
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLORING THE IMPACT OF ACTIVATION FUNCTIONS
IN TRAINING NEURAL ODES

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural Ordinary Differential Equations (ODEs) have been successful in vari-
ous applications due to their continuous nature and parameter-sharing efficiency.
However, these unique characteristics also introduce challenges in training, par-
ticularly with respect to gradient computation accuracy and convergence analysis.
In this paper, we address these challenges by investigating the impact of activation
functions. We demonstrate that the properties of activation functions—specifically
smoothness and nonlinearity—are critical to the training dynamics. Smooth acti-
vation functions guarantee globally unique solutions for both forward and back-
ward ODEs, while sufficient nonlinearity is essential for maintaining the spectral
properties of the Neural Tangent Kernel (NTK) during training. Together, these
properties enable us to establish the global convergence of Neural ODEs under
gradient descent in overparameterized regimes. Our theoretical findings are val-
idated by numerical experiments, which not only support our analysis but also
provide practical guidelines for scaling Neural ODEs, potentially leading to faster
training and improved performance in real-world applications.

1 INTRODUCTION

In recent years, deep neural networks have achieved remarkable success across a wide range of appli-
cations. Among these advancements, Neural Ordinary Differential Equations (ODEs) (Chen et al.,
2018b) stand out due to their continuous nature and parameter efficiency through shared parame-
ters. Unlike conventional neural networks with discrete layers, Neural ODEs model the evolution
of hidden states as a continuous-time differential equation, allowing them to better capture dynamic
systems. This parameter-sharing mechanism ensures consistent dynamics throughout the continu-
ous transformation and reduces the number of parameters, improving both memory efficiency and
computational complexity. These unique properties make Neural ODEs particularly effective not
only for traditional machine learning tasks like image classification (Chen et al., 2018b) and natural
language processing (Rubanova et al., 2019), but also for more complex tasks involving continu-
ous processes, such as time series analysis (Kidger et al., 2020), reinforcement learning (Du et al.,
2020), and diffusion models (Song et al., 2020). However, while these features offer flexibility and
efficiency, they also introduce significant challenges during training, particularly in gradient compu-
tation and convergence analysis.

One of the key challenges in training Neural ODEs is accurately computing gradients. Unlike tradi-
tional networks, where backpropagation can be computed through a discrete chain of layers, Neural
ODEs require solving forward and backward ODEs using numerical solvers to compute gradients.
These solvers introduce numerical errors, which can lead to inaccurate gradients and slow conver-
gence or even suboptimal model performance (Rodriguez et al., 2022). Moreover, ensuring the
well-posedness of ODE solutions during training is nontrivial. According to the Picard–Lindelöf
Theorem, solutions may not always exist or may only exist locally, which can cause training diver-
gence or significant numerical errors (Gholami et al., 2019; Ott et al., 2020; Sander et al., 2022).
Even with advanced solvers (Zhuang et al., 2020a;b; Matsubara et al., 2021; Ko et al., 2023), it
remains an open problem whether simple first-order methods, such as stochastic gradient descent
(SGD), can reliably train Neural ODEs to convergence. While discretizing Neural ODEs as finite-
depth networks offers a potential solution, it results in a deeper computation graph (Zhuang et al.,
2020a;b), raising questions about whether the gradients computed in this manner truly match those
of the continuous model.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Another essential challenge lies in analyzing the training dynamics of Neural ODEs. The optimiza-
tion problem in training neural networks is inherently nonconvex, making theoretical analysis diffi-
cult. Recent work by Jacot et al. (2018) has shown that the training dynamics of overparameterized
networks can be understood through the lens of the Neural Tangent Kernel (NTK), which converges
to a deterministic limit as network width increases. This convergence has enabled researchers to
establish global convergence guarantees for gradient-based methods in overparameterized regimes,
provided the NTK remains strictly positive definite (SPD) (Du et al., 2019a; Allen-Zhu et al., 2019;
Nguyen, 2021). The analysis of the NTK’s strict positive definiteness began with Daniely et al.
(2016), who introduced the concept of dual activation for two-layer networks, later extended to
deeper, finite networks (Jacot et al., 2018; Du et al., 2019a). However, these results are limited to
networks with discrete layers, raising the question of whether the same properties hold for continu-
ous models like Neural ODEs.

In this paper, we address these challenges by exploring the impact of activation functions on training
Neural ODEs. We show that activation function properties—specifically, smoothness and nonlinear-
ity—play critical roles in determining the well-posedness of ODE solutions and the spectral prop-
erties of the NTK. Through our analysis, we demonstrate that smooth activation functions lead to
globally unique solutions for both forward and backward ODEs, ensuring the stability of the training
process. Additionally, we extend existing results on the NTK from discrete-layered neural networks
to continuous models, demonstrating that the NTK for Neural ODEs is well-defined. Importantly,
we find that a higher degree of nonlinearity in the activation function not only helps maintain the
SPD property of the limiting NTK, which plays a critical role in the theoretical analysis of training
dynamics, but also practically speeds up Neural ODE convergence.

1. We investigate the significance of the smoothness of activation functions for the well-posedness
of forward and backward ODEs in Neural ODEs. Using random matrix theory, we demonstrate
the existence of globally unique solutions. Additionally, we show that no additional regularity is
needed if forward and backward ODEs are combined in a weakly coupled ODE system.

2. We propose a new mathematical framework for studying continuous models from the approxi-
mation theory perspective. By using a sequence of finite-depth neural networks to approximate
Neural ODEs, we show that key properties like activation and gradient propagation are preserved
as depth approaches infinity. This allows us to apply the Moore-Osgood theorem from functional
analysis to prove that the NTK of Neural ODEs is well-defined.

3. Unfortunately, our proposed framework cannot be used to study the SPD property of the NTK
at infinite depth, even though we can show the NTKs of finite-depth neural networks hold the
SPD property. To address this limitation, we conduct a fine-grained analysis and identify an
implicit integral form to express the limiting NTK of Neural ODEs. This integral form allows
us to demonstrate that the limiting NTK remains SPD if the nonlinear activation function is non-
polynomial. Leveraging such an integral form to study continuous or infinite-depth models offers
valuable insights and could inspire further research into similar models.

4. We conduct a series of numerical experiments to support our theoretical findings. In addition to
validating our analysis, these experiments provide practical guidelines for training Neural ODEs,
showing how the smoothness and nonlinearity of the activation function can lead to faster training
and improved performance in real-world tasks. Additionally, we show that without proper scaling
of the ODE dynamics, training can suffer from significant damping due to the amplification of
numerical errors over long time horizons.

2 PRELIMINARIES

2.1 NEURAL ODES

In this paper, we consider a simple Neural ODE f(x;θ) defined as follows

f(x;θ) =
σv√
n
vTϕ(hT), (1)

where ht ∈ Rn is the hidden state that satisfies the following ordinary differential equation

h0 = σuUx/
√
d, and ḣt = σwWϕ(ht)/

√
n, ∀t ∈ [0, T], (2)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where ϕ is the activation function1, x ∈ Rd is input, U ∈ Rn×d, W ∈ Rn×n, and v ∈ Rn are
learnable parameters. These parameters, denoted by θ := vec(U ,W ,v), are randomly initialized
Glorot & Bengio (2010); He et al. (2015) from standard Gaussian distribution:

Uij , Wij , vi
i.i.d.∼ N (0, 1) (3)

with variance hyperparameters σu, σw, σv > 0. Due to the continuous nature of Neural ODEs,
computing gradients through standard backpropagation is not feasible. Instead, we use the adjoint
method (Chen et al., 2018b) to compute gradients by solving the backward ODE:

λT = σvdiag(ϕ′(ht))v/
√
n, and λ̇t = −σwdiag(ϕ′(ht))W

Tλt/
√
n, (4)

where λt is the adjoint state. When both forward and backward ODEs are well-posed, we can
compute the gradients of fθ with respect to (w.r.t.) the parameters θ as follows

∇vf(x;θ) =
σv√
n
ϕ(ht), ∇W f(x;θ) =

∫ T

0

σw√
n
λtϕ(ht)

⊤dt, ∇Uf(x;θ) =
σu√
d
λ0x

⊤. (5)

Further details on these derivations are provided in Appendix B. In Section 3, we demonstrate that
if ϕ is Lipschitz continuous, the forward and backward ODEs have globally unique solutions. Ad-
ditionally, in Section 5, we prove this well-posedness holds throughout the entire training process.

