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Abstract

Aspect-based sentiment analysis (ABSA) fo-
cuses on extracting opinions about specific
aspects, with Aspect Sentiment Quad Predic-
tion (ASQP) being the most complex sub-task.
Large language models (LLMs) like GPT4 ex-
hibit strong generalization yet struggle with
ASQP due to a lack of task-specific alignment.
Supervised small language models (SLMs),
while effective in capturing task-specific pat-
terns, lack the extensive knowledge of LLMs.
To address this, we propose a framework that
combines SLMs and LLMs using supervised
in-context learning to align LLM outputs with
human preferences. One SLM is supervised to
generate candidate answers and guide LLMs
with task-specific instructions, while another
SLM acts as a reward model iteratively eval-
uates and refines LLM outputs. Experiments
show that our method significantly improves
ASQP performance, demonstrating robustness,
scalability, and potential for advancing align-
ment techniques in sentiment analysis.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-
grained sentiment analysis task that aims to extract
opinions expressed toward specific aspects of a
given target (Hu and Liu, 2004). Among its sub-
tasks, Aspect Sentiment Quad Prediction (ASQP)
represents the most challenging task, requiring the
identification of aspect-category-opinion-sentiment
quads from the text (Zhang et al., 2021b; Cai et al.,
2021a).

Common methods for solving ASQP often rely
on structured extraction techniques (Zhang et al.,
2021b; Bao et al., 2023, 2022; Cai et al., 2021a; Hu
et al., 2022b). However, with the rise of large lan-
guage models (LLMs) such as ChatGPT (Ouyang
et al., 2022) and Claude (Anthropic, 2024), there
is increasing interest in leveraging their strong gen-
eralization capabilities for ASQP. These LLMs
have demonstrated remarkable performance across
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Figure 1: An illustration of the zero-shot approach and
our proposed method.
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diverse applications (Kojima et al., 2022; Wang
et al., 2023), but directly applying them to ASQP
remains challenge (Zhang et al., 2023, 2024a).
One common approach to align language models
with human preferences is supervised fine-tuning.
While effective, fine-tuning huge LLMs(e.g. GPT-
4, Claude) is infeasible for ASQP due to their black-
box nature and the prohibitive computational costs
of updating such massive models. Alternatively, in-
context learning (Brown et al., 2020) has emerged
as a practical strategy to guide black-box LLMs for
downstream tasks.

As shown in Figure 1(a), LLMs can follow in-
structions and generate outputs in forms that hu-
mans prefer. However, their answers often dif-
fer from what humans consider correct. This dif-
ference appears because LLMs rely on their pre-
trained knowledge, which may not include the spe-
cific details required for ASQP. As a result, their
outputs tend to be biased or incomplete. In con-
trast, as shown in Figure 1(b), supervised SLMs



can learn patterns that align well with human pref-
erences for ASQP. Yet, because SLMs have limited
world knowledge, their single-pass answers may
still be incorrect or incomplete. Surprisingly, we
observe that by increasing the number of samples
from one to ten, the probability of including a cor-
rect answer grows substantially, ultimately boost-
ing the F1-score by more than 10%.

Based on these observations, we propose a
framework that combines the strengths of super-
vised SLMs and black-box LLMs to address ASQP.
Specifically, We use SLMs to learn human pref-
erences and transfer them to LLMs through in-
context learning. We firstly supervise fine-tuning a
SLM to learn from human-annotated data and gen-
erates candidate answers during testing. By com-
bining these candidate answers with well-designed
instructions, we use the rich human supervision
signals to guide LLMs toward aligning their out-
puts with human intent. Secondly, we supervised
fine-tuning another SLM to act as a reward model
to evaluate whether the LLMs’ outputs align with
human preferences (Ouyang et al., 2022; Rafailov
et al., 2023). In particular, the LLM can perform
multiple rounds of sampling, and the reward model
evaluates the correctness of its outputs, adding cor-
rect answers to the candidate answer list. By it-
eratively repeating this process, the LLM can be
effectively aligned with human preferences and pro-
gressively improve its ability to generate human-
desired aspect sentiment quad predictions.

We conduct extensive experiments to evaluate
the proposed method across various dimensions.
Our results reveal that directly applying in-context
learning with black-box LLMs struggles to gen-
erate human-aligned ASQP answers, while super-
vised fine-tuning of SLMs effectively captures hu-
man preferences. Furthermore, integrating super-
vised signals of SLM into context for guiding black-
box LLMs demonstrates significant improvements
without requiring additional training data. Compar-
ative studies highlight the advantages of our choice
strategy and iterative alignment approach, show-
casing improved robustness and performance. The
scalability analysis confirms that our framework
consistently benefits from advancements in both
base SLMs and black-box LLMs, paving the way
for future research.

The main contributions of this work can be sum-
marized as follows:

* We introduce a method combining supervised

SLMs and in context learning to align black-
box LLM outputs with human preferences for
aspect sentiment quad prediction.

