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Abstract

Schrödinger bridge (SB) has evolved into a universal class of probabilistic generative mod-
els. In practice, however, estimated learning signals are often uncertain, and the reliability
promised by existing methods is often based on speculative optimal case scenarios. Re-
cent studies regarding the Sinkhorn algorithm through mirror descent (MD) have gained
attention, revealing geometric insights into solution acquisition of the SB problems. In
this paper, we propose a variational online MD (OMD) framework for the SB problems,
which provides further stability to SB solvers. We formally prove convergence and a re-
gret bound for the novel OMD formulation of SB acquisition. As a result, we propose a
simulation-free SB algorithm called Variational Mirrored Schrödinger Bridge (VMSB) by
utilizing the Wasserstein-Fisher-Rao geometry of the Gaussian mixture parameterization
for Schrödinger potentials. Based on the Wasserstein gradient flow theory, the algorithm
offers tractable learning dynamics that precisely approximate each OMD step. In experi-
ments, we validate the performance of the proposed VMSB algorithm across an extensive
suite of benchmarks. VMSB consistently outperforms contemporary SB solvers on a range
of SB problems, demonstrating the robustness predicted by our theory.

1 Introduction

Schrödinger bridge (SB; Schrödinger, 1932) has emerged as a universal class of probabilistic generative
models. Nevertheless, learning methods of SB remain somewhat atypical, each requiring a sophisticated
approach to derive a solution. This excessive algorithmic specialization in existing methods arises from the
absence of a unified perspective in statistical learning theory, often causing SB studies to rest on idealized
or even wishful assumptions. However, since the Schrödinger bridge problem (SBP) is fundamentally an
infinite-dimensional distributional problem—where estimated optimal probabilistic models inherently exhibit
approximation errors—establishing robust theoretical guarantees is both essential and challenging. This work
aims to address the SBP in a learning theoretical direction by emphasizing robustness, a critical property
ensuring stability as well as reliability of solution against uncertainty and distributional shifts (Xu et al.,
2008; Duchi & Namkoong, 2021). The collective perspective of considering the SBP as an ordinary instance of
optimization opens new avenues for algorithmic advancements of probabilistic generative models, particularly
within the context of the learning theory and stability improvements of probabilistic diffusion models.

One of fundamental approaches to formalizing a machine learning problem is to leverage the duality between
probability distributions and model parameters. When such problems are situated within a dually-flat
geometric structure induced by a Bregman divergence, mirror descent (MD; Nemirovsky & Yudin, 1983)
offers a geometrically natural way to discretize the parametric updates. For parameters {wt}Tt=1 and a
convex function Ω, an update of MD for a cost function F is derived as the following equation

∇Ω(wt+1) = ∇Ω(wt)− ηt∇F (wt), (1)

where a gradient operation denoted as ∇Ω( ·) creates a transformation that links a parametric space to
a dual space. This work draws inspiration from recent research that reinterprets the Sinkhorn algorithm
for training SB models as MD with respect to log-Schrödinger potentials (Peyré et al., 2019; Léger, 2021).
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Table 1: A technical overview. Combining chracter-
istics of existing methods, VMSB offers a simulation-
free SB solver that produces iterative OMD solutions.
Our VMSB additionally provides a strong theoretical
guarantee of convergence based on a regert analysis.

Iterative Simulation-free Regret analysis
DSB
(De Bortoli et al.) ✓ ✗ ✗

DSBM
(Shi et al.) ✓ ✗ ✗

LightSB
(Korotin et al.) ✗ ✓ ✗

LightSB-M
(Gushchi et al.) ✗ ✓ ✗

VMSB (ours) ✓ ✓ ✓

Notably, Aubin-Frankowski et al. (2022) rigorously extended the classical MD framework by reformulating it
with directional derivatives and first variations, thereby establishing its concrete probabilistic foundations.
Since prior analyses on Schrödinger bridge have predominantly focused on optimal case scenarios with a
fixed cost function F , we argue that theoretical improvements are required for worst case scenarios through
the use of online convex learning methods (Zinkevich, 2003), which address unknown sequences of convex
cost functions {Ft}∞

t=1. Although online mirror descent (OMD; Srebro et al., 2011; Lei & Zhou, 2020) has
demonstrated effectiveness in classical online learning settings, adapting OMD arguments to the SB context
requires developing a novel theory and computational tools to guarantee robust algorithmic performance.

Meanwhile, bridging theory and practice necessitates a clever computation strategy of the MD update
rule to overcome the non-trivial challenges posed by the distributional characteristics of optimal transport.
In general, one can consider constrained distributional optimization problems with generalized gradient
dynamics on the space of distributions endowed with the Wasserstein metric. Leveraging the Wasserstein
gradient flow discovered by Jordan, Kinderlehrer, and Otto (JKO; Jordan et al., 1998), the desired dynamics
of minimizing a cost functional F : P2(X )→ R can be modeled, where P2(X ) denotes the set of probability
distributions with finite second-order moments. Despite the extensive theoretical findings of Wasserstein
gradient flows regarding OT problems (Ambrosio et al., 2005a; Santambrogio, 2015; Villani, 2021), the
computational challenges remain. The established methods are commonly based on numerical methods of
solving partial differential equations (PDEs; Carlier et al., 2017; Carrillo et al., 2023), whose exhaustive
amount of computations make them unsuitable for systems with high dimensional probability densities.

A favored strategy to mitigate the issue is to narrow down the solution space into a subset of tractable
distributions, often referred to as taking a variational form (Paisley et al., 2012; Blei et al., 2017). For
example, mean-field formulations of SB (Liu et al., 2022; Claisse et al., 2023) are variational approximations.
Unfortunately, it does not faithfully yield an analytical submanifold and is obligated to physically simulate
among particles. Recently, a Gaussian mixture parameterization of the Schrödinger potentials has been
proposed by Korotin et al. (2024). The simulation-free LightSB solver is simple yet general, with the
guarantee of universal approximation for SB. The expressiveness of the solver coincides with geometric
properties of Gaussian variational inference and mixture models (Chen et al., 2018b; Daudel et al., 2021;
Lambert et al., 2022; Diao et al., 2023). However, its shortcoming—as well as other simulation-free solvers
(Tong et al., 2024b; Gushchin et al., 2024a)—is the uncertainty of data-driven learning signals of non-convex
objectives. This reveals room for improvement with the rich geometric properties of SB in a variational form.

In this paper, we explore a novel formulation of SB acquisition through the lens of dualistic geometry for
ensuring further stability of learning. As illustrated in Fig. 1, we investigate primal and dual spaces (C,D).
Under the entropic regularization, the transformations between coupling πt and dual potential φt ⊕ ψt are
uniquely defined, and first variation operators (δC, δD) transform such elements (Aubin-Frankowski et al.,
2022). For online learning, we postulate optimization errors of an SB solver, and propose a variational online
mirror descent (VOMD) framework to formally reduce the errors in terms of regrets. To this end, we propose
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a robust simulation-free SB algorithm called Variational Mirrored Schrödinger Bridge (VMSB). To solve SB
in a robust manner, the variational method is based on gradient flows with respect to the Wasserstein-Fisher-
Rao (WFR) geometry. The proposed VMSB offers a tractable approximation of mirror descent updates by
formulating iterative subproblems by Wasserstein gradient flows. We show that this allows us to perform a
complete form of online learning which is tolerant of unreliable empirical estimates of arbitrary data-driven
SB solvers. The experiments indicate that VMSB outperforms existing methods in various benchmarks.

Our contributions. We aim to build a novel algorithm grounded in statistical learning theory, formally de-
rived from the geometric perspective for SBPs. To the best of our knowledge, VMSB is the first VOMD-based
SB algorithm and inherits the theoretical essence of OMD. Table 1 shows that VMSB is a simulation-free
solver equipped with a rigorous convergence analysis for general learning situations of probabilistic generative
models. We verify the validity of our core theoretical principles through extensive suite of SB benchmarks,
including real-time online learning, standard benchmarks in optimal transport, and tasks involving the
translation of one image to another. Our main contributions are summarized below:

• We develop a robust SB learning algorithm built upon the online mirror descent formulation, whose rules
follow Wasserstein-2 dynamics derived from local MD objectives. Under mild assumptions, we formally
prove convergence of the proposed algorithm in general online learning scenarios (§ 4).

• We introduce a simulation-free SB method leveraging the Wasserstein-Fisher-Rao geometry, ensuring
asymptotic stability within Wasserstein gradient flows. The resulting VMSB algorithm admits closed-
form dynamics, enabling accurate and computationally efficient implementation using LightSB (§ 5).

• We validate our algorithm across diverse SB problem settings, highlighting the effectiveness of our VOMD-
based framework in contexts including online learning, classical optimal transport benchmarks, and image-
to-image translation tasks. Empirical results consistently demonstrate that our proposed methods out-
perform existing SB solvers, strongly supporting our theoretical claims (§ 6).

2 Related Work

Simulation-free SB. The Schrödinger bridge problems are originated from a physical formulation for
evolution of a dynamical system between measures (Léonard, 2012; Pavon & Wakolbinger, 1991). The study
of SB has gained popularity due to its connection to entropy-regularized optimal transport (EOT; Peyré
et al., 2019; Nutz, 2021). Its association with optimal transport suggests various applications across various
fields related to machine learning, such as image processing, natural language processing, and control systems
(Caron et al., 2020; Liu et al., 2023; Alvarez-Melis & Jaakkola, 2018; Chen et al., 2022). Historically, the
most representative algorithm for SBP is Sinkhorn (Kullback, 1968), there has been progress in training SB
with nonlinear networks (Vargas et al., 2021; De Bortoli et al., 2021) by “simulating” a half-bridge of forward
and backward diffusion at each time. An SB solver is called as simulation-free (Tong et al., 2024a;b) if the
solver is trained without samples from the simulation of SB diffusion processes. LightSB (Korotin et al.,
2024) is a special type of simulation-free solver using the maximum likelihood method of Gaussian mixture
models (GMMs). Building upon these advancements, our approach focuses on enhancing simulation-free SB
solvers by leveraging geometric insights derived from the generalized dual geometry inherent to the SBP.

MD and Sinkhorn. The Bregman divergence (Bregman, 1967) is a family of statistical divergence that
is particularly useful when analyzing constrained convex problems (Beck & Teboulle, 2003; Boyd & Van-
denberghe, 2004; Hiriart-Urruty & Lemaréchal, 2004). Notably, Léger (2021) and Aubin-Frankowski et al.
(2022) adopted the Bregman divergence into entropic optimal transport and SB problems with probability
measures, and the studies revealed that Sinkhorn can be considered to be mirror descent with a constant
step size η ≡ 1. In statistical geometries, the Bregman divergence is a first-order approximation of a Hessian
structure (Shima & Yagi, 1997; Butnariu & Resmerita, 2006), which interprets MD as natural discretization
on a gradient flow. Deb et al. (2023) introduced Wasserstein mirror flow, and the results include a geometric
interpretation of Sinkhorn for unconstrained OT, i.e., when ε → 0 from the entropic regularization setup.
Karimi et al. (2024) formulated a half-iteration of the Sinkhorn algorithm into a mirror flow, i.e., ηt → 0.

Wasserstein gradient flows have attracted considerable attention, as their intrinsic geometry is governed
by the Wasserstein-2 metric. (Ambrosio et al., 2005a; Villani, 2009; Santambrogio, 2017). Otto (2001)
introduced a formal Riemannian structure to interpret various evolutionary equations as gradient flows with
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the Wasserstein space, which is closely related to our variational approach. The mirror Langevin dynamics
is an early work describing the evolution of the Langevin diffusion (Hsieh et al., 2018), and was later
incorporated in the geometry of the Bregman Wasserstein divergence (Rankin & Wong, 2023). We relate our
methodology with recent approaches of variational inference on the Bures–Wasserstein space (Lambert et al.,
2022; Diao et al., 2023). Utilizing Bures–Wasserstein geometry, the Wasserstein-Fisher-Rao geometry (Liero
et al., 2016; Chizat et al., 2018; Liero et al., 2018; Lambert et al., 2022) additionally provides “liftings,”
which yield an interaction among measures.

Learning theory. Suppose we have time-varying costs {Ft}∞
t=1. We generally referred to learning through

these signals as online learning (Fiat & Woeginger, 1998). Our interest lies in temporal costs defined in a
probability space, where following the ordinary gradient may not be the best choice due to the geometric
constraints (Amari, 2016; Amari & Nagaoka, 2000). In this sense, we primarily relate our work to OMD, an
online learning form of mirror descent (Srebro et al., 2011; Raskutti & Mukherjee, 2015; Lei & Zhou, 2020).
The OMD algorithm provides a generalization of robust learning by seeking solutions that are optimal in
a worst case sense, ensuring performance guarantees under adversarial or uncertain conditions (Xu et al.,
2008; Zinkevich, 2003; Madry et al., 2017). Another relevant design of the online algorithm is the follow-
the-regularized-leader (FTRL; McMahan, 2011). OMD focuses on scheduling proximity of updates through
{ηt}Tt=1, whereas FTRL minimizes historical losses with a fixed proximity term.

3 Generalization of Schrödinger Bridge Problems
Ω

x1

x2

xn

y1y2
π⃗(·|x1)

π⃗(·|xn)

µ ν

Noise (W ε)

Figure 2: The SB problem.

Notation. Let P(S) (P2(S)) denote the set of (absolutely continuous)
Borel probability measures on S ⊆ Rd (with a finite second moment). For
marginals µ, ν ∈ P2(S), Π(µ, ν) denotes the set of couplings (Peyré et al.,
2019). For a coupling π, we often use a shorthand notation π⃗x ( ⃗πy) to
denotes a conditional distribution for a sample data π⃗(·|x) (or ⃗π(·|y); see
Fig. 2). We use KL(·∥·) to denote the KL functional and assume +∞ if an
argument is not absolutely continuous. We employ a notation P([0, 1],S)
to denote a set of path measures from the time interval [0, 1].

The static SB problem and Sinkhorn. We first introduce a problem definition of a static variant of
Schrödinger bridge problems. For a regularization coefficient ε ∈ R+, the static SB problem, or the entropic
optimal transport problem with a quadratic cost function c(x, y) = 1

2∥x− y∥
2, is defined as optimization of

finding a unique minimizer of optimal coupling π∗ with repect to the following objective

OTε(µ, ν) := inf
π∈Π(µ,ν)

∫∫
S×S

c(x, y) dπ(x, y) + εKL(π∥µ⊗ ν) (2)

where µ⊗ ν denotes, the product of marginals and KL(·∥·) in the regularization term denotes the Kullback-
Leibler (KL) functional, or relative entropy, defined as

KL(π∥µ⊗ ν) :=


∫∫

S×S
log dπ

d(µ⊗ ν) dπ, π ≪ µ⊗ ν,

∞, π ̸≪ µ⊗ ν.

It is well studied that the EOT problem (2) can be translated to a singular form of divergence minimization
problem (Nutz, 2021), i.e., KL(π∥R) where the reference measure R is of Gibbs parameterization, satisfying
the Radon-Nikodym derivative of dR

d(µ⊗ν) = e−cε with cε = c/ε. We are particularly interested in its dual
aspect, which contains a pair of log-Schrödinger potentials as an alternative representation for EOT solutions.
Lemma 1 (Duality; Nutz, 2021). Suppose existence of optimal coupling π∗ ∈ Π(µ, ν) and log-Schrödinger
potentials (φ∗, ψ∗) ∈ L1(µ)×L1(ν). Then, the dual problem of (2) is found without gap by

inf
π∈Π(µ,ν)

KL(π∥R) = sup
φ∈L1(µ),ψ∈L1(ν)

µ(φ) + ν(ψ)−
∫∫

S×S e
φ⊕ψ dR+ 1, (3)

where µ(φ) :=
∫

S φdµ; ν(ψ) :=
∫

S ψ dν; the operator ⊕ indicates the direct sum of two potentials; the symbol
R denotes the reference of Gibbs measure: dR = e−cεd(µ⊗ ν) with cε(x, y) := 1

2ε∥x− y∥
2.
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By the duality, the Lebesgue-integrable functions (φ∗, ψ∗) ∈ L1(µ)×L1(ν) represent dual solution of (3),
associated with π∗ by dπ∗ = eφ

∗⊕ψ∗−cεd(µ ⊗ ν), (µ ⊗ ν)-almost surely. Apparently, the result is a general
form of Legendre duality from convex optimization, and the realization that every element of the dual space
can be split into two separate potential functions has inspired a halfway projection method known as the
Sinkhorn algorithm (Cuturi, 2013). The Sinkhorn algorithm is defined as following alternating updates:

ψ2t+1(y) = − log
∫

S
eφ2t(x)−cε(x,y)µ(dx), φ2t+2(x) = − log

∫
S
eψ2t+1(y)−cε(x,y)ν(dy), (4)

where each update is called a iterative proportional fitting (IPF; Kullback, 1968) procedure. Based on the
geometric understanding of Bregman gradient descent and flow (Léger, 2021; Karimi et al., 2024), the static
SB problem and Sinkhorn reveal a profound connection to the information geometry incurred by the KL
functional. Of course, this implies that that the Sinkhorn algorithm is not the only way of finding the
solution space. Akin to differential geometry, JKO discovered that each density can be analyzed using the
standard geometry of the Wasserstein-2 distance, defined as (Jordan et al., 1998; Villani, 2009)

W2(µ, ν) := inf
π∈Π(µ,ν)

(
E(x,y)∼π∥x− y∥2

)1
2
, (5)

where π is a joint distribution that has µ and ν as its marginals. In essence, the distance measures the
minimum cost to transform the distribution µ into ν, and provides an L2-like metric that quantifies the
discrepancy between two distributions by considering the distance that mass must travel. Our computation
strategy utilizes the theory of Wasserstein gradient flows whose technical machinery is in Appendix B.

The dynamic SB problem. An alternative perspective on the Schrödinger bridge is the interpretation in
terms of fluid dynamics. In this setup, we consider the Wiener process W ε with volatility ε ∈ R+ be the
reference for Schrödinger bridge. The dynamic SBP (Vargas et al., 2021) aims to find a process T ∗ such that

T ∗ := arg min
T ∈Q(µ,ν)

KL(T ∥W ε), (6)

where Q(µ, ν) ⊂ P([0, 1],S) is the set of processes with marginals µ and ν. The SB process T ∗ is uniquely
described by a stochastic differential equation (SDE): dXt = g∗(t,Xt)+dW ε

t in t ∈ [0, 1), governed by a drift
function g∗ along with some noise generated by W ε

t . In the dynamic SBP, addressing T ∗ involves continuous-
time log-Schrödinger potentials {φt}t∈[0,1], {ψt}t∈[0,1], and the time-dependent density ρt, satisfying the
following differential equations for ρ0 = µ and ρ1 = ν (Gigli & Tamanini, 2020){

∂tφt = 1
2 |∇φt|

2+ ε
2 ∆φt,

−∂tψt = 1
2 |∇ψt|

2+ ε
2 ∆ψt,

{
−∂tρt +∇· (∇φtρt) = ε

2 ∆ρt,
∂tρt +∇· (∇ψtρt) = ε

2 ∆ρt,
(7)

where the operators (∇,∇·,∆) denote gradient, divergence, and Laplacian, respectively. The pair of PDEs
on the left are commonly known as Hamilton-Jacobi-Bellman equations; also, the pair on the right together
indicates the forward and backward Fokker-Planck equations, by the fact that potential gradients reconstruct
the score function ∇φt + ∇ψt = ε∇ log ρt. Applying the nonlinear Feynman-Kac lemma (Yong & Zhou,
1999) transforms Eq. (7) into stochastic differential equations called SB-FBSDE (Chen et al., 2022; see
Appendix C). The fundamental equivalence between static and dynamic SBPs (Pavon & Wakolbinger, 1991;
Léonard, 2012) allows us to consider the optimal coupling π∗ when finding the SB process T ∗, vice versa.

The Bregman divergence. To advance the discussion, one needs an alternative notion of gradients in
order to generalize the Bregman divergence, since the topological space of SB does not ensure Gâteaux
differentiability (Aubin-Frankowski et al., 2022; Definition 4 in Appendix A) In this context, we reintroduce
the following definitions of directional derivatives (Aliprantis & Border, 2006) and first variations (Aubin-
Frankowski et al., 2022). We also refer to Definition 7.12 of Santambrogio (2015) for alternative description.
Definition 1 (Directional derivative). Given a locally convex topological vector space M, the directional
derivative of F in the direction ξ is defined as d+F (x; ξ) = limh→0+

F (x+hξ)−F (x)
h .

