
Nonlinearly Preconditioned Gradient Methods:
Momentum and Stochastic Analysis

Konstantinos Oikonomidis∗
ESAT-STADIUS & Leuven.AI

KU Leuven
konstantinos.oikonomidis@kuleuven.be

Jan Quan∗

ESAT-STADIUS & Leuven.AI
KU Leuven

jan.quan@kuleuven.be

Panagiotis Patrinos
ESAT-STADIUS & Leuven.AI

KU Leuven
panos.patrinos@kuleuven.be

Abstract

We study nonlinearly preconditioned gradient methods for smooth nonconvex opti-
mization problems, focusing on sigmoid preconditioners that inherently perform
a form of gradient clipping akin to the widely used gradient clipping technique.
Building upon this idea, we introduce a novel heavy ball-type algorithm and pro-
vide convergence guarantees under a generalized smoothness condition that is less
restrictive than traditional Lipschitz smoothness, thus covering a broader class of
functions. Additionally, we develop a stochastic variant of the base method and
study its convergence properties under different noise assumptions. We compare
the proposed algorithms with baseline methods on diverse tasks from machine
learning including neural network training.

1 Introduction and preliminaries

In this paper we consider general minimization problems of the form:

min
x∈Rn

f(x), (P)

where f : Rn → R is a smooth and possibly nonconvex function. Under (global) Lipschitz continuity
of the gradient, gradient descent (GD) and its stochastic counterpart, stochastic gradient descent
(SGD) are the standard methods to efficiently tackle such problems. Gradient descent-type methods
are the backbone of training machine learning models, especially considering the ever-growing size
of datasets and architectures. Nevertheless, most modern-day applications involve cost functions
that do not fit into the traditional Lipschitz gradient assumption [48]. Although GD and SGD,
being versatile solvers, can handle such problems as well, they require careful tuning or expensive
linesearch strategies to converge. In recent years, there has thus been considerable effort to introduce
and analyze methods that can better adapt to more general smoothness conditions.

Gradient clipping [48, 20] is a standard practice in tasks such as language models and has been widely
used to stabilize the training of neural networks. Recently, the method has received a lot of theoretical
attention, especially since it was shown to be effective for problems under a less restrictive notion
of smoothness, called (L0, L1)-smoothness [48]. In [36], it was shown that in fact a whole family
of clipping methods, including the soft clipping algorithm [47] can be viewed as simple gradient

∗Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Table 1: Examples of reference functions along with generated algorithms. The subscript i denotes
the coordinate-wise update. We call the method generated by cosh−1 Hyperbolic Gradient Descent
(HGD), while i indicates that the method is generated by an isotropic reference function and s by a
separable one (see also Subsection 1.4).

ϕ(x) Update Algorithm

ε(−∥x∥ − ln(1− ∥x∥)) xk+1 = xk − γ
ε+∥∇f(xk)∥∇f(xk) NGD [48, Equation (6)]

ε
∑n

i=1(−|xi| − ln(1− |xi|)) xk+1
i = xk

i − γ
ε+|∇if(xk)|∇if(x

k) sNGD

cosh(∥x∥)− 1 xk+1 = xk − γ arsinh(∥∇f(xk))∥
∥∇f(xk)∥ ∇f(xk) iHGD∑n

i=1 cosh(xi)− 1 xk+1
i = xk

i − γ arsinh(∇if(x
k)) sHGD

descent with nonlinear preconditioning: given x0 ∈ Rn and a stepsize γ > 0, update xk as

xk+1 = xk − γ∇ϕ∗(∇f(xk)). (1)

In this scheme, ϕ : Rn → R is a convex function that plays the role of a reference function, while
its convex conjugate, ϕ∗ is called the dual reference function and generates the preconditioner ∇ϕ∗.
The fact that this method is connected to the gradient clipping framework can be seen by choosing a
strongly convex reference function ϕ that has bounded domain. Then, the mapping ∇ϕ∗ maps Rn to
the unit n-ball and as such, naturally clips the gradient. In fact, for ϕ(x) = ε(−∥x∥ − ln(1− ∥x∥))
with ε > 0, (1) takes the form of the popular normalized gradient descent method (NGD), as displayed
in the first line of Table 1. It is moreover important to stress the versatility of the framework, in that it
also involves algorithms that normalize the gradient per component, akin to the methods that are used
in practice. Such an example is presented in the second line of Table 1.

In fact, the method in (1) is naturally generated from a majorization-minimization perspective, where
in each iteration the following nonlinear upper bound is minimized w.r.t. x:

f(x) ≤ f(xk) + 1
Lϕ(L(x− yk))− 1

Lϕ(L(x
k − yk)), (2)

where yk = xk − 1
L∇ϕ∗(∇f(xk)). This inequality is called the anisotropic descent inequality [24]

and is a natural extension of Lipschitz smoothness that is tightly connected to the notion of Φ-
convexity [1] and to optimal transport theory [45]. We present more details on the concept of
Φ-convexity in Appendix A.

Intuitively, in order to generate less restrictive descent inequalities, one would consider reference
functions ϕ that grow rapidly, thus making the r.h.s. of (2) as large as possible. This procedure leads
to algorithms similar to the one in the first line of Table 1. Nevertheless, one can follow a different
procedure and generate a descent inequality that is a tighter model of the cost function, thus obtaining
an algorithm with faster convergence. Consider for example ϕ(x) = cosh(∥x∥)− 1. This function
grows faster than any polynomial in ∥x∥ and is strongly convex, implying that the algorithm presented
in the third line of Table 1 can handle problems beyond Lipschitz smoothness (from [36, Proposition
2.3]). However, in contrast to gradient clipping, the generated method does not clip the gradient to a
predefined value, but rather rescales it adaptively, leading to an implicit adaptive stepsize rule. In fact,
for reference functions that grow faster than 1

2∥x∥2, the descent inequality is less restrictive than the
standard Euclidean descent, and the preconditioner naturally takes a sigmoid shape. For example,
ϕ(x) = cosh(∥x∥)− 1 leads to ∇ϕ∗(y) = arsinh(∥y∥) y

∥y∥ .

Nevertheless, although considerable effort has been dedicated to analyzing the gradient clipping
method, general methods of the form (1) are much less explored. In this paper we aim at bridging
this gap, by introducing a heavy ball-type algorithm based on (1) and performing an initial analysis
of a stochastic extension of (1).

1.1 Our contribution

We summarize the contributions of the paper in the following.

• We extend the anisotropic gradient descent method [32, 24, 36] by incorporating heavy-ball
momentum in the base iterate and study the convergence guarantees of the proposed method

2

in the general nonconvex setting. To the best of our knowledge, such a scheme has not been
analyzed before in the full generality of the setting considered in this paper. We remark that
our analysis is based on the anisotropic descent inequality, a condition that is less restrictive
than (L0, L1)-smoothness and is applicable to a whole family of algorithms. Moreover, we
prove that our scheme enjoys a linear rate of convergence under a generalized PL condition.

• We propose a stochastic extension of the base method and analyze it under different noise
assumptions. We first prove its approximate convergence under a condition that we show is
less restrictive than bounded variance and then provide a convergence rate for interesting
reference functions assuming bounded variance and unbiasedness of the stochastic oracle.
We moreover study the method under a generalized PL inequality that leads to a linear rate
up to a constant.

• In numerical simulations we show that the proposed methods perform well on a variety of
machine learning problems, including neural network training and matrix factorization.

1.2 Related work

Dual space preconditioning / anisotropic gradient descent. The general scheme presented in (1)
was originally introduced in [32] for convex, essentially smooth problems, where it was studied
under a generalization of cocoercivity called dual relative smoothness. The anisotropic descent
inequality, which lies at the center of our analysis was introduced in [26] and was further studied
in [24], where also a proximal extension of the base method (1) was introduced in order to tackle
nonconvex, composite nonsmooth minimization problems. Further results were then provided under
a generalized convexity point of view in [28, 35], while a generalization of the method in measure
spaces was presented in [4]. Moreover, a nonlinear proximal point method for monotone operators
was analyzed in [25], while the regularity properties of the anisotropic proximal mapping where a
general nonlinear strictly convex prox function is used, were studied in [27, 23]. Recently in [36],
the method was shown to encompass a variety of popular algorithms including but not limited to the
clipped and normalized gradient method. Finally in [18] an accelerated extension of (1) for Lipschitz
smooth functions was introduced and studied.

Gradient clipping and generalized smoothness. Departing from the anisotropic gradient descent
framework, the algorithms that we study are mostly connected to clipped and normalized gradient
methods. Although the literature in this field is vast and ever-expanding we refer to some of the
major works in the following. In [48] the notion of (L0, L1)-smoothness was introduced and the
first theoretical analysis of gradient clipping under this new condition was presented. This approach
was later extended in [47], where a general clipping framework with momentum under (L0, L1)-
smoothness was analyzed in the deterministic and the stochastic setting. [8] studied an algorithm that
used both clipping and normalization to tackle more general noise assumptions, further deepening the
theoretical understanding of the method. A large body of work has since been devoted to studying
such methods under relaxed noise and smoothness assumptions [17, 20, 7, 30, 15, 16, 29, 46].
Moreover, for convex problems, in [11], a stochastic clipping method where the clipping is performed
using an independent sample was analyzed.

The notion of (L0, L1)-smoothness has also received widespread attention beyond the gradient
clipping literature. In [44] new interesting methods for (L0, L1)-smooth problems that take the form
of rescaled gradient descent were introduced and studied, and an accelerated variant for convex
problems was proposed. An analysis for convex problems was performed in [12] where also a
stochastic variant of the proposed method under interpolation was studied.

1.3 Notation

We denote by ⟨·, ·⟩ the standard Euclidean inner product on Rn and by ∥ · ∥ the standard Euclidean
norm on Rn as well as the spectral norm for matrices. We denote by Ck(Y) the class of functions
which are k times continuously differentiable on an open set Y ⊆ Rn. For a proper function
f : Rn → R with R := R ∪ {+∞} and λ ≥ 0 we define the episcaling (λ ⋆ f)(x) = λf(λ−1x) for
λ > 0 and (λ ⋆ f)(x) = δ{0}(x) otherwise. For an f ∈ C2(Rn) we say that it is (L0, L1)-smooth
for some L0, L1 > 0 if it holds that ∥∇2f(x)∥ ≤ L0 + L1∥∇f(x)∥ for all x ∈ Rn. Otherwise we
adopt the notation from [42].

3

1.4 The anisotropic descent inequality

Our analysis is centered around the anisotropic descent inequality from [24], that was recently shown
to be connected to other notions of generalized smoothness in [36] and is itself a globalization of
anisotropic prox-regularity [23, Definition 2.13].

Definition 1.1 (anisotropic descent inequality). Let f ∈ C1(Rn) such that the following constraint
qualification holds true

rge∇f ⊆ rge∇ϕ. (3)

Then we say that f satisfies the anisotropic descent property (is anisotropically smooth) relative to ϕ
if for all x, x̄ ∈ Rn

f(x) ≤ f(x̄) + 1
L ⋆ ϕ(x− ȳ)− 1

L ⋆ ϕ(x̄− ȳ), (4)

where ȳ = x̄− 1
L∇ϕ∗(∇f(x̄)).

