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ABSTRACT

Recent methods for speech enhancement (SE) have generally adopted the su-
pervised learning way and trained the models on synthetic noisy-clean paired
speech data. However, when applying the supervised trained SE model to the
recordings of real-world scenario, which we call unlabeled data, it will lead
to the performance degradation. To improve the generalization performance of
SE, we propose a semi-supervised monaural speech enhancement network, SS-
SENet, which adopts the mean-teacher (MT) framework with domain adversar-
ial (DA) learning to effectively exploit the unlabeled data. We also propose
the Gradient-Guided Channel Attenuation (GGCA) module for suppressing the
domain-specific features and enhance domain-invariant one, and Domain Shift-
Aware Monitor (DSAM) strategy for dynamically adjusting the attenuation rate
in GGCA. Comparing with seven SOTA methods exploiting the unlabeled data,
our proposed SS-SENet achieves the best performances at all metrics both on
synthetic Reverberant LibriCHiME-5 and LibriMix datasets, and at the critical
metric, OVRL, on the real-world CHiME-5 dataset. The results verify that our
proposed basic MT-based method is superior to the compared methods based on
full supervised or self-supervised learning. It also verifies the effectiveness of our
proposed GGCA module and DSAM strategy. The source code is available at
https://anonymous.4open.science/r/SS-SENet.

1 INTRODUCTION

Speech enhancement (SE) is dedicated to extracting the clean speech from mixtures under the com-
plex acoustic environments, while suppressing the noise, reverberation and other interferences thus
improving the quality and intelligibility of extracting speech (Wei et al., 2023). Current mainstream
SE methods generally adopt the supervised learning way and trained the model on synthetic data.
However, there still exsit the discrepancy of a certain extent in terms of acoustic condition between
the synthetic and real-world recordings (Li Li, 2024). The noise and interference both have a great
variety of types and intensities and are existed in real-world environment randomly and dynami-
cally, which is differ from the assumption for creating the synthetic data (Xu et al., 2025). Besides,
under the scene of crosstalking in real-world environments, it is difficult to obtain the specific pure
speech, which makes the construction of labeled data impractical (Ito et al., 2023). Therefore, ap-
plying the supervised SE model trained on the synthetic datasets to the scenario of real-world will
lead to performance degradation, due to the unavoidable acoustic mismatch between the synthetic
and real-world recordings (Wang et al., 2024; Yao et al., 2025). Conversely, we can easily acquire a
large number of noisy mixtures with various types of noise and interference in real-world scenarios,
but without the corresponding clean reference signals, which are termed as unlabeled data.

Recently, leveraging the unlabeled real-world recordings to improve the performance of SE models
under the condition of real-world has become a central challenge (Zhang et al., 2021; Frenkel et al.,
2023; Lee et al., 2024; Frenkel et al., 2024). Frenkel et al. proposed to adpot domain adversarial
(DA) learning to exploit real-world unlabeled data, enabling the model to learn the domain-invariant
representations (Frenkel et al., 2024). Besides, self-supervised learning based methods , such as
RemixIT (Tzinis et al., 2022a;b) and its variants (Chen et al., 2023; Fujimura et al., 2023; Li Li,
2024; Liao et al., 2025) have been proposed, and they typically adopt a two-stage pipeline, as shown
in Fig. 1 (a). At the first stage, the SE model is pre-trained on synthetic dataset, which includes the
noisy mixture and its corresponding clean speech and noise references. At the second stage, both the
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Figure 1: Illustrations of (a) self-supervised learning (RemixIT) and (b) semi-supervised learning
based on MT framwork (ours). The superscripts l and u denote the labeled and unlabeled data,
respectively. x denotes the mixture, and s and n the speech and noise signals. ˆand¯denote the
signals estimated by student and teacher models, respectively. fθ denotes the pre-trained parameter
at the stage I, and >< the permutation operation.

teacher and student models are initialized with the pre-trained weights fθ. Only the real-world unla-
beled recordings are fed into the teacher model, and the noise prediction of which are then randomly
permuted and remixed with its speech prediction to generate the bootstrapped mixtures. These mix-
tures are used to train the student model together with the teacher’s corresponding predictions, which
are named as pseudo-labels (Tzinis et al., 2022a;b). Li et al. proposed the Remixed2Remixed adopt-
ing a Noise2Noise learning strategy, where two bootstrapped mixtures generated by teacher model
are used to train the student model through optimizing an Noise2Noise-based cost function (Li Li,
2024). Liao et al. proposed the PHA-RemixIT which enhances the remixing diversity by using
noise in labeled data, and adopts the heterogeneous noise-invariant loss and adaptive focal weight to
improve the generalization across various acoustic conditions (Liao et al., 2025).

Although the aforementioned methods have begun to exploit the recordings of the real-world sce-
narios, the quality of estimated speech heavily relies on the fixed model pre-trained at the first stage
(Wang et al., 2024; Liao et al., 2025). Besides, this two-stage training framework is cumbersome and
inefficient, and completely detach from the supervised by labeled data at the second stage, which
may cause the model’s deviation and ultimately resulting in performance reduction (Liu et al., 2024).
The semi-supervised learning based on the Mean-Teacher (MT) framework was firstly proposed by
Tarvainen et al. (Tarvainen et al., 2017), which offers an end-to-end way and requires only a single
parallel pass through the labeled and unlabeled data for training, as shown in Fig .1 (b). However,
the semi-supervised learning based on MT framework has been mostly applied to computer vision
tasks, such as image classification and object detection (Döbler et al., 2023; Huang et al., 2023; Liu
et al., 2024; Qiao et al., 2024; Kumar et al., 2025), but to our knowledge, it is underexplored for the
regression-based tasks like speech separation.