Definition 2 (First variation). Given a topological vector space M and a convex constraint C ⊆ M, for
a function F and x ∈ C ∪ dom(F ), define the first variation of F over C to be an element δCF (x) ∈ M∗,
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where M∗ is the topological dual of M, such that it holds for all y ∈ C ∪ dom(F ) and v = y − x ∈ M:
⟨δCF (x), v⟩ = d+F (x; v). ⟨·, ·⟩ denotes the duality product of M and M∗.

Following Karimi et al. (2024), this work considers the generalized Bregman divergence defined with a weak
notion of the directional derivative. We explicitly set the Bregman potential Ω(·) = KL(·∥e−cεµ⊗ ν) in the
SB problems for the rest of the paper, which enforces the Gibbs parameterization for the OT couplings.
Definition 3 (Bregman divergence). Let a convex functional Ω :M→ R∪ {+∞} be a Bregman potential.
Define the Bregman divergence associated with Ω as

DΩ(x∥y) := Ω(x)− Ω(y)− d+Ω(y;x− y), (8)

for every pair of elements in the domain x, y ∈M.

The definition preserves the essential role of the Bregman divergence as the first-order Taylor expansion of
Ω, allowing us to utilize properties similar to those used in the classical setting.

Asymptotically log-concave distributions. Lastly, our theoretical analysis works with a certain form
of measure concentration property, and we formally address this property with asymptotically strong log-
concave (alc) distributions. This section rigorously states the resulting assumption which is later used in
address the desired properties of OMD, analougous to strong convexity assumption in the classical literature.
Let us consider the following informal definition of asymptotically strong log-concave distributions

Palc(Rd) :=
{
ζ(dx) = exp

(
−U(x)

)
dx : U ∈ C2

(
Rd

)
, U is asymptotically strongly convex

}
, (9)

where Appendix A contains a formal version on asymptotical convexity. Note that asymptotically log-concave
functions satisfy a certain form of logarithmic Sobolev inequality (LSI; Gross, 1975). The condition can be
an extension of Sobolev space (Adams & Fournier, 2003) for informational geometric problems. The simplest
case of such condition for the Gaussian measure is represented as follows.
Remark 1 (LSI for the standard Gaussian). Suppose that f is a nonnegative function, integrable with
respect to a measure γ, and that the entropy is defined as Entγ(f) =

∫
Rd f log fdγ−

(∫
Rd fdγ

)
log

(∫
Rd fdγ

)
.

the log Sobolev inequality when γ is the standard Gaussian measure reads Entγ(f) ≤ 1
2

∫
Rd

|f |2

f dγ.

Historically, the log Sobolev inequality condition arises from the implication of satisfying the Talagrand’s
inequality for bounding the Wasserstein-2 distance, and is closely related to measure concentration (Otto &
Villani, 2000). The important extension of asymptotically strong log-concave distributions for Schrödinger
bridge dπ = eφ⊕ψ−cεd(µ ⊗ ν), (µ ⊗ ν)-a.s. is that induced SB model also satisfies asymptotically strongly
log-concaveness and the LSI condition (Conforti, 2024). For a representative model related to our work,
the Gaussian mixture parameterization (Korotin et al., 2024) is a representative model that our theoretical
analysis holds, because Gaussian mixture weights does not alter the asymptotic characteristic.
Remark 2 (Conforti, 2024). Let µ, ν ∈ Palc(Rd) with finite entropy on Lebesgue measures and π ∈ C
be a coupling in the static Schrödinger bridge problem. Then, for a quadratic cost function, the coupling
distribution is also asymptotically log-concave and satisfies a form of logarithmic Sobolev inequality.

Let us suppose that a parameterized SB model dπt = eφt⊕ψt−cεd(µ⊗ ν) obeys the following constraints for
marginals and potentials:

C :=
{
π : (µ, ν) ∈ P2(Rd) ∩ Palc(Rd), (φ,ψ) ∈ L1(µ)×L1(ν), and φ,ψ ∈ C2(Rd) ∩ Lip(K)

}
, (10)

where Lip(K) denotes a set of functions with K-Lipschitz continuity. Using the disintegration theorem for
probability measures (Léonard, 2014), we assume the boundedness of Bregman divergence between two trans-
port plans using derivatives of first variations with a positive constraint ω > 0 by the following assumption.
Assumption 1 (LSI for couplings). Let us suppose Ω = KL(π∥R) for a reference measure R. Suppose that
arbitrary π, π̄ ∈ C satisfy a type of logarithmic Sobolev inequality for relative entropy (KL divergence) is
upper bounded by the relative Fisher information (Gross, 1975) for some ω̄ ∈ R+ as

KL(π∥R) ≤ 1
2ω̄

∫∫
Rd×Rd

∣∣∣∣∇ log dπ(x, y)
dR(x, y)

∣∣∣∣2
π(dx,dy). (11)
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Figure 3: Learning for an SB model {πt}∞
t=1 in the primal space C (see Fig. 1 for the details). Left: Sinkhorn

(Lemma 2). Middle: Wasserstein gradient descent in the distributional space C for fixed F (Lemma 3).
Right: Variational online mirror descent with sequence of convex costs using uncertain estimates {π◦

t }∞
t=1.

By equivalence of the first variations of Bregman divergences (explained in Lemma 6), we obtain KL(π∥R) =
DΩ(π∥π̄). Applying the Hölder’s inequality to Eq. (11), assume there exists a constant ω > 0 such that

DΩ(π∥π̄) ≤ 1
2ω

∥∥∇(δCΩ(π)− δCΩ(π̄))
∥∥2
L2(π) (12)

for the Bregman potential Ω = KL(·∥e−cεµ⊗ ν) and the first variation δC. We call the condition as LSI(ω).

Since, as illustrated in Fig. 1, φt ⊕ ψt = δCΩ(πt) for arbitrary πt, the assumption geometrically enforces a
quadratic upper bound on the Bregman divergence in terms of dual space gradients. In general, the LSI
condition also has often been used to analyze the convergence of partial differential equations (Malrieu, 2001).
To make our analysis on improvement (Lemma 14) and a solid regret bound of OMD (Lemma 16), this work
finds that Assumption 1 is necessary to ensure a certain asymptotical type of measure concentration.

4 Learning Schrödinger Bridge via Online Mirror Descent

The goal in this section is to derive an OMD update rule for SB, and analyze its convergence. To accomplish
this, we postulate on the existence of temporal estimates and an online learning problem. Our analysis
suggests that applying an MD approach can reduce the uncertainty of these estimates.

4.1 Sinkhorn and Wasserstein descent as mirror descent algorithms

We start with a novel characterization of Sinkhorn as an online form of mirror descent as illustrated in the
left side of Fig. 3, which will lead to a better understanding of the online mirror descent framework. OMD
updates are determined by the first order approximation of costs Ft and proximity of previous iterate with
respect to a Bregman divergence (Beck & Teboulle, 2003). Using the first variation δC in Definition 2 instead
of standard gradient ∇, the proximal form of OMD is derived as (Karimi et al., 2024)

πt+1 = arg min
π∈C

{〈
δCFt(πt), π − πt

〉
+ 1

ηt
DΩ(π∥πt)

}
, (13)

where Ft denotes a temporal cost function for SB models in C. In Eq. (13), the updates are determined
by the first order approximation of Ft and proximity of previous iterate πt with respect to the Bregman
divergence (Beck & Teboulle, 2003). In contrast to the ‘half-bridge’ interpretation provided by Karimi et al.
(2024), the online MD iteration (13) involves a temporal cost Ft, which offers more general reinterpretation
of the Sinkhorn algorithm. Using the feasible model space C in (10), IPF projections (4) are reformulated
as following subproblems of alternating Bregman projections:

arg min
π∈Π⊥

µ

{
KL(π∥π2t) : π ∈ C, γ2π = ν

}
, arg min

π∈Π⊥
ν

{
KL(π∥π2t+1) : π ∈ C, γ1π = µ

}
, (14)

where γ1π(x) := ∫ π(x, y) dy and γ2π(y) := ∫ π(x, y) dx denotes the marginalization operations, and the
symbols (Π⊥

µ ,Π⊥
ν ) denote the Sinkhorn projection spaces that preserve the property of marginals. As a

generalized optimization problem in C, one can consider a temporal cost F̃t(π) := atKL(γ1π∥µ) + (1 −
at)KL(γ2π∥ν) with sequence {at}∞

t=1 = {0, 1, 0, 1, . . . }. By construction, we show that an online form of MD
for F̃t with a constant step size ηt≡1 matches the Sinkhorn.

7
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Figure 4: Loss landscapes and gradient dynamics in a 2D problem. Left: In an early stage, parameters of
three modalities {mk}3

k=1 (mean estimations) for both LightSB (top) and VMSB (bottom) methods approach
the optimality with different costs. Right: When magnified the landscapes in the late stages (10 times),
while LightSB is vibrant, whereas our method emits strictly convex landscape and stable dynamics.

Lemma 2 (Sinkhorn). For Ω(·) = KL(π∥e−cεµ ⊗ ν), iterates from πt+1 = arg minπ∈C
{
⟨δCF̃t(πt), π − πt⟩+

DΩ(π∥πt)
}

are equivalent to estimates from (φt, ψt) of (4), for every update step t ∈ N0.

The proof is in Appendix A. Consequently, we established that the Sinkhorn algorithm corresponds to an
instance OMD; however, its inherent structure limits flexibility on step sizes and other underlying assump-
tions, making it challenging to analyze directly using standard OMD theoretical arguments. Instead, one
can alternatively consider OMD by recovering a “static” objective, namely F (·) := KL(·∥π∗), where the KL
functional is originated from the formal definition of SBP (Vargas et al., 2021; Chen et al., 2022). The
following lemma shows that the MD updates for the static cost correspond to discretization of a Wasserstein
gradient flow for SB models, a Riemannian steepest descent in the model space of C.
Lemma 3 (MD in the Wasserstein space). Suppose that F (π) := KL(π∥π∗) for π ∈ C. The MD formulation
of F corresponds to a discretization of a geodesic flow such that limηt→0+

πt+1−πt

ηt
= −∇WF (πt), where ∇W

denotes the Wasserstein-2 gradient operator.

According to Lemma 3, gradients of F are tangential to the geodesic curve from π0 to π∗ (green line in the
middle of Fig. 3) in terms of the Wasserstein-2 metric W2. Hence, the geometric interpretation allows us
to consider the static cost F as the ground-truth cost for optimization in our variational OMD framework.
However, the ideal case falls short in practice since π∗ is inherently unknown. Therefore, we postulate on an
online learning problem that nonstationary estimates {π◦

t }∞
t=1 are offered instead of π∗ as learning signals,

making an optimization process with Ft(·) := KL(·∥π◦
t ). As shown in in the right side of Fig. 3, we focus on

the online learning setting where {π◦
t }∞
t=1 are fundamentally uncertain with perturbation, since the optimal

coupling π∗ is not accessible during the training time.

4.2 Online mirror descent for Schrödinger bridges: theoretical analysis

From a learning theoretic standpoint, an apparent yet understated premise is that an SB algorithm does not
retain the global target π∗ in practice. The global objective F (also F̃t) are fundamentally unknown, but are
instead inferred, imposing innate uncertainty of optimization. Instead, we postulate on an online learning
problem that nonstationary ergodic estimates {π◦

t }∞
t=1 are offered instead of π∗ (gray region in Fig. 1). Let

Ω∗ be the Fenchel conjugate of Ω+iC with the convex indicator1 iC . For the space D := δCΩ(C), a directional
derivative δD of Ω∗ exists by the Danskin’s theorem (Danskin, 1967; Bernhard & Rapaport, 1995), such that

δDΩ∗(φ⊕ ψ) = arg max
π∈C

{
⟨φ⊕ ψ, π⟩ − Ω(π)

}
. (15)

Note that (δCΩ, δDΩ∗) form bidirectional maps; a direct sum of potentials φ ⊕ ψ ∈ D represent an element
of the generalized dual space. The key assumption is that the learning target π◦

t is asymptotically mean
1Defined as iC(x) = 0 if x ∈ C and +∞ otherwise.
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stationary (Gray & Kieffer, 1980) for the dual space, which have been used to analyze stochastic dynamics.
Since iterates are updated through dual parameters in MD, we refer to the process as being dually stationary.
Assumption 2 (Dually stationary process). Suppose that π◦

D ∈ C exists, which is the primal representation
of asymptotic dual average π◦

D := δD(limt→∞ Et[δCΩ(π◦
t )]), where the notation Et denotes the time-average.

Plugging Ft(·) = KL(·∥π◦
t ) to (13) from § 4.1, we achieve a distinct problem setup. Fig. 4 demonstrates

toy experiment regarding our online learning hypothesis. OMD decomposes the global problem into local
convex problems, and prevented iterates from being vibrant by stopping at a single point π◦

D. This verifies
that OMD stabilizes learning of πt, even when the reference π◦

t tends to inherently have some perturbation.

ηt
1−ηt

t

η1

Figure 5: A sequence ex-
ample of ηt and 1− ηt.

For stability, we state two conditions for OMD step sizes {ηt}∞
t=0, which will be

justified in Theorem 1 and Proposition 1. Fig. 5 shows a plot of a well-known
example: harmonic progression 1

a+td for a ∈ R and d ∈ R+ with respect to t.
The sequence satisfies both conditions of the following assumption.
Assumption 3 (Step sizes). Assume two conditions for step sizes {ηt}∞

t=0. (a)
Convergent sequence & divergent series: limt→∞ ηt = 0 and

∑∞
t=1 ηt = ∞. (b)

Convergent series for squares:
∑∞
t=1 η

2
t <∞.

Using the conditions above, we firstly argue that OMD for the temporal cost KL(·∥π◦
t ) with respect to

the Bregman potential Ω = KL(·∥e−cεµ⊗ ν) requires step size scheduling for the sake of convergence. The
following theorem states that convergence in the case of π∗ = π◦

D is assured when ηt follows Assumption (3a).
In contrast to the well-known linear convergence guarantees for the Sinkhorn algorithm under bounded
costs with fixed marginals (Carlier, 2022), our OMD-based analysis establishes sublinear convergence rates,
accommodating scenarios involving unbounded and non-stationary costs.
Theorem 1 (Step size considerations). Suppose the idealized case of π∗ = π◦

D. Then, for {πt}Tt1 ⊂ C we get
limT→∞ E1:T [DΩ(π◦

D∥πT )] = 0 if and only if Assumption (3a) is satisfied. Furthermore, if the step size is in
the form of ηt = 2

t+1 , then E1:T [DΩ(π∗∥πt)] = O(1/T ).

Therefore, we can guarantee the ideal convergence in the SB learning when the scheduling of ηt follows the
step size assumptions. Next, we argue that general convergence toward π◦

D is guaranteed under Assump-
tion (3b). Given the convex nature of SB cost functionals, we argue that this convergence toward π◦

D is
beneficial as long as π◦

t is trained to approximate π∗ and remain bounded. Therefore, we argue that the
convergence of SB is beneficial and address the following statement.
Proposition 1 (Convergence). Suppose that π∗ ̸= π◦

D, hence infπ∈C E[Ft(π)] > 0. If the step sizes {ηt}∞
t=0

satisfies Assumption 3, then limt→∞ E1:t[DΩ(π◦
D∥πt)] converges to 0 almost surely.

Lastly, assume that the log Sobolev inequality in Assumption 1 holds with continuity of potentials. We
establish an online learning regret bound of O(

√
T ) for certain instance of step sizes, demonstrating that

imposing specific measure-theoretic properties in SBPs generalizes classical OMD results (Nesterov, 2009;
Srebro et al., 2011; Orabona & Pál, 2018; Lei & Zhou, 2020). The analysis on our general online learning
setup is compatible with these results by using the dual norm ∥ĝt∥ defined by the first variation δC.
Proposition 2 (Regret bound). Assume φ,ψ ∈ C2(Rd) ∩ Lip(K), Assumption 1 holds, and the given costs
{Ft}Tt=1 are bounded. For arbitrary u ∈ C and a total step T , define D2 = max1≤t≤T DΩ(u∥πt). (a) When the
number of time step is known a priori, the regret is bounded to 2D

√
2ω−1KT for a constant step size η ≡ D

√
ω√

2KT
.

(b) For an adaptive scheduling ηt = D
√

ω/

√
2

∑t

i=1∥ĝi∥2 the regret is bounded to 2D

√
2ω−1

∑T

t=1∥ĝt∥2 where
ĝt = δCΩ(πt)− δCΩ(π◦

t ).

Note that although our analysis establishes a rigorous connection between SB and OMD, it inherits cer-
tain limitations from classical regret analyses. For instance, sublinear regrets in Proposition 2 relies on an
additional boundedness assumption on costs, and there exist some cases of Assumption 3 that may yield
asymptotically linear regret (Orabona & Pál, 2018). Addressing these limitations may involve advanced
hybrid OMD methodologies which are actively being studied, such as dual averaging (Fang et al., 2022) or
FTRL (Chen & Orabona, 2023). As exploring (as well as computing) such extensions for SBPs falls beyond
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Figure 6: Variational MD with synthetic datasets. (a) A distribution is accessible by finite batch data. (b)
3D surfaces of (π⃗◦

T , π⃗T ) trained by Monte Carlo method for KL (top) and variational MD (bottom) show
that the MD results in more stable outcomes. (c) The plots show the estimated KL(π⃗t∥π⃗∗) with different
step size scheduling (5 runs), with red dashed baselines KL(π⃗◦

t ∥π⃗∗).

our scope, from now on we focus on practical implementations of OMD that demonstrate theoretical conver-
gence (Proposition 1) over a relatively long horizon of several hundred steps. Hence, we adopt Assumption 3
and provide corresponding experimental evidence to substantiate its validity in practical scenarios.

4.3 Online mirror descent updates using Wasserstein gradient flows

The remaining challenge is practicality of our OMD theory, namely the accurate computability of each critical
point for (13). To resolve this issue, this work newly presents an approximation method using Wasserstein
gradient flows (Jordan et al., 1998) through an equivalence property of first variations. Suppose we expand
a subinterval [t, t + 1) for each OMD step (13) into continuous dynamics of ρ(τ) ∈ C for a τ ∈ [0,∞). By
Otto’s calculus on the Wasserstein space, known as the Otto calculus (Otto, 2001; see Appendix B.1), one
can describe the dynamics of ρτ for minimizing a strictly convex functional Et : C → R as the PDE

∂τρτ = −∇WEt(ρ), (16)

where ∇W denotes the Wasserstein-2 gradient operator ∇W := ∇ ·
(
ρ∇ δ

δρ

)
. In this work, we adopt the

Wasserstein gradient flow theory (Jordan et al., 1998) to efficiently perform OMD where the equilibrium
indicates the subsequent iterate πt+1. Note that Wasserstein gradient flows are asymptotically stable by the
LaSalle’s invariance principle (Carrillo et al., 2023). We present a simple and exact closed-form expression
for the VOMD update. Note that the cost Ft(·) = KL(·∥π◦

t ) satisfies the 1-relative-smoothness and 1-strong-
convexity relative to Ω (see Definition 6; Aubin-Frankowski et al., 2022). Then, a first variation of the OMD
problem can be decomposed into multiple variations of another problem with similar characteristics (e.g.,
equilibrium, smoothness, and convexity). We present the following theorem for the computation of OMD.
Theorem 2 (Dynamics equivalence in first variation). Consider the Wasserstein gradient dynamics of (16)
which solves a local update of (13). The gradient dynamics of updates are equivalent to that of a linear
combination of KL functionals such that for any ρτ ∈ C

ηtδCEt(ρτ ) = δC

{
ηtKL(ρτ∥π◦

t ) + (1− ηt)KL(ρτ∥πt)
}
∀ρτ ∈ C, (17)

and the PDE (17) converges to a unique critical point of subsequent OMD iterate (13) as τ →∞.

Sketch of Proof. We identify δEt as a dynamics that reaches an equilibrium solution for

minimize
π∈C

〈
δCFt(πt), π − πt

〉
+ 1

ηt
DΩ(π∥πt)

⇐⇒ minimize
π∈C

ηt DΩ(π∥π◦
t )︸ ︷︷ ︸

empirical estimates

+ (1− ηt)DΩ(π∥πt)︸ ︷︷ ︸
proximity

, (18)

and then the equivalence of first variation for recursively defined Bregman divergences is applied (Lemma 6).
At a glance, Eq. (18) appears analogous to the interpolation search between two points, where the influence
of π◦

t is controlled by ηt. We leave the full version of proof in Appendix A.5.