Although in [36] a different form of anisotropic smoothness that contains two constants L, L̄ > 0
was presented, w.l.o.g. we present the simpler version displayed above since the constant L̄ can be
absorbed into ϕ by considering ϕ̃ := L̄ϕ.

In this paper, we focus mostly on strongly convex reference functions that grow faster than the
quadratic, in order to analyze the method under less restrictive conditions than Lipschitz smoothness
via [36, Proposition 2.3]. Keeping in line with the related literature, for some kernel function
h : R → R, we refer to functions ϕ = h ◦ ∥ · ∥ as isotropic and ϕ(x) =

∑n
i=1 hi(xi) as anisotropic

or separable. The kernel function h = cosh−1 has some interesting properties that we focus on
throughout the paper: it is strongly convex, grows faster than any polynomial and has full domain,
thus leading to a preconditioner that does not fully clip the gradient, but rather rescales it adaptively.
We call the method generated by cosh−1 the hyperbolic gradient descent (HGD) method.

We next formulate our assumptions on ϕ, which we consider valid throughout the rest of the paper.

Assumption 1.2. The reference function ϕ : Rn → R is strongly convex and even with ϕ(0) = 0.
int domϕ ̸= ∅; ϕ ∈ C2(int domϕ) and for any sequence {xk}k∈N0

that converges to some boundary
point of int domϕ, ∥∇ϕ(xk)∥ → +∞.

Note that under Assumption 1.2 ϕ∗ ∈ C2(Rn) from [41, p. 42], while ∇ϕ∗ is globally Lipschitz
continuous and we can omit the constraint qualification in the definition of anisotropic smoothness.
Moreover, from [2, Proposition 11.7], argminϕ = {0} and thus ϕ ≥ 0. Having formulated our
assumption on the reference function, we now move on to the assumptions on the cost function.

Assumption 1.3. The cost function f : Rn → R is anisotropically smooth with constant L > 0 and
f⋆ = inf f > −∞.

It is important to note that under generally mild conditions on ϕ, anisotropic smoothness follows
from a second-order characterization [36, Lemma 2.5]:

∇2f(x) ≺ L[∇2ϕ∗(∇f(x))]−1 ∀x ∈ Rn, (5)

which leads to a connection with the popular (L0, L1)-smoothness condition [48]:
Remark 1.4 (connection between (L0, L1)- and anisotropic smoothness). In light of [36, Corollary
2.11], any f ∈ C2(Rn) that is (L0, L1)-smooth, is also anisotropically smooth relative to ϕ(x) =
L0

L1
(−∥x∥ − ln(1− ∥x∥)) with any constant L < L1. It is important to stress that this result is due

to a simplification of the matrix inequality displayed above and as such, anisotropic smoothness
actually holds with tighter constants in many interesting cases. In fact, as shown in [3, Section
A.3], anisotropic smoothness for this specific reference function is less restrictive than (L0, L1)-
smoothness, since there exist continuously differentiable functions that are not (L0, L1)-smooth but
are anisotropically smooth.

We stress that our stationarity measure throughout the paper is ϕ(∇ϕ∗(∇f(x))), which is the natural
measure for this algorithmic family. When specifying ϕ, one can in many cases also translate the
results to the standard measure ∥∇f(x)∥. For example, for ϕ = cosh ◦∥ · ∥ − 1, we have that
ϕ(∇ϕ∗(∇f(x))) =

√
1 + ∥∇f(x)∥2 − 1 and thus the analysis follows similarly to [36, Corollary

3.3].

4

2 The nonlinearly preconditioned gradient method with momentum

In this section we propose and analyze a novel heavy ball-type method based on (1). The proofs can
be found in Appendix C.

Algorithm 1 Nonlinearly preconditioned gradient method with momentum (m-NPGM)

Require: Choose x0 ∈ Rn, γ, β > 0 and set m−1 = 0n.
Repeat for k = 0, 1, . . . until convergence

1: Compute
mk = βmk−1 + (1− β)∇ϕ∗(∇f(xk)). (6)

2: Compute
xk+1 = xk − γmk. (7)

Remark 2.1. Before moving on to our convergence results, we have to note that our proposed method
Algorithm 1 is different from the methods in the related literature. Specifically, our momentum
estimate consists of convex combinations of the preconditioned gradients, in contrast to the standard
technique of aggregating the gradients and then preconditioning mk in the update of xk+1 [16, 39,
40, 43]. With simple algebraic manipulations, the algorithm can be written equivalently as

xk+1 = xk − (1− β)γ∇ϕ∗(∇f(xk)) + β(xk − xk−1),

and thus takes the form of the standard heavy ball method but applied to the mapping ∇ϕ∗ ◦ ∇f . We
believe that this is a more natural approach for the descent inequality we base our analysis on. This is
made more apparent with the introduction of our Assumption 2.5.

The following theorem describes the convergence of Algorithm 1 under anisotropic smoothness of
f . To the best of our knowledge this is the first result regarding the convergence of the method with
momentum.

Theorem 2.2. Let Assumption 1.3 hold and {xk}k∈N0
be the sequence of iterates generated by

Algorithm 1 with β ∈ [0, 0.5) and γ = α
L , α ≤ 1. Then, we have the following rate:

min
0≤k≤K

ϕ(∇ϕ∗(∇f(xk))) ≤ L(f(x0)− f⋆)

α(K + 1)(1− 2β)
. (8)

The proof of Theorem 2.2 requires some additional effort compared to standard heavy ball momentum
analysis under Lipschitz or (L0, L1)-smoothness due to the particular structure of the anisotropic
descent inequality (4). For example, consider the special case where ϕ = 1

2∥ · ∥2 and the main
algorithm becomes standard gradient descent with fixed stepsize. Then, the anisotropic descent
inequality is just the Euclidean one after completing the squares. By using the Pythagorean theorem,
one can handle the terms on the r.h.s. of the inequality and then follow a similar technique to [34].
Nevertheless, such a property is not present for the general reference functions that we consider in
this paper and thus a different approach is necessary.

Another difficulty arising due to the generality of the setting we consider is that there do not exist
global upper bounds for ∥∇f(x)−∇f(x̄)∥, in contrast to Euclidean [34] or (L0, L1)-smoothness [47].
Finally, due to the general nature of the preconditioner ∇ϕ∗ which can span the whole space, the
analysis becomes more complicated, in contrast to clipping or normalized gradient methods. To
better motivate this, note that for normalized gradient type methods such as [30, Algorithm 1], the
primal update takes the form xk+1 = xk − γ mk

∥mk∥ , and as such ∥xk+1 − xk∥ = γ, thus bounding
the distance between consecutive iterates and simplifying the analysis.

We are nonetheless able to prove the convergence of the method with a novel proof technique that is
solely based on the convexity of the reference function ϕ, thus also unifying and greatly simplifying
the analysis. As a caveat, we are not able to show the result for any β ∈ [0, 1) as is the case for
Lipschitz smooth functions [34]. Whether or not this constraint can be lifted for the general setting
we consider, is an interesting open question.

5

2.1 Convergence under generalized PL condition

In a majorization-minimization procedure, upper bounds of the cost function are usually utilized
to study the general convergence properties of the method, such as asymptotic convergence and a
sublinear rate for some optimality measure, while lower bounds are used to prove faster rates of
convergence, e.g., linear convergence rates for the suboptimality gap.

One of the major advantages of the dual space preconditioning / anisotropic gradient descent method
compared to other frameworks of generalized smoothness is that the aforementioned lower bounds are
well-studied. In our setting of smooth nonconvex optimization they take the form of the anisotropic
gradient dominance condition from [24, Definition 5.6]:
Definition 2.3. We say that f satisfies the anisotropic gradient dominance condition relative to ϕ
with constant µ > 0 if for all x ∈ Rn

ϕ(∇ϕ∗(∇f(x))) ≥ µ(f(x)− f⋆). (9)

The fact that this condition is a generalization of the classical PL inequality becomes evident when
choosing ϕ = 1

2∥ · ∥2, where (9) becomes 1
2∥∇f(x)∥2 ≥ µ(f(x) − f⋆). Definition 2.3 holds for

example when f is anisotropically strongly convex [24, Proposition 5.11], in parallel to the standard
Euclidean setting where strong convexity implies the PL inequality. Therefore, in light of [24,
Proposition 5.11] it holds when f∗ is smooth relative to ϕ∗ with constant µ−1, i.e., when µ−1ϕ∗− f∗

is convex. Examples of functions f that satisfy Definition 2.3 relative to some ϕ can be found in [24]
and in [32, Section 4].

For the base method, linear convergence under this generalized PL condition was shown in [24,
Theorem 5.7] and this result was further refined in [35, Lemma 6.7]. In this paper we manage
to extend the aforementioned results, showing that Algorithm 1 also converges linearly when ϕ
is a 2-subhomogeneous function [36, Theorem 3.7], i.e., ϕ(θx) ≤ θ2ϕ(x) for all θ ∈ [0, 1] and
x ∈ domϕ. We provide examples of important 2-subhomogeneous reference functions as well as
further discussion on the generalized PL condition in Appendix E.
Theorem 2.4. Let Assumption 1.3 hold and f satisfy the anisotropic gradient dominance condition
relative to ϕ with constant µ > 0, where ϕ is 2-subhomogeneous. Let, moreover, {xk}k∈N0

be the
sequence of iterates generated by Algorithm 1 with β ∈ (0, 0.5) and γ ≤ 1

L . Then, we have the
following rate:

f(xk)− f⋆ ≤ αk(f(x0)− f⋆), (10)
where α = max{1− γµ(β − 2β2), β + 2β2}.

In contrast to the proof of Theorem 2.2, in the proof of Theorem 2.4 we utilize a Lyapunov function
that is monotonically decreasing along the sequence of iterates, given by Vk = γϕ(mk−1)+ f(xk)−
f⋆. We further utilize the convexity and 2-subhomogeneity of ϕ along with the anisotropic gradient
dominance condition to show that Vk converges linearly and thus obtain the claimed result.

