t, δt) = P
(
T i > t + δt |T i > t, xi,D[0,t]

)
is the survival function of individual i, as estimated by the model with

parameters θ, at time t+ δt for δt > 0 conditional on survival up to time t, and on observation of the longitudinal features
up to time t, and the notation λiθ(u, x

i,D
[0,u∧t]) means that the intensity at time u is computed by using the longitudinal

features up to time u ∧ t = min(u, t).

Proof. Since Bayes rule gives

riθ(t, δt) = P
(
T i > t+ δt |T i > t, xi,D[0,t],W

i
)
=

P
(
T i > t+ δt |xi,D[0,t],W

i
)

P
(
T i > t |xi,D[0,t],Wi

) ,
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we can compute this score by using the fact that

P
(
T i > t |xi,D[0,t],W

i
)
= exp(−Λi,Dθ (t)),

where we recall that Λi,Dθ (t) is the cumulative hazard function

Λi,Dθ (t) :=

∫ t

0

λi,Dθ (s)Y i(s)ds.

We refer the reader unfamiliar with survival analysis to Aalen et al. (2008, Chapter 1, p. 6) for a proof of this expression
of the survival function. This then yields

riθ(t, δt) =
exp(−

∫ t+δt
0

λiθ(u, x
i,D
[0,u∧t])du)

exp(−
∫ t
0
λiθ(u, x

i,D
[0,u∧t])du)

= exp(−
∫ t+δt

t

λiθ(u, x
i,D
[0,u∧t])du).

Beside the two metrics described in the main paper, we report our results in term of two more metrics namely the weighted
Brier Score and the area under the receiver operating characteristic curve (AUC). The details of these metrics are given
below.

Weighted Brier Score. The weighted version of the Brier score, which we write WBS(t, δt), is defined as
n∑
i=1

1T i≤t,∆i=1
riθ(t, δt))

2

Ĝ(T i)
+ 1T i≥t

(1− riθ(t, δt))
2

Ĝ(t)
,

where Ĝ(·) is the probability of censoring weight, estimated by the Kaplan-Meier estimator.

AUC. We define the area under the receiver operating characteristic curve AUC(t, δt) as
n∑
i=1

n∑
j=1

1riθ(t,δt)>r
j
θ(t,δt)

1T i>t+δt, T j∈[t,t+δt]wj

(
n∑
i=1

1T i>t+δt)(
n∑
i=1

1T i∈[t,t+δt]wi)
,

where wi are inverse probability of censoring weights, estimated by the Kaplan-Meier estimator.

D. Details of Experiments and Datasets
The main characteristics of the datasets used in the paper are summarized in Table 3 and we provide more detailed infor-
mation of these datasets in subsections below. For the experiments, each dataset is randomly divided into a training set
(80%) and test set (20%). Hyperparameter optimization is performed as follows. We split the training set, using 4/5 for
training and 1/5 for validation. We then re-fit on the whole training set with the best hyperparameters and report the results
on the test set for 10 runs. Note that the performance is evaluated at numerous points (t, δt), where t is set to the 5th, 10th,
and 20th percentile of the distribution of event times.

D.1. Hitting Time of a partially observed SDE

Time series. The paths xt = (x
(1)
t , . . . , x

(d−1)
t ) are (d − 1)-dimensional sample paths of a fractional Brownian motion

with Hurst parameter H = 0.6, and Bi(t) is a Brownian noise term. We set d = 5. The paths are sampled at 1000 times
over the time interval [0, 10]. All simulations are done using the stochastic package1. The time series Xi are identical,
up to observation time, to the ones used for simulations.

1Available at https://github.com/crflynn/stochastic
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Name n d Static Features Censoring Avg. Observation Times Source

Hitting time 500 5 ✗ Terminal (3.2%) 177 Simulation
Tumor Growth 500 2 ✗ Terminal (8.4%) 250 Simeoni et al. (2004)
Predictive Maintenance 200 17 ✗ Online (50%) 167 Saxena et al. (2008)
Churn 1043 14 ✗ Terminal (38.4%) 25 Private dataset

Table 3: Description of the 4 datasets we consider. The integer d is the dimension of the time series including the time
channel. Terminal censoring means that the individuals are censored at the end of the overall observation period [0, τ ] if
they have not experienced any event. It is opposed to online censoring that can happen at any time in [0, τ ]. The reported
percentage indicates the censoring level i.e. the share of the population that does not experience the event.
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Figure 8: Full sample path of an individual (left) and distribution of the event times (left) for the partially observed SDE experiment.
The surge in events at the terminal time indicates terminal censorship.