In this paper, we propose a novel Semi-Supervised monaural Speech Enhancement Network, SS-
SENet, which is the first attempt to apply the semi-supervised learning of MT-based for SE task.
As shown in Fig. 2, SS-SENet adopts a MT structure and introduces a domain discriminator with
gradient reversal layer (GRL) to minimize the gap of feature distributions between synthetic and
real-world data (Ganin et al., 2016; Frenkel et al., 2024). We also propose the Gradient-Guided
Channel Attenuation (GGCA) to selectively attenuate the features carrying strong domain-specific
information, and the Domain Shift-Aware Monitor (DSAM) to adjust the attenuation rate in GGCA
by monitoring the extent of domain-shift.

We trained the SS-SENet on both synthetic labeled dataset, LibriMix (Cosentino et al., 2020) and
real-world unlabeled dataset, CHiME-5 (Barker et al., 2018), and evaluated it across three datasets
including LibriMix, CHiME-5, and Reveberant LibriCHiME-5. In summary, our contributions are
as follows:

1) We make the first attempt to introduce the semi-supervised learning of MT-based for SE task,
and propose SS-SENet, which can effectively expoit the real-world unlabeled data for training and
improve the adaptation of SE model under the real-world scenarios.
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2) We propose Gradient-Guide Channel Attenuation (GGCA) for attenuating the domain-specific
features thus extracting the domain-invariant oneD, and adopt domain adversarial (DA) learning for
reducing the feature-level domain discrepancy.

3) We propose Domain Shift-Aware Monitor (DSAM) for adjusting the attenuation rate in GGCA
by real-time monitoring the extent of domain-shit between the synthetic and real-world data.

2 RELATED WORKS

SE Based on Supervised Learning. SE methods based on deep neural networks have achieved
remarkable success in supervised settings, as they benefit from large-scale synthetic noisy-clean
paired speech data. Existing methods can be broadly categorized into time-domain (T-domain)
(Wang et al., 2021; Zhao & Ma, 2023) and time-frequency domain (TF-domain) based methods (Lu
et al., 2023; Chao et al., 2024; Abdulatif et al., 2024; Yan et al., 2025; Hu et al., 2025). These
methods typically rely on the assumption that training and testing data are from similar distributions
(Liao et al., 2025).

SE Based on Self-Supervised Learning. Such supervised SE models would result in performance
degradation of a certain degree when inferring on the real-world dataset. Recent SE researches
have begun to focus on the exploiting of unlabeled data. DA learning is adopted to enable the
model to learn the domain-invariant representations between the synthetic and real-world record-
ings (Frenkel et al., 2023; 2024; Lee et al., 2024). RemixIT and its variants based on self-supervised
learning, adopt a two-stage pipeline, where the SE model is pre-trained on the synthetic data, and
the pre-tarined teacher model generates the pseudo-label of unlabeled date for training the student
model (Tzinis et al., 2022a;b; Chen et al., 2023; Fujimura et al., 2023; Li Li, 2024; Liao et al., 2025).

Semi-supervised Learning Based on MT Framework. MT framework is widely used in semi-
supervised learning that maintains a student-teacher model pair with identical architectures (Tar-
vainen et al., 2017). Its core idea is to enforce consistency between the predictions of student
and teacher models on the unlabeled data (Cai et al., 2019). To reduce the influence of unreli-
able pseudo-labels in early training, the consistency loss is typically weighted by a time-dependent
schedule (French et al., 2018). The semi-supervised learning based on MT framework has been ex-
tensively studied in computer vision tasks (Döbler et al., 2023; Huang et al., 2023; Liu et al., 2024;
Qiao et al., 2024; Kumar et al., 2025), but has not been explored for regression-based SE task.

3 METHOD

Our proposed SS-SENet adopts the semi-supervised learning of MT-based and DA training strategy.
Let Dl = {(xl

i, s
l
i, n

l
i)}N

l

i=1 denotes the labeled dataset, where xl, sl and nl denote the noisy mixture,
clean speech and pure noise reference. Du = {xu

i }N
u

i=1 denotes unlabeled real-world data, where i
is the index , and N l and Nu the total number of samples for labeled and unlabeled datasets. Three
objective functions are used for training the student model, which includes the supervised loss LSup.

based on Dl, consistency loss LCons. based on Du, and domain discrimination loss LDom. based on
both Dl and Du, as shown in Fig. 2. The first two losses are called semi-supervised learning loss
while the last one DA training loss.

3.1 MEAN-TEACHER FRAMEWORK FOR SEMI-SUPERVISED SPEECH ENHANCEMENT

SS-SENet consists of a teacher–student model pair adopting the same SE backbone, where the
student model differs from teacher one in that there is a GGCA module including DSAM strategy
between the encoder and bottleneck. During the training phase, the teacher model only processes the
original unlabeled samples xu while the student one processes the labeled samples xl and augmented
version of unlabeled samples xu. The augmented unlabelled samples xu′

are generated by adopting
a remixing-based strategy (Tzinis et al., 2022a;b), by which it can constructs new mixtures by
permuting the teacher’s predicted noise and remixing them with the teacher’s predicted speech.