2.2 Convergence under preconditioned Lipschitz continuity

As already mentioned, one of the main difficulties in proving the convergence of Algorithm 1 comes
from the fact that anisotropic smoothness is not equivalent to an upper bound on ∥∇f(x)−∇f(x̄)∥
for x, x̄ ∈ Rn. Intuitively, this is because the second-order condition for anisotropic smoothness
(5) does not involve the spectral norm of the Hessian of f , as is for example the case for standard
Lipschitz smoothness where ∥∇2f(x)∥ ≤ L or (L0, L1)-smoothness where ∥∇2f(x)∥ ≤ L0 +
L1∥∇f(x)∥. Nevertheless, it involves the Jacobian matrix of the preconditioned gradient operator
∇ϕ∗ ◦ ∇f and under some generally mild conditions, we can then obtain a bound of the form
∥∇(∇ϕ∗ ◦ ∇f)(x)∥ ≤ L, which then implies global L-Lipschitz continuity of ∇ϕ∗ ◦ ∇f . We call
this condition preconditioned Lipschitz continuity and formally define it in the following assumption.
Assumption 2.5. For any x, x̄ ∈ Rn the following inequality holds with L as in Assumption 1.3:

∥∇ϕ∗(∇f(x))−∇ϕ∗(∇f(x̄))∥ ≤ L∥x− x̄∥. (11)

Assumption 2.5 states that the preconditioned gradient is a Lipschitzian operator, hence the name
preconditioned Lipschitz continuity. We remark that although more restrictive than anisotropic
smoothness itself, this assumption is in fact mild since it holds for example for Lipschitz smooth

6

functions. Moreover, as we show in the following proposition, it also holds for f ∈ C2(Rn) that are
(L0, L1)-smooth for a suitable choice of the reference function ϕ.
Proposition 2.6. Let f ∈ C2(Rn) be (L0, L1)-smooth. Then, f satisfies Assumption 2.5 for the
reference function ϕ(x) = L0

L1
(−∥x∥ − ln(1− ∥x∥)). More precisely, the following inequality holds

for all x, x̄ ∈ Rn: ∥∥∥∥ ∇f(x)

L0 + L1∥∇f(x)∥ − ∇f(x̄)

L0 + L1∥∇f(x̄)∥

∥∥∥∥ ≤ ∥x− x̄∥. (12)

To the best of our knowledge Proposition 2.6 also provides a new characterization for (L0, L1)-
smooth functions. Therefore, Assumption 2.5 is a natural assumption that is at least as general as
(L0, L1)-smoothness. In fact, using arguments similar to those in Remark 1.4, we can show that it is
less restrictive than (L0, L1)-smoothness. We now turn to our main result regarding the convergence
of Algorithm 1, where we allow β ∈ (0, 1).

Theorem 2.7. Let Assumptions 1.3 and 2.5 hold for ϕ = h ◦ ∥ · ∥. Let, moreover, {xk}k∈N0
be the

sequence of iterates generated by Algorithm 1 with β ∈ (0, 1) and γ = (1−β)2

L . Then, we have the
following rate:

min
1≤k≤K

ϕ(∇ϕ∗(∇f(xk))) ≤ 1

K

(
f(x0)− f⋆

βγ
+

1

1− β
ϕ(∇ϕ∗(∇f(x0)))

)
. (13)

Note that the proofs of Theorems 2.2, 2.4 and 2.7 are based mainly on the convexity of ϕ and further
utilize that ϕ is even. We can obtain even better convergence guarantees by exploiting the strong
convexity of ϕ as well as the 2-subhomogeneity of important reference functions, but we decide to
keep the analysis general enough and easier to follow.

3 The stochastic nonlinearly preconditioned gradient method

In this section we study a stochastic version of the base iterate (1). More precisely, we assume that
we have access to a stochastic first-order oracle which returns a stochastic gradient g(x), similarly to
[22, p. 114 Assumption 2]. The algorithm then takes the following form:

xk+1 = xk − γ∇ϕ∗(g(xk)). (14)

Throughout this section we assume that domϕ = Rn. The proofs are deferred to Appendix D.

Our first result describes the behavior of the method under a noise condition that, as we demonstrate
later on, is less restrictive than bounded variance of the stochastic gradients for many interesting
reference functions ϕ. Note that for now we do not assume that g is an unbiased estimator of ∇f .
Theorem 3.1. Let Assumption 1.3 hold and E[ϕ(∇ϕ∗(∇f(x))−∇ϕ∗(g(x)))] ≤ σ2. Let moreover
{xk}k∈N be the sequence of iterates generated by (14) with stepsize γ ≤ 1

L . Then, the following
holds:

E

[
1

K

K−1∑
k=0

ϕ(∇ϕ∗(∇f(xk)))

]
≤ (f(x0)− f⋆)

γK
+ σ2. (15)

The assumption on the stochastic gradients in Theorem 3.1 might seem unintuitive upon first inspec-
tion. Nevertheless, it follows naturally from the anisotropic smoothness condition, similarly to how
the bounded variance assumption is tailored to Lipschitz smoothness. Moreover, as we show in the
next proposition, it is at least as general as the well-established bounded variance assumption for
interesting reference functions ϕ.
Proposition 3.2. Let ϕ be either

∑n
i=1 cosh(xi)−1 or cosh(∥x∥)−1. Then, the following inequality

holds for all y, ȳ ∈ Rn:
ϕ(∇ϕ∗(y)−∇ϕ∗(ȳ)) ≤ 1

2∥y − ȳ∥2. (16)

Therefore, if E[∥∇f(x)− g(x)∥2] ≤ σ2 we have that

E[ϕ(∇ϕ∗(∇f(x))−∇ϕ∗(g(x)))] ≤ σ2

2
. (17)

7

0 10 20 30 40 50
Epochs

10−4

10−3

10−2

10−1

T
ra

in
in

g
lo

ss

SGD

Adam

iHGD

sHGD

0 50 100 150 200 250
Epochs

10−3

10−2

10−1

100

T
ra

in
in

g
lo

ss

SGD

iHGD

sHGD

0 50 100 150 200 250
Epochs

10−3

10−2

10−1

100

T
ra

in
in

g
lo

ss

SGDm

Adam

iHGDm

sHGDm

0 10 20 30 40 50
Epochs

93

94

95

96

97

98

99

T
es

t
ac

cu
ra

cy

SGD

Adam

iHGD

sHGD

0 50 100 150 200 250
Epochs

60

65

70

75

80

85

90

95

T
es

t
ac

cu
ra

cy

SGD

iHGD

sHGD

0 50 100 150 200 250
Epochs

60

65

70

75

80

85

90

95

T
es

t
ac

cu
ra

cy

SGDm

Adam

iHGDm

sHGDm

Figure 1: Results for training an MLP on MNIST and ResNet-18 on Cifar10. Top row is the training
loss and bottom row the test accuracy. (left) MNIST MLP (middle) Cifar10 ResNet18 without
momentum (right) Cifar10 ResNet18 with momentum.

In the proof of Proposition 3.2 we show that there exist even tighter bounds between the two quantities.
We next provide a simple example demonstrating that in fact the noise assumption of Theorem 3.1 is
less restrictive than bounded variance.
Example 3.3. Consider the function f(x) = 1

2 [(x − 1)2 + 2(x + 2)2] with x ∈ R. In this case
we have f ′

1(x) = 2(x − 1), f ′
2(x) = 4(x + 2) and it is straightforward that as |x| → +∞ also

E[|f ′
i(x)− f ′(x)|2] becomes unbounded above. Nevertheless, choosing ϕ = cosh−1 we have that

ϕ(ϕ∗′
(f ′(x)) − ϕ∗′

(f ′
i(x))) is upper bounded for every sample i. It is also clear that the example

considered here does not satisfy the p-th bounded moment assumption (also known as heavy-tailed
noise in the related literature) [15, Assumption 3]. Nevertheless, we are not aware if it is actually a
less restrictive assumption, since there does not seem to exist a simple inequality that connects the
two quantities.

Although the noise assumption in Theorem 3.1 follows naturally from the analysis of the algorithm,
it is not clear whether we can prove the convergence of the method under it. Moreover, due to
the nonlinear preconditioning of the proposed method in (14), the difference xk+1 − xk is not a
true estimator of ∇ϕ∗ ◦ ∇f even when E[g(x)] = ∇f(x), i.e. E[∇ϕ∗(g(x))] ̸= ∇ϕ∗(∇f(x)),
similarly to the gradient clipping method [6, 20]. One way to reduce the potential bias introduced
by the preconditioning when g is a true estimator of ∇f , is to increase the batch size. Utilizing thus
Proposition 3.2, we obtain the following result.

Theorem 3.4. Let Assumption 1.3 hold for some ϕ such that (16) holds and assume moreover that
E[∥∇f(x)− g(x)∥2] ≤ σ2

K for all x ∈ Rn. If we run (14) for K > 0 iterations with γ ≤ 1
L , we have

the following rate.

E

[
1

K

K−1∑
k=0

ϕ(∇ϕ∗(∇f(xk)))

]
≤ 1

K

[
(f(x0)− f⋆)

γ
+

σ2

2

]
. (18)

The noise assumption in Theorem 3.4 corresponds to the case where the stochastic oracle is unbi-
ased, has bounded variance and we run a minibatch version of (14) with batch size K. Therefore,
Theorem 3.4 describes convergence guarantees for the method under standard assumptions on the
stochastic gradients and a generalized smoothness assumption that goes beyond Lipschitz smoothness
for the cost function itself. Moreover, it covers both isotropic reference functions ϕ(x) = h(∥x∥) and
separable ones ϕ =

∑n
i=1 h(xi). We emphasize the importance of this fact because for separable

reference functions (14) takes the form of SGD with a coordinate-wise stepsize that depends on the
iterates, effectively complicating the analysis but also leading to more interesting algorithms.

8

0 200 400 600 800 1000
Number of iterations

10−10

10−7

10−4

10−1

102

105

‖∇
f

(x
k
)‖

GD

GDm

AdGD-accel

iHGDm

0 1000 2000 3000 4000 5000
Number of iterations

10−10

10−7

10−4

10−1

102

105

‖∇
f

(x
k
)‖

GD

GDm

AdGD-accel

iHGDm

0 5000 10000 15000 20000
Number of iterations

10−8

10−6

10−4

10−2

100

102

104

106

‖∇
f

(x
k
)‖

GD

GDm

AdGD-accel

iHGDm

Figure 2: Results for the matrix factorization problem. The figure on the left corresponds to r = 10,
the one in the middle to r = 20 and the one on the right to r = 30. It can be seen that our method,
iHGDm, significantly outperforms the rest of the methods.

The following result describes the linear convergence of the method up to a constant under the
generalized PL condition described in Definition 2.3.
Theorem 3.5. Let Assumption 1.3 hold, E[ϕ(∇ϕ∗(∇f(x))−∇ϕ∗(g(x)))] ≤ σ2 and f satisfy the
anisotropic gradient dominance condition relative to ϕ with constant µ. Let moreover {xk}k∈N0

be
the sequence of iterates generated by (14) with stepsize γ ≤ 1

L . Then, the following holds:

E[f(xk)− f⋆] ≤ (1− γµ)k(f(x0)− f⋆) +
σ2

µ
. (19)

We remark that we have not provided a stochastic extension of the proposed method with momentum
Algorithm 1. We believe that this would require specializing to reference functions with more favor-
able properties and extending results from our stochastic analysis. We leave a detailed investigation
of this to future research.

4 Experiments

In our experiments, we compare the proposed algorithms with baseline and state-of-the-art methods:
stochastic gradient descent (SGD), SGD with momentum (SGDm), Adam [19], gradient descent
(GD), gradient descent with momentum (GDm) and the heuristic accelerated variant of the adaptive
gradient method from [33] (AdGD-accel). Our methods are versions of Algorithm 1 and (14) that are
generated by cosh−1. The code for reproducing the experiments is publicly available2.

4.1 Neural networks

We first consider some neural network experiments. Here, we implemented (14) and the stochastic
version of Algorithm 1, while we used the standard PyTorch [38] implementations for SGD and
Adam. Moreover, for Adam we used the standard momentum parameters. For all the methods we
used fixed stepsizes.

Image classification on the MNIST dataset [9]. For our first experiment we compare our base
method (14) with SGD and Adam on the standard classification problem on the MNIST dataset with
the cross-entropy loss. We use a two-layer fully connected neural network with layer dimensions
[28× 28, 512, 256] and the ReLU activation function and a batch size of 256. We tuned the stepsizes
by performing an adaptive gridsearch on one seed and then decreasing the stepsize if the results
varied greatly across different seeds. The confidence intervals are obtained from five random seeds.
The results are presented in the left column of Figure 1. It can be seen that iHGD reaches small
training losses fast and performs better than the rest of the methods.