2.2 NEURAL TANGENT KERNEL

Given a training dataset {(xi, yi)}Ni=1, the objective is to learn a parameter θ that minimizes the
empirical loss:

L(θ) =

N∑
i=1

1

2
(f(xi;θ)− yi)

2 =
1

2
∥u− y∥2, (6)

where u = (u1, · · · , uN) is the prediction vector with ui = f(xi;θ), and y = (y1, · · · , yN) is the
output vector. Gradient descent with a learning rate η > 0 is used to minimize the loss:

θk+1 = θk − η∇θL(θ
k). (7)

Following Du et al. (2019a) and Jacot et al. (2018), under some mild conditions, the evolution of the
prediction vector uk can be approximated as follows:

uk+1 − y ≈
(
I − ηHk

)
(uk − y), (8)

where Hk ∈ RN×N is a Gram matrix defined through the NTK Jacot et al. (2018):

K(x, x̄; θ) := ⟨∇θf(x;θ),∇θf(x̄;θ)⟩ . (9)

The training dynamics Eq. (8) is governed by the spectral property of the NTK Gram matrix Hk.
If there exists a strictly positive constant λ0 > 0 s.t. λmin(H

k) ≥ λ0 for all k, then the residual
uk − y decreases to zero exponentially, provided the learning rate η > 0 is sufficiently small Allen-
Zhu et al. (2019); Nguyen (2021). As the parameters θk are updated during training, the NTK Kθ

changes over time, making its spectral analysis challenging. Fortunately, previous research Yang
(2020); Jacot et al. (2018) shows that the time-varying Kθ converges to a deterministic limiting
NTK K∞ as the network width n→ ∞. By leveraging this result and the concept of dual activation
Daniely et al. (2016), we can study the spectral properties of Kθ during training through K∞ using
perturbation theory.

However, these prior results apply only to finite-depth neural networks, while Neural ODEs are
infinite-depth networks due to their continuous nature. Moreover, as prior analyses are based on
induction techniques, there is no guarantee that these essential properties will also hold as depth
tends to infinity. In Section 4.1 and Section 4.2, we introduce a new framework to study Neural
ODEs as infinite-depth networks. We demonstrate that the smoothness of the ϕ is crucial to ensure
these essential properties hold in Neural ODEs. Additionally, to study the spectral properties of the
limiting NTK K∞, we provide a fine-grained analysis by expressing the limiting NTK of Neural
ODEs in an implicit integral form, which we conclude that the nonlinearity of activation plays a
critical role in ensuring the strict positive definiteness of K∞.

1To simplify the analysis, we assume the activation threshold value for ϕ is at 0 and further ϕ(0) = 0.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 WELL-POSEDNESS OF NEURAL ODES AND ITS GRADIENTS

As continuous models, Neural ODEs pose a significant challenge in accurately computing gradi-
ents. In this section, we explore the challenges associated with two methods for computing gra-
dients: optimize-then-discretize and discretize-then-optimize (Gholami et al., 2019; Finlay et al.,
2020; Onken et al., 2021). Through our exploration, we emphasize the essential role of smoothness
in activation functions to guarantee the well-posedness of Neural ODEs and their gradients.

3.1 OPTIMIZE-THEN-DISCRETIZE METHOD

As discussed in Section 2, Neural ODEs require numerical ODE solvers to solve the forward and
backward ODEs Eq. (2) and Eq. (4) to compute the gradients, employing a method known as the
optimize-then-discretize method. When solving ODEs, ensuring their well-posedness is of primary
concern. In Proposition 1, we demonstrate that if ϕ is Lipschitz continuous, the forward and back-
ward ODEs have globally unique solutions, thus ensuring the well-posedness. The detailed proofs
are provided in Appendix C.

Proposition 1. For any given T > 0, if the activation function ϕ is Lipschitz continuous with
Lipschitz constant L1, then the forward ODE Eq. (2) and the backward ODE Eq. (4) have unique
solutions ht and λt for all t ∈ [0, T] and x ∈ Rd almost surely over random initialization Eq. (3).
In addition, λt(x) = ∂f(x;θ))/∂ht is the solution to the backward ODE.

Although Neural ODEs and their gradients are well-defined under these conditions, this does not
guarantee that gradients can be computed accurately by solving the ODEs numerically. One primary
issue is that the magnitudes of the hidden state ht and adjoint state λt can grow exponentially over
the time horizon T , leading to accumulated numerical errors. This issue is illustrated in Figure 3,
where long-time horizon leads to damping in the early stages of training. To mitigate this problem,
we propose scaling the dynamics by setting σw = O (1/T), which ensures that the magnitudes of
ht and λt remain mild and independent of T . This scaling stabilizes the norms, thereby allowing
numerical solvers to produce much more accurate gradient estimates.

Additionally, calculating gradients using Eq. (5) requires storing the values of ht and λt at every
time step t ∈ [0, T], which can consume a significant amount of memory in practice. To address
this, Chen et al. (2018b) propose solving an augmented backward ODE (defined in Appendix 36
for our setup), which combines an additional gradient state with both the backward ODE and the
reversed forward ODE. This approach eliminates the need for storing intermediate states. However,
since the hidden state ht is no longer constant in the augmented ODE, additional regularization
conditions on the dynamics are typically required to ensure the stability of the solution. Fortunately,
we demonstrate that such regularization conditions are unnecessary for Neural ODEs because the
Lipschitz continuity of ϕ ensures that ht is well defined for all t ∈ [0, T]. Therefore, the augmented
ODE approach can be used without the need for additional regularization. A detailed discussion of
this result can be found in Appendix C.

3.2 DISCRETIZE-THEN-OPTIMIZE METHOD

Alternatively, we can discretize the ODE using Euler’s method, treating the continuous ODE as a
finite-depth Residual Network (ResNet) fL(x;θ)2 with shared parameters across layers:

fL(x;θ) =
σv√
n
v⊤ϕ(hL(x)), (10a)

hℓ = hℓ−1 + κ · σw√
n
Wϕ(hℓ−1), ∀ℓ ∈ {1, 2, · · · , L} (10b)

h0 =
σu√
d
Ux, (10c)

where κ = T/L represents the time step. The gradient can then be estimated using backpropagation
through the finite depth ResNet fL(x;θ), referred to as the discretize-then-optimize approach.