For Dl, the student model is trained in a fully-supervised manner by aligning its predictions with the
ground-truth, including clean speech sl and noise reference nl. For Du, the predictions of teacher
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Figure 2: Overview of SS-SENet. // denotes stop grandient. EMA means exponential moving av-
erage. θT and θS denote the parameters of teacher and student models, respectively. t is the training
step, and α ∈ [0, 1] the decay rate. LSup., LCons. and LDom. denote the supervised, consistency and
domain discrimination losses, respectively.

model are servered as the pseudo-labels for training the student model, which is encouraged to
produce the consistent predictions with that by the teacher model. Through this joint optimization,
the student model is updated simultaneously based on accurate supervision on the labeled data and
regularization on the unlabeled data, while the teacher model is updated via exponential moving
average (EMA) of student’s parameters, θ(t)T = αθ

(t−1)
T + (1− α)θ

(t)
S , and its pseudo-label quality

is progressively improved. Where the θT and θS are the parameters of teacher and student models,
respectively. t denote the training step, and α ∈ [0, 1] the decay rate.

3.2 GRADIENT-GUIDE CHANNEL ATTENUATION (GGCA)

During DA training, the feature of each channel are treated equally, ignoring the fact that domain-
specific information may be concentrated on a part of channels not all. Inspired by the research
on domain generalization (Guo et al., 2023; Hui et al., 2024), we propose GGCA to selectively
attenuate the domain-specific features and enhance domain-invariant one according to the gradients
of domain discriminator.

As shown in Fig. 3, given the feature maps FE(x
∗) extracted by the encoder, where ∗ ∈ u, l, we use

a global average pooling (GAP) layer to obtain feature vectors P ∗, which are then fed into a domain
discriminator (D) for domain discrimination. To avoid the negative impact of domain discriminator
on the main network, we use a gradient reversal layer (GRL) before GAP to reverse the gradients of
domain discrimination loss, LDom., which is defined by:

LDom. = −d logD(Pi)− (1− d) log(1−D(Pi)), (1)

where d is the domain label. The samples from labelled dataset are labeled as d=0, and that from
unlabelled one, d=1.

We exploit the gradient values of domain discriminator to determine that the features of which
channels may contain more domain-specific information. Generally, the features contribute the
most to the prediction of domain are likely to contain the most domain-specific information. To
measure how much the features of each channel contribute to domain prediction, we define a domain
discriminability metric of feature FE(x

∗) with the channels number C as:

w∗
c =

∂LDom.

∂FE(x∗)
, c ∈ {1, 2, ..., C}, (2)

where C is the channels number. The larger value w∗
c is, the more domain-specific information

the feature of c-th channel contains. Therefore, the features of those channels should be attenuated

4
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Figure 3: Sturcture of the GGCA. FE(·) denotes the output of encoder, and W the attenuation matrix
of FE(·). ⊗ dnotes element-wise multiplication. F′

E(·) denotes the final feature representations.

to alleviate the problem of domain-shift, which also denotes the discrepancy between the features
extratced from synthetic and real-world data. We rank the values of w∗

c and select the corresponding
features of K channels with w∗

c value of the largest Top-k:

W ∗ =

{
σ(−w∗

c ), if c ∈ Top(w∗
c ,K) and w∗

c > 0
1, otherwise (3)

Here, σ(·) denotes the sigmoid function, W ∗ the final attenuation matrix applied for the FE(x
∗).

The number of selected channels K = C · r, where r is the attenuation ratio and its calculation is
referred to 3.3. The finally feature is obtained: F

′

E(x
∗) = W ∗ · FE(x

∗).

3.3 DOMAIN SHIFT-AWARE MONITOR (DSAM)

The discrepancy in acoustic conditions between the labeled and unlabeled data may lead to domain
shift, the extent of which fluctuates dynamically during training. Adpoting a fixed attenuation ratio
r in GGCA may cause suboptimal performance (Feng et al., 2025).

Consequently, we propose the DSAM strategy for obtaining adaptive attenuation ratio r, which can
monitor the extent of domain shift by measuring the variance of intermediate features extracted
from labeled and unlabeled data during the training. Specifically, we update the attenuation ratio r
in GGCA by average channel-wise variance ν via a Sigmoid function:

r = ϵ · 1

1 + exp(−k(ν − s))
(4)

where ϵ ∈ (0, 1) is a scaling factor that controlling the maximum attenuation rate. k and s are
parameters of the Sigmoid function that determine its slope and offset, respectively. The average
channel-wise variance ν is defined as follows:

ν =
1

C

C∑
c=1

 1

nl + nu − 1

 nl∑
i=1

(P l
i,c − P̄c)

2 +

nu∑
j=1

(Pu
j,c − P̄c)

2

 (5)

where nl and nu are the number of labeled and unlabeled samples in a mini-batch. P̄c is the mean
value of features of channel c across both labeled and unlabeled data, which is defined as follows:

P̄c =
1

nl + nu

 nl∑
i=1

P l
i,c +

nu∑
j=1

Pu
j,c

 (6)

A larger value of ν suggests a more severe domain mismatch, requiring more aggressive attenuation
of domain-specific features, while a smaller value of ν indicates a slighter domain mismatch, and

5
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Table 1: Comparison with seven SOTA methods exploiting unlabeled data on three datasets: real-
world CHiME-5 dataset, and synthetic LibriMix and Reverberant LibriCHiME-5 datasets, the last
of which was excluded from training. The SS-SENet adopting the backbones of SuDoRM-RF (T-
domain) and BSRNN (TF-domain) are evaluated for fair comparison. Within each group based on
T- or TF-domain, bold and underline denote best and second-best performance. The 23’CHiME
refers to the official outcomes published for the Task2 of CHiME 2023 (CHiME-7 UDASE). The ⋆
denotes that we implemented based on the code supplied officially (Tzinis et al., 2022b).