Image classification on the Cifar10 dataset [21]. In this experiment we use the standard ResNet-18
[14] architecture and train it to classify images with the cross-entropy loss. We use batch size 128 for
all methods.

We first compare the methods without momentum with SGD over five random seeds. The stepsizes
are tuned using the same procedure as in the MNIST experiment. The results are presented in

2https://github.com/JanQ/nonlin-prec-mom-stoch

9

https://github.com/JanQ/nonlin-prec-mom-stoch

the middle column of Figure 1. We then compare the proposed methods with momentum with
SGDm and Adam. We choose β = 0.9 for all methods which is also the standard value for training
residual networks with SGDm. We set the learning rate by performing a parameter sweep over
{5, 1, 0.5, 0.1, 0.05, 0.01, 0.005}. The results of this experiment are presented in the right column
of Figure 1. The confidence intervals for this experiment are obtained from three random seeds. It
can be seen that our proposed methods perform similarly to SGD and SGDm which are known to be
state-of-the-art for this problem.

4.2 Matrix factorization

We consider the matrix factorization problem as presented in [33]: Given a matrix A ∈ Rm×n and
r < min{m,n} we solve the following minimization problem.

min
[U,V]=X

f(X) = f(U, V) = 1
2∥UV ⊤ −A∥2F , (20)

where U ∈ Rm×r and V ∈ Rn×r and ∥ · ∥F denotes the Frobenius norm. It is important to note
that this problem is not convex and also not (globally) Lipschitz smooth, since it is a multivariate
polynomial of degree 4. We use the Movielens 100K dataset [13] and values of r in {10, 20, 30}. For
r = 10 and r = 20 we average the results over 10 random initializations, while for r = 30 over 3.

In this experiment we compare iHGDm with GD, GDm and AdGD-accel, which although is designed
to tackle convex problems, performs very well on settings beyond convexity as remarked in [33]. For
GD we use the same tuning as in [33], which guarantees convergence although the problem is not
globally smooth as it involves quartic polynomials. For our method we use β = 0.9 and stepsize
γ = 2, but consider the method generated by ϕ(x) = λ(cosh(∥x∥)− 1) with λ = 100, thus allowing
for two stepsizes, similarly to [36]. It seems that the relation between these two stepsizes plays
an important role for the fast convergence of the method. For GDm we use momentum parameter
β = 0.9 and γ = 1/300. This stepsize can be considered optimal since by doubling the stepsize
the method did not converge. The results are presented in Figure 2. It can be seen that iHGDm
significantly outperforms the other methods, while it is more stable across the random initializations.

We provide more details about the implementation along with further experimental results in Ap-
pendix F.

5 Conclusion and future work

In this paper we have analyzed extensions of the dual space preconditioning / anisotropic gradient de-
scent method. We introduced a preconditioned heavy ball-type algorithm and studied its convergence
guarantees in the general nonconvex setting and under a generalized PL condition. We moreover
presented a stochastic extension of the base method that we analyzed under both new and standard
noise assumptions in the nonconvex setting. Finally, we tested the proposed methods and showed
their good performance on various tasks from machine learning and optimization.

Interesting future work includes a unified analysis of the momentum algorithm Algorithm 1 under
relaxed assumptions on the reference function ϕ as well as for any β ∈ [0, 1). Moreover, extending
the full proximal gradient-type algorithm from [24] to incorporate momentum is an important task
with many potential applications, especially for constrained problems. For the stochastic algorithm,
we believe that the analysis should focus on removing the dependence on the batch size and including
momentum in the base method. We believe that such an endeavor would require building upon tools
from martingale theory, such as obtaining generalizations of the standard concentration inequalities.

Acknowledgements

This work was supported by the Research Foundation Flanders (FWO) PhD grant 11A8T26N and
research projects G081222N, G033822N, G0A0920N; Research Council KUL grant C14/24/103.

The authors thank Emanuel Laude for the inspiration and helpful conversations.

10

References
[1] E. J. Balder. “An extension of duality-stability relations to nonconvex optimization problems”.

In: SIAM Journal on Control and Optimization 15.2 (1977), pp. 329–343.
[2] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in

Hilbert Spaces. Springer, 2017.
[3] A. Bodard and P. Patrinos. Escaping saddle points without Lipschitz smoothness: the power

of nonlinear preconditioning. 2025. arXiv: 2509.15817 [math.OC]. URL: https://arxiv.
org/abs/2509.15817.

[4] C. Bonet, T. Uscidda, A. David, P.-C. Aubin-Frankowski, and A. Korba. “Mirror and precondi-
tioned gradient descent in Wasserstein space”. In: Advances in Neural Information Processing
Systems 37 (2024), pp. 25311–25374.

[5] H. Brézis. Functional analysis, Sobolev spaces and partial differential equations. Vol. 2. 3.
Springer, 2011.

[6] X. Chen, S. Z. Wu, and M. Hong. “Understanding gradient clipping in private SGD: A
geometric perspective”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 13773–13782.

[7] Z. Chen, Y. Zhou, Y. Liang, and Z. Lu. “Generalized-smooth nonconvex optimization is
as efficient as smooth nonconvex optimization”. In: International Conference on Machine
Learning. PMLR. 2023, pp. 5396–5427.

[8] A. Cutkosky and H. Mehta. “High-probability bounds for non-convex stochastic optimization
with heavy tails”. In: Advances in Neural Information Processing Systems 34 (2021), pp. 4883–
4895.

[9] L. Deng. “The MNIST database of handwritten digit images for machine learning research
[best of the web]”. In: IEEE Signal Processing Magazine 29.6 (2012), pp. 141–142.

[10] S. Dolecki and S. Kurcyusz. “On Φ-convexity in extremal problems”. In: SIAM Journal on
Control and Optimization 16.2 (1978), pp. 277–300.

[11] O. Gaash, K. Y. Levy, and Y. Carmon. Convergence of clipped SGD on convex (L0, L1)-smooth
functions. 2025. arXiv: 2502.16492 [math.OC]. URL: https://arxiv.org/abs/2502.
16492.

[12] E. Gorbunov, N. Tupitsa, S. Choudhury, A. Aliev, P. Richtárik, S. Horváth, and M. Takáč.
Methods for convex (L0, L1)-smooth optimization: Clipping, acceleration, and adaptivity.
2024. arXiv: 2409.14989 [math.OC]. URL: https://arxiv.org/abs/2409.14989.

[13] F. M. Harper and J. A. Konstan. “The MovieLens datasets: History and context”. In: ACM
Transactions on Interactive Intelligent Systems (TiiS) 5.4 (2015), pp. 1–19.

[14] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016,
pp. 770–778.

[15] F. Hübler, I. Fatkhullin, and N. He. “From gradient clipping to normalization for heavy tailed
SGD”. In: Proceedings of The 28th International Conference on Artificial Intelligence and
Statistics. PMLR, 2025, pp. 2413–2421. URL: https://proceedings.mlr.press/v258/
hubler25a.html.

[16] F. Hübler, J. Yang, X. Li, and N. He. “Parameter-agnostic optimization under relaxed smooth-
ness”. In: International Conference on Artificial Intelligence and Statistics. PMLR. 2024,
pp. 4861–4869.

[17] J. Jin, B. Zhang, H. Wang, and L. Wang. “Non-convex distributionally robust optimization:
Non-asymptotic analysis”. In: Advances in Neural Information Processing Systems 34 (2021),
pp. 2771–2782.

[18] J. Kim, C. Park, A. Ozdaglar, J. Diakonikolas, and E. K. Ryu. Mirror duality in convex
optimization. 2024. arXiv: 2311.17296 [math.OC]. URL: https://arxiv.org/abs/
2311.17296.

[19] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2014. arXiv: 1412.6980
[cs.LG]. URL: https://arxiv.org/abs/1412.6980.

[20] A. Koloskova, H. Hendrikx, and S. U. Stich. “Revisiting gradient clipping: Stochastic bias and
tight convergence guarantees”. In: International Conference on Machine Learning. PMLR.
2023, pp. 17343–17363.

11

https://arxiv.org/abs/2509.15817
https://arxiv.org/abs/2509.15817
https://arxiv.org/abs/2509.15817
https://arxiv.org/abs/2502.16492
https://arxiv.org/abs/2502.16492
https://arxiv.org/abs/2502.16492
https://arxiv.org/abs/2409.14989
https://arxiv.org/abs/2409.14989
https://proceedings.mlr.press/v258/hubler25a.html
https://proceedings.mlr.press/v258/hubler25a.html
https://arxiv.org/abs/2311.17296
https://arxiv.org/abs/2311.17296
https://arxiv.org/abs/2311.17296
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

[21] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. 2009.
[22] G. Lan. First-order and stochastic optimization methods for machine learning. Springer, 2020.
[23] E. Laude. “Lower envelopes and lifting for structured nonconvex optimization”. PhD thesis.

Technical University of Munich, 2021.
[24] E. Laude and P. Patrinos. “Anisotropic proximal gradient”. In: Mathematical Programming

(2025), pp. 1–45.
[25] E. Laude and P. Patrinos. Anisotropic proximal point algorithm. 2024. arXiv: 2312.09834

[math.OC]. URL: https://arxiv.org/abs/2312.09834.
[26] E. Laude, A. Themelis, and P. Patrinos. “Dualities for non-Euclidean smoothness and strong

convexity under the light of generalized conjugacy”. In: SIAM Journal on Optimization 33.4
(2023), pp. 2721–2749.

[27] E. Laude, T. Wu, and D. Cremers. “Optimization of inf-convolution regularized nonconvex
composite problems”. In: The 22nd International Conference on Artificial Intelligence and
Statistics. PMLR. 2019, pp. 547–556.

[28] F. Léger and P.-C. Aubin-Frankowski. Gradient descent with a general cost. 2023. arXiv:
2305.04917 [math.OC]. URL: https://arxiv.org/abs/2305.04917.

[29] L. Liu, Y. Wang, and L. Zhang. “High-probability bound for non-smooth non-convex stochastic
optimization with heavy tails”. In: International Conference on Machine Learning. PMLR.
2024, pp. 32122–32138.

[30] Z. Liu and Z. Zhou. Nonconvex stochastic optimization under heavy-tailed noises: Optimal
convergence without gradient clipping. 2025. arXiv: 2412.19529 [math.OC]. URL: https:
//arxiv.org/abs/2412.19529.

[31] H. Lu, R. M. Freund, and Y. Nesterov. “Relatively smooth convex optimization by first-order
methods, and applications”. In: SIAM Journal on Optimization 28.1 (2018), pp. 333–354.

[32] C. J. Maddison, D. Paulin, Y. W. Teh, and A. Doucet. “Dual space preconditioning for gradient
descent”. In: SIAM Journal on Optimization 31.1 (2021), pp. 991–1016.

[33] Y. Malitsky and K. Mishchenko. “Adaptive gradient descent without descent”. In: International
Conference on Machine Learning. PMLR. 2020, pp. 6702–6712.