10
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Theorem 2 holds practical importance for OMD computation, since following the argument allows us to per-
form gradient-based updates without directly constructing a desired Bregman divergence. That is, updates
can be drawn based on a linear combination of gradient flows ηt∇WKL(ρτ∥π◦

t ) + (1−ηt)∇WKL(ρτ∥πt), where
such expression has been extensively studied both theoretically and computationally (Carrillo et al., 2023;
Lambert et al., 2022). Therefore, we can utilize interpolation of Wasserstein gradient flows for performing
updates and utilize a certain variational class for reducing the computational cost. Fig. 6 shows our actual
experiments using GMMs. Let a reference estimation be fitted using a Monte Carlo method, and our model
be trained through a variational OMD method which is explained in the subsequent section. We initially
observed that the VOMD method provides stability improvement when η < 1. In contrast, the condition
of η > 1 performed worse than the Monte Carlo method and η = 1 showed almost equivalent performance.
Furthermore, the performance of VOMD was greatly improved by choosing a harmonic step size scheduling
in the interval [1.0, 0.05]. All of these results on variational approximation precisely matches our analysis.

5 Algorithm: Variational Mirrored Schrödinger Bridge

In this section, we propose variational mirrored Schrödinger bridge, a simulation-free method that offers
iterative MD updates for parameterized SB models with mixture models, using the Wasserstein-Fisher-Rao
geometry. We provide a variational interpretation for LightSB models and draw a practical VOMD updates
algorithm that closely resembles ordinary machine learning methods.

5.1 Gaussian mixture parameterization for the Schrödinger bridge problem

In order to verify theoretical claims in practice, this section presents a computational extension of our
VOMD theory, which operates within a particular subspace of the Wasserstein geometry introduced in
§ 4.3. Recently, Korotin et al. (2024) proposed the GMM parameterization, which provides theoretically and
computationally desirable models for our variational OMD approach. The parameterization considers the
adjusted Schrödinger potential u∗(x) := exp(φ∗(x)− ∥x∥2

/2ε) and v∗(y) := exp(ψ∗(y)− ∥y∥2
/2ε) such that we

have a proportional property π∗(y|x) ∝ exp(⟨x,t⟩/ε)v∗(y). With a finite set of parameters θ ≜ {αk,mk,Σk}Kk=1
for weights αk > 0, means mk ∈ Rd and covariances Σk ∈ Sd++, Korotin et al. (2024) proposed to approximate
the adjusted Schrödinger potential vθ and conditional probability density π⃗θ

vθ(y) :=
K∑
k=1

αkN(y |mk, εΣk), π⃗xθ (y) := 1
zxθ

K∑
k=1

αxkN (y |mx
k, εΣk), (19)

where GMM component for π⃗xθ is conditioned by an input x: mx
k := mk + Σkx, αxk := αk exp

(xTΣkx+⟨mk,x⟩
2ε

)
,

zxθ :=
∑K
k=1 α

x
k (see Proposition 3.2 of Korotin et al.). For this parameterization, the closed-from expression

of SB process Tθ is given as the following SDE for t ∈ [0, 1):

Tθ : dXt = gθ(t,Xt) dt+
√
εdWt,

gθ(t, x) := ε∇ logN(x |0, ε(1− t)Id)
K∑
k=1

αkN(mk |0, εΣk)N
(
mk(t, x)

∣∣0, Ak(t)), (20)

where mk(t, x) ≜ x
ε(1−t) + 1

εΣ−1
k mk and Ak(t) ≜ t

ε(1−t)Id + 1
εΣ−1

k . Therefore, the LightSB parameterization
represent both static and dynamic SB models and arbitrary SB solvers can be applied without restrictions.
We utilize the GMM parameterization for our computational algorithm for three key reasons. Firstly, the
parameterization induce the universal approximation property for both π⃗θ and Tθ (Korotin et al., 2024).
Secondly, GMMs are asymptotically log-concave (see Lemma 4), which is a fundamental assumption for our
theory. Lastly, the GMM parameterization makes the computation of Wasserstein gradient flows with respect
to the KL divergence tractable, which in turn enables us to apply a canonical treatment to computational
convex optimization problems endowed with a Riemannian-like geometry.

5.2 Computation of VOMD in the Wasserstein-Fisher-Rao geometry

11
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Algorithm 1 Variational Mirrored SB (VMSB).
Input: SB models (π⃗θ, π⃗ϕ) parameterized by Gaussian mixtures, step sizes (η1, ηT ), ny, B∈N.

1: for t← 1 to T do
2: Acquire ϕt with an external data-driven SB solver.
3: θt ← θ, ηt ← 1/

(
η91

1 + (η91
T − η91

1 )(t−1/T−1)
)

4: for n← 1 to N do
5: {xi}Bi=1 ← sample mini batch data from µ.
6: ∂L

∂θ ←
1
B

∑B
i=1ηtWFRgrad(θ;ϕt, xi, ny) + (1− ηt)WFRgrad(θ; θt, xi, ny)

7: Update θ with the gradient ∂L
∂θ .

8: end for
9: end for

Output: Trained SB model π⃗θ.

For tractable computation, we formally derive a particular variant of Wasserstein gradient flow for the GMM
parameterization. The space of Gaussian parameters Rd × Sd++, endowed with the Wasserstein-2 metric W2,
is formally recognized as the Bures–Wasserstein (BW) geometry (Bures, 1969; Bhatia et al., 2019; Lambert
et al., 2022) BW(Rd) ⊆ P2(Rd). The Wasserstein-Fisher-Rao (WFR) geometry, equivalently characterized by
the spherical Hellinger–Kantorovich distance, extends this setting by considering liftings of positive, complete,
and separable measures while preserving total mass (Liero et al., 2018; Chizat et al., 2018; Lu et al., 2019).
Building upon the BW space, the Wasserstein-Fisher-Rao geometry of GMMs, namely P2(BW(Rd)), naturally
provides liftings of Gaussian particles satisfying distributional consistency. In this work, we introduce the
following proposition, which refines and extends the results from Lambert et al. (2022, § 6) specifically
enhancing their framework through the introduction of freely trainable GMM weights αk.
Proposition 3 (WFR gradient dynamics). Suppose a time-varying GMM model ρθτ with the parameter
θτ = {αk,τ ,mk,τ ,Σk,τ}Kk=1 at time τ . Let yk,τ ∼ N (mk,τ ,Σk,τ ) denote a sample from the k-th Gaussian
particle of ρθτ

. Then, the WFR dynamics ∇WFRKL(ρθτ
∥ρ∗) wrt θ̇τ = {α̇k,τ , ṁk,τ , Σ̇k,τ}Kk=1 are given as

α̇k,τ = −
(
E

[
log ρθτ

ρ∗ (yk,τ )
]
− 1
zτ

K∑
ℓ=1

αℓE
[
log ρθτ

ρ∗ (yℓ,τ )
])
αk,τ ,

ṁk,τ = −E
[
∇ log ρθτ

ρ∗ (yk,τ )
]
, Σ̇k,τ = −E

[
∇2 log ρθτ

ρ∗ (yk,τ )
]
Σk,τ − Σk,τE

[
∇2 log ρθτ

ρ∗ (yk,τ )
]
,

(21)

for τ ∈ [0,∞), where zτ :=
∑K
k=1 αk; ∇ and ∇2 denote gradient and Hessian with respect to yk,τ .

Appendices A.6 and B contain the complete theory. Proposition 3 argues that the one parameter family θτ
predicts a gradient-based algorithm of ∇WFRKL(ρθτ

∥ρ∗), and thus Eq. (21) can be directly used for training
GMM models. Recall that GMMs have a closed form expression of likelihoods, which means each log
likelihood difference can be calculated without errors. Given that the target has the identical number of
Gaussian particles, both Eq. (21) and its approximation using finite samples strictly induce zero gradients
at the equilibrium. Hence, we argue that the simulation-free algorithm VMSB will result in more robust
and stable outcomes than standard data-driven SB learning. Our VOMD framework can be implemented in
modern deep learning libraries and, when coupled with advanced optimizers that provide inherently more
stable gradient estimates (e.g., adaptive learning rate schedules), the proposed method empirically find
convergence even faster than the conservative rates predicted by theory.

5.3 Algorithmic considerations

Algorithm 1 outlines the overall procedure. The proposed VMSB algorithm requires SB parameters θ and ϕ,
which represents π⃗t and π⃗◦

t from the theoretical framework in § 4.2. The target model π⃗ϕ is independently
fitted using an arbitrary SB solver. By the results of analysis, one can schedule of the step size ηt with a
harmonic progression satisfying Assumption 3; thus, we propose to schedule by the series for 1 ≥ η1 ≥ ηT > 0
as in Line 3 of the algorithm. In our settings, the hyperparameters are set η1 = 1 and ηT ∈ {0.05, 0.01}
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which varies depending on each length of training. The algorithm can also put “warm up” steps leveraged
by a existing solver, and start from θ = ϕt enforcing ηt ≡ 1 for a certain period of the early stage.

The VMSB algorithm is essentially designed to perform the following approximation of the WFR gradient
operation (21) in Proposition 3, approximated by the following equation with finite data samples {xi}Bi=1 ∼ µ

1
B

∑B
i=1 WFRgrad(θ;ϕ, xi, ny) ≈ ∇WFR KL(π⃗θ∥π⃗ϕ),

where each expectation is estimated using ny samples from each Gaussian particle. Following Theorem 2,
we propose to update the SB model π⃗θ with ηtWFRgrad(θ;ϕt, xi, ny)+(1−ηt)WFRgrad(θ; θt−1, xi, ny) at each
VOMD iteration t (see Line 6). When µ is a zero-centered distribution, we set B = 1 and x = 0 for the fast
training time. This trick is equivalent to training the adjusted Schrödinger potential (Korotin et al., 2024)
vθ :=

∑K
k=1 αkN(y |mk, εΣk) ∝ πθ(·|x = 0) directly, which enables the VMSB algorithm to run efficiently for

certain tasks. We argue that our design provides a simple yet faithful realization of OMD updates, yielding a
procedure that closely resembles classical gradient descent in machine learning. Although our methodology
and computational strategy build on well-established ideas (Lambert et al., 2022; Aubin-Frankowski et al.,
2022; Karimi et al., 2024), we deliberately integrate them into a unified framework to verify our novel online
learning theory for the SB problem. As a result, VMSB emerges as a robust solver that embeds OMD within
a variational formulation, offering both rigorous theoretical guarantees and clear computational advantages.

6 Experimental Results

Experiment goals. We aimed to test our online learning hypothesis and verify that the VMSB effectively
induces OMD updates. Since our theoretical claims are intended to be highly versatile, consistent perfor-
mance improvements for each setting coincides with the generality of the proposed VOMD method. We
delineate our objectives as follows: 1⃝ We aimed to affirm our online learning hypothesis by demonstrating
consistent improvements. 2⃝ We sought to corroborate our theoretical results, aiming for stable performance
that consistently exceeds that of benchmarks. 3⃝ We aimed to verify that our algorithm effectively induces
OMD by the Wasserstein gradient flow. To achieve these goals, we validate our algorithm across diverse SB
problem settings, including online learning scenarios, classical OT benchmarks, and image translation tasks.

Baselines and VMSB variants. Korotin et al. (2024) proposed a streamlined, simulation-free solver
referred to as LightSB that optimizes ϕ through Monte Carlo approximation of KL(π⃗∗∥π⃗ϕ). As an alter-
native, LightSB-M (Gushchin et al., 2024a) reformulated the reciprocal projection from DSBM (Shi et al.,
2023) to a projection method termed optimal projection, establishing approximated bridge matching for the
path measure Tϕ. Applying Algorithm 1, we derived two distinct methods called VMSB and VMSB-M
(π⃗θ), trained upon LightSB and LightSB-M solvers (π⃗ϕ), respectively. Since the theoretical arguments imply
that the algorithm is agnostic to targets, the performance benefits of VMSB variants from their references
support the generality of our claims. Additionally, we adopted VMSB on hybrid settings, leveraging networks
or embeddings for complex problems. We refer readers to Appendix D for additional experimental setups.
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Figure 7: Online SBPs for synthetic dataset streams. (a) We designed an online learning problem with a
rotating filter where an algorithm is allowed to observe the data in y ∼ ν only 12.5% at a time. (b) The
plots show that our VMSB and VMSB-M show consistent improvements from their references regarding the
ED metric with 95% confidence intervals for 5 runs with different seeds.
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Table 2: EOT benchmark scores with cBW2
2-UVP ↓ (%) between the optimal coupling π∗ and the learned

model πθ (5 runs). Results of classical EOT solvers marked with † are taken from (Korotin et al., 2024), and ‡
from (Gushchin et al., 2024a). Additionally, LightSB-EMA indicates a hybrid approach using the exponential
moving average techniques (EMA; Morales-Brotons et al., 2024) for LightSB parameters (decay = 0.99). Our
VMSB and VMSB-M results are highlighted in bold when VMSB methods exceed their reference algorithm.

Type Solver
ε = 0.1 ε = 1 ε = 10

d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128
Classical solvers (best; Korotin et al.)† 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31

Bridge-M DSBM (Shi et al.)‡ 5.2 10.8 37.3 35 0.3 1.1 9.7 31 3.7 105 3557 15000
Bridge-M SF2M-Sink (Tong et al.)‡ 0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819
rev. KL LightSB (Korotin et al.) 0.007 0.040 0.100 0.140 0.014 0.026 0.060 0.140 0.019 0.027 0.052 0.092
Bridge-M LightSB-M (Gushchin et al.) 0.017 0.088 0.204 0.346 0.020 0.069 0.134 0.294 0.014 0.029 0.207 0.747

EMA LightSB-EMA 0.005 0.040 0.078 0.149 0.012 0.022 0.051 0.127 0.017 0.021 0.025 0.042
Var-MD VMSB (ours) 0.004 0.012 0.038 0.101 0.010 0.018 0.044 0.114 0.013 0.019 0.021 0.040
Var-MD VMSB-M (ours) 0.015 0.067 0.108 0.253 0.010 0.019 0.094 0.222 0.013 0.029 0.193 0.748

6.1 Online SB learning for synthetic data streams

To validate our online learning hypothesis, we first considered two-dimensional synthetic SB problems for
data streams depicted in Fig. 7 (a). We applied an angle-based rotating filter, making the marginal as
a data stream where only 12.5% (or 45-degree angle) of the total data is accessible for each step t. We
trained conditional models π⃗θ with VMSB and π⃗ϕ with other baseline SB solvers for the 2D problem,
respectively. Fig. 7 (b) shows the plots of squared energy distance (ED), which is a special instance of squared
maximum mean discrepancy (MMD), approximating the L2 distance between distributions: ED(P,Q) =∫

(P (x)−Q(x))2dx (Rizzo & Székely, 2016). In our ED evaluation, the VMSB algorithm achieved a strictly
lower divergence than the LightSB and LightSB-M solvers for various numbers of Gaussian particles K.
Therefore, we conclude that these results aligned with our hypothesis and theory of online mirror descent.

6.2 Quantitative Evaluation

EOT benchmark. Next, we considered the EOT benchmark proposed by Gushchin et al. (2024b), which
contains 12 entropic OT problems with different volatility and dimensionality settings. Table 2 shows that
LightSB and VMSB methods outperforms other method in terms of the cBW2

2-UVP metric as previously
reported by Korotin et al. (2024) and Gushchin et al. (2024a). We also observed that a hybrid approach
combining LightSB and the exponential moving average (EMA; Morales-Brotons et al., 2024) named as
LightSB-EMA was affective for improving stability. Among 24 different settings, our MD approach exceeded
the reference model and the EMA method in 23 settings in terms of the cBW2

2-UVP metric (Gushchin et al.,
2024b). Our replication of LightSB/LightSB-M achieved better performance than originally reported results,
and our method accordingly reached the state-of-the-art performance in this benchmark with stability, which
represents strong evidence of Proposition 1. Among all cases, the only exception was LightSB-M, which had
the highest dimension and volatility. We suspected that the drift form Eq. (20), which is proportional to
ε, may have violated our assumptions Assumption 2 and the boundedness assumption during the training.
Thus, we conclude that our variational MD training is effective in various EOT setups. Tables 9 and 10 in
the appendix show comprehensive statistics on this benchmark with a wider range of SB solvers.

Table 3: Energy distance on the MSCI dataset (95% confi-
dence interval, ten trials with instances of two setups). Re-
sults marked with ‡ are from (Gushchin et al., 2024a).

Type Solver d = 50 d = 100 d = 1000
Sinkhorn Vargas et al. (2021)† 2.34 2.24 1.864
Bridge-M DSBM (Shi et al.)‡ 2.46± 0.1 2.35± 0.1 1.36± 0.04
Bridge-M SF2M-Sink (Tong et al.)‡ 2.66± 0.18 2.52± 0.17 1.38± 0.05
rev. KL LightSB 2.31± 0.08 2.15± 0.09 1.264± 0.06
Bridge-M LightSB-M 2.30± 0.08 2.15± 0.08 1.267± 0.06
Var-MD VMSB (ours) 2.28± 0.09 2.13± 0.09 1.260± 0.06
Var-MD VMSB-M (ours) 2.26± 0.10 2.12± 0.09 1.265± 0.05

SB on single cell dynamics. We evaluated
VMSB on unpaired single-cell data problems
in the high-dimensional single cell dynamics
experiment (Tong et al., 2024a). The dataset
provided single cell data from four donors on
days 2, 3, 4, and 7, describing the gene ex-
pression levels of distinct cells. Given samples
collected on two different dates, the task in-
volves performing inference on temporal evo-
lution, such as interpolation and extrapola-
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Figure 8: Generated MNIST/EMNIST samples. Top:
Raw pixel SB results. Bottom: Latent SB results.

Table 4: FID and MSD scores in EMNIST-to-MNIST
translation tasks. Hyperparameters between LightSB
and VMSB are shared. We examined the scores with
five runs for the ALAE case.

Method FID MSD

U-net
SF2M-Sink 23.215 0.456
DSBM-IPF 15.211 0.352
DSBM-IMF 11.429 0.373

Pixel LightSB-adv 20.017 0.362
VMSB-adv (ours) 15.471 0.356

ALAE LightSB 9.183±0.569 0.371±0.018
VMSB (ours) 8.774±0.065 0.365±0.002

tion of PCA projections with {50, 100, 1000} dimensions. We evaluated the energy distance over ten trials,
which were divided into two distinct settings with five runs each. The first setting spanned from Day 2 to
Day 4 (evaluated at Day 3), while the second setting considers duration from Day 3 to Day 7 (evaluated at
Day 4)2. The quantitative results in Table 3 show that our VMSB method outperforms existing approaches
by marginal amount, demonstrating its competitiveness as a practical SB solver for real-world problems.

6.3 Unpaired image-to-image transfer

MNIST-EMNIST. We applied VMSB to unpaired image translation tasks for MNIST and EMNIST
datasets. In these tasks, LightSB methods struggled to generate raw pixels due to the limited scalability of
the loss function. To solve this issue, we opted to find a viable alternative to LightSB the raw pixel space,
and we discovered that the capabilities of GMM parameterization can be extended by incorporating the
adversarial learning technique (Goodfellow et al., 2014; see Appendix D.5) was effective in providing rich
learning signals for πϕ. Therefore, we named the adversarial method and the VMSB adaptation LightSB-
adv and VMSB-adv. Also, we pretrained encoder networks using the Adversarial Latent AutoEncoder
(ALAE; Pidhorskyi et al., 2020) technique, and applied the LightSB and VMSB algorithms on the 128-
dimensional latent space that represent the both of data. Fig. 8 shows that VMSB/VMSB-adv outperformed
Light/LightSB-adv (with identical architecture) in the fidelity of samples and semantics of letters for latent
and pixel spaces. In Table 4, the VMSB method on the ALAE embedding space was able to surpass deep
SB models with a fewer number of parameters of K = 256. Even for raw pixels, our algorithm also achieved
competitive FID and input/output MSD similarity scores for K = 4096. The consistent performance gains
from the LightSB and LightSB-adv algorithms strongly supports our theoretical claims on online learning.