Event definition We consider the stochastic differential equation

dwt = −ω(wt − µ)dt+

d∑
i=1

dx
(i)
t + σdBt,

where wt is trajectory of each individual with (σ, µ, ω) ∈ R3 are fixed parameters. In our experiment, the parameters are
chosen to be σ = 1, µ = 0.1 and ω = 0.1. We then define the time-of-event as the time when trajectory cross the threshold
w⋆ ∈ R during the observation period [t0 tN ], which is

T ⋆ = min{t0 ≤ t ≤ tN |wt ≥ w⋆}.

In our experiments, we use the threshold value w⋆ = 2.5. The target SDE is simulated using an Euler discretization. We
train on n = 500 individuals.

Censorship We censor individuals whose trajectory does not cross the threshold during the observation period. This means
that individuals are never censored during the observation period, but only at the end. The simulated censoring level is
3.2%.

Supplementary Figures. Figure 8 provides an example of the full sample path of an individual and the distribution of
the event times of the whole population. We add additional results on the test set in Figures 9, 10, 11, 12 and 13.

D.2. Tumor Growth

Time series. Similarly to the partially observed SDE experiment described above, we set d = 2 which includes 1-
dimensional sample path xt of a fractional Brownian motion with Hurst parameter H = 0.6. The paths are sampled at
1000 times over the time interval [0, 10]. All simulations are done using the stochastic package. The time series Xi

are identical, up to observation time, to the ones used for simulations.
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Figure 9: C-Index (higher is better) for hitting time of a partially observed SDE for numerous points (t, δt).
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Figure 10: Brier score (lower is better) for hitting time of a partially observed SDE for numerous points (t, δt).
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Figure 11: Weighted Brier score (lower is better) for hitting time of a partially observed SDE for numerous points (t, δt).
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Figure 12: AUC (higher is better) for hitting time of a partially observed SDE for numerous points (t, δt).
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Figure 13: Running times on the partially observed SDE experiment (log-scale) averaged over 10 runs including cross-validation of the
hyperparameters on CoxSig, CoxSig+, Cox and RSF (left) and over 1 run without cross-validation of the hyperparameters on CoxSig,
CoxSig+, Cox and RSF (right).

Event definition. Following Simeoni et al. (2004), we consider the differential equations

du
(1)
t

dt
=

λ0u
(1)
t[

1 + (λ0

λ1
wt)Ψ

]1/Ψ − κ2xtu
(1)
t

du
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= κ2xtu

(1)
t − κ1u

(2)
t

du
(3)
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= κ1(u

(2)
t − u

(3)
t )

du
(4)
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dt
= κ1(u

(3)
t − u

(4)
t )

wt = u
(1)
t + u

(2)
t + u

(3)
t + u

(4)
t ,

where wt is trajectory of each individual with initial status of (u
(1)
0 , u

(2)
0 , u

(3)
0 , u

(4)
0 ) = (0.8, 0, 0, 0) and

(λ0, λ1, κ1, κ2,Ψ) ∈ R5 are fixed parameters. In our experiment, the parameters are chosen to be λ0 = 0.9, λ1 = 0.7,
κ1 = 10, κ2 = 0.15 and Ψ = 20. We then define the time-of-event as the time when trajectory cross the threshold w⋆ ∈ R
during the observation period [t0 tN ], which is

T ⋆ = min{t0 ≤ t ≤ tN |wt ≥ w⋆}.

In our experiments, we use the threshold value w⋆ = 1.7. The target differential equations are simulated using an Euler
discretization. We train on n = 500 individuals.

Censorship. Similarly to the partially observed SDE experiment, we consider terminal censorship: individuals that do
not experience the event within the observation period are censored. The censoring level is 8.4%.

Supplementary Figures. Figure 14 provides an example of the full sample path of an individual and the distribution of
the event times of the whole population. We add additional results on the test set in Figures 15, 16, 17 and 18.