Method Backbone
CHiME-5

(Real-World)
Rever. LibriCHiME-5

(Synthetic)
LibriMix

(Synthetic) PUB.
SIG BAK OVRL SI-SDR PESQ SI-SDR PESQ

noisy - 3.48 2.92 2.84 6.59 1.55 4.91 1.25 -
T-domain

RemixIT⋆ SuDoRM-RF 3.26 3.64 2.82 9.44 1.68 11.47 1.87 22’JSTSP
Sogang ISDS1 SuDoRM-RF 3.39 3.60 2.90 12.42 - - - 23’CHiME
Sogang ISDS2 MossFormer 3.32 3.70 2.88 12.42 - - - 23’CHiME

Remixed2Remixed SuDoRM-RF 3.35 3.42 2.85 12.41 - - - 24’ICASSP
SS-SENet (Ours) SuDoRM-RF 3.34 3.85 2.97 13.60 1.89 13.04 2.16

TF-domain
Remixit-G Uformer 3.39 3.93 3.07 12.95 - 8.83 - 23’CHiME

Multi-CMGAN+/+ CMGAN 3.49 3.86 3.12 6.95 - - - 24’ICASSP
PHA-RemixIT BSRNN 3.46 4.03 3.22 11.6 - - - 25’ICASSP

SS-SENet (Ours) BSRNN 3.54 3.87 3.30 13.00 1.89 12.16 1.87

thus requiring more gentle attenuation. Inspired by the learnable sigmoid function, where the slope
is a learnable parameter (Fu et al., 2021; Hu et al., 2025), we propose a dynamic adjustment strategy
where the value of k in Eq. 5 is adjusted in real-time according to ν, k(ν) = γ · ν, where γ serves
as a scaling factor and set to 20.

3.4 LOSS FUNCTION

The student model is optimized using three loss functions: the supervised loss LSup., consistency
loss LCons., and domain discrimination loss LDom.. The total loss LTotal is defined as follows:

LTotal = LSup. + λ1 · w(t)LCons. + λ2 · LDom., (7)

where λ1 and λ2 are hyperparameters. w(t) is a ramp-up function for dynamically adjusting the
weight of consistency loss: w(t) = exp

[
−5

(
1− t2

T

)]
where t denotes the current iteration of

training, and T the ramp-up length and set to the multiplication of the iterations number for each
epoch and 25 (epoch), in our implementation. The LSup is based on the labeled data Dl, which
encourages the SE model to accurately reconstruct both the clean speech and noise signals.

LSup. = Lrec.(s
l, ŝl) + Lrec.(n

l, n̂l), (8)

where the Lrec. denotes any desired signal-level reconstruction loss function, which is a weighted
sum of the mean square error (MSE) and negative scale-invariant signal-to-distortion ratio (SI-SDR)
losses, with corresponding weights of 1.0 and 0.5, respectively. ŝl, n̂l denote the predicted speech
and noise of the student model, and sl, nl the corresponding reference signals.

The LCons. enforces consistency between the predictions of student and teacher models on the unla-
beled data Du:

LCons. = Lrec.(s̄
u, ŝu) + Lrec.(n̄

u, n̂u), (9)

where s̄u, n̄u are the predicted speech and noise of teacher model, and ŝu, n̂u are that of the student
model. The domain discrimination loss LDom. is computed as in Eq. 1.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Mixture (b) Clean speech (c) Speech enhanced by RemixIT (d) Speech enhanced by SS-SENet

Reverberant LibriCHiME-5：S21-P47-86a.wav

CHiME-5: S01-P03-236.wav

(a) Mixture (b) Loudness normalized mixture (c) Speech enhanced by RemixIT (d) Speech enhanced by SS-SENet

(a) Mixture (b) Clean speech (c) Speech enhanced by RemixIT (d) Speech enhanced by SS-SENet

Reverberant LibriCHiME-5：S21-P47-86a.wav

CHiME-5: S01-P03-236.wav

(a) Mixture (b) Loudness normalized mixture (c) Speech enhanced by RemixIT (d) Speech enhanced by SS-SENet

Figure 4: Visualization analysis of spectrograms of two recordings from two datasets. Subfigures
of each column from (a)–(d) denote the spectrograms of noisy mixture, clean speech (or loudness-
normalized mixture for the unlabeled CHiME-5 dataset), and the estimated speech by RemixIT
and SS-SENet, respectively. The highlighted boxes indicate the regions with obvious improvement
achieved by SS-SENet compared with that by RemixIT.

4 EXPERIMENTAL SETUP

Dataset. We conducted experiments on three datasets: the CHiME-5 only with unlabeled data
(Barker et al., 2018), LibriMix (Cosentino et al., 2020) and Reverberant LibriCHiME-5 both with
labeled data. Where the first two datasets are used for training, evaluating and testing while the latest
one for evaluating and testing. For the details of three datasets, please refer to Appendix A.

Training and evaluation. We trained the models for 100 epochs on three NVIDIA A40 GPUs
using the Adam optimizer with an initial learning rate of 0.001 and batch size of 42. Each mini-
batch contains the same number of labeled and unlabeled samples. The decay rate α in EMA is
set to 0.99. After the ramp-up strategy is finished, the learning rate will be reduced by a factor
of 3 at every 15 epochs. For the eval/1 subset of CHiME-5 dataset, only including real-world
unlabeled recordings, we calculated the DNSMOS (Reddy et al., 2022) scores for speech (SIG),
background noise (BAK), and overall (OVRL) qualities. For the complete evaluation set of both
Reverberant LibriCHiME-5 and LibriMix datasets, only including synthetic labeled recordings, we
calculated the SI-SDR and perceptual evaluation of speech quality (PESQ). For all metrics, higher
scores indicate better performance. Further metric details are provided in Appendix B.