[34] P. Ochs, Y. Chen, T. Brox, and T. Pock. “iPiano: Inertial proximal algorithm for nonconvex
optimization”. In: SIAM Journal on Imaging Sciences 7.2 (2014), pp. 1388–1419.

[35] K. Oikonomidis, E. Laude, and P. Patrinos. Forward-backward splitting under the light of
generalized convexity. 2025. arXiv: 2503.18098 [math.OC]. URL: https://arxiv.org/
abs/2503.18098.

[36] K. Oikonomidis, J. Quan, E. Laude, and P. Patrinos. Nonlinearly preconditioned gradient
methods under generalized smoothness. 2025. arXiv: 2502.08532 [math.OC]. URL: https:
//arxiv.org/abs/2502.08532.

[37] D. E. Pallaschke and S. Rolewicz. Foundations of mathematical optimization: convex analysis
without linearity. Vol. 388. Springer Science & Business Media, 2013.

[38] A. Paszke et al. Automatic differentiation in PyTorch. 2017.
[39] T. Pethick, W. Xie, K. Antonakopoulos, Z. Zhu, A. Silveti-Falls, and V. Cevher. Training deep

learning models with norm-constrained LMOs. 2025. arXiv: 2502.07529 [cs.LG]. URL:
https://arxiv.org/abs/2502.07529.

[40] T. Pethick, W. Xie, M. Erdogan, K. Antonakopoulos, T. Silveti-Falls, and V. Cevher. General-
ized gradient norm clipping & non-Euclidean (L0, L1)-smoothness. 2025. arXiv: 2506.01913
[cs.LG]. URL: https://arxiv.org/abs/2506.01913.

[41] R. T. Rockafellar. “Higher derivatives of conjugate convex functions”. In: Int. J. Applied
Analysis 1 (1977), pp. 41–43.

[42] R. T. Rockafellar and R. J. Wets. Variational Analysis. New York: Springer, 1998.
[43] M.-E. Sfyraki and J.-K. Wang. Lions and muons: Optimization via stochastic Frank–Wolfe.

2025. arXiv: 2506.04192 [math.OC]. URL: https://arxiv.org/abs/2506.04192.
[44] D. Vankov, A. Rodomanov, A. Nedich, L. Sankar, and S. U. Stich. Optimizing (L0, L1)-

smooth functions by gradient methods. 2025. arXiv: 2410.10800 [math.OC]. URL: https:
//arxiv.org/abs/2410.10800.

[45] C. Villani. Optimal Transport: Old and New. Springer, 2008.

12

https://arxiv.org/abs/2312.09834
https://arxiv.org/abs/2312.09834
https://arxiv.org/abs/2312.09834
https://arxiv.org/abs/2305.04917
https://arxiv.org/abs/2305.04917
https://arxiv.org/abs/2412.19529
https://arxiv.org/abs/2412.19529
https://arxiv.org/abs/2412.19529
https://arxiv.org/abs/2503.18098
https://arxiv.org/abs/2503.18098
https://arxiv.org/abs/2503.18098
https://arxiv.org/abs/2502.08532
https://arxiv.org/abs/2502.08532
https://arxiv.org/abs/2502.08532
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2502.07529
https://arxiv.org/abs/2506.01913
https://arxiv.org/abs/2506.01913
https://arxiv.org/abs/2506.01913
https://arxiv.org/abs/2506.04192
https://arxiv.org/abs/2506.04192
https://arxiv.org/abs/2410.10800
https://arxiv.org/abs/2410.10800
https://arxiv.org/abs/2410.10800

[46] Y. Yang, E. Tripp, Y. Sun, S. Zou, and Y. Zhou. Adaptive gradient normalization and indepen-
dent sampling for (stochastic) generalized-smooth optimization. 2025. arXiv: 2410.14054
[math.OC]. URL: https://arxiv.org/abs/2410.14054.

[47] B. Zhang, J. Jin, C. Fang, and L. Wang. “Improved analysis of clipping algorithms for non-
convex optimization”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 15511–15521.

[48] J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why gradient clipping accelerates training: A
theoretical justification for adaptivity. 2020. arXiv: 1905.11881 [math.OC]. URL: https:
//arxiv.org/abs/1905.11881.

13

https://arxiv.org/abs/2410.14054
https://arxiv.org/abs/2410.14054
https://arxiv.org/abs/2410.14054
https://arxiv.org/abs/1905.11881
https://arxiv.org/abs/1905.11881
https://arxiv.org/abs/1905.11881

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction reflect the paper’s contribution.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the related assumptions and limitations after stating our theoretical
results.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

14

Justification: We provide proofs for all of our theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the information needed to reproduce the main experimental results
of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [Yes]

Justification: We provide the code needed for the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide details on the experiments we performed, including the problem
formulations, datasets and the algorithms we compared.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We present figures with error bars for our main experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details on the computer resources required to perform our experi-
ments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research conforms with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We introduce and study optimization algorithms that although could potentially
have a societal impact, we believe it does not have to be highlighted in the current paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We provide the credits for the assets we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: Our research does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Φ-convexity and anisotropic smoothness

In this section we describe the concept of Φ-convexity and discuss its connection to anisotropic
smoothness [24, Appendix A].

Φ-convexity basics. For the purpose of this paper, Φ-convexity can be considered as an extension
of the envelope representation of convex functions [42, Theorem 8.13] which states that a proper,
lsc and convex function is the pointwise supremum of its affine supports. By replacing the affine
supports with nonlinear ones, we obtain the definition of Φ-convexity for functions:

Definition A.1 (Φ-convex functions). Let X and Y be nonempty sets and Φ : X × Y → R a
coupling. Let f : X → R. We say that f is Φ-convex on X if there is an index set I and parameters
(yi, βi) ∈ Y × R for i ∈ I such that

f(x) = sup
i∈I

Φ(x, yi)− βi ∀x ∈ X. (21)

For a definition of Φ-convex sets, the interested reader can check [37, Section 1.4]. From (21) it is
clear that if Φ = ⟨·, ·⟩, then f(x) = supi∈I⟨x, yi⟩ − βi and we recover the class of proper, lsc and
convex functions from [42, Theorem 8.13]. An important notion in the Φ-convexity framework is
that of Φ-conjugacy, which generalizes standard convex conjugacy:

Definition A.2 (Φ-conjugate functions). Let X and Y be nonempty sets and Φ : X × Y → R a
coupling. Let f : X → R. Then we define

fΦ(y) = sup
x∈X

Φ(x, y)− f(x), (22)

as the Φ-conjugate of f on Y and

fΦΦ(x) = sup
y∈Y

Φ(x, y)− fΦ(y), (23)

as the Φ-biconjugate back on X .

Once again it is clear that by choosing Φ = ⟨·, ·⟩ we retrieve the definition of convex conjugates
[42, Equation 11]. Note that the Φ-biconjugate is defined back on X , similarly to how the convex
biconjugate is defined on E instead of E∗∗ [5, p. 13]. Choosing Φ(x, y) = − 1

2γ ∥x− y∥2 we get

fΦ(y) = sup
x∈Rn

− 1
2γ ∥x− y∥2 − f(x) = − inf

x∈Rn
f(x) + 1

2γ ∥x− y∥2,

i.e., the Φ-conjugate is the negative Moreau envelope of f , a very important quantity in optimization
theory [42, Definition 1.22]. Finally, we present the definition of the Φ-subgradient which generalizes
the notion of the standard convex subgradient:

Definition A.3 (Φ-subgradients). Let X and Y be nonempty sets and Φ : X × Y → R a coupling.
Let f : X → R. Then we say that y is a Φ-subgradient of f at x̄ if

f(x) ≥ f(x̄) + Φ(x, y)− Φ(x̄, y), (24)

for all x ∈ X . We denote by ∂Φf(x̄) the set of all Φ-subgradients of f at a point x̄ ∈ X , which we
call the Φ-subdifferential of f . When the Φ-subdifferential is nonempty at some point x̄, we say that f
is Φ-subdifferentiable at x̄ and when it is everywhere nonempty, we say that f is Φ-subdifferentiable.

From the definition above it is clear that if a function has a Φ-subgradient at a point x̄, then it is also
Φ-convex at this point. The opposite does not hold in general, as there exist Φ-convex functions that
have everywhere empty Φ-subdifferentials [10].

Anisotropic smoothness. By choosing Φ(x, y) = − 1
L ⋆ϕ(x−y), the connection between anisotropic

smoothness and Φ-convexity can be made evident: the anisotropic descent inequality for f (4) is
equivalent to the Φ-subgradient inequality for −f , (24). From this equivalence it is also straightfor-
ward that at any point x ∈ Rn, ∂Φ(−f)(x) = {x − 1

L∇ϕ∗(∇f(x))} and thus the main iterate (1)
boils down to taking a Φ-subgradient of −f at xk.

This connection to Φ-convexity actually leads to an interesting envelope representation of anisotropic
smoothness. As discussed above, since −f is Φ-subdifferentiable, it is also Φ-convex, i.e.,

−f(x) = sup
i∈I

− 1
L ⋆ ϕ(x− yi)− βi,

21

meaning that
f(x) = inf

i∈I
1
L ⋆ ϕ(x− yi) + βi.

Therefore, f is the pointwise infimum over a family of nonlinear functions, in parallel to standard
Euclidean smoothness where f is the infimum over convex quadratics, a fact that immediately
follows from the Euclidean descent inequality. In that sense, anisotropic smoothness is a natural
generalization of Euclidean smoothness, that as discussed in the main text, is also less restrictive than
(L0, L1)-smoothness. Moreover, the Φ-convexity of −f implies that

−f(x) = (−f)ΦΦ(x) = sup
y∈Rn

− 1
L ⋆ ϕ(x− y)− (−f)Φ(y) = − inf

y∈Rn

1
L ⋆ ϕ(x− y) + (−f)Φ(y),

i.e., that f can be written as the infimal-convolution or epi-addition [42, Equation 1(12)] between two
functions.

The aforementioned envelope representation leads to important relations that, to the best of our
knowledge, are absent in other forms of generalized smoothness. To begin with, when f is convex, in
light of [24, Proposition 4.1], anisotropic smoothness relative to ϕ with constant L is equivalent to
the convexity of f∗ − L−1ϕ∗, with the latter being known in the literature as strong convexity of f∗

relative to ϕ∗ [31]. In this setting therefore, anisotropic smoothness and relative (Bregman) strong
convexity form a conjugate duality, in parallel to the standard one between Lipschitz smoothness and
strong convexity. Except for further highlighting the fact that anisotropic smoothness is a natural
generalization of Lipschitz smoothness, this conjugate duality is very useful in obtaining convergence
guarantees in the convex setting [36], while the envelope representation is useful in providing calculus
results for anisotropic smoothness [24, Section 4.2].

B Helper Lemmas and auxiliary results

Lemma B.1. Let {δk}k∈N0
be a nonnegative sequence of reals that satisfies

δk+1 ≤ (1− α)δk + θ, (25)

where θ > 0 and α ∈ (0, 2). Then,

δk ≤ |1− α|kδ0 +
θ

1− |1− α| . (26)

Proof. By using the fact that (1− α)δk ≤ |1− α|δk and unrolling (25) we have that

δk ≤ |1− α|kδ0 + θ

k−1∑
i=0

|1− α|i ≤ |1− α|kδ0 +
θ

1− |1− α| ,

where the second inequality follows by the fact that
∑k−1

i=0 |1 − α|i ≤ ∑∞
i=0 |1 − α|i = 1

1−|1−α| ,
since |1− α| < 1.