D.3. Predictive Maintenance

Time series. This dataset describes the degradation of 200 aircraft gas turbine engines, where 22 measurements of sensors
and 3 operational settings are recorded each operational cycle until its failure. After removing low-variance features, 16
longitudinal features are selected for training models. The average time length of these features is about 25 cycles. Note
that we apply standardization for selected features before training.

Event definition. The times of event are given as-is in the dataset. We refer to Saxena et al. (2008) for a precise descrip-
tion of the data generation.
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Figure 14: Full sample path of an individual (left) and distribution of the event times (left) for the tumor growth experiment. The surge
in events at the terminal time indicates terminal censorship.
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Figure 15: C-Index (higher is better) for Tumor Growth for numerous points (t, δt).

Censorship. Censorship is given as-in in the dataset. The censoring level of this dataset is 50%, which is a high censor-
ship rate in survival analysis. We refer again to Saxena et al. (2008) for more details.

Supplementary Figures. Figure 19 provides an example of several randomly picked sample paths of an individual and
the distribution of the event times of the whole population. We add additional results in Figures 20, 21, 22 and 23.

D.4. Churn Prediction

For this dataset, the amount of details that we can release is limited both because of the sensitive nature of the data and of
the anonymity requirements of the reviewing process.
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Figure 16: Brier score (lower is better) for Tumor Growth for numerous points (t, δt).
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Figure 17: Weighted Brier score (lower is better) for Tumor Growth for numerous points (t, δt).

39



Dynamic Survival Analysis with Controlled Latent States

CoxSig CoxSig+ NCDE Cox RSF DDH SLODE
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

t = 1.04, t = 0.05
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

t = 1.04, t = 0.10
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

t = 1.04, t = 0.13

CoxSig CoxSig+ NCDE Cox RSF DDH SLODE
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

t = 1.09, t = 0.05
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

t = 1.09, t = 0.10
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

t = 1.09, t = 0.13

CoxSig CoxSig+ NCDE Cox RSF DDH SLODE
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

t = 1.17, t = 0.05
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

t = 1.17, t = 0.10
CoxSig CoxSig+ NCDE Cox RSF DDH SLODE

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

t = 1.17, t = 0.13

Figure 18: AUC (higher is better) for Tumor Growth for numerous points (t, δt).
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Figure 19: Partial sample path of an individual (left) and distribution of the event times (left) for the predictive maintenance experiment.
On the left, the time series is filled with the last observed value from the time of the event on.
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Figure 20: C-Index (higher is better) for predictive maintenance for numerous points (t, δt).

Time series. All longitudinal features have been computed on a temporal window of one week, the raw data correspond-
ing to all product orders placed on the platform from 06-12-2021 to 12-11-2023. For clients who have no order during
the week, we fill zero value for all longitudinal measurements this week. After removing features with more than 90 % of
missingness, 14 longitudinal features of 1043 clients are selected for the training step. Note that we apply standardization
for selected features before training.

Event definition. We consider that a customer has churned if she has no passed any order in the last 4 weeks. If the
customer starts ordering again after a churn, we register her as a new customer.

Censorship. Censorship is terminal based on the data collection period (give dates here). Hence any customer that has
not churned by 12-11-2023 is censored. In this dataset, 38.4% of the clients are terminally censored.

Supplementary Figures. Figure 24 provides an example of four sample paths of four randomly chosen individuals. We
add additional results in Figures 25, 26, 27 and 28.
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Figure 21: Brier Score (lower is better) for predictive maintenance for numerous points (t, δt).
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Figure 22: Weighted Brier Score (lower is better) for predictive maintenance for numerous points (t, δt).
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Figure 23: AUC (higher is better) for predictive maintenance for numerous points (t, δt).
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Figure 24: Values of 4 different time-dependent features for 4 randomly chosen individuals from the churn prediction dataset. Individ-
ual time-to-event and distribution of the event times cannot be displayed to protect consumer and business privacy. A precise description
of the different time-dependent features will be provided upon publication.
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Figure 25: C-Index (higher is better) for churn prediction for numerous points (t, δt).
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Figure 26: Brier score (lower is better) for churn prediction for numerous points (t, δt).
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Figure 27: Weighted Brier score (lower is better) for churn prediction for numerous points (t, δt).
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Figure 28: AUC (higher is better) for churn prediction for numerous points (t, δt).
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