2Here the superscript in fL
θ indicates it has L time steps, while actually fL

θ has totally L+ 2 layers.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

As a finite-depth ResNet, the gradients of fL(x;θ) are always well defined. However, it remains an
open question whether the gradients of the finite-depth approximation fL(x;θ) converge to the gra-
dients of the continuous Neural ODE f(x;θ) as the depthL→ ∞. In Proposition 2, we demonstrate
that the smoothness of ϕ ensures this convergence. Thus, in the limit of infinite depth (or infinites-
imally small time steps), both the optimize-then-discretize and discretize-then-optimize methods
yield the same gradients, provided that the activation function is sufficiently smooth. The detailed
proofs are provided in Appendix E.
Proposition 2. Given x, if the activation function ϕ and its derivative ϕ′ are L1- and L2-Lipschitz
continuous, respectively, the following inequalities hold a.s. over random initialization:

∥hℓ − htℓ∥, ∥λℓ − λtℓ∥, ∥∇θf
L −∇θf∥ ≤ CL−1, ∀ℓ ∈ {0, 1, · · · , L}, (11)

where tℓ = Tℓ/L and C > 0 is a constant depending only on L1, L2, T , σv , σw, σu, and ∥x∥.

To further validate our theoretical findings, we propose conducting experiments that compare train-
ing efficiency and gradient accuracy with and without the Lipschitz continuity of ϕ′. These experi-
ment results, illustrated in Figure 7, demonstrate the necessity of Lipschitz continuity for ensuring
smooth gradient computation and achieving faster convergence during training.

4 NNGP AND NTK FOR NEURAL ODES

Understanding how activation and gradient propagate through neural networks is crucial for analyz-
ing their training dynamics and generalization abilities, as emphasized in previous studies (Glorot
& Bengio, 2010; Poole et al., 2016; Schoenholz et al., 2017). The frameworks of Neural Network
Gaussian Processes (NNGP) (Lee et al., 2018) and Neural Tangent Kernels (NTK) (Jacot et al.,
2018), grounded in mean-field theory, provide powerful analytical tools to study these dynamics. In
this section, we establish theoretical results that demonstrate the well-defined nature of NNGP and
NTK for Neural ODEs and explore their properties with respect to information propagation.

4.1 NNGP: FORWARD PROPAGATION OF INPUTS

Previous work has shown that in the infinite-width limit, randomly initialized finite-depth neural net-
works converge to Gaussian processes with mean zero and recursively defined covariance functions,
known as NNGP kernels (Neal, 2012; Lee et al., 2018; Daniely et al., 2016; Yang, 2019). When ap-
proximating Neural ODEs using a sequence of finite-depth ResNets fLθ , we can establish the NNGP
for fLθ . Detailed proofs are provided in Appendix D.
Proposition 3. Suppose ϕ is L1-Lipschitz continuous. Then, as width n → ∞, the finite-depth
neural network fLθ defined in equation 10 converges in distribution to a centered Gaussian Process
with a covariance function or NNGP kernel ΣL+1 := CL+1,L+1 defined recursively:

C0,k(x, x̄) = δ0,k
σ2
u

d
xT x̄, ∀k ∈ {0, 1, · · · , L+ 1} (12)

Cℓ,k(x, x̄) = σ2
wEϕ(uℓ−1)ϕ(ūk−1), ∀ℓ, k ∈ {1, 2, · · · , L+ 1} (13)

where κ = T/L and (uℓ, ūk) are centered Gaussian random variables with covariance

E(uℓūk) = C0,0(x, x̄) + κ2
ℓ,k∑

i,j=1

Ci,j(x, x̄), ∀ℓ, k ∈ {0, 1, · · · , L}. (14)

Although Proposition 3 shows that a sequence of Gaussian processes (GPs) can be derived for the
sequence of fLθ , this does not necessarily mean that the Neural ODE fθ will also converge to a
Gaussian Process asL→ ∞. The challenge lies in the difference between two convergence patterns:
infinite-width-then-depth and infinite-depth-then-width. These often lead to different limits.

For example, consider the simple double sequence an,ℓ := n/(ℓ+n). This double sequence demon-
strates how taking different convergence paths—first in width, then in depth, or vice versa—can
yield different results. Specifically, we observe that

lim
ℓ→∞

(lim
n→∞

an,ℓ) = 1, while lim
n→∞

(lim
ℓ→∞

an,ℓ) = 0.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

This phenomenon has been noted in several recent studies (Hayou & Yang, 2023; Yang et al., 2024;
Gao et al., 2024) across various neural network architectures. Specifically, for commonly used
neural networks, the two convergence patterns often do not coincide, leading to different limits for
infinite-depth networks. Hence, the NNGP correspondence does not generally hold for infinite-
depth neural networks. For Neural ODEs, the infinite-depth-then-width convergence pattern is more
relevant, as Neural ODEs are equivalent to infinite-depth neural networks from the standpoint of
numerical discretization. However, the continuous nature and parameter sharing in Neural ODEs
present unique challenges that make previous mathematical tools inapplicable directly.

Fortunately, if the activation function ϕ is sufficiently smooth, we can show that these two lim-
its commute, and both convergence patterns share the same limit. One crucial intermediate result
involves proving that the double sequence ⟨ϕ(hL), ϕ(h̄L)⟩/n converges in depth L uniformly in
width n (almost surely). This uniform convergence ensures that as depth increases, the behavior of
the system remains stable regardless of width, which is crucial for showing that the limits commute
and establishing the well-posedness of the NNGP for Neural ODEs. The proof relies on Euler’s
convergence theorem and is provided in Appendix D.
Lemma 1. Let ϕ be L1-Lipschitz continuous. For any x, x̄ ∈ Sd−1, the double sequence
⟨ϕ(hL), ϕ(h̄L)⟩/n satisfies∣∣⟨ϕ(hL), ϕ(h̄L)⟩ − ⟨ϕ(hT), ϕ(h̄T)⟩

∣∣ /n ≤ CL−1, (15)

where C > 0 is a constant depending solely on L1, σw, σu, and T .

By combining Lemma 1 and Proposition 3 with Moore-Osgood theorem, as stated in Theorem 8 of
Appendix A, we can establish the NNGP correspondence for the Neural ODE fθ.
Theorem 1. Suppose L1-Lipschitz continuous ϕ. As width n → ∞, the Neural ODE fθ defined
in equation 1 converges in distribution to a centered Gaussian process with covariance function Σ∗

defined as the limit of ΣL given in Proposition 3.

Remark 1. Thanks to the uniform convergence result established in Lemma 1, the covariance func-
tion ΣL converges to Σ∗ with a rate of |ΣL(x, x̄) − Σ∗(x, x̄)| ∼ CL−1. This polynomial rate of
convergence preserves the geometry of the input space (Yang & Schoenholz, 2017). This stands in
contrast to classical feedforward networks, where the input space geometry often collapses unless
the variance hyperparameters are set precisely on the edge of chaos (Poole et al., 2016).

4.2 NTK: BACKPROPAGATION OF GRADIENTS

While NNGP governs the forward propagation of inputs, the NTK (Jacot et al., 2018) governs the
backward propagation of gradients. Understanding both is key to comprehending the full dynamics
of Neural ODEs during training. As defined for Neural ODEs in Eq. (9), we can also define the NTK
KL

θ for the finite-depth network fLθ in Eq. (10) as follows:

KL(x, x̄;θ) :=
〈
∇θf

L(x;θ),∇θf
L(x̄;θ)

〉
. (16)

In the same infinite-width limit, as highlighted in previous works (Jacot et al., 2018; Yang, 2020),
the NTK KL

θ converges to a deterministic kernel KL
∞ that remains constant throughout training.

Notably, this deterministic limiting NTK KL
∞ (and K∞ defined in Theorem 2) governs the training

dynamics of Neural ODEs under gradient descent.