5 RESULTS

5.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare the SS-SENet with seven state-of-the-art (SOTA) methods on three datasets,
each of them exploit the real-world unlabeled data, including RemixIT (Tzinis et al., 2022b),
Remixed2Remixed (Li Li, 2024), PHA-RemixIT (Liao et al., 2025), Mutil-CMGAN+/+ (Close
et al., 2024), as well as Sogang ISDS1/2 (Jang et al., 2023) and RemixIT-G (Zhang et al., 2023).
Where the last three methods are pubulished for the Task2 of CHiME 2023 (CHiME-7 UDASE) 1.
These compared methods include four T-domain-based and three TF-domain-based ones. For fair
comparison, SS-SENet was evaluated using the SuDoRM-RF (T-domain) (Tzinis et al., 2020) and
BSRNN (TF-domain) (Yu et al., 2023) backbones, and the corresponding results are listed in Table 1.
For two groups of T- and TF-domain-based methods, SS-SENet achieves best performance on both
Reverberant LibriCHiME-5 and LibriMix datasets, which consist entirely of synthetic labeled data.
For CHiME-5 dataset consisting of unlabeled data, SS-SENet also achieves the best performance
among the compared methods of two groups on the score of OVRL, which is a critical metric.

1https://www.chimechallenge.org/challenges/chime7/task2/results
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Table 2: Comparison of the fully supervised SuDoRM-RF (F), self-supervised RemixIT and
semi-supervised MT-based methods on three datasets. The CHiME-5 dataset consists of unlabeled
real-world recordings. All methods adopt the backbone of SuDoRM-RF to ensure a fair comparison.

Method Training Data
CHiME-5

(Real-World Data)
Rever. LibriCHiME-5

(Synthetic Data)
LibriMix

(Synthetic Data)
LibriMix CHiME-5 SIG BAK OVRL SI-SDR PESQ SI-SDR PESQ

Noisy - - 3.478 2.917 2.839 6.589 1.547 4.909 1.245
SuDoRM-RF (F) ✓ × 3.330 3.590 2.879 7.805 1.566 13.235 2.195
RemixIT ✓ ✓ 3.255 3.644 2.824 9.440 1.678 11.470 1.869
Basic MT (Ours) ✓ ✓ 3.333 3.761 2.930 13.460 1.930 13.160 2.192

Figure 5: Evaluation performance trends of RemixIT (blue curve) and our proposed basic mean-
teacher (MT) framework (red curve) on the development sets of three datasets. The vertical axis
of the leftmost figure shows the scores of OVRL on the CHiME-5 dataset, and that of the mid-
dle and rightmost one that both of SI-SDR on Reverberant LibriCHiME-5 and LibriMix datasets,
respectively. The horizontal axis denotes the epoch number.

We also draw visualization analysis of spectrograms of two recordings from two datasets. As shown
in Fig. 4, the subfigures of each column from (a)–(d) denote the spectrograms of noisy mixture, clean
speech (or loudness-normalized mixture) and the speech predicted by RemixIT and SS-SENet, re-
spectively. For the unlabeled recording in CHiME-5 dataset, subfigure (b) is the spectrogram of
the mixture whose loudness has been normalized to -30 LUFS (Loudness Unit Full Scale) using
the Python package pyloudnorm (Steinmetz & Reiss, 2021) (The reason for loudness normaliz-
ing is explained in the Appendix B). The highlighted boxes indicate the regions where SS-SENet
achieves obvious improvement compared to RemixIT. Comparing the subfigures (c) with (d) of the
first row in Fig. 4, it is obviously observed that some non-speech components still remain in the
areas highlighted by green boxes. As for demos of SE, please refer to the project page 2.

5.2 ABLATION STUDY

We conducted a series of ablation experiments on three datasets to verify the effectiveness of the
semi-supervised learning of MT-based and three key components in SS-SENet.

Semi-supervised learning of MT-based framework. To evaluate the effectiveness of the semi-
supervised learning of MT-based framework, we compare it with the fully supervised SuDoRM-RF
(F) and self-supervised RemixIT on three datasets. The basic MT means that our proposed semi-
supervised method is just based on MT framework but without three key components including DA
training, GGCA and DSAM. During the training phase, SuDoRM-RF (F) was trained only on the
LibriMix dataset, while the RemixIT and basic MT both on the LibriMix and CHiME-5 datasets.
All methods adopted the same backbone of SuDoRM-RF (Tzinis et al., 2020) to ensure a fair com-
parison. As shown in Table 2, our proposed basic MT framework achieves the best performance

2https://sssenet.github.io/Demo/
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Table 3: Ablation studies of three key components in SS-SENet on three evaluation sets. A1
denotes the semi-supervised learning of MT-based with DA training strategy, and A2 that with DA
and GGCA. SS-SENet is the complete model including three key components.