In our analysis we will also need the following standard result. We remind that 2-subhomogeneity
means that ϕ(θx) ≤ θ2ϕ(x) for all θ ∈ [0, 1] and x ∈ domϕ.

Proposition B.2. Let ϕ : Rn → R be convex and ϕ(0) = 0. Then, for constants λi ≥ 0 and
{xi}di=1 ∈ domϕ, the following inequality holds as long as λ :=

∑d
i=1 λi ≤ 1:

ϕ

(
d∑

i=1

λixi

)
≤

d∑
i=1

λiϕ(xi). (27)

If, moreover, ϕ is 2-subhomogeneous, then

ϕ

(
d∑

i=1

λixi

)
≤ λ

d∑
i=1

λiϕ(xi). (28)

22

Proof. The proof of the first statement follows immediately by the convexity inequality along with
the fact that ϕ(0) = 0:

ϕ

(
d∑

i=1

λixi

)
= ϕ

(
(1− λ)0 +

d∑
i=1

λixi

)
≤ (1− λ)ϕ(0) +

d∑
i=1

λiϕ(xi) =

d∑
i=1

λiϕ(xi).

Regarding the second statement, we have:

ϕ

(
d∑

i=1

λixi

)
= ϕ

(
λ

d∑
i=1

λi

λ xi

)
≤ λ2ϕ

(
d∑

i=1

λi

λ xi

)
≤ λ

d∑
i=1

λiϕ(xi).

The first inequality follows by the definition of 2-subhomogeneity, since
∑d

i=1
λi

λ xi ∈ domϕ and
the second one by the convexity inequality.

We will also need an extension of the monotonicity property of anisotropic smoothness under
episcaling [24, Proposition 4.8] to our setting where ϕ is possibly not of full domain.

Proposition B.3. Let f ∈ C1(Rn), L2 > L1 > 0 and x, x̄ ∈ Rn, and suppose that

f(x) ≤ f(x̄) + 1
L1

⋆ ϕ(x− x̄+ L−1
1 ∇ϕ∗(∇f(x̄)))− 1

L1
⋆ ϕ(L−1

1 ∇ϕ∗(∇f(x̄))).

Then, it holds that

f(x) ≤ f(x̄) + 1
L2

⋆ ϕ(x− x̄+ L−1
2 ∇ϕ∗(∇f(x̄)))− 1

L2
⋆ ϕ(L−1

2 ∇ϕ∗(∇f(x̄))).

Therefore, if f has the anisotropic descent property relative to ϕ with constant L1 > 0, then f has
the anisotropic descent property relative to ϕ for any L2 > L1.

Proof. We define the shorthand ū = ∇ϕ∗(∇f(x̄)) for ease of presentation. Note that if domϕ = Rn,
then the statement follows from [24, Proposition 4.8].

Now fix any x, x̄ ∈ Rn. If L2(x− x̄) + ū /∈ domϕ, the statement holds vacuously. We first show
that if L2(x− x̄) + ū ∈ domϕ, then L1(x− x̄) + ū ∈ domϕ as well:

Consider t ∈ [0, 1]. Then, by convexity, t(L2(x− x̄) + ū) + (1− t)ū ∈ domϕ where we also used
that ū ∈ domϕ by convex conjugacy. Choose t = L1

L2
< 1 and then we have

L1(x− x̄) + L1

L2
ū+ (1− L1

L2
)ū ∈ domϕ

⇐⇒L1(x− x̄) + ū ∈ domϕ.

Therefore, if L1(x− x̄) + ū /∈ domϕ the statement holds vacuously as well. Moreover, we have the
following:

1
L1

ϕ(L1(x− x̄) + ū) = 1
L1

ϕ(L1

L2
(L2(x− x̄) + ū) + (1− L1

L2
)ū)

≤ 1
L2

ϕ(L2(x− x̄) + ū) + 1
L1

(1− L1

L2
)ϕ(ū)

= 1
L2

⋆ ϕ(x− x̄+ L−1
2 ū) + (1

L1
− 1

L2
)ϕ(ū),

where the inequality follows by convexity and the second equality by the definition of episcaling. The
claimed result now follows by substituting the inequality above into the anisotropic descent inequality
with constant L1.

C Proofs of Section 2

We define the shorthand uk := ∇ϕ∗(∇f(xk)) for ease of presentation.

23

C.1 Proof of Theorem 2.2

Proof. To set up our proof let us first unroll the recursion for mk:

m0 = (1− β)u0

m1 = β(1− β)u0 + (1− β)u1

m2 = β2(1− β)u0 + β(1− β)u1 + (1− β)u2

...

mk = (1− β)

k∑
k′=0

βk′
uk−k′

.

Note that since γ ≤ 1
L , 1

γ ≥ L and we can use Proposition B.3 with constant 1
γ :

f(xk+1) ≤ f(xk) + γϕ(1γ (x
k+1 − xk) + uk)− γϕ(uk)

= f(xk) + γϕ(uk −mk)− γϕ(uk),

where in the equality we have substituted the update rule for xk+1. Substituting the results of the
recursion for mk we thus have:

f(xk+1) ≤ f(xk) + γϕ

(
βuk − (1− β)

k∑
k′=1

βk′
uk−k′

)
− γϕ(uk).

Note now that the constants in front of uk and −uk−k′
inside the ϕ in the first line of the above

display are β and (1− β)βk for k ≥ 1. Moreover, we have that

β +

k∑
i=1

(1− β)βi = β + β − β2 + β2 − β3 + · · ·+ βk − βk+1 = 2β − βk+1 < 1,

since β < 0.5. Thus, we can apply (27) in the inequality above and obtain for k ≥ 1

f(xk+1) ≤ f(xk)− (1− β)γϕ(uk) + γ(1− β)

k∑
k′=1

βk′
ϕ(uk−k′

)

where we have also used the fact that ϕ is even. Now let us unroll this inequality in order to make
our logic clear, noting that for k = 0 we immediately obtain the result from the convexity inequality
since the argument of ϕ is just βu0:

f(x1) ≤ f(x0)− γ(1− β)ϕ(u0)

f(x2) ≤ f(x1) + γ(1− β)βϕ(u0)− γ(1− β)ϕ(u1)

f(x3) ≤ f(x2) + γ(1− β)β2ϕ(u0) + γ(1− β)βϕ(u1)− γ(1− β)ϕ(u2)

...

up until iterate K > 0. Summing up the inequalities for k = 0, . . . ,K we thus have:

f(xK+1) ≤ f(x0)− γ(1− β)ϕ(uK)− γ

K−1∑
k=0

(1− β)(1− β̄)ϕ(uk).

where β̄ :=
∑K−k

i=1 βi. Now note that β̄ ≤ 1
1−β − 1 = β

1−β and thus 1− β̄ ≥ 1−2β
1−β . Using the fact

that ϕ ≥ 0, we further obtain:

f(xK+1) ≤ f(x0)− γ(1− 2β)

K∑
k=0

ϕ(uk). (29)

By rearranging and using f(xK+1) ≥ f⋆ and γ = α
L we have:

min
0≤k≤K

ϕ(uk) ≤ L(f(x0)− f⋆)

α(K + 1)(1− 2β)
,

which is exactly (8).

24

C.2 Proof of Theorem 2.4

To begin with, we define the Lyapunov function:

Vk := γϕ(mk−1) + f(xk)− f⋆. (30)

By convexity of ϕ, the momentum update of Algorithm 1 and the fact that uk ∈ domϕ, mk ∈ domϕ
(as a convex combination of elements of domϕ), we have that

γϕ(mk) ≤ γβϕ(mk−1) + γ(1− β)ϕ(uk). (31)

Now consider the anisotropic descent inequality between points xk and xk+1, but with constant
1
γ ≥ L, from Proposition B.3:

f(xk+1) ≤ f(xk) + γϕ(uk −mk)− γϕ(uk)

= f(xk) + γϕ(β(uk −mk−1))− γϕ(uk),

where we have moreover used the update of mk. Utilizing (28) with λ = 2β < 1 and the fact that ϕ
is even we can further bound

f(xk+1) ≤ f(xk) + 2β2γϕ(uk) + 2β2γϕ(mk−1)− γϕ(uk). (32)

Denoting Pk := f(xk)− f⋆ and summing (31) and (32) we have:

Pk+1 + γϕ(mk) ≤ Pk + γ(β + 2β2)ϕ(mk−1)− γ(β − 2β2)ϕ(uk).

Note that β+2β2 < 1 and β−2β2 > 0 by our choice of 0 < β < 0.5. From the anisotropic gradient
dominance condition, we have that ϕ(uk) ≥ µPk and thus

Pk+1 + γϕ(mk) ≤ (1− (β − 2β2)γµ)Pk + (β + 2β2)γϕ(mk−1).

Since ϕ ≥ 0 and Pk ≥ 0 we can further bound the r.h.s. by

Vk+1 ≤ max{1− (β − 2β2)γµ, β + 2β2}Vk.

Iterating now this inequality we obtain the claimed result.

C.3 Proof of Proposition 2.6

To begin with, we prove the following more general result that we utilize later on:

Proposition C.1. Let ∥∇2ϕ∗(∇f(x))∇2f(x)∥ ≤ L hold for all x ∈ Rn. Then, for all x, x̄ ∈ Rn:

∥∇ϕ∗(∇f(x))−∇ϕ∗(∇f(x̄))∥ ≤ L∥x− x̄∥. (33)

Proof. By the fundamental theorem of calculus, for any x, x̄ ∈ Rn:

∇ϕ∗(∇f(x))−∇ϕ∗(∇f(x̄)) =

∫ 1

0

∇2ϕ∗(∇f(x̄+ t(x− x̄)))∇2f(x̄+ t(x− x̄))(x− x̄)dt

and as such

∥∇ϕ∗(∇f(x))−∇ϕ∗(∇f(x̄))∥ =

∥∥∥∥∫ 1

0

∇2ϕ∗(∇f(x̄+ t(x− x̄)))∇2f(x̄+ t(x− x̄))(x− x̄)dt

∥∥∥∥
≤
∫ 1

0

∥∥∇2ϕ∗(∇f(x̄+ t(x− x̄)))∇2f(x̄+ t(x− x̄))
∥∥dt∥x− x̄∥

≤ L∥x− x̄∥,
where the second inequality follows by the assumption of the statement.

Now, regarding the proof of Proposition 2.6, note that since the spectral norm is submultiplicative,

∥∇2ϕ∗(∇f(x))∇2f(x)∥ ≤ ∥∇2ϕ∗(∇f(x))∥∥∇2f(x)∥.

25

We have that ϕ(x) = L0

L1
φ(x) where φ(x) := −∥x∥− ln(1−∥x∥) and by standard convex conjugacy,

∇ϕ∗(y) = ∇φ∗(y/L0

L1
). Since ∇φ∗(y) = y

1+∥y∥ , we thus have:

∇ϕ∗(y) =
y

L0

L1
+ ∥y∥

= L1
y

L0 + L1∥y∥
.