Below are the results for our setup, with proofs provided in Appendix E.
Proposition 4. Suppose ϕ is L1-Lipschitz continuous. Then, as the network width n→ ∞, the NTK
KL

θ converges almost surely to a deterministic limiting kernel: ∀L ≥ 0

KL
∞(x, x̄) = CL+1,L+1(x, x̄) +

L∑
ℓ,k=1

Cℓ,k(x, x̄)Dℓ,k(x, x̄) + C0,0(x, x̄)D0,0(x, x̄), (17)

where Cℓ,k are defined in Proposition 3 and Dℓ,k are defined recursively:

DL,k(x, x̄) = σ2
wEϕ′(uL)ϕ′(ūL), ∀k ∈ {0, 1, · · · , L}, (18)

Dℓ,k(x, x̄) = Dℓ+1,k+1(x, x̄)
(
1 + κ2σ2

wEϕ′(uℓ)ϕ′(ūk)
)
, ∀ℓ, k ∈ {1, 2, · · · , L− 1}. (19)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The same problem of different convergence patterns converging to different limits, observed in the
NNGP kernel Σ∗, also arises when computing the NTK of Neural ODEs. While the Lipschitz conti-
nuity of ϕ enables well-posed forward propagation of inputs in Neural ODEs, additional regularity
is required for backward propagation of gradients. Specifically, Lipschitz continuity of ϕ′ is suffi-
cient to ensure uniform convergence in the NTK. With ϕ and ϕ′ both being Lipschitz continuous,
we can obtain a uniform convergence result similar to Lemma 1.
Lemma 2. If ϕ is L1-Lipschitz continuous and ϕ′ is L2-Lipschitz continuous, then the following
inequality holds almost surely:∣∣KL

θ (x, x̄)−Kθ(x, x̄)
∣∣ ≤ CL−1, ∀x, x̄ ∈ Sd−1, (20)

where C > 0 is a constant dependent only on the constants σv , σw, σu, L1, L2, and T .

Combining Lemma 2 with Proposition 4 and Moore-Osgood Theorem 8, we can interchange the
limits L and n in the double sequence Kθ(x, x̄) and show that the NTK of Neural ODE converges
to a deterministic limiting kernel.
Theorem 2. Suppose ϕ is L1-Lipschitz continuous and ϕ′ is L2-Lipschitz continuous. As the net-
work width n→ ∞, the NTK Kθ converges almost surely to a deterministic limiting kernel:

Kθ → K∞, as n→ ∞, (21)

where K∞ is the limit of the NTK KL
∞ defined in Proposition 4, as depth L→ ∞.

Remark 2. Using the uniform convergence from Lemma 2, we observe that ∥KL
∞(x, x̄) −

K∞(x, x̄)∥ ∼ CL−1. This polynomial convergence not only guarantees that gradients neither
explode nor vanish as L→ ∞ (Yang & Schoenholz, 2017; Schoenholz et al., 2017), but also implies
that the limiting NTK, K∞, has an implicit integral form, as suggested by Eq. (17). This integral
form provides a key insight for studying the spectral properties of the NTK K∞ directly, without
relying on the inductive techniques used in previous works.

5 GLOBAL CONVERGENCE ANALYSIS FOR NEURAL ODES

As discussed in Eq. (8), the dynamics of the residual uk − y under gradient descent can be char-
acterized using the NTK Kθ. In the infinite-width limit, as shown in Theorem 2, this time-varying
kernel Kθ converges to a deterministic limiting kernel K∞, provided the activation function ϕ is
sufficiently smooth. Therefore, in this section, we establish the global convergence of Neural ODEs
under gradient descent by examining the spectral property of the NTK Kθ and its limit K∞.

The limiting NTKK∞ is a deterministic kernel function, and its spectral properties are key to under-
standing global convergence. Previous studies (Jacot et al., 2018; Nguyen, 2021) have highlighted
that the strictly positive definiteness (SPD) of the NNGP kernel Σ∗ is sufficient to guarantee the
SPD property of K∞. Since Σ∗ is a component of K∞ defined in Eq. (9), demonstrating the SPD
property of Σ∗ is critical for proving convergence.

However, prior analyses have relied on inductive proofs for finite-depth neural networks, which
are not directly applicable to infinite-depth and continuous networks like Neural ODEs. That is
because, as depth increases, information propagation can become trivial (i.e., gradients vanishing or
exploding), potentially diminishing the SPD property at the infinite-depth limit (Poole et al., 2016;
Schoenholz et al., 2017; Hayou & Yang, 2023). Fortunately, results in Section 4 demonstrated stable
information propagation in both forward and backward directions, regardless of the choice of σv ,
σw, and σu. This allows us to retain the SPD property of the NTK of Neural ODEs as the depth L
approaches infinity.

Specifically, recall from Theorem 1 that we can express Σ∗ as:
Σ∗(x, x̄) = E[ϕ(u)ϕ(ū)],

where (u, ū) are centered Gaussian random variables with covariance S∗(x, x̄) defined by

S∗(x, x̄) = lim
L→∞

C0,0(x, x̄) + κ2
L∑

ℓ,k=1

Cℓ,k(x, x̄)


with κ = T/L. This expression S∗ can be interpreted as a double integral form. By leveraging the
results from Section 4, we can derive key properties of S∗ in Lemma 3. These properties serve as a
fundamental basis for analyzing the SPD properties of the NNGP and NTK.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Lemma 3. For any x, x̄ ∈ Sd−1, we have

1. S∗(x, x̄) is well defined,

2. 0 < S∗(x,x) = S∗(x̄, x̄) <∞,

3. S∗(x,x) ≥ S∗(x, x̄) and the equality holds if and only if x = x̄.

Lemma 3 implies S∗(x,x) = Θ(1) for all x ∈ Sd−1. This allows us to study the SPD property of
the NNGP kernel Σ∗ using its Hermitian expansion from the perspective of dual activation (Daniely
et al., 2016). Detailed analysis and proofs are provided in Appendix F. Additionally, S∗(x,x) >
S∗(x, x̄) for all x ̸= x̄ implies that the pathology known as the loss of input dependence, observed
in other large-depth networks such as feedforward (Poole et al., 2016), ResNet (Hayou & Yang,
2023), and RNN (Gao et al., 2024), does not occur here. This stability results from a combination of
several factors, including skip connections, scaling κ, and smoothness and nonlinearity of ϕ. With
stable information propagation in Neural ODEs, we can use the nonlinearity of ϕ to show that the
NNGP kernel Σ∗ and the limiting NTK K∞ are SPD.

Proposition 5. If ϕ is Lipschitz, nonlinear but non-polynomial, then the NNGP kernel Σ∗ is SPD.

Corollary 1. Suppose ϕ and ϕ′ are Lipschitz continuous. If ϕ is nonlinear but non-polynomial, then
the limiting NTK K∞ is SPD.

With these results, we can establish the global convergence of Neural ODEs under gradient descent
with appropriate assumptions about the activation function ϕ and the training data.

Assumption 1. Let {xi, yi}Ni=1 be a training set. Assume

1. Training set: xi ∈ Sd−1 and xi ̸= xj for all i ̸= j; |yi| = O (1),

2. Smoothness: ϕ and ϕ′ are L1 and L2-Lipschitz continuous,

3. Nonlinearity: ϕ is nonlinear and non-polynomial.

Under Assumption 1, we can employ inductive proofs to show that in the overparameterized regime,
provided sufficiently small learning rate, the parameters θk remain close to their initialization θ0.
This proximity ensures that the Neural ODE and its gradients are well-posed not only at initializa-
tion, as proved in Proposition 1, but also throughout the entire training process. The consistency in
parameter updates enables us to prove that the NTK Kθ retains SPD during training, ensuring that
the training errors of Neural ODEs consistently decrease to zero at a linear rate. Detailed analysis
and proofs are provided in Appendix G.