FFHQ. Following the latent SB setting of Korotin et al. (2024), we assessed our method by utilizing a
pretrained ALAE model for generating 1024× 1024 images of the FFHQ dataset (Karras et al., 2019). With
the predefined 512-dimensional embedding space, we trained our SB models on the latent space to solve
four distinct tasks: Adult→ Child, Child→ Adult, Female→ Male, and Male→ Female. Fig. 9 illustrates
that our method delivered high-quality translation results. We also conducted a quantitative analysis using
the ED on the ALAE embedding as a metric for evaluation, and the corresponding quantitative results are
reported in Table 13. The result also verifies that our VMSB and VMSB-M algorithms consistently achieved
lower ED scores than other baselines, demonstrating its applicability for the high dimensional embedding
space. Consequently, the image-to-image transfer results showed that the generality of our online learning
hypothesis and that the proposed algorithm is highly capable of interacting with neural networks of complex
learning dynamics. Considering the significantly higher dimensionality of image domains relative to the batch
sizes used in VOMD, the consistent and stable performance improvements demonstrated in our experiments
strongly validate our theoretical claims regarding the robustness of our approach in online learning scenarios.

2In other words, we directly follows the original configuration of Tong et al. (2024a).
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Adult → Child VMSB VMSB-M Male → Female VMSB VMSB-M

Child → Adult VMSB VMSB-M Female → Male VMSB VMSB-M

Embedding energy distance

Figure 9: Image-to-Image translation on a latent space. Left: Generation results for the FFHQ dataset
(1024× 1024) using our two SB variants. Right: Quantitative results of ED metrics for ALAE embeddings.

7 Conclusion

In this paper, we introduced VMSB, a practical simulation-free Schrödinger bridge algorithm based on the
online learning theory, designed for effectively solving SB problems encountered in real-world scenarios. We
proposed a robust theoretical learning framework applicable to general SB solvers, leveraging a dual geometric
interpretation of convex optimization to construct a robust OMD algorithm with rigorous guarantees on
convergence and regret bounds. Furthermore, we proposed the computational algorithm for our OMD
framework by employing the Wasserstein-Fisher-Rao geometry. Through extensive empirical evaluation,
we validated the effectiveness of VMSB across diverse settings, including high-dimensional spaces, limited-
sample regimes, and online learning environments. The experimental results consistently demonstrated stable
and superior benchmark performance, highlighting the enhanced robustness of our approach. Consequently,
we argue that the proposed VMSB algorithm and our theoretical arguments regarding VOMD provide a
promising and robust methodology for probabilistic generative modeling within learning-theoretic contexts.

Limitations. In this work, we significantly reduced the computational complexity inherent in the MD
framework by adopting the Wasserstein-Fisher-Rao geometry. GMM-based models, due to the lack of deep
structural processing, tend to focus on instance-level associations of images in EOT couplings rather than
the subinstance- or feature-level associations that are intrinsic to deep generative models. As a result, while
VMSB produces statistically valid representations of optimal transportation within the given architectural
constraints, these outcomes may be perceived as somewhat synthetic compared to large neural networks.
Nevertheless, GMM-based models still hold an irreplaceable role in numerous problems such as latent diffu-
sion and variational methods, due to their simplicity and distinctive properties Korotin et al. (2024). As we
successfully demonstrated in two distinct ways of interacting with neural networks for solving unpaired image
transfer, we hope our theoretical and empirical findings help novel neural architecture studies. While VMSB
strictly outperforms existing SB solvers across standard numerical benchmarks, the performance gains are
marginal in some scenarios. For instance, the single-cell dynamics experiment utilizes a PCA-based prepro-
cessing pipeline (Tong et al., 2024a), and the transformation into this lower-dimensional space compromises
the biological relevance of the SB objective, consequently narrowing the discernible performance gap.

Future research. One line of future studies in SB is a general understanding of learning in diffusion
models with various regularizations. This includes diffusion models in various problem-specific constraints,
and geometric constraints from manifolds. Another direction is the extension of the theoretical results into
network architecture design. From § 4.2, a pair of Schrödinger potentials represent a dual representation of
SB in a statistical manifold. In Gigli & Tamanini (2020), such potentials satisfy the Hamilton-Jacobi-Bellman
(HJB) equations and, this can be trained with forward-backward SDE (SB-FBSDE) as presented by Liu et al.
(2022). However, this requires many simulation samples from SDEs, and the requirements for applying VMSB
contain a tractable way of estimating gradient flows, and a guarantee of measure concentration. Therefore,
we expect there will be a new studies of energy-based neural architecture for efficiently representing SB, which
will advance various subfields of machine learning. Lastly, a theoretical generalization of our work can be done
by considering the Orlicz space for EOT studied by Lorenz & Mahler (2022). Since we essentially devised our
theoretical framework to be compatible with arbitrary Bregman potentials, we believe controlling regularity
of Young functionals can find more generalized learning algorithms for a wider range of OT problems.
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Appendices for
Variational Online Mirror Descent for Robust Learning in Schrödinger Bridge

Abbreviation and Notation

Abbreviation Expansion
SB Schrödinger Bridge
SBP Schrödinger Bridge Problem
EOT Entropy-regularized Optimal Transport
MD Mirror Descent
OMD Online Mirror Descent
KL Kullback-Leibler
IPF Iterative Proportional Fitting
BW Bures–Wasserstein
WFR Wasserstein-Fisher-Rao
SDE Stochastic Differential Equation
PDE Partial Differential Equation
FP Fokker–Planck
GMM Gaussian mixture model

Notation Usage
µ, ν marginal distributions
ε volatility of reference measure
cε cost cε(x, y) := 1

2ε∥x− y∥
2

π a coupling of µ and ν
π⃗, ⃗π conditional distributions
γn n-th marginal
φ,ψ log-Schrödinger potential
Ω, DΩ Bregman potential/divergence
d+ directional derivative
δC, δD First variations
∇W Wasserstein-2 gradient operator
T dynamic stochastic process in SB
g drift function
iC indicator function

A Theoretical Details and Proofs

Background on first variation operators. In this paper, we utilize the notation of first variation
operators δC and δD to identify the generalized primal and dual spaces in Schrödinger bridge. Since the
problems are classified as an infinite-dimensional optimization (Aliprantis & Border, 2006), we introduce
the essential background supporting the necessity of these operators. We introduce Gâteaux and Fréchet
differentiablility (Aubin-Frankowski et al., 2022; Karimi et al., 2024).

Definition 4 (Gâteaux & Fréchet differentiablility). Let M be a topological vector space of measures on a
space X . Define the Gâteaux differentiablity of a functional F :M→ R, if there exists a gradient operator
∇Gât such that for an arbitrary direction v ∈M, defined as the limit

∇GâtF (x)[v] = lim
h→0

F (x+ hv)− F (x)
h

, x ∈M

If the limit exists in the unit ball in M, the function F is called Fréchet differentiable with ∇FréF (x).

The problem of the Gâteaux and Fréchet differentiability in the context of SB is that the limit must be given
in all directions, implying that every neighboring point must be within the domain of the topological space
M. For the case of functionals such as the KL divergence functional F (·) = KL(·|π∗), the domain of F and
has an empty interior (Aubin-Frankowski et al., 2022). To resolve this issue, we use directional derivatives
and first variations, defined in Definitions 1 and 2.

First variations of KL. Suppose that we have two distributions ρ, ρ′ ∈ P2(X ),X ⊆ Rd. Let us consider
the log likelihood of ρ′: ℓ′(x) := logρ′(x), and an element of a (topological) tangent space v ∈ TρP2(X )
(Milnor, 1964). Then, we can achieve the followings:

KL(ρ∥ρ′) =
∫

X
log ρ(x) dρ(x)−

∫
X
ℓ′(x) dρ(x) (22)∫

ℓ′(x)
[
ρ(x) + hv(x)

]
dx =

∫
ℓ′(x)ρ(x) dx+ h

∫
ℓ′(x)v(x) dx (23)
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Given that log(z + ε)(z + ε) = log(z)z + [log(z) + 1]ε+ o(ε), and
∫

X v(x) dx = 0, we achieve∫
X

log
(
ρ(x) + hv(x)

)(
ρ(x) + hv(x)

)
dx =

∫
X

log ρ(x)ρ(x) +. [log ρ(x) + 1]hv(x) + o(h) dx

=
∫

X
log ρ(x)ρ(x) dx+ h

∫
S

log ρ(x)v(x)dx+ h

∫
v(x)dx+ o(h)

(24)
Combining Eqs. (22 -24), we achieve

F (ρ+ hv) = F (ρ) + h

〈
log

(
ρ

ρ′

)
, v

〉
+ o(h). (25)

By Eq. (25) and Definition 2, the first variation δF2 ∈ T ∗P(X ) exists for infinitesimal h > 0. Therefore, the
first variation of KL is derived as δKL(ρ∥ρ′) = log ρ

ρ′ . In machine learning, log likelihoods of probabilistic
models are often given in a closed-form expression, incentivizing development of computational continuous
EOT/SB methods. Generally, identical arguments generally apply to all KL functionals with respect to
distributions (π, π⃗, and marginals) in our setup.

Asymptotically log-concave distributions. For convergence analysis, we assume each marginal distri-
bution is in log-concave distribution, particularly satisfying the log Sobolev inequality of measures, motivated
by relevant literature (Otto & Villani, 2000; Conforti, 2024). This assumption works a wider range of costs
and marginals beyond popular choices with boundedness and compactness (Nutz & Wiesel, 2023; Conforti
et al., 2023). Suppose that marginals admit densities of the form

µ(dx) = exp
(
−Uµ(x)

)
dx and ν(dy) = exp

(
−Uν(y)

)
dy. (26)

We exploit the following definition from (Conforti et al., 2023) in order to describe asymptotically log-
concaveness.
Definition 5 (Asymptotically strongly log-concavity; Conforti et al., 2023). Suppose that marginals
µ and ν admit a positive density against the Lebesgue measure, which can be written in the
form (26). In particular, consider a collection of functions G := {g ∈ C2((0,+∞),R+)|r 7→
r1/2g(r1/2)is non-increasing and concave, limr→0 rg(r) = 0}. Accordingly, define a set

G̃ := {g ∈ G bounded and s.t. lim
r→0+

g(r) = 0, g′ ≥ 0 and 2g′′ + gg′ ≤ 0} ⊂ G.

and convexity profile κU : R+ → R of a differentiable function U as the following

κU (r) := inf
{
⟨∇U(x)−∇U(y), x− y⟩

|x− y|2
: |x− y| = r

}
.

We say a potential is asymptotically strongly convex if there exists αU ∈ R+ and g̃U ∈ G̃ such that

κU (r) ≥ αU − r−1g̃U (r) (27)

holds for all r > 0. We consider the set of asymptotically strongly log-concave probability measures

Palc(Rd) := {ζ(dx) = exp(−U(x))dx : U ∈ C2(Rd), U is asymptotically strongly convex}.

It is essential to note that a mixture of asymptotically log concave is also asymptotically log concave.
Lemma 4. For positive weights β = {βk}Kk=1 with

∑K
k=1 βk = 1 and asymptotically log concave distributions

{ρk}Kk=1, π =
∑K
k=1 βkρk.

Proof. Let us reformulate the mixture as log π(x) = log
∑
k βk exp(−Uk(x)) for asymptotically strongly

convex functions U = {Uk}Kk=1. The gradient is

∇ log π = JTp, J = −

∇U1
...

∇UK

 , p = softmax(log β −U)
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If each Uk of mixture satisfy Eq. (27) with αUk
and g̃Uk

, there exist αU = min1≤k≤K αUk
and g̃U (r) =

−r log
∑K
k=1 exp(−r−1g̃Uk

) that satisfies the condition (27) for U = − log π. By direct calculation, one can
easily see that soft min-like property of r−1g̃U from {r−1g̃Uk

}Kk=1 does not change the conditions of G̃.

General assumptions and justifications. We additionally need the following general assumptions for
our OMD framework. 1⃝ (Existence) The sequence of MD from Eq. (13) exists {πt}t∈N ⊂ C, and are
unique, 2⃝ (Relative smoothness/convexity) For some l, L ≥ 0, the functional Ft is L-smooth and l-strongly-
convex relative to Ω. 3⃝ (Existence of first variations) For each t ≥ 0, the first variation δCΩ(πt) exists. 4⃝
(Boundedness of estimations) The asymptotic dual mean π◦

D is almost surely bounded Pr(DΩ(πt∥π◦
D) ≤ R) =

1 for some R > 0. 5⃝ (Ergodicity) The estimation process of {π◦
t }∞
t=1 is governed by a measure-preserving

transformation on a measure space (Y,Σ, ς) with ς(Y) = 1; for every event E ∈ Σ, ς(T−1(E)△E) = 0
(that is, E is invariant), either ς(E) = 0 or ς(E) = 1 (Cornfeld et al., 2012).3 For 1⃝, the temporal cost
Ft(·) = KL(·|π◦

t ) is well defined since KL is a strong Bregman divergence with lower semicontinuity, where
the existence of a primal solution in guaranteed as discussed in Aubin-Frankowski et al. (2022). For 2⃝- 3⃝,
we can identify l = L = 1 and close-form expression of the first variation that is shown in Definition 6
and Proposition 3. For the assumptions 4⃝- 5⃝, we postulate the existence of estimates produced from a
Monte-Carlo method, using a fixed amount of updates on topological vector space. Hence, it is natural to
consider that these estimates will be bounded in a probabilistic sense and yield Markovian transitions, which
are aperiodic and irreducible.

A.1 Proofs of Lemmas 2 and 3

The EOT in Eq. (2) can be reformulated as a divergence minimization problem with respective to a reference
measure. If a Gibbs parameterization is enforced with the quadratic cost functional cε(x, y) = 1

2ε∥x−y∥
2 for

ε > 0, it is well-known that the problem has the equivalence with the entropy regularized optimal transport
problem (Nutz, 2021)

OTε(µ, ν) = inf
π∈Π(µ,ν)

KL
(
π∥e−cεµ⊗ ν

)
. (28)

Note that the above equation corresponds to the constrained minimization of KL(T ∥W ε) in Eq. (6) by
the disintegration theorem of Schrödinger bridge (Appendix A of Vargas et al., 2021). While the Bregman
projection formulation of Sinkhorn Eq. (14) are described by the spaces (Π⊥

µ ,Π⊥
ν ), it is (equally) natural to

think that considering the problem as convex problem with the distributional constraint C (see the primal
space in illustrated in Fig. 1). As a problem in the constraint C, one can consider a temporal cost functional
F̃t(π) := atKL(γ1π∥µ)+(1−at)KL(γ2π∥ν) with sequences {at}∞

t=1 = {0, 1, 0, 1, . . . } for γ1π(x) := ∫ π(x, y)dy
and γ2π(y) := ∫ π(x, y)dx. By construction, we have the following MD update:

minimize
π∈C

〈
δCF̃t(πt), π − πt

〉
+DΩ(π∥πt). (29)

The optimization problem (29) is equivalent to having the property for subsequent πt+1:

d+F̃t(πt;π − πt) +DΩ(π∥πt) ≥ d+F̃t(πt;πt+1− πt) +DΩ(πt+1|πt)
⇐⇒

〈
δCF̃t(πt)− δCΩ(πt), π − πt+1

〉
+

(
Ω(π)− Ω(πt+1)

)
≥ 0, ∀π ∈ C.

(30)

Setting the free parameter π = πt+1 + h(π − πt+1) and taking the limit h → 0+ yields described the time
evolution of the log-Schrödinger potentials for πt = eφt⊕ψt−cεd(µ⊗ ν):

φ̇t = − log d(γ1πt)
dν∗

= −α
(
φt − φ∗ + log

∫
Rd

eψt−ψ∗
ν(dy)

)
, (31a)

ψ̇t = − log d(γ2πt)
dµ∗

= −β
(
ψt − ψ∗ + log

∫
Rd

eφt−φ∗
µ(dx)

)
, (31b)

3Here, △ denotes the symmetric difference, equivalent to the exclusive-or with respect to set membership.
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for α = at and β = 1 − at.4 Setting a discrete approximation of dynamics Eq. (31): φt+1 = φt + φ̇t and
ψt+1 = ψt + ψ̇t yields the following alternating updates:

ψ2t+1(y) = − log
∫
Rd

eφ2t(x)−cε(x,y)µ(dx), φ2t+2(x) = − log
∫
Rd

eψ2t+1(x)−cε(x,y)ν(dy).

Therefore, the proof of Lemma 2 is complete.

From the dual iteration of KL stated in Eq. (44) (Aubin-Frankowski et al., 2022), the static, idealized MD
cost F (·) = KL(·∥π∗) yield the following closed-form expression for the first variation:

δCΩ(πt)− δCΩ(πt+1) = ηt
(
δCΩ(πt)− δCΩ(π∗)

)
,

where the equation implies that setting ηt ≡ 1 for MD yields one-step optimality π∗ in this idealized
condition. Utilizing the equivalence of first variation stated in Lemma 6 and the disintegration theorem for
the Radon-Nikodym derivatives, we get the first variation of F with respect to π for all x as

δF (πt) = log dπ
∗

dπ
. (32)

And by the disintegration theorem (Léonard, 2014), we also achieve the first variation of f with respect to
π⃗ for all x as

δf(π⃗xt ) = log d(π⃗∗
t )x

dπ⃗x
, (33)

where f(π⃗x) = KL(π⃗x∥(π⃗∗)x). Since this disintegration theorem always hold for every directional derivative,
we can use expression for π⃗x and π interchangeably. It is well-known that MD is a discretization of natural
gradient descent (Gunasekar et al., 2020), and our setting for Ω generates the geometry governed by the
(generalized) Fisher information. In this particular case, one can use Otto’s formalization of Riemannian
calculus (Otto, 2001; § 3.2), and the probability space equipped with the Wasserstein-2 metric (P2(Rd),W2),
is generally represented as a Wasserstein gradient flow

∂tπt = −∇WF (πt), ∀πt ∈ C, (34)

where ∇W denotes the Wasserstein-2 gradient operator ∇W := ∇·
(
ρ∇ δ

δρ

)
. In particular, plugging Eq. (32)

yields
∂tπt = −∇ · (π∇ log π∗) + ∆π, (35)

where ∆ denotes the Laplace operator. The foundational results concerning Wasserstein gradients were
initially established by JKO (Jordan et al., 1998), who demonstrated that the formulation in Eq. (34)
corresponds precisely to the Fokker–Planck equation (35). Consequently, it follows that Wasserstein gradients
characterize the tangential direction of flows on a manifold constrained by distributional properties and
endowed with the W2 metric.

A.2 Proof of Theorem 1

We start with introducing basic properties of the Bregman divergence in Definition 3. First, the idempotence
property states that a Bregman divergence associated with another Bregman divergence DΩ(·|y) remains as
the identical divergence with the original. Note that the (global or universal) idempotence initially stated by
Aubin-Frankowski et al. (2022), but we apply some changes to the statement and only work with localized
version of idempotence for the purpose of this paper.
Lemma 5 (Idempotence). Suppose a convex potential Ω : M(X ) → R ∪ {+∞}, where M(X ) denotes a
topological vector space for X . Assume that for all z ∈ dom(Ω), δCΩ(z) exists. Then, ∀x, y ∈ C ∩ dom(Ω):
DDΩ(·|y)(x|y) = DΩ(x|y).

4More precisely, one needs to apply Lemma 6 for KL, and the disintegration theorem to get Eq. (31).
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Proof of Lemma 5. Both Bregman divergences and Bregman potentials are convex functionals. By definition,
we have DDΩ(·|z)(x|y) = DΩ(x∥z) −DΩ(y∥z) − ⟨δCΩ(y) − δCΩ(z), x − y⟩ for arbitrary z, and setting z = y
completes the proof. Another (informal) point of view is considering the Bregman divergence as a first-order
approximation of a Hessian structure, and DDΩ(·|z) converges to DΩ(·|z) by taking a limit, knowing that
DΩ(y|y) = 0.

We then proceed to the equivalence property of the family of recursive Bregman divergences. The property
is important for proving the theorem and representing the dual representation of MD. Moreover, it is also
used in Theorem 2 as a key ingredient which constructs our VOMD framework.
Lemma 6 (Equivalence of first variations). Suppose Ω : M(X ) → R ∪ {+∞} Assume that for all z ∈
dom(Ω), the first variation δCΩ(z) exists, then, for all x, y, y1, y2 ∈ dom(Ω), the first variation taken for
the first argument x of the following Bregman divergences are equivalent: δCDΩ(x|y) = δCDDΩ(·|y1)(x|y) =
δCDDΩ(·|y2)(x|y).

Proof of Lemma 6. First, it can be analytically driven δCDΩ(x|y) = δCΩ(x) − δCΩ(y). Next, by def-
inition, taking the first variation of DDΩ(·|z)(x|y) with respect to x for arbitrary z ∈ dom(Ω) yields
δCDΩ(x∥z) − δC⟨Ω(y) − Ω(z), x − y⟩. Knowing that the second term δC⟨Ω(y) − Ω(z), x − y⟩ is linear, we
achieve δDDΩ(·|z)(x|y) = δCΩ(x) − δCΩ(z) − (δCΩ(y) − δCΩ(z)) = δCΩ(x) − δCΩ(y), which completes the
proof.