* We design a reward model to iteratively eval-
uate and refine LLM outputs, progressively
improving their alignment with aspect senti-
ment quad prediction.

» Extensive experiments demonstrate the effec-
tiveness of our approach in improving aspect
sentiment quad prediction performance, high-
lighting its robustness, scalability, and poten-
tial for advancing alignment techniques.

2 Related Work

2.1 Aspect Sentiment Quads Prediction

Aspect-Based Sentiment Analysis (ABSA) has
been extensively studied as a fine-grained senti-
ment analysis task (Ben-David et al., 2022; Li et al.,
2022; Cai et al., 2021b; Zhang et al., 2022). The
recently proposed Aspect Sentiment Quads Predic-
tion (ASQP) extends ABSA by identifying four
elements: the aspect, its category, the associated
opinion, and the sentiment polarity.

With the advent of pre-trained generative mod-
els, methods such as GAS (Zhang et al., 2021b)
and OTG (Bao et al., 2022) have been developed to
address ASQP in an end-to-end manner, leveraging
the power of generative models to predict all com-
ponents simultaneously (Ma et al., 2024). These
approaches reformulate ASQP as a sequence-to-
sequence problem, allowing the model to predict
all elements simultaneously. Recently, the rise of
LLMs has further advanced ASQP. Previous work,
such as Zhang et al. (2024b), utilized LLMs as
scoring mechanisms to generate pseudo-labeled
data for data augmentation. While this approach
demonstrated effectiveness, it has some limitations.
It requires additional domain-specific, unlabeled
data and increases computational costs to retrain
the supervised model. In our work, we simplify
this process. Since LLMs are already strong scor-
ers (Zhang et al., 2024b), we propose directly lever-
aging them with the guide of supervised SLMs to
generate the final answers.

2.2 In-context Learning Methods

In-Context Learning (ICL) is a practical approach
for using LLMs like GPT-4 in tasks with limited
labeled data (Brown et al., 2020; Kojima et al.,
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Figure 2: Illustration about the ASQP task and our method. (a) shows a case of the ASQP task; (b) demonstrates the
flowchart of our proposed method for aligning a black-box LLM through supervised SLMs for ASQP.

2022). By providing examples directly in the in-
put, ICL allows the model to make predictions
without needing to retrain, making it useful for
zero-shot and few-shot tasks. However, ASQP
introduces unique challenges. It requires identi-
fying complex relationships, following predefined
categories, and ensuring outputs match human an-
notations. Simply applying ICL often produces
inconsistent predictions because it depends heav-
ily on the model’s existing knowledge, which may
not be well-suited to the task (Zhang et al., 2024a).
Recent advancements, such as retrieval-augmented
generation (Lewis et al., 2020; Liu et al., 2022)
and knowledge-enhanced context methods (Yang
et al., 2024b; Ma et al., 2023; Xu et al., 2024,
Shen et al., 2023) address this by integrating task-
specific knowledge retrieval into ICL, improving
alignment with human preferences. These develop-
ments highlight promising directions for enhancing
LLM-based in-context learning in complex struc-
tured prediction tasks.

3 Methods

In this section, we first introduce the aspect sen-
timent quad prediction problem definition, then
quantitatively analyze the zero-shot black-box
LLMs compared with supervised SLM. Finally,
based on the insights of the analysis, we explore
aligning the black-box LLMs through supervised
and reinforcement-enhanced context for aspect sen-
timent quad prediction as shown in Figure 2(b).

3.1 Problems Definition

Aspect sentiment quad prediction is a fine-grained
task in aspect-based sentiment analysis that aims
to extract and classify quadruples. Formally, given
an input text T = {wy,wo,...,ws}, where w;
represents the ¢-th token in a sequence of s tokens,
the aspect sentiment quad prediction task aims to
extract a set of quadruples:

Q= {(ai,ci,0i,8) [1=1,2,...,q}, (1)

where a; is the aspect term, c; is the prede-
fined category, o; is the opinion term, and s; €
{positive, neutral, negative} is the sentiment polar-
ity associated with the aspect. The number of
quadruples ¢ depends on the content of the input
text. If a; and o; are implicit, then a; = NULL
and o; = NULL. The ASQP task requires a model
to predict the set Q for any given input text T
while maintaining alignment between the extracted
aspects, categories, opinions, and sentiments as
shown in Figure 2(a).

3.2 Zero-Shot LLMs vs. Supervised SLMs

In the previous section, we observed that while
LLMs can follow instructions to generate quads
in the required format, they often produce incor-
rect outputs due to limited understanding of task
definitions. In contrast, supervised small language
models demonstrate better performance, although
generating the correct answer in a single attempt re-
mains challenging. By sampling multiple outputs,



the likelihood of including the correct answer in
the results significantly increases.