Mtethod
CHiME-5

(Real-World Data)
Rever. LibriCHiME-5

(Synthetic Data)
LibriMix

(Synthetic Data)
SIG BAK OVRL SI-SDR PESQ SI-SDR PESQ

A0 MT 3.333 3.761 2.930 13.460 1.930 13.160 2.192
A1 +DA 3.341 3.821 2.958 13.612 1.905 13.024 2.156
A2 +GGCA 3.352 3.832 2.964 13.497 1.888 13.055 2.170

SS-SENet +DSAM 3.338 3.848 2.971 13.601 1.894 13.043 2.164

on the Reverberant LibriCHiME-5 and CHiME-5 datasets, except the score of SIG, and the second-
best performance on the LibriMix dataset, while the fully supervised SuDoRM-RF (F) trained on
LibriMix dataset achieves best performance on it.

We also plotted the trends of evaluation performances of the RemixIT and our proposed basic MT
method, both of which were evaluated on the development sets of three datasets. As shown in Fig.5,
as the number of epochs increases, the basic MT method achieves the growing performances on
three datasets, while RemixIT exhibits a fluctuating and even stagnant one.

Three key components. Futhermore, building upon the basic semi-supervised SE of MT-based
framework, we conducted a series of ablation experiments to verify the effectiveness of three com-
ponents of SS-SENet, including DA learning, GGCA module, and DSAM strategy. In Table 3, A1
denotes the basic MT framework with DA learning, A2 that with DA learning and GGCA, SS-SENet
the complete model including basic MT, DA, GGCA and DSAM. Note that A2 corresponds to SS-
SENet without the DSAM component, which means that the attenuation ratio r in GGCA is fixed
rather than dynamically adjusted. In this setup, the value of r was fixed at 0.1

It is clear that with DA training, the model achieves better performance on real-world CHiME-5
dataset. Introducing GGCA, the model achieves substantial improvements on all metrics for the
CHiME-5 dataset. These results indicate that the features of channel-level attenuation based on
the LDom. can help to reduce the speech distortion and background noise, thereby improving the
overall speech quality. However, we observe a slight performance decrease in SI-SDR and PESQ
scores on the Reverberant LibriCHiME-5 dataset. This suggests that although GGCA can improve
overall performance, its use of a fixed attenuation ratio fails to adapt to the dynamically varying
degree of domain-shift, thus resulting in suboptimal performance under complex acoustic conditions
(To visualize the effect of GGCA, we present a comparison of spectrograms with and without the
GGCA module in Appendix C). When introducing the DSAM strategy, the model achieves better
performance. For CHiME-5 dataset, the scores of BAK and OVRL are further improved from 3.832
to 3.848 and from 2.964 to 2.971, respectively, while for Reverberant LibriCHiME-5, the SI-SDR
and PESQ scores recover from 13.497 to 13.601 and from 1.888 to 1.894. These results verify
that using DSAM for adaptively adjusting the attenuation ratio r is better than using a fixed one.
Additional ablation studies of maximum attenuation ratio ϵ in Eq. 4, the adjustment coefficient k in
DSAM, and consistency loss weight λ1 are provided in Appendix D for completeness.

6 CONCLUSION

In this paper, we propose SS-SENet, which is the first attempt to apply the semi-supervised learning
method of MT-based for SE task. We propose the Gradient-Guided Channel Attenuation (GGCA)
module for selectively attenuating the channel-level features, and the Domain Shift-Aware Monitor
(DSAM) strategy for dynamically adjusting the extent of attenuation within GGCA module. Com-
pared with seven state-of-the-art methods that all exploit unlabeled data, our proposed SS-SENet
achieves the best performances across all metrics on the Reverberant LibriCHiME-5 and LibriMix
datasets, and on the critical OVRL metric for CHiME-5 dataset. The ablation results verify that
our proposed basic model adopting semi-supervised learning method of MT-based is superior to the
compared methods, which adopt the fully supervised or self-supervised learning methods. They also
demonstrate the effectiveness of our proposed GGCA module and DSAM strategy.
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A DATASET DETALS

CHiME-5: Real multi-speaker conversational recordings between multiple speakers from 20 din-
ner parties in different homes with three recording locations per home (kitchen, dining room, living
room) (Barker et al., 2018), captured by binaural microphones in noisy and reverberant environ-
ments. Following the CHiME-7 protocol (Leglaive et al., 2023), only the right channel is used and
discarded unreliable portions of the recordings. The extracted audio segments contain up to three
simultaneously-active reverberant speakers and background noise. The noisy speech signals are not
labeled with the clean speech reference signals. According to (Leglaive et al., 2023), the training set
consists of raw single-channel audio segments extracted from the binaural recordings. For the devel-
opment and evaluation sets, segments were extracted in successive stages: (i) segments containing
only background noise; (ii) remaining segments with a single active speaker and no overlap; (iii)
remaining segments with up to two simultaneous speakers; and (iv) remaining segments with up to
three simultaneous speakers. Noise-only segments are used to create the Reverberant LibriCHiME-
5 dataset for objective evaluations. Other subsets are further divided for train (≈83h), development
(≈15.5h), and evaluation (≈7h), respectively.

LibriMix: This dataset was originally developed for speech separation in noisy environments, it is
derived from LibriSpeech clean utterances (Panayotov et al., 2015) and WHAM! noises (Wichern
et al., 2019). The Libri2Mix and Libri3Mix versions of the dataset contain noisy speech mixtures
with 2 and 3 overlapping speakers, respectively. A singlespeaker version of LibriMix (Libri1Mix)
can be obtained by simply discarding one of the two speakers in Libri2Mix mixtures.