Theorem 3. Suppose Assumption 1 holds and the learning rate η is chosen such that 0 < η ≤
1/∥X∥2. Then for any δ > 0, there exists a natural number nδ such that for all widths n ≥ nδ the
following results hold with probability at least 1− δ over random initialization Eq. (3):

1. The parameters θk stay in a neighborhood of θ0, i.e.,

∥θk − θ0∥ ≤ C∥X∥
√
L(θ0)/λ0. (22)

2. The loss function L(θk) consistently decreases to zero at an exponential rate, i.e.,

L(θk) ≤
(
1− ηλ0

16

)k

L(θ0), (23)

where λ0 := λmin(K∞) > 0, and the constant C > 0 only depends on L1, L2, σv , σw, σu, and T .

6 EXPERIMENTS

In this section, we validate our theoretical findings through several experiments on Neural ODEs. We
focus on the approximation errors between the continuous Neural ODE and its finite-depth ResNet
approximations, the NTK behavior, and the empirical convergence properties of Neural ODEs under

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 1: Analysis of Neural ODE output, gradient differences, and NTK convergence. (a) Output
differences between Neural ODE and finite-depth ResNet across different widths using Softplus
activation. (b) Gradient differences for Neural ODE and ResNet models under Softplus activation.
(c) NTK convergence behavior across different widths, showing the NTK approximation converging
to the limiting NTK as width increases. (d) NTK convergence behavior on a log-log scale, further
emphasizing the rapid convergence at larger widths.

gradient descent. Further experimental details, including additional experiments on smooth vs. non-
smooth activations and scaling for long-horizon stability, can be found in the appendix.

Gradient and Output Approximation by Finite-Depth ResNet. As established in Section 3, Neu-
ral ODE outputs and gradients can be approximated by a finite-depth ResNet, with an error rate that
decays as 1/L, where L is the depth of the ResNet. We empirically verify this by measuring the
output and gradient differences between the continuous Neural ODE and its finite-depth approxi-
mation at initialization. Both the Neural ODE and ResNet were initialized with the same random
weights and evaluated on the MNIST dataset, with ResNet depths L ranging from 10 to 1,000. We
used Softplus activation to ensure smoothness. Figure 1(a)-(b) demonstrates that the approximation
error for both outputs and gradients decreases as 1/L, with convergence being uniform across dif-
ferent widths, consistent with our theoretical results. These findings confirm that smooth activation
functions lead to well-posed ODE solutions, with accurate approximations by finite-depth networks.

NTK Approximation Error from Finite-Depth ResNet. As discussed in Section 4, the NTK of
Neural ODEs can be approximated by the NTK of a finite-depth ResNet, with the approximation
error decaying as 1/L. This follows from the fact that the NTK is the inner product of gradients,
and as shown in Proposition 2 and Figure 1(a)-(b), the gradient difference between Neural ODEs
and finite-depth ResNets also decays as 1/L. By applying the triangle inequality to the gradient
differences, it is straightforward to conclude that the NTK approximation error inherits the same
1/L decay rate. Given this reasoning and the page limit, we skip this experiment, but refer readers
to Section 4 and Theorem 3 for a detailed theoretical analysis.

NTK Convergence to Deterministic Limiting NTK. In Theorem 2, we prove that as the width
of Neural ODEs tends to infinity, the NTK converges to a deterministic limiting NTK. While no
theoretical convergence rate is provided, we conducted experiments to empirically investigate this
convergence. We evaluated Neural ODE models with increasing widths, ranging from 10 to 1, 000,
and computed the NTK for each width. These NTKs were then compared to an approximate limiting
NTK derived from random matrix theory. As shown in Figure 1(c)-(d), the NTK converges to the
limiting NTK as the width increases. The empirical convergence rate falls between 1/m and 1/

√
m,

with a tendency closer to 1/
√
m when plotted on a logarithmic scale. This indicates that Neural

ODEs exhibit rapid convergence to their limiting NTK, validating the theoretical analysis.

NTK’s SPD and Global Convergence. In Proposition 5 and Corollary 1, we established that the
NTK of Neural ODEs is SPD when the activation function is nonlinear but not polynomial, which
guarantees global convergence under gradient descent. Specifically, the NTK’s smallest eigenvalue
remains positive, ensuring the well-conditioning of the model during training. Additionally, we
showed that the model parameters remain close to their initial values during training, further sup-
porting the global convergence claim.

To empirically verify these results, we conducted experiments with Neural ODE models of varying
widths—500, 1000, 2000, and 4000—while monitoring both the NTK’s smallest eigenvalue and the
distance of the model parameters from their initial values over 100 epochs. Softplus was used as
the activation function to ensure smoothness and non-polynomial nonlinearity. At each epoch, we
computed the smallest eigenvalue of the NTK and the Euclidean distance between the current and
initial parameter values.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The Smallest Eigenvalue of NTK: As shown in Figure 2(a), we observed that as the width of the
Neural ODE increases, the smallest eigenvalue of the NTK becomes larger. For widths greater than
the number of training samples (i.e., which is 1000 in our experiments), the smallest eigenvalue
remains strictly positive throughout the training process, confirming the NTK’s strict positive defi-
niteness and ensuring that the model is well-conditioned for gradient descent. However, for widths
smaller than the number of training samples, the smallest eigenvalue becomes negative, indicating
poor conditioning at smaller widths.

Parameter Distance: The results also confirm that the parameter distance remains stable as train-
ing progresses, staying within a manageable bound of O (1), as shown in Figure 2(b). As the
width increases, the parameter distance grows, but the growth remains stable and does not devi-
ate significantly. This supports the theoretical result that the parameters do not stray far from their
initialization, ensuring stable training and global convergence.

Train and Test Loss: Finally, as depicted in Figure 2(c)-(d), we observed that larger widths lead to
faster convergence of the gradient descent. Models with larger widths (2000 and 4000) exhibited
lower test losses and faster convergence rates compared to smaller widths (500 and 1000). This
behavior demonstrates that larger widths allow the model to generalize better and converge more
efficiently during training.

(a) (b) (c) (d)

Figure 2: Empirical results of Neural ODEs with varying widths: (a) NTK smallest eigenvalue grows
and stabilizes as the width increases, with negative values for widths below the training size. (b)
Parameter distances stay stable and bounded within O (1). (c) Linear-scale train and test losses show
faster convergence for larger widths. (d) Log-scale losses further confirm improved generalization
for wider models.

Additional Experimental Results. In the appendix, we present supplementary experiments that
validate and extend our findings. Without proper scaling (e.g., σw ∼ 1/T), Neural ODEs exhibit
early-stage damping during training over long-time horizons (see Figure 3). Smooth activations
like Softplus converge faster than non-smooth ones like ReLU, likely due to more accurate gradient
computation (see Figure 7). Additionally, while non-polynomial nonlinearity is sufficient for an
SPD NTK, our experiments show that quadratic activations also yield SPD NTKs, though with
slower convergence (see Figure 8). These results highlight the importance of activation functions
and model design for Neural ODE performance. We also include convergence analysis on diverse
datasets, such as CIFAR-10, AG News, and Daily Climate, as well as additional activations like
GELU, further demonstrating the generalizability of our findings.