This section provides a quantitative analysis of
this phenomenon. Specifically, we use top@1 and
top@ 10 as evaluation metrics to compare the effec-
tiveness of SLMs with zero-shot LLMs. Top@1
measures the F1-score of the model’s first predic-
tion, while top@ 10 considers whether the correct
answer is present within the top 10 predictions.
Figure 3 compares the performance of zero-shot
LLM!, top@ 1(SLM?), and top@ 10(SLM) across
various datasets. The results show that zero-shot
LLMs perform poorly, while top@1 predictions
from supervised SLMs provide moderate improve-
ments. In contrast, top@ 10 predictions from SLMs
achieve significantly higher Fl-scores, aligning
with earlier observations. This finding demon-
strates that SLMs, by generating multiple outputs,
can effectively identify the correct answer and bet-
ter align with human preferences.

These observations motivate us to explore a
more effective approach for aligning LLM out-
puts with human-preferred answers(pre-defined
gold answers) in the ASQP task through the su-
pervised SLM. The observed performance gap be-
tween top@1 and top@10 in the supervised SLM
paves a potential avenue. By utilizing the reason-
ing abilities of the LLM and its capacity for fol-
lowing instructions, we can align the strong black-
box LLM through in-context learning by SLM
generated candidate answers which contain strong
human-preference signals. Through the SLM’s can-
didate answers, we can transform the open-domain
QA format (i.e., asking the LLLM for an answer)
into a new format where the LLM is prompted
with the SLM generated potential answers and
asked to select one. Furthermore, the potential
answers generated by the SLM inherently contain
strong human-preference signals, as the SLM is
trained to produce responses that align with human
pre-defined format. This human-preference signal
serves as a valuable alignment mechanism, helping
to bridge the gap between the LLM’s output and
human-preferred answers.

3.3 Supervised Context

In-context learning refers to the capability of a
model to infer patterns or generate answers based

'We take GPT-40-mini-2024-07-18 as the black-box LLM
here.
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Figure 3: Comparison of zero-shot LLM with super-
vised SLMs using top@1 and top@ 10 metrics.

on examples or knowledge-enhanced context pro-
vided within the input prompt, without explicit
parameter updates. Formally, given an input in-
stance x; and a set of in-context examples S; =
{(@k, Yr) t ke K ki> Where |S;| = K is the number
of examples, the probability of the LLM generating
the output y; in few-shot manner is defined as:

PLLM (yz ’ Iu Sj')xi)v (2)

where S; consists of few-shot examples {(zx, i)}
and [ represents a specific instruction.

While effective, few-shot method provides only
minimal human supervision signals, making it chal-
lenging for LLMs to align with human preferences,
especially for ASQP, which involve numerous hu-
man pre-defined categories.

Our approach begins by training a supervised
SLM on labeled data to learn human preferences
and act as a candidate answers generator of the
given samples. Specifically, we fine-tune the SLM
with supervision and then use it to perform multi-
ple samplings with a high-temperature setting. The
sampled outputs are subsequently used as candi-
date answers for in-context learning in a black-box
LLM.

Formally, let D = {(=;,y;)}?, represent the
test dataset, where x; is an input, and y; is the
corresponding ground truth. Given an test in-
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put z;, a supervised SLM generates candidate an-
swers A; = {al,...,al'}, where i € [1..D] and
n € [1..N]. N is empirically set as 10. Then, the
probability of the LLM generating the answer y;
by our method is defined as:

pum (i | I7, Aiy m5) (3)

where I* represents a specific instruction guiding
the LLM to identify the most suitable answer.

Notably, we do not perform deduplication of the
generated examples. The frequency of identical an-
swers reflects the confidence of the SLM, providing
a interpretable metric. Additionally, this step can
be viewed as a warm-up phase in reinforcement
learning, laying the foundation for subsequent up-
dates and optimization of answer selection.

3.4 Reinforcement-Enhanced Context

Reinforcement learning methods, such as Direct
Preference Optimization (Rafailov et al., 2023)
and Proximal Policy Optimization (Schulman
et al.,, 2017), have demonstrated their effective-
ness in fine-tuning models based on reward sig-
nals (Ouyang et al., 2022; Anthropic, 2024). How-
ever, these approaches require updating model pa-
rameters, making them unsuitable for black-box
LLMs where parameter access is restricted.

To address this limitation, we propose an ICL-
Reinforce learning framework. Specifically, we
first train a reward model to guide the reinforce-
ment process. The training data for the reward
model is constructed as follows: we use the super-
vised SLM trained in the initial stage to perform
sampling on the training set to generate candidate
answers. These candidates are then provided to the
black-box LLM for predictions on the training set.
Incorrect answers from the LLM are paired with

the corresponding ground-truth answers to form a
labeled dataset containing both positive and nega-
tive examples, which is subsequently used to train
the reward model.

Once the reward model is trained, it evalu-
ates the outputs of the black-box LLM to refine
candidate answers. Formally, for each test in-
put x;, the LLM generates multiple predictions
M = {y},...y™}. The reward model then evalu-
ates each pair {z;, y/" } and assigns a reward score
Ryg(x;,y!™) for each y* € M, where | M| is empir-
ically set as 10.