Reverberant LibriCHiME-5: In real-world conditions, particularly for the CHiME-5 recordings,
it is impossible to have access to the ground-truth clean speech reference signals associated with the
noisy speech mixtures. Yet, when developing and evaluating a speech enhancement algorithm it is
necessary to compute objective performance metrics. For this purpose, the reverberant LibriCHiME-
5 dataset is created for development and evaluation only. This dataset consist of reverberant speech
and noise, with up to three simultaneously active speakers, labeled with the clean reference speech
signals. Noise signals were extracted from the CHiME-5 recordings, and clean speech utterances
were taken form the LibriSpeech dataset and were convolved with room impulse responses (RIRs)
from VioceHome Corps (Bertin et al., 2016). The mixtures are generated by adding noise segments
into randomly sampled speech utterances convolved with randomly sampled RIRs, where the SNR
for each speaker is distributed as a Gaussian with a mean of 5 dB and a standard deviation (std) of 7
dB to match the CHiME-5 dataset. The proportion of 1-spk, 2-spk, and 3-spk subsets was 0.6, 0.35,
and 0.05, respectively. Data duration for development and evaluation is about 3h each.

B EVALUATION METRICS

DNSMOS: Deep Noise Suppression Mean Opinion Score (DNSMOS) is a non-intrusive objective
metric (Reddy et al., 2022). It consists of a nerual network which was trained to predict human Mean
Opinion Score (MOS) ratings for speech signal. DNSMOS will provide performance scores for the
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speech signal quality (SIG), the background intrusiveness (BAK), and the overall quality (OVRL),
Where each values between 1 and 5, the higher values indicating better quality. Befor computing
the DNSMOS performance scores, it is reqried to use the Python package pyloudnorm to normalize
the output signals at a loudness of -30 LUFS (Loudness Unit FullScale) (Steinmetz & Reiss, 2021).
The motivation for this normalization is that DNSMOS scores (especially the SIG and BAK scores)
are very sensitive to a change in the input signal loudness. This sensitivity would make it difficult to
comparedifferent systems without a common normalization procedure.

PESQ: Perceptual Evaluation of Speech Quality (PESQ) (Rix et al., 2001) is a well-known intrusive
speech quality measure, with a range from 1 to 4.5, making it a widely-used metric for measuring
the performance of SE algorithms and the clarity of processed speech. A higher score indicates
better quality.

SI-SDR: The Scale-Invariant Signal-to-Distortion Ratio (SI-SDR) (Le Roux et al., 2019) is a widely-
used metric for assessing the quality of enhanced speech. SI-SDR quantifies the difference between
the clean and estimated speech signals, measuring the improvement in signal quality while being
invariant to scale changes. Higher values indicate better performance. SI-SDR is defined as follows:

SI-SDR = 10 log10

(
∥starget∥2

∥enoise∥2

)
(10)

starget =
⟨ŝ, s⟩ · s
∥s∥2

(11)

enoise = ŝ− starget (12)

where s and ŝ are the clean the estimated signal,respectively.

C VISUALIZATION

To intuitively demonstrate the effectiveness of the GGCA module, we provide sample recordings
from three datasets for visualization, as shown in Fig. 6. The subfigures of each column (a) to
(d) denote the spectrograms of the noisy mixture, the clean speech (or loudness-normalized mix-
ture), the speech predicted by SS-SENet without the GGCA module, and the speech estimated by
SS-SENet with GGCA, respectively. The highlighted boxes indicate regions where SS-SENet with
GGCA shows noticeable improvement compared to the version without the GGCA module. Com-
pare (d) with (c) in each subfigures, we can clear observe that the model with GGCA module exhibits
better preservation of speech and more effective suppression of noise components.

D ABLATION STUDY

Maximum Attenuation Rate ϵ. Since excessive attenuation ratio may lead ro the loss of informa-
tion, we introduce a sclae factor ϵ that control the maximum attenuation rate in Eq. 4. As shown in
Table 4, when ϵ was set to 0.1, SS-SENet achieves the best overall banlanced performance, yield-
ing the best performance on CHiME-5 and Reverberant LibriCHiME-5 datasets, while maintaining
competitive performance on LibriMix dataset. When ϵ was set to 0.05, we can observe that the
overall performance is decreased on both the CHiME-5 and Reverberant LibriCHiME-5 datasets.
This can be attributed to excessively conservative attenuation ceiling prevents adequate suppression
of domain-specific features, thereby limiting cross-domain generalization capability. Conversely,
higher values of ϵ, such as 0.15 and 0.2, lead to consistent performance degradation across almost
all metrics, with particularly notable declines in SI-SDR and PESQ on Reverberant LibriCHiME-5
dataset. This demonstrates that while aggressive attenuation can effectively remove domain-specific
information, it simultaneously risks eliminating beneficial domain-invariant features essential for
SE task. The optimal ϵ = 0.1 strikes a delicate balance, providing sufficient attenuation capacity to
address domain shifts while preserving critical acoustic information.

Adjustment coefficient k. To verify the effectiveness of dynamic value of k, we condected ab-
lation studies with fixed k values in the DSAM strategy. As shown in Table 5, SS-SENet with
dynamic adjustment coefficient k achives the best performance on both CHiME-5 and Reverberant
LibriCHiME-5 datasets. When k=10, the model achieves the highest SIG score on CHiME-5 and
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CHiME-5: S21_P46_240.wav

(a) Mixture (b) Loudness normalized mixture (c) Speech enhanced by SS-SENet w/o GGCA (d) Speech enhanced by SS-SENet 

CHiME-5: S21_P46_240.wav

(a) Mixture (b) Loudness normalized mixture (c) Speech enhanced by SS-SENet w/o GGCA (d) Speech enhanced by SS-SENet 