By an inductive reasoning, we arrive at the basic property of family of Bregman divergences, that all
divergence recursively defined by the Bregman potential Ω, has the (local) idempotence and the (global)
equivalence of first variation. To address characteristics for particular Bregman potential Ω, we apply the
notions of relative smoothness and convexity with respect to Ω, which was first introduced by Birnbaum
et al. (2011).
Definition 6 (Relative smoothness and convexity). Let G : M(X ) → R ∪ {+∞} be a proper convex
functional. Given scalar l, L ≥ 0, we define that G is L-smooth and l-strongly-convex relative to Ω over C if
for every x, y ∈ dom(G) ∩ dom(Ω) ∩ C, we have

DG(x∥y) ≤ LDΩ(x∥y), DG(x∥y) ≥ lDΩ(x∥y),

respectively, where DG and DG are Bregman divergences associated with G defined in Definition 3.

Applying the idempotence lemma Lemma 5, we immediately recognize that the Bregman divergence DΩ
is relatively 1-smooth and 1-strongly-convex for Ω. To start our analysis, we reintroduce the well-known
three-point identity for a Bregman divergence.
Lemma 7 (Three-point identity). For all πa, πb, πc ∈ C ∩ dom(Ω), we have the following identity〈

δCΩ(πa)− δCΩ(πb), πc − πb
〉

= DΩ(πc∥πb)−DΩ(πc∥πa) +DΩ(πb∥πa)

when DΩ is the Bregman divergence defined in Definition 3.

Proof of Lemma 7. By the definition of Bregman divergence, we have

DΩ(πc∥πb)−DΩ(πc∥πa) +DΩ(πb∥πa) = Ω(πc)− Ω(πb)−
〈
δCΩ(πb), πc − πb

〉
− Ω(πc) + Ω(πa) +

〈
δCΩ(πa), πc − πa

〉
+ Ω(πb)− Ω(πa)−

〈
δCΩ(πa), πb − πa

〉
=

〈
δCΩ(πa)− δCΩ(πb), πc − πb

〉
.

Therefore, the proof is complete.

Utilizing the three-point identity, we present the following useful lemmas for dealing inequalities regarding
improvements by Han et al. (2022), which we call left and right Bregman differences.
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Lemma 8 (Left Bregman difference). For all πa, πb, πc ∈ C ∩ dom(Ω), the following identity holds.

DΩ(πb∥πa
)
−DΩ(πc∥πa) = −

〈
δCΩ(πc)− δCΩ(πa), πc − πb

〉
+DΩ(πb∥πc). (36)

Proof of Lemma 8. Using Lemma 7, we have

DΩ(πb∥πa)−DΩ(πc∥πa) = −DΩ(πc∥πb) +
〈
δCΩ(πa)− δCΩ(πb), πc − πb

〉
.

Utilizing an identity of two Bregman divergences for arbitrary (ρ, ρ̄):

DΩ(ρ∥ρ̄) +DΩ(ρ̄∥ρ) =
〈
δCΩ(ρ)− δCΩ(ρ̄), ρ− ρ̄

〉
. (37)

We separate δCΩ(πa) − δCΩ(πb) into δCΩ(πa) − δCΩ(πc) and δCΩ(πc) − δCΩ(πb) and write the rest of the
derivation as follows.

DΩ(πb∥πa)−DΩ(πc∥πa)
= −DΩ(πc∥πb) +

〈
δCΩ(πc)− δCΩ(πb), πc − πb

〉︸ ︷︷ ︸
Eq. (37)

+
〈
δCΩ(πa)− δCΩ(πc), πc − πb

〉
= DΩ(πb∥πc) +

〈
δCΩ(πa)− δCΩ(πc), πc − πb

〉
Therefore, we achieve the desired identity.

Lemma 9 (Right Bregman difference). For all πa, πb, πc, the following identity holds.

DΩ(πc∥πb)−DΩ(πc∥πa) = DΩ(πa∥πb) +
〈
δCΩ(πa)− δCΩ(πb), πc − πa

〉
(38)

Proof of Lemma 9. By Lemma 7, we have

DΩ(πc∥πb)−DΩ(πc∥πa) = −DΩ(πb∥πa) +
〈
δCΩ(πa)− δCΩ(πb), πc − πb

〉
.

We separate πc− πb into πc− πa and πa− πb and write the rest of the derivation as follows.

DΩ(πc∥πb)−DΩ(πc∥πa)
= −DΩ(πb∥πa) +

〈
δCΩ(πa)− δCΩ(πb), πa− πb

〉︸ ︷︷ ︸
Eq. (37)

+
〈
δCΩ(πa)− δCΩ(πb), πc − πa

〉
= DΩ(πa∥πb) +

〈
δCΩ(πa)− δCΩ(πb), πc − πa

〉
Therefore, we achieve the desired identity.

Additionally, we introduce the three-point inequality (Chen & Teboulle, 1993), which has been a key state-
ment for proving MD convergence for a static cost functional (Aubin-Frankowski et al., 2022), and OMD
improvement for temporal costs. The proof mostly follows Aubin-Frankowski et al. (2022) with a slight
change of notation.
Lemma 10 (Three-point inequality). Given π ∈ M(X ) and some proper convex functional Ψ : M(X ) →
R∪{+∞}, if δCΩ exists, as well as ρ̄ = arg minρ∈C{Ψ(ρ)+DΩ(ρ∥π)}, then for all ρ ∈ C∩dom(Ω)∩dom(Ψ):
Ψ(ρ) +DΩ(ρ∥π) ≥ Ψ(ρ̄) +DΩ(ρ̄∥π) +DΩ(ρ∥ρ̄).

Proof of Lemma 10. The existence of δCΩ implies C ∩ dom(DΩ(·|y)) = C ∩ dom(Ω) ∩ dom(Ψ). Set G(·) =
Ψ(·) +DΩ(·∥y). By linearity and idempotence, we have for any ρ ∈ C ∩ dom(Ω) ∩ dom(Ψ)

DG(ρ∥ρ̄) = DΨ(ρ∥ρ̄) +DΩ(ρ∥ρ̄) ≥ DΩ(ρ∥ρ̄). (39)

By ρ̄ being the optimality for G, for all x ∈ C,

d+G(ρ̄; ρ− ρ̄) = lim
h→0+

G((1− h)ρ̄+ hρ)−G(ρ̄)
h

≥ 0,

which suggests G(ρ) ≥ G(ρ̄) +DG(ρ∥ρ̄). Applying (39) to this inequality complete the proof.
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The following argument is from the convergence rate of mirror descent for relatively smooth and convex
pairs of functionals, and extend to infinite dimensional convergence results of Lu et al. (2018) and Aubin-
Frankowski et al. (2022). We aim to reformulate the statements in online learning, addressing one-step
improvement of OMD.
Lemma 11 (OMD improvement). Suppose a temporal cost Ft : M(X ) → R which is L-smooth and l-
strongly-convex relative to Ω and ηt ≤ 1

L . Then, OMD improves for current cost Ft(πt+1) ≤ Ft(πt).

Proof of Lemma 11. Since F is L relatively smooth, we initially have the inequality

Ft(πt+1) ≤ Ft(πt) + d+F (πt;πt+1 − πt) + LDΩ(πt+1|πt) (40)

Applying the three-point inequality (Lemma 10) to Eq. (40), and setting a linear functional Ψ(ρ) =
ηtd

+Ft(πt;π − πt), ρ = πt and ρ̄ = πt+1 yields

d+Ft(πt;πt+1 − πt) + 1
ηt
DΩ(πt+1|πt) ≤ d+Ft(πt; ρ− πt) + 1

ηt
DΩ(ρ|πt)− 1

ηt
DΩ(ρ∥πt+1).

Since Ft is assumed to be l-strongly convex relative to Ω, we also have

d+F (πt; ρ− πt) ≤ Ft(ρ)− Ft(πt)− lDΩ(ρ|πt), (41)

Then, by using (41), Eq. (40) becomes

Ft(πt+1) ≤ Ft(ρ) + ( 1
ηt
− l)DΩ(ρ|πt)− 1

ηt
DΩ(ρ|πt+1) + (L− 1

ηt
)DΩ(πt+1∥πt). (42)

By substituting ρ = πt, since DΩ(ρ|πt+1) ≥ 0 and L − 1
ηt
≤ 0, this shows Ft(πt+1) ≤ Ft(πt), i.e., Ft is

decreasing at each iteration. This completes the proof.

A fundamental property with the dual space D induced by the first variation δC holds in our OMD setting.
The existence of such learning sequence–particularly in Sinkhorn–is well discussed by Nutz (2021) and Aubin-
Frankowski et al. (2022). Focusing on the dual geometry, we explicitly call this relationship with arbitrary
step size ηt as “dual iteration.”
Lemma 12 (Dual iteration). Suppose that first variations δCFt(πt) and δCΩ(πt) exists for t ≥ 0. Then, online
mirror descent updates Eq. (13) is equivalent to δCΩ(πt+1)− δCΩ(πt) = −ηtδCFt(πt), for all πt ∈ C, t ∈ N.

Proof of Lemma 12. The optimization (13) is equivalent to having the property for subsequent πt+1:

d+Ft(πt;π − πt) + 1
ηt
DΩ(π∥πt) ≥ d+Ft(πt;πt+1− πt) + 1

ηt
DΩ(πt+1|πt)

⇐⇒
〈
δCFt(πt)− 1

ηt
δCΩ(πt), π − πt+1

〉
+ 1

ηt

(
Ω(π)− Ω(πt+1)

)
≥ 0, ∀π ∈ C.

(43)

Setting the free parameter π = πt+1 + h(π − πt+1) and taking the limit h→ 0+ yields the result.

Remark 3. With applications of Lemma 12 and Lemma 6, we can achieve a concise form of iteration in the
dual using our temporal cost as:

δCΩ(πt)− δCΩ(πt+1) = ηt
(
δC(−H)(πt)− δC(−H)(π◦

t )
)

= ηt
(
δCΩ(πt)− δCΩ(π◦

t )
)
,

(44)

where H denotes the entropy, i.e., the minus KL divergence with the Lebesgue measure.

Leveraging the aforementioned lemmas, we have systematically introduced and rigorously formalized the
essential concepts necessary to progress with our analysis within the OMD framework. Finally, we are ready
to describe a suitable step size scheduling by the following arguments.
Lemma 13 (Step size I). Suppose that Ft = KL(π∥π◦

t ) and Ω = KL(π∥e−cεµ ⊗ ν). If 1⃝ limt→∞ ηt = 0+

and 2⃝
∑∞
t=1 ηt = +∞ 3⃝ η ≤ 1

L , the OMD algorithm converges to a certain π◦
D
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Proof of Lemma 13. From Lemma 11, we have

ηt(Ft(πt+1)− Ft(πt)) ≤ −DΩ(πt∥πt+1) + (ηtL− 1)DΩ(πt+1∥πt). (45)

Taking limt→∞ ηt = 0 ensures improvements; this means for any ε > 0 there exists some 0 < δ ≤ 1 such
that DΩ(πt∥πt+1) +DΩ(πt+1∥πt) < ε whenever ηt < δ. Since convexity and the lower semicontinuity of the
Bregman divergence DΩ induced by KL, we conclude that OMD to a certain point upon the assumed step
size scheduling.

Lemma 14 (Step size II). Assume that infπ∈C Et[DΩ(πt, π◦
t )] > 0 for all t ∈ [1,∞). Suppose that ηt → 0

and limT→∞ E[ 1
T

∑T
t=1 DΩ(πt∥π◦

t )] = 0 if and only if
∑∞
t=1 ηt = +∞.

Proof of Lemma 14. We note that due to dual iteration equation Eq. (44), improvements on KL in Lemma 11
are also improvements in the Bregman divergence, i.e. DΩ(πt+1∥π◦

t ) ≤ DΩ(πt∥π◦
t ), and if ηt → 0, then

the process {πt}∞
t=1 is convergent. By the dominated convergence theorem, assuming ergodicity of non-

stationary {π◦
t }∞
t=1 (Cornfeld et al., 2012), there is a constant ε that satisfies E1:t+1[DΩ(πt+1∥π◦

t+1)] ≥
E1:t+1[DΩ(πt+1∥π◦

t )] + ε for t > n for some n as ηt → 0, where an expectation subscripted by “1 : t”
indicates the notation of time-averaging from 1 to t. Consequently, we achieve the following inequality

E1:t+1[DΩ(πt+1∥π◦
t+1)]

≥ E1:t+1[DΩ(πt+1∥π◦
t )] + ε

≥ E1:t
[
DΩ(πt∥π◦

t )−⟨δCΩ(πt+1)− δCΩ(πt), π◦
t − πt⟩

]
+ E1:t+1

[
DΩ(πt+1∥πt)

]
+ ε Lemma 8

= E1:t
[
DΩ(πt∥π◦

t )− ηtDΩ(πt∥π◦
t ) + ηtDΩ(π◦

t ∥πt)
]
+ E1:t+1

[
DΩ(πt+1∥πt)

]
+ ε Eq. (44)

= (1− ηt)E1:t
[
DΩ(πt∥π◦

t )
]

+ E1:t+1
[
DΩ(πt+1∥πt) + ηtDΩ(π◦

t ∥πt)
]

+ ε

≥ (1− ηt)E1:t
[
DΩ(πt∥π◦

t )
]

+ ε′ (46)

for some t and 0 < ε < ε′, where Lemma 8 and Eq. (44) are used.

Necessity. For big enough t ≥ n where n ∈ N, we can achieve the inequality in Eq. (46) as

E1:t+1
[
DΩ(πt+1∥π◦

t+1)
]
≥ (1− ηt)E1:t

[
DΩ(πt∥π◦

t )
]
, (47)

Since we have assumed that ηt converges to 0, consider a step size sequence 0 < ηt ≤ 2
2+k for k > 0. Denote

a constant a = 2+k
2 log 2+k

k and apply the elementary inequality (Lei & Zhou, 2020)

1− x ≥ exp(−ax), such that 0 < x ≤ 2
2 + k

.

From Eq. (47), we achieve

E1:t+1
[
DΩ(πt+1∥π◦

t+1)
]
≥ exp(−aηt)E1:t

[
DΩ(πt∥π◦

t )
]
.

for all t ≥ n. Iteratively applying this inequality iterative for t = n, n+ 1, · · · , T − 1 gives

E1:T [DΩ(πT∥π◦
T )] ≥ E1:n[DΩ(πn∥π◦

n)]
T−1∏
t=n

exp(−aηt)

= exp
{
−a

T−1∑
t=n

ηt

}
E1:n[DΩ(πn∥π◦

n)].

(48)

From the assumption π∗ ̸= πn, DΩ(πn∥π◦
n) > 0 by the property of divergence. Therefore, by Eq. (48), the

convergence limt→∞ E1:t[DΩ(πt∥π◦
t )] = 0 implies the series

∑∞
t=1 ηt diverges to +∞ so that exp(−a

∑T−1
t=n ηt)

converges to 0.

Sufficiency. Consider a static Schrödinger bridge problem with couplings π ∈ Π(µ, ν), which is in a constraint
set

C =
{
π|(µ, ν) ∈ P2(Rd) ∩ Palc(Rd), (φ,ψ) ∈ L1(µ)× L1(ν), andφ,ψ ∈ C2(Rd) ∩ Lip(K)

}
.
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For ρ, ρ̄ ∈ C, we can see
DΩ(ρ̄∥ρ) = Ω(ρ̄)− Ω(ρ)− ⟨δCΩ(ρ), ρ̄− ρ⟩ ≥ 0 ⇐⇒ −⟨δCΩ(ρ), ρ̄− ρ⟩ ≥ Ω(ρ)− Ω(ρ̄).

By adding ⟨δCΩ(ρ̄), ρ̄− ρ⟩, we achieve a property:
⟨δCΩ(ρ)− δCΩ(ρ̄), ρ− ρ̄⟩ ≥ DΩ(ρ∥ρ̄). (49)

Then, suppose that we have the asymptotic dual mean π◦
D. Using the right Bregman difference Lemma 9,

the one-step progress from the perspective of dual mean writes as
DΩ(π◦

D∥πt+1)−DΩ(π◦
D∥πt) =

〈
δCΩ(πt)− δCΩ(πt+1), π◦

D − πt
〉

+DΩ(πt∥πt+1).
= ηt

〈
δCΩ(πt)− δCΩ(π◦

t ), π◦
D − πt

〉
+DΩ(πt∥πt+1)

= ηt
〈
δCΩ(πt)− δCΩ(π◦

D), π◦
D − πt

〉
+ ηt

〈
δCΩ(π◦

D)− δCΩ(π◦
t ), π◦

t − πt
〉

+DΩ(πt∥πt+1)
≤ −ηtD(π◦

D∥πt) + ηt
〈
δCΩ(π◦

D)− δCΩ(π◦
t ), π◦

t − πt
〉

+DΩ(πt∥πt+1)
where the inequality is from Eq. (49). By applying the definition of π◦

D and ergodicity of {π◦
t }∞
t=1, we can

bound the expectation by finding some t > n such that
E1:t+1

[
DΩ(π◦

D∥πt+1)
]
≤ E1:t

[
(1− ηt)DΩ(π◦

D∥πt)
]

+ E1:t+1
[
DΩ(πt∥πt+1)

]
≤ E1:t[(1− ηt)DΩ(π◦

D∥πt)] + 1
2ωE1:t+1

[∥∥∇(δCΩ(πt)− δCΩ(πt+1))
∥∥2
L2(πt)

]
≤ E1:t[(1− ηt)DΩ(π◦

D∥πt)] + η2
t

2ωE1:t
[
∥∇(δCΩ(πt)− δCΩ(π◦

t ))∥L2(πt)
]

≤ E1:t[(1− ηt)DΩ(π◦
D∥πt)] + 2η2

tω
−1K, (50)

where K is the Lipschitz constant for each log Schrödinger potential in C. For the first inequality, we use
Assumption 2, and we use the log Sobolev inequality LSI(ω) from Assumption 1 in the second inequality.
Let {At}∞

t=1, denote a sequence of At = E1:t[DΩ(π◦
D∥πt)]. As a result, we have

At+1 ≤ (1− ηt)At + zη2
t , ∀t > n, (51)

where z := 2ω−1K. For a constant h > 0, we argue that At1 < h for some t1 > n′. Suppose that this
statement is not true; we find some t ≥ t1 such that At > h, ∀t ≥ t2. Since limt→∞ ηt = 0, there are some
t > t3 > t2 that ηt ≤ h

4 . However, Eq. (51) tells us that for t ≥ t3, for t ≥ t3,

At+1 ≤ (1− ηt)At + zη2
t ≤ At3 −

h

4

T∑
k=t3

ηk → −∞ (as t→∞).

This results to a contradiction, which verifies At < h for t > n′. Since limt→∞ ηt = 0, we can find some ηt
which makes At monotonically decreasing. Therefore, we conclude the nonnegative sequence {At}∞

t=1 finds
convergence by iteratively applying the upper bound in Eq. (51).

We now prove Theorem 1 under consideration of the particular case of ηt = 2
t+1 . Then, Eq. (51) becomes

At+1 ≤
(

1− 2
t+ 1

)
At + 4z

(t+ 1)2 , ∀t ≥ n.

It follows that recursive relation writes as
t(t+ 1)At+1 ≤ (t− 1)tAt + 4z, ∀t ≥ n.

Iterative applying the relation, we achieve the following inequality:
(T − 1)TAT ≤ (n− 1)nAn + 4z(T − n), ∀T ≥ n.

Therefore, we finally achieve inequality as follows:

E1:T [DΩ(π◦
D∥πT )] ≤ (n− 1)nE1:n[DΩ(π◦

D∥πn)]
(T − 1)T + 4z

T
, ∀T ≥ n. (52)

Since we assumed π∗ = π◦
D, E1:T [DΩ(π∗∥πT )] = O(1/T ). Combining this with Lemmas 13 and 14, the proof

of Theorem 1 is complete.
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A.3 Proof of Proposition 1

The proof is based on the Doob’s forward convergence theorem.
Theorem 3 (Doob’s forward convergence theorem). Let {Xt}t∈N be a sequence of nonnegative random
variables and let {Ft}t be a random variable and let {Ft}t∈N be a filtration with Ft ⊂ Ft+1 for every t ∈ N.
Assume that E[Xt+1|Ft] ≤ Xt almost surely for every t ∈ N. Then, the sequence {Xt} converges to a
nonnegative random variable X∞ almost surely.