New candidates with scores above a predefined
threshold 7 are selected as correct:

a ={y" | Ro({zi,yi"}) =7}, 4
where T is the predefined threshold
The selected candidates are added to the in-
context candidate answers A}, forming an updated
candidate set:

Ar ={al,..

This process is iterative, refining the candidate
examples over multiple steps to improve alignment
with the task objectives. At each iteration ¢, the
candidate set is updated as follows:

Aflt+ 1) = A7 U {a] T8 0 T,
oy TEATERTy ©

1 M
Sal at ..,aL l}. ®)

% ).

where T'[t] is the number of candidates at iteration ¢,
and AT'[t] represents the number of newly selected
candidates in that iteration.

The newly selected candidates at iteration ¢ are

defined as:

aflt] = {y7 | Ro({zi, i) > 7},
Vk e {T[t] +1,...,T[t] + AT|[t]}.
(N

Finally, the probability of the LLM generating the

correct answer y; under the refined candidate set is

defined as:
pum(yi | I, A7 (X, 240), (®)

where X denotes the total number of iterations,
empirically set to 2.

4 Experiments

In this section, we introduce our experimental setup
and implementation details, present our methods’
performance on several standard datasets compared
to competitive baselines, and empirically analyze
the effectiveness, robustness and scalability our
method.



F1-score (1)

Methods LLMs

ACOS-Rest ACOS-Laptop Rest-15 Rest-16  Avg.
In-context Learning
ZERO-SHOT (Brown et al., 2020) GPT40-MINI 31.28 11.18 25.24 34.31 25.50
ZERO-SHOT COT (Kojima et al., 2022) GPT40-MINI 23.01 7.56 21.55 26.73 19.71
FEW-SHOT (N=5) (Brown et al., 2020) GPT40-MINI 32.76 13.69 30.28 35.39 28.03
MAJORITY-VOTE (N=5, K=8) GPT40-MINI 34.09 15.22 31.62 36.40 29.33
RETRIEVAL-AUGMENTED (N=5) GPT40-MINI 42.15 21.87 38.46 41.27 35.94
Supervised Learning w/o LLM
QWEN2.5-7B-INSTRUCT (Yang et al., 2024a) — 62.03 43.12 52.89 63.30 55.30
EXTRACT-CLASSIFY (Cai et al., 2021a) — 38.54 35.80 52.96 44.61 42.98
GAS (Zhang et al., 2021b) — 58.63 43.07 46.57 57.55 51.46
DLO (Hu et al., 2022b) — 59.18 43.60 48.48 59.79 52.76
ILO (Hu et al., 2022b) — 58.69 44.35 49.05 59.32 52.85
MVP (Gou et al., 2023) — 61.54 43.92 51.04 60.39 54.22
MUL (Hu et al., 2023) — 60.53 44.01 49.75 60.47 53.69
Supervised Learning w/ LLM
SCORER (Zhang et al., 2024b) GPT4 63.63 46.17 51.97 63.88 56.41
OURS (w/o Reward) GPT40 64.67 4478 54.22 65.37 57.09
OURS (W/o Reward) GPT40-MINI 64.41 43.48 53.85 64.97 56.68
OURS GPT40-MINI 66.78 45.68 55.94 66.83 58.81

Table 1: Performance comparison of different methods on ACOS-Rest, ACOS-Laptop, Rest-15, and Rest-16
datasets. The final column shows the average F1-Score across all datasets.

Train Dev Test

Datasets

#S O#Q  #S #Q  #S  #Q

ACOS-Laptop 2934 4172 326 440 816 1161

ACOS-Rest 1530 2484 171 261 583 916
Rest-15 834 1354 209 347 537 795
Rest-16 1264 1989 316 507 544 799

Table 2: Statistics of four ASQP datasets (Cai et al.,
2021a; Zhang et al., 2021a). #S and #Q represent the
number of sentences and quads.

4.1 Setup

We conduct experiments on four aspect sentiment
quad prediction datasets: ACOS-Laptop, ACOS-
Restaurant, Rest15, and Rest16. These datasets are
based on the SemEval Challenges (Pontiki et al.,
2015, 2016), while the quad-level annotations are
introduced in Cai et al. (2021a) and Zhang et al.
(2021b). Table 2 provides detailed statistics for
each dataset, including the number of sentences
(S) and quads (Q) in the train, development, and
test splits. These datasets cover diverse domains,
ensuring the robustness of the evaluation.

We select the Qwen2.5-Instruct (Yang et al.,
2024a) series as the backbone model for our ex-
periments. Specifically, the 7B-Instruct version
is used for LoRA-based (Hu et al., 2022a) super-
vised fine-tuning, while the 0.5B-Instruct version

is full-parameter fine-tuned to serve as the reward
model. For black-box LLMs, we include the com-
monly used GPT-40 and GPT-40-mini. Since the
order of options may influence the experimental
results (Pezeshkpour and Hruschka, 2024). There-
fore, for experiments involving candidate selection,
we report results averaged over three runs, with the
candidate answers randomly shuffled in each run.
Thus, due to resource constraints, we perform the
complete experimental pipeline only on GPT-4o-
mini.