(a) Mixture (b) Clean speech (c) Speech enhanced by SS-SENet w/o GGCA (d) Speech enhanced by SS-SENet 

LibriMix：7176-92135-0034_5105-28233-0004_7127-75946-0011.wav

(a) Mixture (b) Clean speech (c) Speech enhanced by SS-SENet w/o GGCA (d) Speech enhanced by SS-SENet 

LibriMix：7176-92135-0034_5105-28233-0004_7127-75946-0011.wav

(a) Mixture (b) Clean speech (c) Speech enhanced by SS-SENet w/o GGCA (d) Speech enhanced by SS-SENet 

Reverberant LibriCHiME-5：S21-P45-37b.wav

(a) Mixture (b) Clean speech (c) Speech enhanced by SS-SENet w/o GGCA (d) Speech enhanced by SS-SENet 

Reverberant LibriCHiME-5：S21-P45-37b.wav

CHiME-5: S21_P46_240.wav

(a) Mixture (b) Loudness normalized mixture (c) Speech enhanced by SS-SENet w/o GGCA (d) Speech enhanced by SS-SENet 

(a) Mixture (b) Clean speech (c) Speech enhanced by SS-SENet w/o GGCA (d) Speech enhanced by SS-SENet 

LibriMix：7176-92135-0034_5105-28233-0004_7127-75946-0011.wav

(a) Mixture (b) Clean speech (c) Speech enhanced by SS-SENet w/o GGCA (d) Speech enhanced by SS-SENet 

Reverberant LibriCHiME-5：S21-P45-37b.wav

Figure 6: Visualization analysis of spectgram of three recordings, which are from three datasets
respectively. The subfigures of each column from (a)–(d) denote the spectrograms of noisy mixture,
clean speech (or loudness-normalized mixture for unlabeled CHiME-5 dataset), and the estimated
speech by SS-SENet without the GGCA module, and the speech estimated by SS-SENet, respec-
tively. The highlighted boxes indicate regions where SS-SENet with GGCA achieves noticeable
improvement compared to the version without the GGCA module.

Table 4: Comparison of performance with different maximum attenuation ratio ϵ on three test sets.

ϵ
CHiME-5

(Real-World)
Rever. LibriCHiME-5

(Synthetic)
LibriMix

(Synthetic)
SIG BAK OVRL SI-SDR PESQ SI-SDR PESQ

0.05 3.255 3.856 2.959 13.255 1.858 13.086 2.183
0.1 3.338 3.848 2.971 13.601 1.894 13.043 2.164

0.15 3.354 3.775 2.969 12.443 1.685 12.992 2.139
0.2 3.299 3.813 2.965 12.481 1.671 12.975 2.138

the best performance on the LibriMix dataset, but suffers from a significant degradation in SI-SDR
on Reverberant LibriCHiME-5 dataset. Similarly, k=15 produces the second-best SI-SDR on Rever-
berant LibriCHiME-5 but fails to maintain high OVRL scores on CHiME-5 dataset. Notably, both
overly conservative (k=5) and overly aggressive (k=20) settings result in suboptimal performance on
almost all metrics. These reults verify that a fixed slope values cannot adapt to the varying domain-
shift conditions. The dynamic adjustment of k based on ν enables Eq. 4 adaptively modulate its
sensitivity, achieving robust and balanced performance during training process.

Consistency loss weight λ1. To further analyze the importance of consistency constraints in our
proposed SS-SENet, we conducted ablation studies on the weight λ1 of the consistency loss LCons.,
while fixing λ2 of the domain loss LDom. at 0.1. The results are listed in Table 6. When λ1 is set
to 1.0, it can be observed that SS-SENet achieves nearly the best performance on both the CHiME-
5 and Reverberant LibriCHiME-5 datasets, with particularly notable improvements in the item of
OVRL on CHiME-5. When λ1 is reduced to smaller values such as 0.3 or 0.5, the performance of
SS-SENet clearly degrades on both CHiME-5 and Reverberant LibriCHiME-5. This indicates that
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Table 5: Result of ablation experiments of dynamic coefficient k in DSAM on three test sets.

Method
CHiME-5

(Real-World)
Rever. LibriCHiME-5

(Synthetic)
LibriMix

(Synthetic)
SIG BAK OVRL SI-SDR PESQ SI-SDR PESQ

SS-SENet 3.338 3.848 2.971 13.601 1.894 13.043 2.164
k=5 3.362 3.726 2.936 12.943 1.721 13.042 2.168

k=10 3.400 3.711 2.954 11.015 1.748 13.091 2.185
k=15 3.371 3.792 2.950 13.429 1.868 13.050 2.156
k=20 3.312 3.803 2.948 13.155 1.856 13.046 2.151

Table 6: Result of ablation experiments of consistency loss weight λ1 on three test sets.

λ1
CHiME-5

(Real-World)
Rever. LibriCHiME-5

(Synthetic)
LibriMix

(Synthetic)
SIG BAK OVRL SI-SDR PESQ SI-SDR PESQ

0.3 3.348 3.633 2.947 11.564 1.642 13.186 2.174
0.5 3.289 3.834 2.948 13.547 1.864 13.236 2.221
1 3.338 3.848 2.971 13.601 1.894 13.043 2.164
2 3.228 3.302 2.756 8.724 1.565 11.236 1.775

insufficient consistency regularization weakens the adaptation ability. In contrast, when λ1 is further
increased, such as 2.0, severe performance degradation is observed across all datasets. This suggests
that an excessively large λ1 causes the consistency training to dominate training, thereby hindering
optimization of the primary enhancement objective.
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