We follow the derivation of Eq. (50): there exists n ∈ N which satisfies

Et[DΩ(π◦
D∥πt+1)] ≤ DΩ(π◦

D∥πt) + 2η2
tω

−1K, ∀t ≥ n

and since the step size is scheduled as limt→∞ ηt = 0, the condition
∑∞
t=1 η

2
t < ∞ enables us to define a

stochastic process {Xt}t∈N:

Xt = DΩ(π◦
D∥πt) + 2ω−1K

∞∑
i=t

η2
i . (53)

It is straightforward that the defined random variable satisfies Et[Xt+1] ≤ Xt for t ≥ n. Since Xt ≥ 0,
the process is a sub martingale. By Theorem 3, the sequence {Xt}t∈N converges to a nonnegative random
variable X∞ almost surely. Therefore DΩ(π◦

D∥πt) converges to 0 almost surely.

A.4 Proof of Proposition 2

To achieve a meaningful regret bound for our problem setup, we first demonstrate the following.
Lemma 15. For all w = arg miny{⟨ĝ, y⟩+ 1

ηDΩ(y∥z)} with η > 0, the following equation.

∀u.⟨ηĝ, w − u⟩ ≤ DΩ(u∥z)−DΩ(u∥w)−DΩ(w∥z) (54)

Proof of Lemma 15. By the first order optimality of {⟨g, y⟩+DΩ(y∥z)} as a function of w, we have

⟨ĝ + 1
η δCDΩ(w∥z), u− w⟩ ≥ 0
=⇒ ⟨ĝ, w − u⟩ ≤ 1

η ⟨−δCDΩ(w∥z), w − u⟩ = 1
η (DΩ(u∥z)−DΩ(u∥w)−DΩ(w∥z)).

where used Lemma 8 in the derivation. This completes the proof.

Next, we derive the one-step relationship for OMD. The result entails that the regret at each step is related to
a quadratic expression of ηt, which is a key aspect of sublinear total regret. From a technical standpoint, we
can see that the assumption for log Sobolev inequality generally works as a premise for Lipschitz continuity
of gradient, i.e., ∇Ω in classical MD analyses.
Lemma 16 (Single step regret). Suppose a static Schrödinger bridge problem with the aforementioned con-
straint C. Let DΩ be the Bregman divergence wrt Ω : P(X )→ R + {+∞}. Then,

ηt(Ft(πt)− Ft(u)) ≤ DΩ(u∥πt)−DΩ(u∥πt+1) + η2
t

2ω ∥ĝt∥
2
L2(πt), ∀u ∈ C (55)

holds, where ĝt := δCFt(πt) = 1
ηt

(δCΩ(πt)− δCΩ(πt+1)) in an MD iteration for the dual space for a step size
ηt, and ω > 0 is drawn from a type of log Sobolev inequality in Assumption 1.

Proof of Lemma 16. Consider single step regrets by the adversary plays of a linearization for ĝt:

Ft(πt)− Ft(u) ≤ ⟨ĝt, πt − u⟩.

Therefore, we derive a inequality for ⟨ĝt, πt − u⟩ as follows.

⟨ηtĝt, πt − u⟩ = ⟨ηtĝt, πt+1 − u⟩+ ⟨ηtĝt, πt − πt+1⟩
≤ DΩ(u∥πt)−DΩ(u∥πt+1)−DΩ(πt+1∥πt) + ⟨ηtĝt, πt − πt+1⟩
= DΩ(u∥πt)−DΩ(u∥πt+1)−DΩ(πt+1∥πt) + ⟨δCΩ(πt+1)− δCΩ(π), πt − πt+1⟩
= DΩ(u∥πt)−DΩ(u∥πt+1) +DΩ(πt∥πt+1).
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Since we assumed that ĝt = 1
ηt

(δCΩ(πt)− δCΩ(πt+1)) by the dual iteration and that Assumption 1 holds, we
can achieve the upperbound DΩ(πt∥πt+1) ≤ η2

t

2ω∥ĝt∥
2
L2(πt) by direct calculation.

We now show our upper bound of total regret by utilizing Lemma 16.
Lemma 17. Assume ηt+1 ≤ ηt. Then, u ∈ C, the following regret bounds for fixed u ∈ C hold

T∑
t=1

Ft(πt)− Ft(u) ≤ max
1≤t≤T

DΩ(u∥πt)
ηT

+ 1
2ω

T∑
t=1

ηt∥g̃t∥2
L2(πt) (56)

where ĝt = 1
ηt

(δCΩ(πt)− δCΩ(πt+1)).

Proof of Lemma 17. Define D2 = max1≤t≤T DΩ(u∥πt). We get

Regret(u) =
T∑
t=1

(Ft(πt)− Ft(u))

≤
T∑
t=1

(
1
ηt
DΩ(u∥πt)−

1
ηt
DΩ(u∥πt+1)

)
+

T∑
t=1

ηt
2ω ∥ĝt∥

2
L2(πt)

= 1
η1
DΩ(u∥π1)− 1

ηT

DΩ(u∥πT +1) +
T−1∑
t=1

(
1

ηt+1
− 1
ηt

)
DΩ(u∥πt+1) +

T∑
t=1

ηt
2ω ∥ĝt∥

2
L2(πt)

≤ 1
η1
D2 +D2

T−1∑
t=1

(
1

ηt+1
− 1
ηt

)
+

T∑
t=1

ηt
2ω ∥ĝt∥

2
L2(πt) = D2

ηT

+
T∑
t=1

ηt
2ω ∥ĝt∥

2
L2(πt).

Therefore, the proof is complete.

Following Lemma 17 and Assumption 1, we can have the inequality

T∑
t=1

Ft(πt)− Ft(u) ≤ D2

ηT

+
T∑
t=1

ηt
2ω ∥ĝt∥

2
L2(πt) ≤

D2

ηT
+ 2η1ω

−1KT.

where D2 = max1≤t≤T DΩ(u∥πt). Setting a constant step size ηt ≡ D
√
ω√

2KT yields an upper bound of
2D
√

2ω−1KT which proves the regret bound of O(
√
T ). Also, recall that the following lemma.

Lemma 18 (Lemma 3.5 of Auer et al., 2002). Let a sequence a1, a2, . . . , aT be non-negative real numbers.
If a1 > 0, then

T∑
t=1

at√∑t
i=1ai

≤ 2

√√√√ T∑
t=1

at. (57)

Setting a adaptive scheduling ηt = D
√
ω√

2
∑t

i=1
∥ĝi∥2

yields 2D
√

2ω−1 ∑T
t=1∥ĝt∥2 which has a possibility to be

lower than O(
√
T ) depending on {π◦

t }Tt=1. Therefore, we have formally expanded the convergence results of
OMD (Lei & Zhou, 2020; Orabona & Pál, 2018; Srebro et al., 2011) to SBPs.

A.5 Proof of Theorem 2

Since DΩ(·∥·) := DKL(·∥R)(·∥·) for a reference measure R ∈ C, we can apply Lemma 6 and achieve Eq. (17).
We write the following equivalent convex problems, using the equivalence of first variation for recursively
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defined Bregman divergences.〈
δCFt(πt), π − πt

〉
+ 1

ηt
DΩ(π∥πt) =

〈
δCDΩ(πt∥π◦

t ), π − πt
〉

+ 1
ηt
DΩ(π∥πt)

=
〈
δCΩ(πt)− δCΩ(π◦

t ), π − πt
〉

+ 1
ηt
DΩ(π∥πt)

= DΩ(π∥π◦
t )−DΩ(π∥πt) + 1

ηt
DΩ(π∥πt)

=
(

1
ηt

)
DΩ(π∥π◦

t ) +
(

1− ηt
ηt

)
DΩ(π∥πt)

We refer to Appendix B for the stability of Wasserstein gradient flows according to the LaSalle’s invariance
principle. We can now interpret δCEt as a dynamics that reaches an equilibrium solution

minimize
π∈C

〈
δCFt(πt), π − πt

〉
+ 1

ηt
DΩ(π∥πt) ⇔ minimize

π∈C
ηt DΩ(π∥π◦

t )︸ ︷︷ ︸
empirical estimates

+(1− ηt)DΩ(π∥πt)︸ ︷︷ ︸
proximity

,

At a glance, the above equation appears analogous to the interpolation search between two points, where
the influence of π◦

t is controlled by ηt.

A.6 Proof of Proposition 3

The proof is closely related to the work of Lambert et al. (2022) where the difference lies in we correct the
Wasserstein gradient term α̇k,τ for suitable for generally unbalanced weight. Suppose take parameterization
θ ∈ (P2(BW(Rd)), WFR), the space of Gaussian mixtures equipped with the Wasserstein-Fisher-Rao metric,
over the measure space of Gaussian particles. Following the arguments from Appendix B.2 and the studies
for this particular GMM problem (Lu et al., 2019; Lambert et al., 2022) of the Wasserstein-Fisher-Rao of
the KL functional is derived as

∇WFRKL(ρθ∥ρ∗) =
(
∇BWδKL(ρ∥ρ∗), 1

2

(
δKL(ρθ∥ρ∗)−

∫
δKL(ρ∥ρ∗)dρ

))
, (58)

where we can consider the WFR gradient is taken with respect to θ of its first argument. By Eq. (58),
we separately consider Wasserstein gradient in the Bures–Wasserstein space and the space of lighting that
controls the amount of each Gaussian particle.

Given a functional F : P2(X )→ R∪{+∞}, the Wasserstein gradient ∇WF ∩TρP2(X ) such that all {ρt}t∈R+

satisfy the continuity eqatuion starting from ρ0 (Jordan et al., 1998; Villani, 2021). If the functional is the
KL divergence KL(ρ∥π) we can compute the Bures–Wasserstein gradient for the Gaussian distribution with
respect to (m,Σ) using Eq. (76)

∇BWF (m,Σ) = (∇mF (m,Σ), 2∇ΣF (m,Σ))

=
(∫
∇mρm,Σ log ρm,Σ

π
, 2

∫
∇Σρm,Σ log ρm,Σ

π

)
,

with some abuse of notation for ρ. Using the following closed-form identities for the Gaussian distributions

∀x. ∇mρm,Σ(x) = −∇xρm,Σ(x) and ∇Σρm,Σ(x) = 1
2∇

2
xρm,Σ(x).

and the equivalence between the Hessian and Fisher information, we achieve the following form:

∇BWF (m,Σ) =
(
Eρ

[
∇ ρ
π

]
,Eρ

[
∇2 log ρ

π

])
.

Define rk,τ = √αk,τ . Since rt follows the Fisher–Rao metric in Definition 7, by the Proposition A.1 from Lu
et al. (2019) and specialization of Lambert et al. (2022), we can think of dynamics of K Gaussian particles
{αk,τ ,mk,τ ,Σk,τ}Kk=1 such that

ṙk,τ = −1
2

(
E

[
log ρθτ

ρ∗ (yk,τ )
]
− 1
zτ

K∑
ℓ=1

αℓE
[
log ρθτ

ρ∗ (yℓ,τ )
])
rk,τ ,

ṁk,τ = −E
[
∇ log ρθτ

ρ∗ (yk,τ )
]
, Σ̇k,τ = −E

[
∇2 log ρθτ

ρ∗ (yk,τ )
]
Σk,τ − Σk,τE

[
∇2 log ρθτ

ρ∗ (yk,τ )
]
,
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Since αk,τ = √rk,τ by previous definition, it is straightforward that

α̇k,τ = −
(
E

[
log ρθτ

ρ∗ (yk,τ )
]
− 1
zτ

K∑
ℓ=1

αℓE
[
log ρθτ

ρ∗ (yℓ,τ )
])
αk,τ .

For αk > 0. This completes the proof.

B A Riemannian Perspective on Wasserstein Geometries

B.1 An introduction to Otto calculus and the LaSalle invariance principle

In this appendix, we introduce a basic notion of Wasserstein gradient flows in the space of continuous
probability measures. We focus on describing the particular example, the KL cost, initially studied by JKO
(Jordan et al., 1998) and formally generalized by Otto (2001) in the context of Riemannian geometry. For
more details and mathematical rigor, we refer the reader to (Ambrosio et al., 2005b; Carrillo et al., 2023). For
X ⊂ Rd, and functions U : R≥0 → R; V,W : X → R. We first consider an energy function E : P2(X )→ R:

E(ρ) =
∫

X
U

(
ρ(x)

)
dx︸ ︷︷ ︸

internal potential U

+
∫

X
V (x) dρ(x)︸ ︷︷ ︸

external potential EV

+ 1
2

∫
X

(W ∗ ρ)(x) dρ(x)︸ ︷︷ ︸
interaction energy W

, ρ ∈ P2(X ). (59)

For this function, we refer to the solution of the following PDE:

∂tρt = ∇ ·
[
ρ∇(U ′ + V +W ∗ ρ)

]
, t ≥ 0 (60)

as the Wasserstein gradient flow of E . Following Otto’s formalization of Riemannian calculus on the contin-
uous probability space equipped with the Wasserstein metric (P2(X ),W2), the PDE (60) can be interpreted
close to an ODE of Riemannian gradient flow:

∂tρt = −∇WE(ρ), (61)

where ∇W denotes the Wasserstein-2 gradient operator ∇W := ∇·
(
ρ∇ δ

δρ

)
. Considering the Otto’s Wasserstein-

2 Riemannian metric g (Otto, 2001; Lott, 2008), under the absolute continuity, we see that

∂

∂t
E(ρt) = −gρ

(
∂ρ

∂t
,
∂ρ

∂t

)
= −

∫
X

∣∣∇(U ′ + V +W ∗ ρ)
∣∣2dρ(x) ≤ 0, (62)

which is closely related to the strict Lyapunov condition. As a result, dynamical systems following the
PDE are guaranteed to reach an equilibrium solution, under the LaSalle invariance principle for probability
measures (Carrillo et al., 2023).

For a representative example, we identify Eq. (59) for the relative entropy (the KL functional) for a target
density ρ∗ ∈ P2(X ) writes

E(ρ) = KL(ρ∥ρ∗) =
∫

X
U

(
ρ(x)

)
dx︸ ︷︷ ︸

U

+
∫

X
V (x) dρ(x)︸ ︷︷ ︸

EV

−C,

where U(s) = s log s, V (x) = − logρ∗(x), and C = U(ρ∗) + EV (ρ∗). Recall that δE(ρ) = log ρ(x)
ρ∗ , then we

have
∇WE(ρ) = G−1

ρ δE(ρ) = −∇ · [ρ∇δE(ρ)] = ∇ ·
[
ρ∇ log ρ

ρ∗

]
(63)

where G denotes the metric tensor in matrix form. We can derive the the Fokker–Planck equation

∂tρt = −∇ · (ρ∇ log ρ∗) + ∆ρt,

describing the time evolution of the probability density. Combining the convexity of KL and the LaSalle
invariance principle Wasserstein gradient flows, the PDE reaches a unique stationary solution of e−V (x)∫

X
e−V (y)dy

.
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B.2 Background on Wasserstein-Fisher-Rao and other related geometries

The Wasserstein-Fisher-Rao geometry is also known as Hellinger–Kantorovich in some of papers (Liero et al.,
2016; 2018). In this section, we provide an overview of the geometry tailored to meet our technical needs.
Along the way, we also briefly describe various metrics and geometries related to the Wasserstein space.

The Wasserstein space. Let µ, ν ∈ P2(Rd) be marginal probability densities with respect to the Lebesgue
measure. We define the squared Wasserstein distance by a problem of couplings (Villani, 2009)

1
2W

2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
Rd×Rd

1
2∥x− y∥

2dπ(x, y). (64)

The Wasserstein distance offers a principled metric for quantifying the discrepancy between the probability
distributions of random variables X and Y . Moreover, the Wasserstein space admits a fluid-dynamical
formulation, where optimal transport is represented by space-time velocity fields that satisfy the continuity
equation. The Brenier theorem (Villani, 2021) states that there exists an optimal mapping function that
pushes forward µ to ν, i.e. ν = ∇ζ#µ, where ζ : Rd → Rd ∪ {+∞} is a convex and lower semicontinuous
function. The property is formally referred to as an instance of the Monge–Ampère equation (Villani, 2009)

g
(
∇ζ(x)

)
det

(
∇2ζ(x)

)
= f(x) x ∈ Rd, (65)

after identifying the source and target densities with µ(x) = f(x)dx and ν(y) = g(y)dy, respectively. In
terms of fluid dynamics, the Brenier map T = ∇ζ internally yields a constant-speed geodesic {ρt}t∈[0,1],
time-dependent density evolving from ρ0 to ρ1, described by the following differential equation

ρt = (∇ζt)#ρ0, ∇ζt := (1− t)id + t∇ζ, (66)

where ρ0 = µ and ρ1 = ν. Assuming the existence of such geodesic, we can also understand finding the
optimality of {ρt}t∈[0,1] with the Benamou–Brenier formulation (Benamou & Brenier, 2000), which involves
a velocity field vt for minimizing the total L2 cost of transportation

W 2
2 (µ, ν) = min

ρ,v

{∫ 1

0

∫
Rd

1
2∥vt(x)∥2dρt(x) dt

∣∣∣ ρ0 = µ, ρ1 = ν, ∂tρt = −∇ · (vtρt)
}
. (67)

The equation dictates how the fluid should be transported (which shall be controlled by speed vt) while
satisfying the continuity equation of path measure on the right hand side. In the Otto calculus (Otto,
2001), we can understand the Benamou–Brenier formula (67) as a Riemannian geometry with respect to
the W2 metric. In this geometric interpretation, the tangent space at ρ ∈ P2(X ) are measures of the form
δρ = −∇ · (vρ) with a velocity field v ∈ L2(ρ,Rd) and the metric is given by

∥ρ∥2
ρ = inf

v∈L2(ρ,Rd)

{∫
∥v∥2 dρ

∣∣∣ δρ = −∇ · (vρ)
}
. (68)

The Benamou–Brenier formula exhibits dynamics in the Wasserstein space of probability densities where the
metric generally governed by dynamical mass transportation cost with the continuity equation, implying the
mass of probability is preserved.

Fisher–Rao metric. The Fisher–Rao metric is a metric on the space of positive measures P+ with possibly
different total masses. We are interested in the simple case where such measure are represented with a fininte
number of parameters such as exponential families. We use the following definition throughout the paper.
Definition 7 (Fisher–Rao metric). The Fisher–Rao distance between measures ρ0, ρ1 ∈M+ is given by

d2
FR(ρ0, ρ1) := inf

ρ,v∈A[ρ0,ρ1]

∫ 1

0

∫
Rd

1
2ω

2
t (x) dρt(x)dt = 2

∫
Rd

∣∣∣∣
√

dρ0

dλ −
√

dρ1

dλ

∣∣∣∣2
dλ

where A is an admissible set for a scalar field on positive measures; λ is any reference measure such that ρ
and ρ′ are both absolutely continuous with respect to λ, with Radon-Nikodym derivatives dρi

dλ .
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The equivalence between the square Fisher–Rao distance and squared Hellinger distance (Liero et al., 2016;
2018) quantifies the similarity between two probability distributions ranging from 0 to 1. The total varia-
tion bounds the squared form and is well-studied in the information geometry (Amari, 2016). The partial
differential equations of the form ∂tρt = αtρt are called reaction equations of αt, which describes dynamics
regarding concentration.

Wasserstein-Fisher-Rao. The Wasserstein-Fisher-Rao geometry, or equivalently, spherical Hellinger–
Kantorovich distance, considers liftings of positive, complete, and separable measures while preserving the
total mass. This can be expresses as combining the Fisher–Rao and Wasserstein geometries characterized
by PDE such as (Liero et al., 2016):

∂tρt +∇ · (vtρt) = ωt
2 ρt. (69)

One problem, is that the PDE (69) In order to stay the dynamics on the space of probability measures, which
is our interest, we adopt the definition from (Lu et al., 2019; Lambert et al., 2022) the equation becomes

∂tρt +∇ · (ρtvt) = 1
2

(
βt −

∫
Rd

βt dρt

)
ρt, (70)

which satisfies mass conservation. For the geometry, the norm on tangent space is given by

∥(βt, ρ)∥2
ρ :=

∫ {(
ω −

∫
Rd

βt dρ
)2

+ ∥v∥2
}

dρ. (71)

and we define the WFR distance as

d2
WFR(ρ0, ρ1) := inf

ρ,βt,v

{∫ 1

0
∥(βt, vt)∥2

ρt
dt

∣∣∣ {ρt, βt, vt}t∈[0,1] satisfies (70)
}
. (72)

Lu et al. (2019) demonstrated that Wasserstein-Fisher-Rao gradient dynamics over the Bures–Wasserstein
space can be analytically derived with closed form expressions. In this work, we were able to design a
computational method for OMD iterates in the WFR geometry. Using Proposition 3, this geometry allowed
the VMSB algorithm to perform tractable gradient computation within Wasserstein space.