By simple calculations we then have

∇2ϕ∗(y) =
1

L0

L1
+ ∥y∥

I +

(
L0

L1

(∥y∥+ L0

L1
)2

− 1
L0

L1
+ ∥y∥

)
yy⊤

∥y∥2

=
1

L0

L1
+ ∥y∥

I − ∥y∥
(L0

L1
+ ∥y∥)2

yy⊤

∥y∥2

=
1

L0

L1
+ ∥y∥

(
I − ∥y∥

L0

L1
+ ∥y∥

yy⊤

∥y∥2

)

The term multiplying yy⊤

∥y∥2 in the display above is therefore negative and as such λmax(∇2ϕ∗(y)) ≤
L1

L0+L1∥y∥ . Clearly, ∇2ϕ∗ is positive semidefinite as the Hessian of a convex function and thus

∥∇2ϕ∗(∇f(x))∥ ≤ L1

L0+L1∥∇f(x)∥ . By (L0, L1)-smoothness we moreover have ∥∇2f(x)∥ ≤
L0 + L1∥∇f(x)∥ and thus

∥∇2ϕ∗(∇f(x))∇2f(x)∥ ≤ L1.

Using now Proposition C.1 completes our proof.

C.4 Proof of Theorem 2.7

We denote α := (1− β)2 and start from the anisotropic descent inequality between points xk and
xk+1 with constant 1

γ > L, Proposition B.3:

f(xk+1) ≤ f(xk) + γϕ(1γ (x
k+1 − xk) + uk)− γϕ(uk)

= f(xk) + γϕ(βuk − βmk−1︸ ︷︷ ︸
εk

)− γϕ(uk). (34)

Now, we work out the recursion for εk:

ε0 = βu0

ε1 = βu1 − β(1− β)u0 = β(u1 − u0) + β2u0

ε2 = βu2 − βm1 = β(u2 − u1) + β2(u1 − u0) + β3u0

...

εk = βk+1u0 +

k−1∑
k′=0

βk′+1(uk−k′ − uk−k′−1)

Therefore, from the triangle inequality we have that

∥εk∥ ≤ βk+1∥u0∥+
k−1∑
k′=0

βk′+1∥uk−k′ − uk−k′−1∥

≤ βk+1∥u0∥+
k−1∑
k′=0

βk′+1L∥xk−k′ − xk−k′−1∥

= βk+1∥u0∥+
k−1∑
k′=0

βk′+1α∥mk−k′−1∥, (35)

where we have used Assumption 2.5, the update of the algorithm and the fact that γ = α
L .

26

From convexity of ϕ we moreover have

γϕ(mk) ≤ βγϕ(mk−1) + (1− β)γϕ(uk)

Summing up (34) and the inequality above we obtain:

f(xk+1) + γϕ(mk) ≤ f(xk) + βγϕ(mk−1) + γϕ(εk)− βγϕ(uk). (36)

Now, since ϕ = h ◦ ∥ · ∥ we have ϕ(εk) = h(∥εk∥) and thus for all k ≥ 0 we get from (35) and the
fact that h is increasing that:

ϕ(εk) ≤ h

(
βk+1∥u0∥+

k−1∑
k′=0

βk′+1α∥mk−k′−1∥
)

≤ βk+1ϕ(u0) + α

k−1∑
k′=0

βk′+1ϕ(mk−k′−1).

Regarding the second inequality, note that from [36, Lemma 1.3], ∥u0∥ = |h∗′
(∥∇f(x0)∥)| ∈ domh.

Moreover, by definition, for any t ∈ N, mt ∈ domϕ as a convex combination of elements of domϕ.
Since, ϕ = h ◦ ∥ · ∥ this implies that ∥mt∥ ∈ domh as well and thus all the points in the r.h.s. of the
first inequality belong in domh. Furthermore, by our choice of α, βk+1 + α

∑k−1
k′=0 β

k′+1 ≤ 1 and
thus the second inequality follows from (27).

Plugging this result back into (36) we obtain:

f(xk+1) + γϕ(mk) ≤ f(xk) + βγϕ(mk−1)− βγϕ(uk)

+ γ

[
βk+1ϕ(u0) + α

k−1∑
k′=0

βk′+1ϕ(mk−k′−1)

]
We thus have:

f(x1) + γϕ(m0) ≤ f(x0) = f(x0) + βγϕ(0) = f(x0) + βγϕ(m−1)

f(x2) + γϕ(m1) ≤ f(x1) + βγϕ(m0) + β2γϕ(u0) + αβγϕ(m0)− βγϕ(u1)

f(x3) + γϕ(m2) ≤ f(x2) + βγϕ(m1) + β3γϕ(u0) + αβγϕ(m1) + αβ2γϕ(m0)− βγϕ(u2)

...

up until K > 0. Summing up these inequalities for k = 0, . . . ,K we obtain

f(xK+1) + γ

K∑
k=0

ϕ(mk) ≤ f(x0) + βγ

K∑
k=0

ϕ(mk−1)− βγ

K∑
k=1

ϕ(uk)

+ γϕ(u0)

K∑
k=1

βk+1 + αγ

K∑
k=0

k−1∑
k′=0

βk′+1ϕ(mk−k′−1)

and by rearranging

f(xK+1) +

K∑
k=0

(
(γ − βγ)ϕ(mk)− αγ

k−1∑
k′=0

βk−k′
ϕ(mk′

)

)

≤ f(x0)− βγϕ(mK) + γϕ(u0)

K∑
k=1

βK+1 − βγ

K∑
k=1

ϕ(uk),

further implying

f(xK+1) + γ

K∑
k=0

ϕ(mk)

(
1− β − α

K−k∑
k′=1

βk′

)

≤ f(x0)− βγϕ(mK) + γϕ(u0)

K∑
k=1

βK+1 − βγ

K∑
k=1

ϕ(uk).

27

Note that 1− β − α
∑K−k

k′=1 β
k′ ≥ 1− β − (1− β)2 β

1−β ≥ 1− 2β + β2 ≥ 0 and thus the terms on

the l.h.s. are positive, since ϕ ≥ 0. Moreover,
∑K

k=1 β
k+1 ≤ β

1−β and thus rearranging and using
f(xK+1) ≥ f⋆ we obtain:

min
1≤k≤K

ϕ(uk) ≤ 1

K

(
f(x0)− f⋆

βγ
− ϕ(mK) +

1

1− β
ϕ(u0)

)
,

and by dropping the negative term on the r.h.s. is the claimed result.

D Proofs of Section 3

D.1 Proof of Theorem 3.1

Proof. We start from the anisotropic descent inequality between points xk and xk+1, and note that,
since γ ≤ 1

L , the inequality also holds with constant 1
γ in light of Proposition B.3:

f(xk+1) ≤ f(xk) + γ ⋆ ϕ(xk+1 − xk + γ∇ϕ∗(∇f(xk)))− γϕ(∇ϕ∗(∇f(xk)))

= f(xk) + γϕ(∇ϕ∗(∇f(xk))−∇ϕ∗(g(xk)))− γϕ(∇ϕ∗(∇f(xk))), (37)

where the equality follows by substituting the update (14). Taking conditional expectation we obtain:

E[f(xk+1) | xk] ≤ f(xk) + γσ2 − γϕ(∇ϕ∗(∇f(xk)))

Taking total expectation and summing up the inequality above for k = 0, . . . ,K − 1, we obtain
K−1∑
i=0

E[ϕ(∇ϕ∗(∇f(xk)))] ≤ 1

γ
(f(x0)− E[f(xK)]) + σ2K ≤ 1

γ
(f(x0)− f⋆) + σ2K,

which then implies that

E

[
1

K

K−1∑
i=0

ϕ(∇ϕ∗(∇f(xk)))

]
≤ f(x0)− f⋆

γK
+ σ2.

D.2 Proof of Proposition 3.2

Throughout the proof we will use the following facts about hyperbolic functions:

cosh(arsinh(a)) =
√

1 + a2 (38)

and
cosh(a− b) = cosh(a) cosh(b)− sinh(a) sinh(b). (39)

Proof. Case 1: ϕ(x) =
∑n

i=1 cosh(xi)− 1. Let y, ȳ ∈ Rn and note that

ϕ(∇ϕ∗(y)−∇ϕ∗(ȳ)) =

n∑
i=1

cosh(arsinh(yi)− arsinh(ȳi))− 1

and thus we can work with each individual summand. Therefore, we will prove that for any a, b ∈ R,
cosh(arsinh(a)− arsinh(b))− 1 ≤ 1

2 (a− b)2. From (38) and (39) we have that

cosh(arsinh(a)− arsinh(b)) =
√

1 + a2
√
1 + b2 − ab.

Therefore, we need to show that√
1 + a2

√
1 + b2 − ab− 1 ≤ 1

2 (a− b)2

⇐⇒
√
1 + a2 + b2 + a2b2 ≤ 1

2a
2 + 1

2b
2 + 1

⇐⇒1 + a2 + b2 + a2b2 ≤ 1
4a

4 + 1
4b

4 + 1 + 1
2a

2b2 + a2 + b2

⇐⇒0 ≤ (12a
2 − 1

2b
2)2,

28

which holds trivially. We thus have

ϕ(∇ϕ∗(y)−∇ϕ∗(ȳ)) ≤ 1

2

n∑
i=1

(yi − ȳi)
2 =

1

2
∥y − ȳ∥2.

Case 2: ϕ(x) = cosh(∥x∥) − 1. Note that ∇ϕ∗(y) = arsinh(∥y∥)sign(y) is a bijection from Rn

to Rn with inverse ∇ϕ(x) = sinh(∥x∥)sign(x) and the result holds true if the following equivalent
inequality holds true:

ϕ(x− x̄) ≤ 1

2
∥∇ϕ(x)−∇ϕ(x̄)∥2 ∀x, x̄ ∈ Rn.

In fact, we will show the tighter inequality

ϕ(x− x̄) +
1

2
(ϕ(x)− ϕ(x̄))2 ≤ 1

2
∥∇ϕ(x)−∇ϕ(x̄)∥2. (40)

Substituting the definition of ϕ and ∇ϕ we equivalently have:

cosh(∥x− x̄∥)− 1 +
1

2
cosh(∥x∥)2 − cosh(∥x∥) cosh(∥x̄∥) + 1

2
cosh(∥x̄∥)2

≤ 1

2
sinh(∥x∥)2 − sinh(∥x∥) sinh(∥x̄∥) ⟨x, x̄⟩

∥x∥∥x̄∥ +
1

2
sinh(∥x̄∥)2.

Using the hyperbolic identity cosh(a)2 − sinh(a)2 = 1 we arrive at

cosh(∥x− x̄∥) ≤ cosh(∥x∥) cosh(∥x̄∥)− sinh(∥x∥) sinh(∥x̄∥) ⟨x, x̄⟩
∥x∥∥x̄∥ .

Now we can parametrize the expression above by defining θ := ⟨x,x̄⟩
∥x∥∥x̄∥ and

l(θ) := ∥x− x̄∥ =
√
∥x∥2 + ∥x̄∥2 − 2∥x∥∥x̄∥θ.