7 CONCLUSIONS
In this paper, we examined the crucial role of activation functions in the training dynamics of Neu-
ral ODEs. Our findings demonstrate that the choice of activation function significantly impacts
the dynamics, stability, and global convergence of the Neural ODE models under gradient descent.
Specifically, we found that using smooth activations like Softplus ensures that the forward and back-
ward dynamics in Neural ODEs are well-posed, allowing for accurate approximation by finite-depth
ResNets. As a result, the NTK of Neural ODEs converges to a deterministic limiting NTK that gov-
erns the model’s training dynamics. Additionally, we demonstrated that when using nonlinear but
non-polynomial activations, the NTK remains SPD, ensuring well-conditioned training and global
convergence. Through extensive experiments, we verified that suitable activation functions, Neural
ODEs exhibit stable parameter behavior, rapid NTK convergence, and faster optimization, particu-
larly at larger widths. These findings highlight the importance of selecting activation functions with
appropriate smoothness and nonlinearity to ensure the robustness and scalability of Neural ODEs,
establishing them as a powerful approach for continuous-time deep learning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Thirty-third Conference on Neural
Information Processing Systems, 2019.

Zhi-Dong Bai and Yong-Qua Yin. Limit of the smallest eigenvalue of a large dimensional sample
covariance matrix. In Advances In Statistics. World Scientific, 2008.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. arXiv preprint
arXiv:1806.06763, 2018a.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 2018b.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. Advances in neural information
processing systems, 2016.

Jianzhun Du, Joseph Futoma, and Finale Doshi-Velez. Model-based reinforcement learning for
semi-markov decision processes with neural odes. Advances in Neural Information Processing
Systems, 33:19805–19816, 2020.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. In International conference on machine learning, pp. 1675–
1685. PMLR, 2019a.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in
neural information processing systems, 32, 2019b.

Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your
neural ode: the world of jacobian and kinetic regularization. In International conference on
machine learning, pp. 3154–3164. PMLR, 2020.

Tianxiang Gao, Hailiang Liu, Jia Liu, Hridesh Rajan, and Hongyang Gao. A global convergence
theory for deep relu implicit networks via over-parameterization. In International Conference on
Learning Representations, 2021.

Tianxiang Gao, Xiaokai Huo, Hailiang Liu, and Hongyang Gao. Wide neural networks as gaussian
processes: Lessons from deep equilibrium models. Advances in Neural Information Processing
Systems, 36, 2024.

Amir Gholami, Kurt Keutzer, and George Biros. Anode: unconditionally accurate memory-efficient
gradients for neural odes. In Proceedings of the 28th International Joint Conference on Artificial
Intelligence, 2019.

Amir Gholaminejad, Kurt Keutzer, and George Biros. Anode: Unconditionally accurate memory-
efficient gradients for neural odes. In International Joint Conferences on Artificial Intelligence,
2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Tilmann Gneiting. Strictly and non-strictly positive definite functions on spheres. Bernoulli, 2013.

Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
Free-form continuous dynamics for scalable reversible generative models. arXiv preprint
arXiv:1810.01367, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. Advances
in neural information processing systems, 32, 2019.

Soufiane Hayou and Greg Yang. Width and depth limits commute in residual networks. In Interna-
tional Conference on Machine Learning, pp. 12700–12723. PMLR, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual net-
works. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part IV 14, pp. 630–645. Springer, 2016b.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

S Hochreiter. Long short-term memory. Neural Computation MIT-Press, 1997.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and
ntk for deep attention networks. In International Conference on Machine Learning, pp. 4376–
4386. PMLR, 2020.

Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covari-
ate shift. arXiv preprint arXiv:1502.03167, 2015.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 2018.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equa-
tions for irregular time series. Advances in Neural Information Processing Systems, 33:6696–
6707, 2020.

Joon-Hyuk Ko, Hankyul Koh, Nojun Park, and Wonho Jhe. Homotopy-based training of neuralodes
for accurate dynamics discovery. Advances in Neural Information Processing Systems, 36:64725–
64752, 2023.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jaehoon Lee, Jascha Sohl-dickstein, Jeffrey Pennington, Roman Novak, Sam Schoenholz, and
Yasaman Bahri. Deep neural networks as gaussian processes. In International Confer-
ence on Learning Representations, 2018. URL https://openreview.net/forum?id=
B1EA-M-0Z.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In International Conference on Artificial Intelligence and
Statistics, pp. 3870–3882. PMLR, 2020.

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting
neural odes. Advances in Neural Information Processing Systems, 33:3952–3963, 2020.

Takashi Matsubara, Yuto Miyatake, and Takaharu Yaguchi. Symplectic adjoint method for exact gra-
dient of neural ode with minimal memory. Advances in Neural Information Processing Systems,
34:20772–20784, 2021.

Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

12

https://openreview.net/forum?id=B1EA-M-0Z
https://openreview.net/forum?id=B1EA-M-0Z

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Quynh Nguyen. On the proof of global convergence of gradient descent for deep relu networks with
linear widths. In International Conference on Machine Learning, pp. 8056–8062. PMLR, 2021.

Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate continu-
ous normalizing flows via optimal transport. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 9223–9232, 2021.

Katharina Ott, Prateek Katiyar, Philipp Hennig, and Michael Tiemann. Resnet after all: Neural odes
and their numerical solution. In International Conference on Learning Representations, 2020.

Sunghyun Park, Kangyeol Kim, Junsoo Lee, Jaegul Choo, Joonseok Lee, Sookyung Kim, and Ed-
ward Choi. Vid-ode: Continuous-time video generation with neural ordinary differential equa-
tion. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 2412–2422,
2021.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponen-
tial expressivity in deep neural networks through transient chaos. Advances in neural information
processing systems, 29, 2016.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Ivan Dario Jimenez Rodriguez, Aaron Ames, and Yisong Yue. Lyanet: A lyapunov framework
for training neural odes. In International Conference on Machine Learning, pp. 18687–18703.
PMLR, 2022.

Yulia Rubanova, Ricky TQ Chen, and David K Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. Advances in neural information processing systems, 32, 2019.

Michael Sander, Pierre Ablin, and Gabriel Peyré. Do residual neural networks discretize neural
ordinary differential equations? Advances in Neural Information Processing Systems, 2022.

Samuel S. Schoenholz, Justin Gilmer, Surya Ganguli, and Jascha Sohl-Dickstein. Deep information
propagation. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=H1W1UN9gg.

Aleksei Sholokhov, Yuying Liu, Hassan Mansour, and Saleh Nabi. Physics-informed neural ode
(pinode): embedding physics into models using collocation points. Scientific Reports, 13(1):
10166, 2023.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations, 2020.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent
kernel perspective. Journal of Computational Physics, 449:110768, 2022.

Ge Yang and Samuel Schoenholz. Mean field residual networks: On the edge of chaos. Advances
in neural information processing systems, 30, 2017.

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian pro-
cesses. Advances in Neural Information Processing Systems, 2019.

Greg Yang. Tensor programs ii: Neural tangent kernel for any architecture. arXiv preprint
arXiv:2006.14548, 2020.

13

https://openreview.net/forum?id=H1W1UN9gg
https://openreview.net/forum?id=H1W1UN9gg

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs VI: Feature learning in
infinite depth neural networks. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=17pVDnpwwl.

Juntang Zhuang, Nicha Dvornek, Xiaoxiao Li, Sekhar Tatikonda, Xenophon Papademetris, and
James Duncan. Adaptive checkpoint adjoint method for gradient estimation in neural ode. In
International Conference on Machine Learning, pp. 11639–11649. PMLR, 2020a.