B.3 The Bures–Wasserstein space and a mixture of Gaussians

The space of Gaussian distribution in the Wasserstein space is known as Bures–Wasserstein space, denoted
as BW(Rd). Given θ0, θ1 ∈ BW(Rd), we can identify the space with the manifold Rd × Sd++, where Sd++ denotes
the space of symmetric positive definite matrices. For θ0 = (m0,Σ0) and θ1 = (m1,Σ1) an affine map from
pθ0 to pθ1 is given as a closed-form expression:

∇ζ(x) = m1 + Σ−1/2
0

(
Σ1/2

0 Σ1Σ1/2
0

)1/2Σ−1/2(x−m0).

Note that the constant-speed geodesic also lies in BW(Rd), as pushforward of a Gaussian with an affine map
is also a Gaussian. Therefore, it can be said that BW(Rd) is a geodesically convex subset of P2(Rd). For the
Brenier map, a constant-speed geodesic in BW(Rd), for the tangent vector to the geodesic (r, S)

pθt
= exppθ0

(
t · (r, S)

)
= N

(
m0 + tr, (tS + Id)Σ0(tS + Id)

)
, (73)

and the dynamics at its current position at time t = 0 is represented as

ṁ0 = r, (74)
Σ̇0 = SΣ0 + Σ0S. (75)

Generalizing this geodesic dynamics, the Bures–Wasserstein gradient ∇BW f of a function f : Rd × Sd++ → R
for a tangent vector (r, S) at time 0 Altschuler et al. (2021)

〈
∇BWf(m0,Σ0), (r, S)

〉
BW = ∂tf(mt,Σt)

∣∣∣∣
t=0
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Identifying each component, we achieve the following result of Wasserstein gradient flow in Bures–Wasserstein
space as

∇BWf = (∇mf, 2∇Σf), (76)
where ∇m and ∇Σ denote Euclidean gradient. We refer readers to Appendix A of Altschuler et al. (2021)
and Appendix B of Lambert et al. (2022) for further useful geometric properties of Wasserstein spaces and
dedicated discussions for the Bures–Wasserstein space.

C Background on the Dynamic Schrödinger Bridge Problem

The equivalence between static and dynamic SBPs (Pavon & Wakolbinger, 1991; Léonard, 2012) has been
studied, allowing us to consider the both problems interchangeably. This appendix introduces a general
control dynamic formulation for describing SB and SB-FBSDE theory (Gigli & Tamanini, 2020; Chen et al.,
2022). These formulations establish fundamental links to optimal control theory and diffusion models.

C.1 Time-Symmetric Formulations of Optimal Control

For variable drift and diffusion coefficient, a stochastic process, and its time reversal respectively follow the
forward and backward Kolmogorov (or Fokker–Planck) equations (Fa, 2011; Gigli & Tamanini, 2020):

−∂ρ
∂t

+∇ ·
[
(ft +∇φt)ρt

]
= 1

2 ∇
2 ·

(
gtgT

t ρt
)
, (77a)

∂ρt
∂t

+∇ ·
[
(−ft +∇ψt)ρt)

]
= 1

2 ∇
2 ·

(
gtgT

t ρt
)
, (77b)

where ft and gt are time-varying base drift and diffusion coefficients which together determine a reference
measure R;5 ∇· denotes divergence; ∇2· denotes squared divergence. By subtracting Eq. (77b) from Eq. (77a),
the continuity equation

∂ρ

∂t
+∇ · (vρ) = 0 (78)

is achieved by v = f + 1
2 [∇φ−∇ψ]. Adding and scaling of Eq. (77), also derives another identity

(∇φ+∇ψ)ρ = ∇·
(
ggTρ

)
, (79)

where we can derive an explicit form of the score function

∇φ+∇ψ = ggT∇ log ρ+ ∇·ggT︸ ︷︷ ︸
heat flux

. (80)

The rightmost term of (80) is a heat flux, indicating the amount of diffusion per unit time.

The time-symmetry relation can be considered as a multivariate derivation of the the stochastic mechanics.
Generalizing the Nelson’s notation (Nelson, 2001), let us define the SB drifts and current drifts for continuous-
time path measures P and Q receptively satisfying Eq. (77) with the shared diffusion coefficient:

f+
P,t := fP,t +∇φP,t, f−

P,t := −fP,t +∇ψP,t, f+
Q,t := fQ,t +∇φQ,t, f−

Q,t := −fQ,t +∇ψQ,t (81)

vP = f+
P − f

−
P

2 , vQ =
f+
Q − f

−
Q

2 . (82)

Then, we consider the Girsanov theorem (Øksendal, 2003) for the drifts. The theorem formulate Radon-
Nikodym derivatives between path measures of stochastic processes.
Lemma 19 (Girsanov theorem; Theorem 8.6.3 of Øksendal, 2003). For adapted processes with a given time
interval [0, T ], let B̂s be an Itô process solving SDE

dB̂s = −α(ω, s) + dB′
s (83)

5In (7) of § 3, base drift is zero and diffusion is
√

ε.
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for ω ∈ X , 0 ≤ s ≤ T and B̂0 = 0, where α satisfies the Novikov’s condition. Then, B̂s is a Brownian
motion with respect to the path measure Q, satisfying the Radon-Nikodym derivative

dP
dQ (ω) := exp

(∫ T

0
α(ω, s)dB′

s −
∫ T

0

1
2∥α(ω, s)∥2ds

)
(84)

Next, we present the disintegration theorem in the context of probability measures (Léonard, 2014; Vargas
et al., 2021), which extends the product rule to measures that do not admit the traditional product rule.
Similar to the product rule, these theorems are essential for decomposing and manipulating path measures
for dynamic SBPs, eventually connecting various formulation of Schrödinger bridge problems.
Lemma 20 (Disintegration for continuous probability measures). For a probability space (Z,F ,P) where
Z is a product space: Z = X ×Y and 1⃝ X ,Y ∈ Rd and ϕi : Z → Zi is a measurable function known as the
canonical projection operator (i.e., ϕ1(x, ·) = x and ϕ−1

1 (x) = {(x, y)|ϕ1(x, y) = x}), There exists a measure
Py|x(·|x), such that ∫∫

X ×Y
f(x, y)dP (y) =

∫∫
X ×Y

f(x, y)dPy|x(y|x)dP (ϕ−1
1 (x)) (85)

where Px(·) = P (ϕ−1
1 (·)) is a probability measure, referred to as a push-forward measure, and corresponds to

the marginal distribution.

The theorem suggests that one way to achieve KL projection between path measures is by matching drifts
with the time reversal drifts of (γ+, γ−). Under the Girsanov theorem, we observe that

KL(P∥Q) = KL(P0∥Q0) + EP
[∫ T

0

1
2∥f

+
P,t − f

+
Q,t∥

2dt
]

= KL(PT∥QT ) + EP
[∫ T

0

1
2∥f

−
P,t − f

−
Q,t∥

2dt
] (86)

Let us consider a reference measure Q = R with based drift and diffusion i.e. f+
Q = f . Knowing the

boundary conditions P0 = R0 = µ and RT = QT = ν, Eq. (86) can be reduce to the following problems

KL(P∥R) = inf
(v+,ρ+)

∫ T

0

∫
Rd

1
2 |v

+
t (x)|2ρ+

t (x) dxdt, (87a)

= inf
(v−,ρ−)

∫ T

0

∫
Rd

1
2 |v

−
t (x)|2ρ−

t (x) dxdt, (87b)

and Eqs. (6) and (7) in the main text represent a simplified case when R = W ε. Furthermore, by combining
Eq. (86), we get a symmetrized version of relative entropy (KL functional)

KL(P∥Q) = 1
2KL(P0∥Q0) + 1

2KL(PT ∥QT ) + EP
[∫ T

0

1
4∥f

+
P − f

+
Q∥

2 + 1
4∥f

−
P − f

−
Q∥

2dt
]

(88)

Finally, using Eq. (79) we get the constrained problem:

inf
(ρ̃,ṽ)

∫ T

0

∫
Rd

(
1
2∥ṽ(t, x)∥2 + 1

8∥∇ logρ̃(t, x)∥2
ggT + 1

8∥∇ · ggT∥2
)
ρ̃(x, t) dtdx,

such that ∂ρ̃

∂t
+∇· [(f + ṽ)ρ̃] = 0, ρ̃(0, ·) ≡ µ, ρ̃(T, ·) ≡ ν.

To solve this problem, we convert the problem to the Lagrangian function:

L(ρ, v) =
∫ T

0

∫
Rd

1
2∥ṽ(t, x)∥2ρ̃(t, x) + 1

8∥∇ log ρ̃(t, x)∥2
ggT ρ̃(t, x) + 1

8∥∇ · ggT(t, x)∥2ρ̃(t, x)

+ λ(t, x)
(
∂ρ̃

∂t
+∇· ((f + ṽ)ρ̃)

)
dxdt
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where λ is C1,2-Lagrangian multiplier. After integration by part, assuming that limits for x→∞ are zero,
and observing that the boundary values are constant over Π(µ, ν), we resort to the following problem:

inf
(ρ̃,ṽ)∈P×V

∫
Rd

∫ T

0

[
1
2∥ṽ(t, x)∥2 + 1

8∥∇ log ρ̃(t, x)∥2
ggT + 1

8∥∇ · ggT(t, x)∥2 +
(
−∂λ
∂t
−∇λ · (f + ṽ)

)]
ρ̃(t, x)dtdx.

(89)
Pointwise minimization with respect to ṽ for each fixed flow of probability densities ρ̃ gives v∗(x, t) = ∇λ(x, t).
Plugging this form of the optimal control into Eq. (89), we get the functional of ρ̃ ∈ P:

J (ρ̃) = −
∫
Rd

∫ T

0

[
∂λ

∂t
+ (f + v) ·∇λ+ 1

2∥∇λ∥
2 + 1

8∥∇ log ρ̃(t, x)∥2
ggT + 1

8∥∇ · ggT(t, x)∥2
]
ρ̃(t, x)dtdx

Utilizing the existence and uniqueness of SDE solutions (Øksendal, 2003), the optimality of the problem is
uniquely identified by ∇λ being the mean current of SB-FBSDE which is explained in the following section.

C.2 The Schrödinger bridge forward-backward stochastic differential equation theory

We introduce a complete, multivariate derivation of SB-FBSDE (Chen et al., 2022; Liu et al., 2022), which
is an explicit representation of a dynamic Schrödinger bridge model using the forward-backward stochastic
differential equation theory. First, we present the Itô’s lemma for stochastic differential equations.
Lemma 21 (Itô’s lemma (Itô, 1951)). Let Xt be the solution to the Itô SDE:

dXt = f(t,Xt) dt+ g(t,Xt)dWt

Then, the stochastic process u(t,Xt), where u ∈ C1,2([0, T ],Rd), is also an Itô process satisfying

du(t,Xt) = ∂u(t,Xt)
∂t

dt+
[
∇u(t,Xt)Tf(t,Xt) + 1

2 Tr[ggT(t,Xt)∇2u(t,Xt)]dWt.

]
dt

+ [∇u(t,Xt)Tg(t,Xt)]dWt

(90)

Next, we introduce the nonlinear Feynman–Kac lemma, which predicts partial differential equation involving
potentials, or value functions for describing SDE.
Lemma 22 (Nonlinear Feynman–Kac (Exarchos & Theodorou, 2018; Yong & Zhou, 1999)). Let u ≡ u(x, t)
be a function that is twice continuously differentiable in x ∈ Rd and once differentiable in t ∈ [0, T ], i.e.,
u ∈ C1,2([0, T ],Rd). Consider the following second-order parabolic PDE,

∂u

∂t
+ 1

2 Tr(ggT∇2u) +∇uTf(t, x) + h(t, x, u, gT∇u) = 0, u(T, ·) ≡ τ(·), (91)

where the functions f , g, h, and τ satisfy proper regularity conditions. Specifically, 1⃝ f , g, h, and τ are
continuous, 2⃝ f(t, x) and g(t, x) are uniformly Lipschitz in x, and 3⃝ h(t, x, y, z) satisfies quadratic growth
condition in z. Then, Eq. (91) exists a unique solution v = u such that the following stochastic representation
(known as the nonlinear Feynman–Kac transformation) holds:

Yt = u(t,Xt), Zt = gT(t,Xt)∇u(t,Xt) (92)

where (Xt, Yt, Zt) are the unique adapted solutions to the following FBSDEs:

dXt = f(Xt, t)dt+ g(Xt, t)dWt, X0 = x0, (93a)
dYt = −h(Xt, Yt, Zt, t)dt+ ZT

t dWt, YT = τ(XT ). (93b)

The original deterministic PDE solution v(x, t) can be recovered by taking conditional expectations:

E[Yt|Xt = x] = u(t, x), E[Zt|Xt = x] = g(t, x)T∇u(t, x).
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SB-FBSDE. SB-FBSDE is a class of probabilistic models that, inspired by optimal control and neural
differential equations (Chen et al., 2022; Kirk, 1970; Chen et al., 2018a) to generalize the score-based diffusion
models. We state a more general expression of SB-FBSDE than previous literature

dXt = f+
t dt+ gTdWt = (ft + gZt)dt+ gTdWt

dYt = 1
2∥Zt∥

2dt+ ZT
t dWt

dŶt =
(

1
2∥Ẑt∥

2 + ẐT
t Zt +∇·f−

t + Gt

)
dt+ ẐT

t dWt

(94a)

(94b)

(94c)

where we define f−
t := −ft + gtẐt and Gt := 1/2∇2 · (ggT

t ). The Feynman–Kac transform (Lemma 22) reads

Yt = logΨ(t,Xt), Zt = g(t,Xt)T∇ logΨ(t,Xt), Ŷt = logΨ̂(t,Xt), Ẑt = g(t,Xt)T∇ logΨ̂(t,Xt),

which immediately suggests that E[Yt|Xt = x] = logΨ(t, x) and E[Ŷt|Xt = x] = logΨ̂(t, x). The above
arguments also holds for the backward timeline of s with equivalent Ψ̂ and Ψ interchange their roles.

C.3 Derivations for Multi-Variate SB-FBSDE on General Diffusion

C.3.1 A Hopf–Cole Transformation

For an Hamiltonian H, we consider a dynamic formulation with the following PDE that generalizes Eq. (7){
−∂tu+H(x,∇u)− 1

2 Tr(ggT∇2u) = 0,
∂tρ−∇·(∇pH(x,∇u) ρ)− 1

2∇
2 · (ggTρ) = 0.

(95)

This can be viewed as blending of the Hamilton-Jacobi-Bellman equation and the Fokker–Planck equation
(Buckdahn et al., 2017). For detailed derivation, we use the Hopf–Cole transform (Hopf, 1950; Cole, 1951)

Ψ(t, x(t)) := exp(−u(t, x(t))), Ψ̂(ξ(t), t) := ρ(t, x(t)) exp
(
u(t, x(t))

)
,

where ρ(t, x) is an arbitrary density function. Note that the mulvariate calculus yields

∇Ψ = − exp(−u)∇u, ∇2Ψ = exp(−u)[∇u∇uT −∇2u],

∇Ψ̂ = exp(u)(ρ∇u+∇ρ), ∇2Ψ̂ = exp(u)
[
ρ∇u∇uT +∇ρ∇uT +∇u∇ρT +∇2ρ+ ρ∇2u

]
.

Hence, we can draw the following derivations regarding the control-affine Hamiltonian, i.e., H(x,∇u) =
1
2∥gT∇u∥2 −∇uTf :

∂Ψ
∂t

= exp(−u)
(
−∂u
∂t

)
= exp(−u)

(
−1

2∥g
T∇u∥2 +∇uTf + 1

2 Tr(ggT∇2u)
)

= exp(u)
((
∇· (ρ(ggT∇u− f)) + 1

2∇
2 · (ggTρ)

)
+ ρ

(
1
2∥g

T∇u∥2 −∇uTf − 1
2 Tr(ggT∇2u)

))
= 1

2 Tr(ggT∇2Ψ̂) +∇· (ggT)T∇Ψ̂ + 1
2∇

2 · (ggT)Ψ̂−∇Ψ̂Tf − Ψ̂∇·f

= 1
2∇

2 · (ggTΨ̂)−∇Ψ̂Tf − Ψ̂∇·f = −∇· (Ψ̂f)

and we have derivations for the control PDE (95), which fully generalizes Eq. (7).

C.3.2 Nonlinear Multi-variate Feynman–Kac Derivations

Let us apply the Itô’s lemma to the u := log Ψ(t,Xt) where Xt follows the forward equation:

d log Ψ = ∂ log Ψ
∂t

+
[
∇ log ΨT(

f + ggT∇ log Ψ
)

+ 1
2 Tr

(
ggT∇2 log Ψ

)]
dt+ g∇ log ΨTdWt.
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Notice that the PDE of ∂ log Ψ
∂t is achieved by applying the Hopf–Cole transform

∂ log Ψ
∂t

= 1
Ψ

(
−∇ΨTf − 1

2 Tr(ggT∇2Ψ)
)

= −∇ log ΨTf − 1
2 Tr(ggT∇2 log Ψ)− 1

2∥g
T∇ log Ψ∥2.

Therefore, combining above differential terms yields

d log Ψ = 1
2∥g∇ log Ψ∥2 dt+ g∇ log ΨT dWt. (96)

Also, apply the Itô lemma by instead substituting u := log Ψ̂(t,Xt)

d log Ψ̂ = ∂ log Ψ̂
∂t

dt+
[
∇ log Ψ̂T(f + ggT∇ log Ψ) + 1

2 Tr(ggT∇2 log Ψ̂)
]
dt+ g∇ log Ψ̂TdWt.

Notice that the PDE of ∂ log Ψ̂
∂t obeys

∂ log Ψ̂
∂t

= 1
Ψ̂

(
−∇·(Ψ̂f)+ 1

2∇
2·(ggTΨ̂)

)
= −∇ log ΨTf−∇·f+ 1

2∥g
T∇ log Ψ̂∥2+ 1

2 Tr(ggT∇2 log Ψ̂)+ 1
2∇

2·(ggT)

where 1
2∇

2 · (ggT) is the adjustment term for non-constant diffusion g. This yields

d log Ψ̂ =
[

1
2∥g

T∇ log Ψ̂∥2 +(gT∇ log Ψ̂)T(gT∇ log Ψ)+∇·(ggT∇ log Ψ̂−f)+ 1
2∇

2·(ggT)
]

dt+g∇ log Ψ̂TdWt,

Therefore, with the nonlinear FK transformation (Pereira et al., 2020), we can write the SB-FBSDE of the
system system

dXt = (ft + gZt) dt+ g dWt,dYt = 1
2∥Zt∥

2 dt+ ZT
t dWt

dŶt =
[

1
2∥Ẑt∥

2 + ẐT
t Zt +∇·

(
gtẐt − ft

)
+ 1

2∇
2 · (ggT

t )
]
dt+ ẐT

t dWt

where we find forward control and reverse drift has the relationship with FK transformation as

f+
t = ft + gtZt and f−

t = gtẐt − ft

Derivation of the second FBSDEs system in time-reversal follows the identical flow, except that we need to
rebase the PDE to the “reversed” time coordinate s := T − t. This can also be derived by reformulating (95)
under the s coordinate, then applying the following Hopf–Cole transform.

Finally, we present the SB-FBSDE for X(t)

SB-FBSDE
(Forward)

:



dXt = f+
t dt+ gt dWt,

dYt = 1
2∥Zt∥

2dt+ ZT
t dWt,

dŶt =
(

1
2∥Ẑt∥

2 + ẐT
t Zt +∇·f−

t + Gt

)
dt+ ẐT

t dWt,

(97a)

(97b)

(97c)

where Gt := 1/2∇2·(ggT
t ). The SB-FBSDE comprises a dynamic system of evolution toward a unique solution

with respect to the cost of 1/2∥Z∥2 and 1/2∥Ẑ∥2. Since (Z, Ẑ) models the pure commitment of control, learning
through Eq. (97b) corresponds to satisfying Hamilton–Jacobi solution of the minimum control. The dynamic
Schrödinger bridge problem stems from a time-symmetric optimal control formulation, and its associated
stochastic flow naturally implements the minimization of a relative entropy cost functional via the Girsanov
theorem.
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Table 5: Hyperparameters.