To this end, we define the function g : [−1, 1] → R by

g(θ) := cosh(
√
∥x∥2 + ∥x̄∥2 − 2∥x∥∥x̄∥θ)− cosh(∥x∥) cosh(∥x̄∥)− sinh(∥x∥) sinh(∥x̄∥)θ

for which we have that g(−1) = g(1) = 0 by (39). By taking the second derivative we get

g′′(θ) =
∥x∥2∥x̄∥2 cosh(l(θ))

l(θ)2
− ∥x∥2∥x̄∥2 sinh(l(θ))

l(θ)3

which is nonnegative by virtue of the inequality z cosh(z)− sinh(z) ≥ 0 for all z ∈ R+. Therefore
g(θ) is convex, implying that g(θ) ≤ 0 for all θ ∈ [−1, 1], which in turn implies the claimed
result.

D.3 Proof of Theorem 3.4

Proof. Recall from (37) that since 1
γ ≥ L, it follows from Proposition B.3 that

f(xk+1) ≤ f(xk) + γϕ(∇ϕ∗(∇f(xk))−∇ϕ∗(g(xk)))− γϕ(∇ϕ∗(∇f(xk))).

From (16) we have that

E[ϕ(∇ϕ∗(∇f(xk))−∇ϕ∗(g(xk))] ≤ 1

2
E
[∥∥∇f(xk)− g(xk)

∥∥2] ≤ σ2

2K
and the rest of the proof follows similarly to the proof of Theorem 3.1.

D.4 Proof of Theorem 3.5

Proof. Recall from (37) that since 1
γ ≥ L, it follows from Proposition B.3 that

f(xk+1) ≤ f(xk) + γϕ(∇ϕ∗(∇f(xk))−∇ϕ∗(g(xk)))− γϕ(∇ϕ∗(∇f(xk))).

Using Definition 2.3, taking conditional expectation and utilizing the assumption on the noise of the
stochastic gradient we obtain

E[f(xk+1) | xk] ≤ f(xk) + γσ2 − γµ(f(xk)− f⋆).

Rearranging and taking total expectations we thus arrive at
E[f(xk+1)− f⋆] ≤ (1− γµ)E[f(xk)− f⋆] + γσ2.

The claimed result now follows from Lemma B.1 for δk = E[f(xk)− f⋆] and θ = γσ2.

29

E The anisotropic gradient dominance condition and 2-subhomogeneity

In this section we provide a discussion on the anisotropic gradient dominance condition Definition 2.3
and provide examples of 2-subhomogeneous reference functions. To begin with, the relation of
Definition 2.3 with the classical PL condition varies with the properties of the reference function ϕ.
This is captured in the following proposition.

Proposition E.1. Let ϕ : Rn → R be as in Assumption 1.2 and let µϕ be the strong convexity
parameter of ϕ.

1. Then ϕ(∇ϕ∗(y)) ≤ 1
2µϕ

∥y∥2 for all y ∈ Rn.

2. If, moreover, ϕ is Lϕ-Lipschitz smooth, then ϕ(∇ϕ∗(y)) ≥ 1
2Lϕ

∥y∥2 for all y ∈ Rn.

Proof. To begin with, note that since ϕ is µϕ-strongly convex, ϕ∗ is 1
µϕ

-Lipschitz smooth. Moreover,
since minϕ = 0, from [42, Theorem 11.8], ϕ∗(0) = 0. By the definition of the convex conjugate we
have ϕ∗(y) = ⟨∇ϕ∗(y), y⟩ − ϕ(∇ϕ∗(y)) and as such

ϕ(∇ϕ∗(y)) = ⟨∇ϕ∗(y), y⟩ − ϕ∗(y) ≤ 1
2µϕ

∥y∥2,

where the inequality follows from the descent lemma for ϕ∗ between the points 0 and y, and
ϕ∗(0) = 0.

Now, regarding the second item, note that ϕ∗ is 1
Lϕ -strongly convex. From the strong convexity

inequality we thus have

ϕ∗(0) ≥ ϕ∗(y) + ⟨∇ϕ∗(y),−y⟩+ 1
2Lϕ∥y∥2

for all y ∈ Rn. The result now follows from the same arguments as the proof of the first item.

Therefore, for functions ϕ that grow faster than 1
2∥x∥2, the generalized PL inequality of Definition 2.3

is in fact stricter than the standard PL inequality. Nevertheless, when considering a local regime, one
can translate bounds from one inequality to the other as presented in the following example.
Example E.2. Let ϕ(x) = cosh(x) − 1. Then, for all (y, β) ∈ Rn × R++ such that ∥y∥ ≤ β we
have that

ϕ(∇ϕ∗(y)) ≥
√

1 + β2 − 1

β2
∥y∥2

Proof. Consider the function l(t) :=
√
1 + t2 − 1−

√
1+β2−1

β2 t2 for t > 0. It is straightforward that
l(β) = l(0) = 0 and that β, 0 are the only solutions of l(t) = 0 in [0, β]. Therefore, if we show that
for some t̄ ∈ (0, β), l(t̄) > 0 we are done, since l is a continuous function. Choose t̄ = β/2 and note
that

l(β/2) =

√
1 + β2

4 − 1−
√
1 + β2 − 1

4
.

Then, for the function l̃(β) :=

√
1 + β2

4 − 1−
√

1+β2−1

4 , β ≥ 0, we have that l̃(0) = 0 and

l̃′(β) =
β

4

 1√
β2

4 + 1
− 1√

β2 + 1

 > 0,

implying that l̃(β) > 0 and thus that l(β/2) > 0. This finishes the proof.

We next move on to providing some examples of 2-subhomogeneous functions. To begin with, in
light of [36, Lemma 3.8], cosh−1 is a 2-subhomogeneous function. We moreover have the following
new results:
Proposition E.3. The functions h1(x) = −|x| − ln(1 − |x|) and h2(x) = 1 −

√
1− x2 are 2-

subhomogeneous.

30

0 5000 10000 15000 20000
Number of iterations

100

101

102

103

104

105

106

107

‖∇
f

(x
k
)‖

ClipSGD

iHGD

sHGD

Figure 3: Results for the stochastic implementation of the phase retrieval problem (42).

Proof. For i ∈ {1, 2} we want to show the following inequality:

hi(θx) ≤ θ2hi(x), (41)

for all θ ∈ [0, 1] and x ∈ domhi. The inequality holds with equality for θ = 0 and θ = 1, so we
study θ ∈ (0, 1). Now fix θ ∈ (0, 1) and consider the function h̃i(x) := hi(θx)− θ2hi(x). We will
show that h̃i ≤ 0.

For h1 we have domh1 = (−1, 1) and since it is even we consider x ∈ [0, 1). Clearly, h̃1(0) = 0

and thus if we show that h̃′
1(x) ≤ 0 we are done. For x ∈ [0, 1) and θ ∈ (0, 1), we have

h̃′
1(x) =

θ2(θ − 1)x2

(x− 1)(θx− 1)
.

Using θ ∈ (0, 1) yields h̃′
1(x) ≤ 0 for all x ∈ [0, 1) implying that h̃1 is a decreasing function and

thus h̃1(x) ≤ h̃1(0) = 0.

For h2(x) = 1−
√
1− x2, with similar reasoning as above we have

h̃′
2(x) =

θ2x√
1− θ2x2

√
1− x2

(
√

1− x2 −
√
1− (θx)2).

Clearly, since θ ∈ (0.1), h̃′
2(x) < 0 and the proof follows similarly to the proof for h1.

F Further experimental details

F.1 Experimental details

We provide further details on the experiments presented in Section 4. All neural networks experiments
were carried out on an NVIDIA P100 GPU in an internal cluster. The experiment on the MNIST
dataset requires less than 2 hours for each algorithm. For the ResNet-18 in the Cifar10 experiments,
each run of each algorithm requires approximately 3 hours. The matrix factorization experiments
were run on a Intel Core i7-11700 @ 2.50GHz CPU and the total time required was less than 3 hours.

The stepsizes used in the experiments of Subsection 4.1 are presented in Table 2.

Table 2: Stepsizes of the NN experiments in Section 4.
iHGD sHGD SGD Adam

MNIST 1.0 0.40 0.56 0.001
Cifar10 0.2 0.35 0.10 -

Cifar10 momentum 0.5 0.10 0.05 0.001

31

0 50 100 150 200 250
Epochs

60.0

62.5

65.0

67.5

70.0

72.5

75.0

T
es

t
ac

cu
ra

cy

SGDm

Adam

iHGDm

sHGDm

0 50 100 150 200 250
Epochs

10−3

10−2

10−1

100

T
ra

in
in

g
lo

ss

SGDm

Adam

iHGDm

sHGDm

Figure 4: Results for training ResNet-34 on the Cifar100.

F.2 Additional experiments

F.2.1 Nonconvex phase retrieval

In this experiment we consider the phase retrieval problem

min f(x) :=
1

2m

m∑
i=1

(yi − (a⊤i x)
2)2, (42)

where yi ∈ R and αi ∈ Rn. We consider an overparametrized problem, with n = 1000 and m = 300
and ai, z ∼ N (0, 0.5), x0 ∼ N (5, 0.5) are generated element-wise with z denoting the ground truth.
The measurements are generated as yi = (a⊤i z)

2 + ni with ni ∼ N (0, 42).

We compare the stochastic algorithm (14) generated by ϕ1(x) = 1000(cosh(∥x∥)− 1) and ϕ2(x) =
1000

∑n
i=1(cosh(xi) − 1) with the stochastic clipped gradient method, as presented in [47] with

ν = 0. We choose a batch size of 50 and carefully tune the methods such that they perform well
on 10 random problems. For iHGD we choose γ = 1/45, for sHGD γ = 1/44 and for the clipped
gradient method η = 0.000023 and γ = 1 (in the notation of [47]). The results are presented in
Figure 3. It can be seen that sHGD performs similarly to the clipped gradient method, while iHGD
takes more iterations in the beginning but behaves similarly to the other methods towards the end.

F.2.2 Image classification on the Cifar100 dataset

In this experiment we use the ResNet-34 architecture and train it to classify images with the cross-
entropy loss. We use batch size 128 for all methods. We used stepsizes 1, 0.1, 0.01, 0.001 respectively
for iHGDm, sHGDm, SGDm and Adam. The results are presented in Figure 4. The confidence
intervals for this experiment are obtained from three random seeds, while for each algorithm one run
takes approximately 5 hours.

32

	Introduction and preliminaries
	Our contribution
	Related work
	Notation
	The anisotropic descent inequality

	The nonlinearly preconditioned gradient method with momentum
	Convergence under generalized PL condition
	Convergence under preconditioned Lipschitz continuity

	The stochastic nonlinearly preconditioned gradient method
	Experiments
	Neural networks
	Matrix factorization

	Conclusion and future work
	Phi-convexity and anisotropic smoothness
	Helper Lemmas and auxiliary results
	Proofs of Section 2
	Proof of Theorem 2.2
	Proof of Theorem 2.4
	Proof of Proposition 2.6
	Proof of Theorem 2.7

	Proofs of Section 3
	Proof of Theorem 3.1
	Proof of Proposition 3.2
	Proof of Theorem 3.4
	Proof of Theorem 3.5

	The anisotropic gradient dominance condition and 2-subhomogeneity
	Further experimental details
	Experimental details
	Additional experiments
	Nonconvex phase retrieval
	Image classification on the Cifar100 dataset