For baseline comparison, we evaluate sev-
eral commonly used supervised learning meth-
ods (Yang et al., 2024a; Cai et al., 2021a; Hu et al.,
2022b; Gou et al., 2023; Hu et al., 2023) as well as
in-context learning techniques (Brown et al., 2020;
Wang et al., 2023; Kojima et al., 2022; Liu et al.,
2022). The baseline results in the supervised learn-
ing w/o LLM section are derived from Zhang et al.
(2024b)

4.2 Main Results

In our main experiment, the compared baselines
can be roughly divided into three categories: in-
context learning methods, supervised SLM-based
methods, and a hybrid method combining super-
vised SLMs with LLMs. These approaches repre-
sent different ways of aligning language models to
give human preferences ASQP predictions.



Methods Rest Laptop Restl5 Restl6
Zero-shot 28.74  10.18 2433  28.16
Same 62.14  43.10 53.12  63.81
Ours (NoDup®) 61.41  40.16 52.88  62.14
Ours 64.41 43.48 53.85 64.97

Table 3: Performance comparison of different methods
across datasets. Bold values indicate the best perfor-
mance for each dataset."NoDup: No Deduplication.

As shown in Table 1, simply relying on in-
context learning fails to effectively guide LLMs
output answers that align with human expectations
and thus have a poor performance. On the other
hand, supervised fine-tuning with human-annotated
labels allows models to learn the preferred types
of predictions efficiently, resulting in better perfor-
mance. Moreover, leveraging supervised models
and LLMs leads to further improvements , high-
lighting the potential of leveraging LLMs for this
task. Notably, our method outperforms the strong
baseline Scorer. As a strong baseline Scorer uses
LLMs and unlabeled data to generate pseudo data
for retraining smaller models. Instead, we use su-
pervised context(w/o reward) to enable the LLM
to perform ASQP prediction directly and achieve
competitive results. Furthermore, our methods with
reinforcement enhanced context(with Reward) can
achieve stronger performance. The results indicate
that integrating supervised signals of SLM into
context for guiding black-box LLMs demonstrates
significant improvements without requiring addi-
tional training data. Moreover, our method paves a
new way to combine LLMs and supervised SMLs
for ASQP.

4.3 Impact of Candidate Answer Strategy

We investigate the impact of different candidate
answer strategies on model performance, as illus-
trated in Table 3. The methods evaluated include
Zero-shot, which does not provide any options;
Same, which replicates the top-1 prediction multi-
ple times to create identical options; Ours (NoDup),
which removes duplicate options; and our proposed
method, which retains all options generated by the
supervised model.

The experimental results demonstrate that meth-
ods incorporating candidate answers significantly
outperform the Zero-shot approach. This indicates
that providing supervised context with candidate
answers effectively reduces the search space for the
LLMs, leading to more accurate and human pre-
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Figure 5: Influence of different answer selection strate-
gies.

ferred predictions. Interestingly, the Ours (NoDup)
method, which eliminates duplicate options, per-
forms slightly worse than the Same method, where
options are identical. This surprising finding sug-
gests that the presence of duplicate options from
the supervised model serves as an implicit confi-
dence signal, enhancing the LLMs’ ability to dis-
cern the correct answer. Consequently, our method,
which retains all supervised model-generated op-
tions, achieves the highest performance across all
datasets. These results underscore the importance
of effectively integrating supervised model outputs
to bolster the performance of LLMs in ASQP tasks.

4.4 Influence of Answer Selection Strategy

In this section, we compare our proposed method
with different answer selection strategies. Random
selects the final answer randomly from the candi-
date answers. The majority-vote approach selects
the answer that appears most frequently among the
candidates. In contrast, our method uses supervised
context and reinforcement-enhanced context along
with LLMs to make the final prediction.
Majority-vote is a simple but effective baseline,
as it aggregates repeated predictions to reflect the
performance of the supervised model. As demon-
strated in Figure 5, majority-vote achieves strong
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results across all datasets. However, our method
surpasses majority-vote by combining supervised
context and reinforcement-enhanced context with
LLMs. This highlights the advantages of our ap-
proach, which not only uses the strengths of su-
pervised models but also integrates the generative
abilities of LLMs, leading to better performance in
ASQP tasks.

4.5 Analysis of the Iterative Alignment

In this section, we utilize the ACOS-Rest dataset
as the benchmark to explore the impact of rein-
forcement context on LLM outputs across multiple
iterations.

As shown in Figure 6, methods incorporating re-
inforcement context consistently outperform direct
inference by supervised models at each iteration.
With each iteration step, the top@1 and top@10
performance metrics of LLMs show clear improve-
ments. Furthermore, we observe a significant re-
duction in the variance of the top@]1 predictions
as the number of iterations increases. Additionally,
the variance in top@1 predictions decreases sig-
nificantly as iterations progress. This reduction in
variance demonstrates that reinforcement-enhanced
context improves the robustness of model outputs,
leading to more stable and reliable predictions over
successive iterations.