2D EOT MSCI MNIST (Pixel) MNIST (Latent) FFHQ
Dimension d 2 {2, 16, 64, 128} {50, 100, 1000} 784 128 512
Modality K {8, 20, 50} [5, 100] 50 {256, 1024, 4096} {256, 1024} 10
Volatility ε 0.1 {0.1, 1, 10} 0.1 10−4 10−3 {0.1, 0.5, 1.0, 10.0}

Total steps (τ) 20,000 30,000 10,000 100,000 30,000 20,000
OMD steps (t) 400 600 200 1000 375 400

D Experimental Details

D.1 Rationales of the GMM parameterization for VMSB

Our parameterization choice follows LightSB (Korotin et al., 2024) because of the following two key reasons.
First, GMMs ensure that the model space satisfies certain measure concentration, which is suitable for
analyzing theoretical properties of SB models (Conforti et al., 2023). Firstly, we analyzed the regret under
the log Sobolev inequality in Proposition 2. Enforcing the LightSB parameterization will automatically
satisfy Assumption 1. Secondly, VMSB requires tractable gradient computation of Wasserstein gradient flow
in § 4.3. As shown in Proposition 3, we can perform VMSB using the variational inference in the WFR
geometry of the GMM parameterization.

D.2 Hyperparameters.

The hyperparameters are displayed in Table 5. For step size scheduling, we followed the theoretical result in
Theorem 1 and Proposition 1, and chose η1 = 1 and ηT ∈ {0.05, 0.1} with harmonic sequences, as illustrated
in Fig. 5. For high dimensional tasks in MSCI (1000d), MNIST-EMNIST (784d), and latent FFHQ Image-
to-Image transfer tasks (512d), the initial warm up steps for 10% of the total learning helped starting a
training sequence from a reasonable starting point as this set ηt = 1 as verified in Fig. 6 (c).

x ∼ µ, y ∼ ν ε = 0.05 ε = 1.0

Figure 10: SB in 2D synthetic datasets. SB processes Tθ with different volatility ε.

D.3 2D Synthetic datasets and the online learning setup

Fig. 10 demonstrates that our method achieved the SB model for the various volatility ε. For various
configurations, most of baseline SB algorithms are capable of learning in the 2D space (10). In order to align
our theoretical arguments for online learning, we selectively offered with a rotating filter that only 12.5%
of the samples to the SB solvers based on the angles measured from the origin. For instance, we provided
data for angle of [0, π/4] for first t ∈ [0, 25) steps, and so on. This partial observability is periodically
rotated through the data stream, thereby testing the algorithm’s ability to learn robustly under sparse and
shifting information. Since this requires 200 batches for the full rotation of the filter, the problem became
substantially more challenging, and LightSB and LightSB-M algorithms oftentimes failed on this online
learning setting.

43



Under review as submission to TMLR

D.4 Entropic optimal transport benchmark

Our hyperparameter for the EOT benchmarks choices mostly follow the official repositories of the LightSB6

and LightSB-M7. Since it is known that initial distribution µ is the standard Gaussian distribution (Gushchin
et al., 2024b), we only trained vθ using the variational MD algorithm. Due to the huge number of configura-
tions, some hyperparameter settings were not clearly reported. Thus, we conducted our own examination on
these cases; we replicated better performance than the reported numbers by carefully dealing each benchmark
configuration.

D.5 SB learning with adversarial networks

Suppose a discriminator network, denoted as D, is equipped with useful architectural properties for discrim-
inating images. The discriminator outputs a binary classification regarding authenticity through sigmoidal
outputs, i.e., D(x) ∈ [0, 1] ∀x ∈ R28×28×1. For image samples x = {x1, . . . , xN} ∼ µ, we trained the
discriminator D with the logistic regression:

maximize
D

1
N

N∑
n=1

logD(yn) + 1
B

M∑
m=1

log(1−D(ŷmϕ )), (98)

where ŷmϕ in the right-hand side denotes a sample from an SB model parameterized by ϕ, generated using
an input xm. From our experiment setting, we use the SB distribution ρϕ which is generated by π⃗ϕ from
samples of the marginal µ. This makes the objective of adversarial learning of training the law of SB process
at time t = 1. For a completely separable metric space, it is well known that the discriminator converges at
D(x) = ν(x)

ν(x)+ρϕ(x) (Goodfellow et al., 2014).

Table 6: A simple discriminator D.

Layer Type Shape
Input Layer (-1, 28, 28, 1)

Conv Layer 1 (-1, 14, 14, 64)
Conv Layer 2 (-1, 7, 7, 128)
Batch Norm (-1, 7, 7, 128)

Flatten (-1, 6272)
Dense (-1, 1024)
Dense (-1, 1)

In the adversarial learning technique, retaining a fully differentiable
computation path from the input pixels to the discriminator outputs
is essential. Therefore, we implemented a differentiable inference
function using the categorical reparameterization trick with Gumbel-
softmax (Jang et al., 2016), as well as the Gaussian reparameteri-
zation trick. These reparameterization tricks enabled learning with
samples generated through LightSB-adv-K, directly by maximizing

J̃ (ϕ) = 1
M

M∑
m=1

logD(ymϕ )− log(1−D(ymϕ )),

where the term essentially represents the logit function logit(D(y)) = log D(y)
1−D(y) . When D approaches the

equilibrium, we can approximate the following KL learning

J̃ (ϕ) ≈
∫

log ν(y)
ρϕ(y)ρϕ(y)dy = KL(ρϕ∥ν),

where the KL functional directly corresponds to the divergence minimization of the SB problems (6) and (28),
under the disintegration theorem of Schrödinger bridge (Léonard, 2014).

In the MNIST-EMNIST image transfer tasks, we set one of the baseline as the aforementioned adversarial
learning as the baseline for training the SB model for the pixel space. Among our attempts, while the
LightSB-adv method successfully generated learning signals to train GMM-based models, the losses proposed
by LightSB (Korotin et al., 2024) and LightSB-M (Gushchin et al., 2024a) failed to generate relevant images
with high fidelity. For the discriminator, we used the DCGAN (Radford, 2015) architecture shown in Table 6,
and this can be replaced with more complex architecture for more realistic images with high fidelity. We
fixed the covariance after warm-ups in 10,000 steps, and we used the entropy coefficient ε = 10−4 based on
our hyperparameter search.

6https://github.com/ngushchin/LightSB
7https://github.com/SKholkin/LightSB-Matching
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Table 7: Training time for the 100-dimension single-cell data problem.

Sinkhorn (IPF) LightSB VMSB
8m (GPU) 66s (CPU) 32s (GPU) / 22m (CPU)

Table 8: Generation time for the 784-dimension MNIST pixel data.

K = 64 K = 256 K = 1024 K = 4096 NN (SDE)
GPU 721µs 726µs 739µs 740µs 1.372s
CPU 60.140ms 133.333ms 428.433ms 1.527s −

D.6 Latent diffusion experiments

For the latent space, we pretrained ALAE (Pidhorskyi et al., 2020) model using the both MNIST and
EMNIST (first ten letters) datasets. The ALAE is a high-fidelity autoencoder internally use an adversarial
learning to generate high-fidelity images. For the encoder network, as well as decoder network, we mostly
adopt the DCGAN architecture. Therefore, the encoder is mostly identical to Table 6 except the point
the final layer is 128 dimension instead of 1, and the decoder is a convolutional neural network with four
convolutional layers.

Following the latent SB setting (Korotin et al., 2024), we assessed our method by utilizing the ALAE model
(Pidhorskyi et al., 2020) for generating 1024× 1024 images of the FFHQ dataset (Karras et al., 2019). The
base generative model has a latent embedding layer which represent 512-dimensional embedding space. The
goal is to transport a point latent space to another, performing unpaired image-to-image translation tasks
for four distinct cases: Adult→ Child, Child→ Adult, Female→ Male, and Male→ Female. We conducted a
quantitative analysis using the ED on the predefined ALAE embedding as a metric for evaluation.

E Discussion on Implementation of VMSB

Limitations. GMM-based SB models, due to the lack of deep structural processing, tend to focus on
instance-level associations of images in EOT couplings rather than the subinstance- or feature-level associ-
ations that are intrinsic to deep generative models. As a result, while VMSB produces statistically valid
representations of optimal transportation within the given architectural constraints, these outcomes may
be perceived as somewhat “synthetic.” Nevertheless, GMM-based models still hold an irreplaceable role in
numerous problems such as latent diffusion and variational methods, due to their simplicity and distinctive
properties (Korotin et al., 2024). As we successfully demonstrated in two distinct ways of interacting with
neural networks for solving unpaired image transfer, we hope our theoretical and empirical findings help
novel neural architecture studies.

Computation. For fast computation, we utilized the JAX automatic differentiation library (Bradbury
et al., 2018) for computing gradients and Hessians in Proposition 3. For each input, the computational
of VMSB requires quadratic time for computing the Wasserstein gradient flow (asymptotically O(K2ny))
and the memory footprint for estimating with internal Gaussian particles is linear (asymptotically O(Kny)).
There are inherent trade-offs between accuracy and computational efficiency when choosing between LightSB
and VMSB; nevertheless, VMSB remains significantly more manageable and computationally tractable com-
pared to deep learning methods for moderate settings. For instance, we have presented performance regarding
efficiency and scalability up to 1,000 dimensions in the experiments. Driven by parallel nature of Gaussian
particles, we observed that the computation of Proposition 3 favors vectorized instructions, and the ex-
pected speed enhancement from using GPUs is much more evident in neural network cases. In Table 7, we
report the wall-clock time for a 100-dimensional single-cell data problem Vargas et al. (2021); Korotin et al.
(2024), where the performance is reported in Table 3. Additionally, training time in the MNIST-EMNIST
translation is reported in Table 11 in the ablation study. This property also holds for generation, allowing
practitioners to deploy the model much faster on GPUs. In Table 8, we also report that generating 100
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MNIST samples from 4096 Gaussian particles, equipped with competitive performance, can be done 1,854
times faster under the same hardware. Since VMSB a simulation-free, the GMM generation process does
not suffer from discretization errors of SDE.

Reproducibility statement. Comprehensive justification and theoretical background are presented in
Appendices A and B. Since the primary contributions of this paper pertain to the learning methodology,
we ensured that all architectures and hyperparameters remained consistent across the LightSB variants.
All datasets utilized in this study are available for download alongside the training scripts. Please refer to
Appendix D for more information on the experimental setups.

Table 9: EOT Benchmark scores of BW2
2-UVP ↓ (%).

Type Solver
ε = 0.1 ε = 1 ε = 10

d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128
Classical solvers (best)† 0.016 0.05 0.25 0.22 0.005 0.09 0.56 0.12 0.01 0.02 0.15 0.23

Bridge-M DSBM (Shi et al.)‡ 0.03 0.18 0.7 2.26 0.04 0.09 1.9 7.3 0.26 102 3563 15000
Bridge-M SF2M-Sink (Tong et al.)‡ 0.04 0.18 0.39 1.1 0.07 0.3 4.5 17.7 0.17 4.7 316 812
rev. KL LightSB (Korotin et al.) 0.004± 0.004 0.009± 0.004 0.023± 0.003 0.036± 0.003 0.004± 0.005 0.009± 0.003 0.016± 0.002 0.035± 0.003 0.009± 0.004 0.013± 0.007 0.034± 0.004 0.066± 0.008
Bridge-M LightSB-M (Gushchin et al.) 0.005± 0.003 0.012± 0.004 0.034± 0.003 0.063± 0.002 0.005± 0.001 0.027± 0.007 0.057± 0.010 0.108± 0.004 0.004± 0.002 0.017± 0.007 0.133± 0.010 0.409± 0.042

EMA LightSB-EMA 0.004± 0.002 0.014± 0.003 0.021± 0.003 0.044± 0.001 0.004± 0.003 0.009± 0.004 0.013± 0.001 0.032± 0.004 0.004± 0.001 0.008± 0.003 0.023± 0.013 0.010± 0.002
Var-MD VMSB (ours) 0.003± 0.001 0.007± 0.003 0.018± 0.002 0.039± 0.001 0.002± 0.002 0.004± 0.001 0.009± 0.001 0.023± 0.003 0.005± 0.007 0.006± 0.004 0.011± 0.010 0.011± 0.004
Var-MD VMSB-M (ours) 0.002± 0.001 0.010± 0.067 0.031± 0.004 0.056± 0.005 0.003± 0.004 0.005± 0.002 0.032± 0.006 0.077± 0.018 0.003± 0.003 0.011± 0.004 0.117± 0.012 0.429± 0.748

Table 10: EOT scores of cBW2
2-UVP, the fully extended version of Table 2.

Type Solver
ε = 0.1 ε = 1 ε = 10

d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128 d = 2 d = 16 d = 64 d = 128
Classical solvers (best)† 1.94 13.67 11.74 11.4 1.04 9.08 18.05 15.23 1.40 1.27 2.36 1.31

Bridge-M DSBM (Shi et al.)‡ 5.2 10.8 37.3 35 0.3 1.1 9.7 31 3.7 105 3557 15000
Bridge-M SF2M-Sink (Tong et al.)‡ 0.54 3.7 9.5 10.9 0.2 1.1 9 23 0.31 4.9 319 819
rev. KL LightSB (Korotin et al.) 0.007± 0.005 0.040± 0.023 0.100± 0.013 0.140± 0.003 0.014± 0.003 0.026± 0.002 0.060± 0.004 0.140± 0.003 0.019± 0.005 0.027± 0.005 0.052± 0.002 0.092± 0.001
Bridge-M LightSB-M (Gushchin et al.) 0.017± 0.004 0.088± 0.014 0.204± 0.036 0.346± 0.036 0.020± 0.007 0.069± 0.016 0.134± 0.014 0.294± 0.017 0.014± 0.001 0.029± 0.004 0.207± 0.005 0.747± 0.028

EMA LightSB-EMA 0.005± 0.002 0.040± 0.014 0.078± 0.007 0.149± 0.006 0.012± 0.002 0.022± 0.003 0.051± 0.001 0.127± 0.002 0.017± 0.003 0.021± 0.003 0.025± 0.002 0.042± 0.002
Var-MD VMSB (ours) 0.004± 0.001 0.012± 0.002 0.038± 0.002 0.101± 0.002 0.010± 0.001 0.018± 0.001 0.044± 0.001 0.114± 0.001 0.013± 0.001 0.019± 0.001 0.021± 0.008 0.040± 0.001
Var-MD VMSB-M (ours) 0.015± 0.016 0.067± 0.036 0.108± 0.020 0.253± 0.107 0.010± 0.001 0.019± 0.001 0.094± 0.010 0.222± 0.033 0.013± 0.001 0.029± 0.003 0.193± 0.015 0.748± 0.036

F Additional Experimental Results

F.1 Additional results on the EOT benchmark

We present the full results of EOT benchmark experiments. Tables 9 and 10 show comprehensive statistics
on the EOT benchmark with more SB solvers. As mentioned in § 6.2, the VMSB and VMSB-M solvers
consistently brought better performance with low standard deviations of scores for cBW2

2-UVP and BW2
2-

UVP measures. We note that the experiment was conducted in a highly controlled setting with identical
model configurations; with all other aspects controlled and outcomes differing only by learning methods, the
consistent performance gains of our work were a well-anticipated result from our theoretical analysis.

F.2 Additional image generation results

64 256 1024 40960
DSBM

100

VMSB-adv

Number of Gaussian modalities K

FI
D

Figure 11: FID vs. modality.

In the unpaired EMNIST-to-MNIST translation task for the raw 784 pixel,
we measured FID scores for various K for the SB parameterization. We
considered K ∈ {64, 256, 1024, 4096} with ε = 10−4 for our VMSB algo-
rithm. Our observations, both qualitative and quantitative, indicate that
higher modalities yield higher-quality samples. In every case ofK, VMSB-adv
outperformed its counterpart. For instance, Fig. 11 demonstrates that VMSB
generates more diverse samples with high fidelity. Notably, we achieved the
competitive FID score of 15.471 using a standard neural network discrimina-
tor with relatively low MSD similarity scores. As the latent VMSB model
for 128-dimensional embeddings also achieved the considerably low FID score
of 9.558 (Table 4), we concluded that VMSB showed promising quality im-
provements for the both case, and this supports the generality of our theory.
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Figure 12: Generation results of unpaired image-to-image translation in the raw pixel space. We considered
image data from MNIST and EMNIST (containing the first ten letters), sized as 28×28 pixels. For comparison,
we trained GMM-based models with adversarial learning using a simple logistic discriminator (Table 6). This
was used as both a benchmark and a tractable target SB model (LightSB-adv-K). VMSB in the raw pixel
domain demonstrate qualitative improvements in terms of diversity and clarity of image samples.

Adult → Child VMSB VMSB-M Male → Female VMSB VMSB-M

Child → Adult VMSB VMSB-M Female → Male VMSB VMSB-M

Figure 13: Image-to-Image translation on a latent space for the VMSB and VMSB-M algorithms.

Fig. 12 demonstrates that VMSB generated more diverse samples with high fidelity. Note that the pro-
posed method suffers less from mode collapse than LightSB method (especially on the transfer MNIST-
to-EMNIST), with the same Gaussian mixture setting. This result is especially a good point where the
difference only lies in the learning methodology, which aligns with our theory. Tables 11 and 12 effectively
show the statistics and FID scores on both the train and the test datasets. The quantitative results highlight
that the VMSB solver is more performant with less overfitting than its counterpart. Consequently, our claim
regarding the stability of SB solution acquisition is verified by additional experiments involving pixel spaces.

We present Embedding-ED scores (Jayasumana et al., 2024) in Table 13, and some qualitative generation
results which is visualized in Fig. 9. For quantitative results, we calculated statistics from ED scores on
embeddings of the ALAE model (Pidhorskyi et al., 2020), for the four different unpaired image-to-image
translation tasks. The results show that VMSB is capable of translating an arbitrary representation, which

Table 11: MNIST transfer statistics.

FID Time Parameters
LightSB-256 61.257 30m 0.4M
LightSB-1024 26.487 53m 1.6M
LightSB-4096 20.017 135m 6.4M
VMSB-256 52.634 76m 0.4M
VMSB-1024 24.022 203m 1.6M
VMSB-4096 15.471 44h 6.4M
DSBM-IMF 11.429 42h 6.6M

Table 12: FID scores and differences for generated MNIST.

FID (Train) FID (Test) Diff. (test − train).
LightSB-adv-256 60.746 61.604 0.858
LightSB-adv-1024 25.934 26.569 0.635
LightSB-adv-4096 19.960 20.196 0.237
VMSB-adv-256 51.684 52.283 0.599
VMSB-adv-1024 23.853 24.053 0.200
VMSB-adv-4096 15.508 15.496 −0.012

47



Under review as submission to TMLR

is closer to target domain than baselines. In Fig. 13, as well as Fig. 9, we can see that VMSB and VMSB-
M algorithms generate FFHQ data with a given translation task. To qualitatively verify these generation
results, we generated images using LightSB and VMSB in Figures 14 and 15. Since these improvements
are purely based on information geometry and learning theory, we anticipate that following works on the
variational principle application across various fields such as image processing, natural language processing,
and control systems (Caron et al., 2020; Liu et al., 2023; Alvarez-Melis & Jaakkola, 2018; Chen et al., 2022).

Table 13: ALAE Embedding-ED scores. To evaluate the performance, we computed averages and standard
deviations of the ED scores across four different transfer tasks.

ε = 0.1 ε = 0.5 ε = 1.0 ε = 10.0
SF2M-Sink 0.02916± 0.00145 0.04112± 0.00191 0.05670± 0.00249 0.06641± 0.00441
DSBM-IMF 0.02275± 0.00101 0.03358± 0.00142 0.04866± 0.00168 0.06474± 0.00381

LightSB 0.01086± 0.00045 0.02382± 0.00093 0.03462± 0.00148 0.05376± 0.00273
LightSB-M 0.01066± 0.00055 0.02366± 0.00107 0.03519± 0.00153 0.05975± 0.00298

VMSB 0.01002± 0.00055 0.02288± 0.00101 0.03396± 0.00174 0.05315± 0.00307
VMSB-M 0.00997± 0.00054 0.02298± 0.00106 0.03391± 0.00140 0.05351± 0.00241
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Figure 14: Generation results of VMSB (Adult → Child) with different volatility settings
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Figure 15: Qualitative comparison between LightSB and VMSB for relatively high volatility, ε = 1.0. Top
(Male → Female): We find that VSBM has preserved more facial details, such as wearing glasses, than
LightSB. Bottom (Adult → Child): VSBM was stable at retaining facial position even with high ε.
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