Juntang Zhuang, Nicha C Dvornek, James s Duncan, et al. Mali: A memory efficient and reverse
accurate integrator for neural odes. In International Conference on Learning Representations,
2020b.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep relu networks. Machine learning, 109:467–492, 2020.

14

https://openreview.net/forum?id=17pVDnpwwl

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A USEFUL MATHEMATICAL RESULTS

Theorem 4 (Bai-Yin law, see Vershynin (2010); Bai & Yin (2008)). LetA be anN×n random ma-
trix whose entries and independent copies of a random variable with zero mean, unit variance, and
finite fourth moment. Suppose that N and n grow to infinity while the aspect ratio n/N converges
to a constant in [0, 1]. Then

smin(A) =
√
N −

√
n+ o

(√
n
)
, smax(A) =

√
N +

√
n+ o

(√
n
)
, almost surely. (24)

Theorem 5 (Picard-Lindelöf theorem). Let f : [a, b]× Rn → Rn be a function. If f is continuous
in the first argument and Lipschitz continuous with coefficient L in the second argument, then the
ODE

x̄(t) = f(t, x(t)), (25)

possesses a unique solution on [a− ε, a+ ε] for each possible initial value x(a) = x0 ∈ Rn, where
ε < 1/L.
Theorem 6 (Peano Existence Theorem). If the function f is continuous in a neighborhood of
(t0, x0), then the ODE equation 25 has at least one solution defined in a neighborhood of t0.
Theorem 7 (Convergence for Euler’s Method). Let xn be the result of applying Euler’s method to
the ordinary differential equation defined as follows

ẋ = f(x, t), t ∈ [t0, t1], and x(0) = x0. (26)

If the solution x has a bounded second derivative and f is L-Lipschitz continuous in x, then the
global truncation error is bounded by

∥x(tn)− xn∥ ≤ hM

2L
(eL(tn−t0) − 1), (27)

where h is the time step, and M is an upper bound on the second derivative of x on the given
interval.
Lemma 4 (Gronwall’s inequality). Let I = [a, b] for an interval such that a < b < ∞. Let u, α, β
be real-valued continuous functions that satisfies the integral inequality

u(t) ≤ α(t) +

∫ t

0

β(s)u(s)ds, ∀t ∈ I. (28)

Then

u(t) ≤ α(t) +

∫ t

0

α(s)β(s) exp

(∫ t

s

β(r)dr

)
, ∀t ∈ I. (29)

If, in addition, α(t) is non-decreasing, then

u(t) ≤ α(t) exp

(∫ t

0

β(s)ds

)
, ∀t ∈ I.

Theorem 8 (Moore-Osgood Theorem). If lim
n→∞

an,m = bm uniformly in m, and lim
m→∞

an,m = cn

for each n, then both limm→∞ bm and limn→∞ cn exists and are equal to the double limit, i.e.,

lim
m→∞

(lim
n→∞

an,m) = lim
n→∞

(lim
m→∞

an,m) = lim
n→∞
m→∞

an,m (30)

B DERIVATION OF GRADIENT THROUGH ADJOINT METHOD

In this section, we provide the detailed derivation of the adjoint method to compute the gradients.
We first recall the forward ODE as follows:

ḣt =
σw√
n
Wϕ(ht),

h0 =
σu√
d
Ux.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

To compute the gradients, we introduce the Lagrange function

L(h̃, θ, λ, µ) = fθ(x) +

∫ T

0

λ⊤t

(
σw√
n
Wϕ(h̃)− ˙̃

h

)
dt+ µ⊤

(
σu√
d
Ux− h̃(0)]

)
where h̃ is an extra variable that are independent from θ and (λ, µ) are Lagrangian multipliers.
Observe that with h̃ = h, we have

L(h, θ, λ, µ) = fθ(x), ∀(λ, µ).

Thus, the derivatives of L w.r.t. θ is equal to gradients of fθ w.r.t. θ.

Now, we consider a variation (δh, δθ) at point (h, θ). Then the correspondence variation of L is
given by

δL(h, θ, λ, µ) = σv√
n
(δv)⊤ϕ(h(T)) +

σv√
n
v⊤diag(ϕ′(h(T)))δh(T) + µ⊤

[
σu√
d
(δU)x− δh(0)

]
+

∫ T

0

λ⊤
[
σw√
n
(δW)ϕ(h) +

σw√
n
Wdiag(ϕ′(h))δh− δḣ

]
dt

=
σv√
n
(δv)⊤ϕ(h(T)) +

σv√
n
v⊤diag(ϕ′(h(T)))δh(T) + µ⊤

[
σu√
d
(δU)x− δh(0)

]
− λ⊤δh|T0 +

∫ T

0

λ̇⊤δhdt+

∫ T

0

λ⊤
[
σw√
n
(δW)ϕ(h) +

σw√
n
Wdiag(ϕ′(h))δh

]
dt

=
σv√
n
(δv)⊤ϕ(h(T)) +

[
σv√
n
v⊤diag(ϕ′(h(T)))− λ(T)T

]
δh(T)

+ µ⊤
[
σu√
d
(δU)x

]
+ (λ(0)− µ)

⊤
δh(0)

+

∫ T

0

[
λ̇⊤ +

σw√
n
λ⊤Wdiag(ϕ′(h))

]
δhdt+

∫ T

0

σw√
n
λ⊤(δW)ϕ(h)dt,

where we use integration by parts in the second equality. Then we choose (λ, µ) such that

µ =λ(0),

λ(T) =
σv√
n

diag(ϕ′(h(T)))v,

λ̇(t) =− σw√
n

diag(ϕ′(h(t)))W⊤λ(t).

Then the variation of L becomes

δL(h, θ, λ, µ) = σv√
n
ϕ(h(T))⊤δv +

σu√
d
µ⊤(δU)x+

∫ T

0

σw√
n
λ⊤(δW)ϕ(h)dt.

Thus, we obtain the gradients of fθ as

∇vfθ(x) =
σv√
n
ϕ(h(T))

∇W fθ(x) =

∫ T

0

σw√
n
λtϕ(ht)

⊤dt

∇Ufθ(x) =
σu√
d
λ(0)x⊤.

C WELL POSEDNESS OF NEURAL ODES AND ITS GRADIENTS

To show the existence and uniqueness, we first recall the Picard-Lindelöf theorem as follows.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C.1 FORWARD ODE IS WELL-POSED

As we assume the activation function is Lipschitz continuous, we can immediately obtain the local
result that the hidden state ht exists near the initial time.
Lemma 5 (Local solution). If the activation function ϕ is L1-Lipschitz continuous, then ht uniquely
exists for all |t| ≤ ε, where ε < 1/σwL1.

Proof. By using Bai-Yin law 4, we know ∥W∥ ∼
√
n a.s. Accordingly, we can show the mapping

f : x 7→ σw√
n
Wϕ(x) is Lipschitz continuous:

∥f(x)− f(z)∥ =∥ σw√
n
Wϕ(x)− σw√

n
Wϕ(z)∥

≤σw∥ϕ(x)− ϕ(z)∥
≤σwL1∥x− z∥.

Hence f is σwL1-Lipschitz continuous a.s. As t0 = 0, it follows from Picard-Lindelöf theorem that
unique ht exists locally for all |t| ≤ ε, where ε < 1/σwL1.

Lemma 6 (Global solution). For any given T > 0, if ϕ is L1-Lipschitz continuous, then ht uniquely
exists for all |t| ≤ T .