4.6 Exploring the Scaling Performance

In this section, we evaluate the scalability of our
framework by experimenting with various base su-
pervised models and LLMs. Specifically, we uti-
lize the supervised SLMs with parameters of 0.5B,
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Figure 7: Illustration of the top@1 performance of our
proposed framework, composed of different model sizes

1.5B, and 7B and pair them with different LLMs,
including Qwen?2.5-32B-Instruct, GPT40-mini, and
GPT-4o.

As illustrated in Figure 7, our framework con-
sistently demonstrates improved performance as
the size and capability of the supervised SLMs and
LLMs increase. Specifically, transitioning from a
0.5B to a 7B supervised SLM results significantly
boosts prediction F1-score across all datasets. Sim-
ilarly, upgrading the LLM from Qwen2.5-32B-
Instruct to GPT-40 yields further performance im-
provements. Experimental results show that as the
performance of the SLM improves, our framework
consistently achieves better results. Additionally,
with the enhancement of LLMs, the performance of
our framework also improves accordingly. These
findings highlight the high scalability of our frame-
work and pave the way for future research.

5 Conclusion

We proposes a framework that integrates super-
vised SLMs with black-box LLMs to address
the challenges of aspect sentiment quad predic-
tion. Motivated by the complementary strengths
of SLMs in capturing task-specific knowledge and
LLMs in generalization, we designed a method
to align LLM outputs with human preferences
through in-context learning and iterative refine-
ment. Experimental results demonstrate that our
approach significantly improves aspect sentiment
quad prediction performance compared with in-
context learning and supervised learning methods.
In the future, we will explore extending this align-
ment framework to other fine-grained sentiment
analysis tasks and further enhancing its adaptabil-
ity to diverse datasets and tasks.

3For the 7B model, we apply LoRA for supervised fine-
tuning.



6 Limitations

Despite its effectiveness, our method has certain
limitations. First, the in-context learning process
heavily relies on carefully designed instructions
and high-quality candidate answers from SLMs. If
these inputs are not well-crafted, the LLMs may
fail to align with human preferences, leading to
suboptimal performance. Second, while the frame-
work allows flexible combinations of large and
small models, it is not effective when the smaller
model is underperforming, such as a simple percep-
tron, which cannot provide meaningful guidance
for alignment. Future research could explore opti-
mizing the efficiency of in-context learning setups
and developing methods to enhance the robustness
of instruction designs.
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A Appendix

A.1 Prompt Details

This section provides details about the prompts
used in our experiments, covering both zero-shot
and few-shot settings for the laptop and restaurant
domain.

The specific prompts are presented in Table 4, Ta-
ble 5, Table 6, Table 7. Since the few-shot and zero-
shot methods lack sufficient knowledge of ASQP,
we incorporate additional knowledge and examples
to provide a more comprehensive understanding
of the ASQP task. For the Retrieval-Augmented
method, we used the LangChain framework to im-
plement the process. Specifically, LangChain was
utilized to build a retrieval pipeline, where a dense
retriever searched for relevant labeled examples
from training dataset. The retrieved examples are
then integrated into the prompt to guide the gener-
ation process. For the CoT method, we followed
prior studies (Kojima et al., 2022) and added "Let’s
think step by step" after the zero-shot prompt. Ad-
ditionally, our method incorporates candidate an-
swers generated by the supervised model after the
zero-shot prompt as shown in Table 8 and Table 9.
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A.2 Implementation Details

In our experiments, all language models used a
temperature of 0.7 for top@ 10 candidate answers
sampling and 0.2 for top@1 candidate answers
sampling. To enhance diversity in LLM-generated
outputs, we slightly adjusted the generation order
format of ASQP quads in the instruction during
sampling, inspired by the previous work (Hu et al.,
2022b).

We employ Qwen2.5-7B-Instruct (Yang et al.,
2024a) as our primary supervised SLM and
Qwen2.5-0.5B-Instruct act as the reward model.
AdamW (Loshchilov and Hutter, 2018) is used as
the optimizer, with a learning rate of 1 x 10~*
for LoRA-based supervised fine-tuning (Hu et al.,
2022a) and 1 x 107 for the full-parameters su-
pervised fine-tuning. During training, we employ
early stopping based on the development set per-
formance

Previous research (Pezeshkpour and Hruschka,
2024) has shown that the performance of LLMs
in multiple-choice tasks can be influenced by the
order of options. Therefore, for experiments involv-
ing candidate selection, we report results averaged
over three runs, with the candidate answers ran-
domly shuffled in each run.
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Zero-shot example of restaurant domain

Task Definition:

Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.

Pre-defined Categories: Categories must follow the A#B format, where A is one of ['RESTAURANT’, 'DRINKS’, ’SERVICE’, 'FOOD’, ’AMBIENCE’,
"LOCATION’], and B is one of ['GENERAL’, 'STYLE_OPTIONS’, "QUALITY", "PRICES’, "MISCELLANEOUS’]. Each category must strictly adhere to
these sets, e.g., FOOD#QUALITY.

Input

Instruction: From the restaurant review, identify all aspects, their opinion words, category, and sentiment (’positive’, 'negative’, 'neutral’).

Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:

"Final Answer: [’aspect_term;’, "category;’, "opinion_term;’, sentiment; ], ['aspect_terms’, categorys’, *opinion_terms’, ’sentimenty’] ...".If an aspect or
opinion term is implicit, use 'NULL’ to represent it.

Input: "Yum !"

Table 4: Zero-shot example of restaurant domain

Few-shot example of restaurant domain

Task Definition:

Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.

Pre-defined Categories: Categories must follow the A#B format, where A is one of ['RESTAURANT’, 'DRINKS’, ’SERVICE’, 'FOOD’, ’AMBIENCE’,
"LOCATION’], and B is one of ['GENERAL’, 'STYLE_OPTIONS’, "QUALITY’, "PRICES’, "MISCELLANEOUS’]. Each category must strictly adhere to
these sets, e.g., FOOD#QUALITY.

Examples

The following are several examples to help you learn how to extract quadruples:

Input: "after all that , they complained to me about the small tip ."

Final Answer: 'NULL’, ’SERVICE#GENERAL’, ’complained’, 'negative’]

Input: "food was okay , nothing great ."

Final Answer: ['food’, 'FOOD#QUALITY”, okay’, 'neutral’], [’food’, "FOOD#QUALITY’, "nothing great’, 'neutral’]

Input: "i had to ask her three times before she finally came back with the dish ive requested ."

Final Answer: 'NULL’, ’SERVICE#GENERAL’, "NULL’, "negative’]

Input: "went on a 3 day oyster binge , with fish bringing up the closing , and i am so glad this was the place it o trip ended , because it was so great !"

Final Answer: [fish’, "RESTAURANT#GENERAL’, "great’, "positive’], NULL’, 'RESTAURANT#GENERAL’, "glad’, "positive’]

Input: "ive asked a cart attendant for a lotus leaf wrapped rice and she replied back rice and just walked away ."

Final Answer: [ cart attendant’, ’SERVICE#GENERAL’, "NULL’, "negative’]

Input

Instruction: From the restaurant review, identify all aspects, their opinion words, category, and sentiment (’positive’, ‘negative’, "neutral’).

Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:

"Final Answer: [’aspect_term;’, ’category;’, ‘opinion_term;’, ’sentiment; ], [’aspect_terms’, ’categorys’, *opinion_terms’, ’sentimenty’] ...".If an aspect or
opinion term is implicit, use 'NULL’ to represent it.

Input: "Yum !"

Table 5: Few-shot example of restaurant domain

Zero-shot example of Laptop domain

Task Definition:

Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.

Pre-defined Categories: Categories must follow the A#B format, where A is one of 'LAPTOP’, '"HARD_DISC’, OS’, ’/KEYBOARD’, ' HARDWARE’,
’PORTS’, "SUPPORT’, 'COMPANY’, '"MULTIMEDIA_DEVICES’, 'POWER_SUPPLY’, "DISPLAY’, 'BATTERY", 'FANS&COOLING’, "CPU’, "MEM-
ORY’, "WARRANTY"’, 'OPTICAL_DRIVES’, '"GRAPHICS’, 'SOFTWARE’, 'SHIPPING’, "MOTHERBOARD’, '"MOUSE’, *Out_Of_Scope’], and B is one
of ['PRICE’, 'DESIGN_FEATURES’, 'OPERATION_PERFORMANCE’, "USABILITY’, '"GENERAL', "QUALITY’, 'PORTABILITY", ‘CONNECTIVITY",
"MISCELLANEOUS’]. Each category must strictly adhere to these sets, e.g., LAPTOP#GENERAL.

Input

Instruction: From the laptop review, identify all aspects, their opinion words, category, and sentiment (’positive’, *negative’, *neutral’).

Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:

"Final Answer: ["aspect_term;’, "category;’, "opinion_term;’, sentiment; '], ["aspect_terms’, ’categorys’, *opinion_terms’, ’sentiments’] ...".If an aspect or
opinion term is implicit, use 'NULL’ to represent it.

Input: "the unit cost $ 275 to start with , so it is not worth repairing ."

Table 6: Zero-shot example of laptop domain.
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Few-shot example of laptop domain

Task Definition:

Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.

Pre-defined Categories: Categories must follow the A#B format, where A is one of ['LAPTOP’, "HARD_DISC’, OS’, ’/KEYBOARD’, 'THARDWARE’,
’PORTS’, ’SUPPORT’, "COMPANY’, "MULTIMEDIA_DEVICES’, "POWER_SUPPLY", 'DISPLAY’, "BATTERY’, 'TFANS&COOLING’, *CPU’, "MEM-
ORY’, "WARRANTY’, ’OPTICAL_DRIVES’, "GRAPHICS’, 'SOFTWARE’, ’SHIPPING’, "MOTHERBOARD’, "MOUSE’, *Out_Of_Scope’], and B is one
of ['PRICE’, 'DESIGN_FEATURES’, ’OPERATION_PERFORMANCE’, "'USABILITY’, "”GENERAL’, "QUALITY’, "PORTABILITY’, ’"CONNECTIVITY’,
"MISCELLANEOUS’]. Each category must strictly adhere to these sets, e.g., LAPTOP#GENERAL.

Examples

The following are several examples to help you learn how to extract quadruples:

Input: "acer wants $ 170 to just look at it then add the repair cost on top of that ."

Final Answer: ["acer’, ’SUPPORT#PRICE’, 'NULL’, ’neutral’]

Input: "update : i repaired it myself for $ 12 ."

Final Answer: 'NULL’, ’LAPTOP#GENERAL’, "NULL’, ’neutral’]

Input: "first one that they shipped was obviously defective , super slow and speakers were garbled ."

Final Answer: ['NULL’, ’SHIPPING#GENERAL, "defective’, "negative’], 'NULL’, "'SHIPPING#GENERAL’, ’slow’, "negative’], [’speakers’, "MULTIME-
DIA_DEVICES#GENERAL’, *garbled’, "negative’]

Input: "pro : light , reasonable price , fast ."

Final Answer: ['NULL’, 'LAPTOP#DESIGN_FEATURES’, ’light’, "positive’], NULL’, 'TLAPTOP#OPERATION_PERFORMANCE’, ’fast’, *positive’],
[’price’, "LAPTOP#PRICE’, reasonable’, ’positive’]

Input: "overall , it is not horrible , but i wouldn ’ t purchase this model again ."

Final Answer: ['model’, ’LAPTOP#GENERAL’, "not horrible’, *negative’]

Input

Instruction: From the laptop review, identify all aspects, their opinion words, category, and sentiment (’positive’, 'negative’, "neutral’).

Answer Format: Your final answer can include multiple aspect-opinion pairs, formatted as follows:

"Final Answer: [*aspect_term;’, "category;’, "opinion_term;’, sentiment; ], ["aspect_terms’, categorys’, *opinion_termsy’, *sentiments’] ...".If an aspect or
opinion term is implicit, use 'NULL’ to represent it.

Input: "the unit cost $ 275 to start with , so it is not worth repairing ."

Table 7: Few-shot example of laptop domain

Our instruction for restaurant domain

Task Definition:

Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.

Pre-defined Categories: Categories must follow the A#B format, where A is one of 'RESTAURANT’, "DRINKS’, ’SERVICE’, ’TFOOD’, ’AMBIENCE’,
"LOCATION’], and B is one of ['GENERAL’, 'STYLE_OPTIONS’, "QUALITY’, "PRICES’, "MISCELLANEOUS’]. Each category must strictly adhere to
these sets, e.g., FOOD#QUALITY.

Instruction:

From the restaurant review, identify all aspects, their opinion words, category, and sentiment (’positive’, "negative’, 'neutral’).

You will be given several possible answers and the correct answer is highly likely to be among the provided options. Please select the most appropriate option.
Only if you believe none of the options are correct, provide your own answer.

Answer Format:

Your final answer can include multiple aspect-opinion pairs, formatted as follows:

"Final Answer: [’aspect_term;’, ’category’, ‘opinion_term;’, ’sentiment; ], [’aspect_terms’, ’categorys’, *opinion_terms’, ’sentimenty’] ...".

If an aspect or opinion term is implicit, use "NULL’ to represent it.

Input:

{Input review }

Candidate answers:

{candidate answers }

Table 8: Our instruction for restaurant domain

Our instruction for laptop domain

Task Definition:

Aspect-Based Sentiment Analysis aims to extract the opinion target described by an entity and its aspect (collectively called aspect) from reviews and identify
the sentiment toward the aspect.

Pre-defined Categories: Categories must follow the A#B format, where A is one of {category_a}, and B is one of {category_b}. Each category must strictly
adhere to these sets, e.g., BATTERY#GENERAL.

Instruction:

From the laptop product review, identify all aspects, their opinion words, category, and sentiment (’positive’, *negative’, "neutral’).

You will be given several possible answers and the correct answer is highly likely to be among the provided options. Please select the most appropriate option.
Only if you believe none of the options are correct, provide your own answer.

Answer Format:

Your final answer can include multiple aspect-opinion pairs, formatted as follows:

"Final Answer: [’aspect_term;’, *category;’, *opinion_term;’, sentiment; ], ["aspect_terms’, ’categorys’, *opinion_termsy’, ’sentimenty’] ...".

If an aspect or opinion term is implicit, use "NULL’ to represent it.

{Input review }

Candidate answers:

{candidate answers}

Table 9: Our instruction for laptop domain
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