Proof. We have shown unique ht exists locally. Specifically, let ϕt(x) be the solution flow from
initial condition x to the solution at t. For any h0, we chose ε < 1/σwL1. Then the solution
h1 := ϕε(x0) is well-defined based on the local solution result. As the dynamics is the same and
the Lipschitz coefficient is uniform, we have h2 := ϕε(h1) is also well-defined. By repeating this
process for any finite steps N , we have hN = ϕε(hN−1) is well-defined. Hence, as T < ∞, there
exist N such that εN ≥ T . Therefore, ht is well-defined for all |t| ≤ T and the desired result is
obtained.

Then the result for global solution simply implies that result in Proposition 1.

C.2 BACKWARD ODE IS WELL POSED

Recall the backward ODE as follows

λT =
σv√
n

diag(ϕ′(hT)v, (31)

λ̇t =− σw√
n

diag(ϕ′(ht))W⊤λt. (32)

Observe that if ht is well defined in t ∈ [0, T], then the dynamics of λt becomes a linear dynamics.
Hence, with similar argument, we can easily show the corresponding VIP of λt is well posed.
Lemma 7. Given T , if the activation function ϕ is L1-Lipschitz continuous, then λt is uniquely
determined for all |t| ≤ T and λt = ∂fθ/∂ht is the solution.

Proof. It follows Lemma 5 and 6 that ht is well defined for all t ∈ [0, T] a.s. By Theorem 5, it
suffices to show g : x 7→ − σ√

n
diag[ϕ′(ht)]W⊤x is Lipschitz continuous:

∥g(x)− g(z)∥ = ∥ σw√
n

diag[ϕ′(ht)]W⊤(x− z)∥ ≤ σwL1∥x− z∥,

where we use the fact ∥W∥ ∼
√
n a.s. by Theorem 4 and |ϕ′| ≤ L1. Hence, the mapping g is

σwL1 Lipschitz continuous. It follows from Theorem 5 that λt uniquely exist for t ∈ [T − ε, T + ε]
for ε < 1/σwL1. Then with similar argument, we can show the existence of local solution can be
extended to global solution since ϕ is uniformly Lipschitz continuous. Therefore, λt is well defined
for all t ∈ [0, T].

Additionally, we can show λ(t) = ∂fθ(x)
∂h(t) is a solution. Specifically, the differential of fθ is given by

dfθ = dv⊤ϕ(h(T))/
√
n =

1√
n
v⊤diag(ϕ′(h(T)))dh(T).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Then we have
∂fθ(x)

∂h(T)
=

1√
n

diag(ϕ′(h(T)))v. (33)

Moreover, for any ε > 0, it follows the chain rule that
∂fθ(x)

∂h(t)
=
∂h(t+ ε)

∂h(t)

∂fθ(x)

∂h(t+ ε)
.

where we have

h(t+ ε) = h(t) +

∫ t+ε

t

1√
n
Wϕ(h(s))ds. (34)

Then we have

d

dt

(
∂fθ(x)

∂h(t)

)
= lim

ε→0+

∂fθ
∂h(t+ε) −

∂fθ
∂h(t)

ε

= lim
ε→0+

∂fθ
∂h(t+ε) −

∂h(t+ε)
∂h(t)

∂fθ
∂h(t+ε)

ε

= lim
ε→0+

∂fθ
∂h(t+ε) −

∂
∂h(t)

(
h(t) + 1√

n
Wϕ(h(t))ε+O

(
ε2
))

∂fθ
∂h(t+ε)

ε

= lim
ε→0+

∂fθ
∂h(t+ε) −

(
I + ε√

n
diag(ϕ′(h(t)))W⊤ +O

(
ε2
))

∂fθ
∂h(t+ε)

ε

=− 1√
n

diag(ϕ′(h(t)))W⊤ ∂fθ
∂h(t)

.

Thus, we can see ∂fθ(x)/∂h(t) is the solution to backward ODEs.

C.3 AUGMENTED BACKWARD ODE IS WELL POSED UNDER THE SAME REGULARITY

It can be seen from equation 5 that to compute gradient of fθ w.r.t. W , we need to evaluate values
of ht and λt for every t ∈ [0, T]. However, Chen et al. (2018b) suggested to solve an augmented
backward ODE. As a result, there is no need to store the intermediate values of ht and λt.

We first recall the gradients of fθ w.r.t. θ in a vectorization form:

∂vfθ(x) =
σv√
n
ϕ(h(T)) (35a)

∂W fθ(x) =

∫ T

0

σw√
n
(ϕ(ht)⊗ λt)dt (35b)

∂Ufθ(x) =
σu√
d
[x⊗ λ(0)] . (35c)

The according augmented backward ODE is given byḣtλ̇t
ġt

 =
σw√
n

 Wϕ(ht)
−diag[ϕ′(ht)W⊤]λt

−ϕ(ht)⊗ λt

 , ∀t ∈ [0, T] (36)

where gt ∈ Rn2×1 and the initial condition is hT and λT combined with gT = 0.

Once this augmented backward ODE is solved, the gradients of fθ(x) w.r.t. W can be obtained by
∇W fθ(x) =g(0)

=g(T) +

∫ 0

T

ġtdt

=g(T) +

∫ 0

T

− σw√
n
ϕ(ht)⊗ λtdt

=

∫ T

0

σw√
n
[ϕ(ht)⊗ λt] dt,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

where we use the fact gT = 0. Unlike ht is known in equation 4, ht is an unknown state in the
augmented backward ODE equation 36. Hence, it follows from Theorem 5 that extra smoothness is
generally required to ensure the well posedness such as ϕ′ probably need to be Lipschitz continuous.
However, the dynamics of ht is decoupled from the dynamics of λt and gt. Hence, one can solve
ht first (in the backward manner), then solve the dynamics system for λt and gt. In this manner, ht
is still an known states. Hence, one can use the same regularity condition in Proposition 2 to show
existence of unique solutions for t ∈ [0, T]. Therefore, no additional smoothness is needed to solve
the augmented backward ODE.

D NNGP CORRESPONDENCE FOR NEURAL ODES

In this section, we establish the NNGP correspondence for Neural ODEs. It follows from the Euler
method that Neural ODE can be approximated by a finite-depth neural network fLθ equation 10.
From the asymptotic perspective, Neural ODEs is equivalent to an infinite-depth ResNet with shared
parameters in its all hidden layers and a special depth-dependent scaling hyperparameter T/L.

D.1 FINITE-DEPTH NEURAL NETWORKS AS GAUSSIAN PROCESSES

As the finite-depth neural network fLθ can be considered as an approximation to the Neural ODE fθ,
we first study its signal propagation by establishing the NNGP correspondence for fLθ .

We define vectors gℓ ∈ Rn

g0(x) :=
σv√
d
Ux, (37)

gℓ(x) :=
σw√
n
Wϕ(hℓ−1), ∀ℓ ∈ [1, 2, · · · , L]. (38)

The vectors gℓ are G-vars in Tensor program Yang (2019). Tensor program is an representation of the
neural network computations that only involves linear and element-wise nonlinear operations. In the
paper Yang (2019), the authors claim that a computation using G-vars is equivalent to another com-
putation that using corresponding a list of one-dimensional Gaussian variables in the infinite-width
limit, as long as the computation only involves controllable nonlinear functions. The corresponding
definitions and Theorems are reformulated as follows.
Definition 1. (Yang, 2019, Simplified version of Definition 5.3) A real-valued function ψ : Rk → R
is called controllable if there exists some absolute constants C, c > 0 such that |ψ(x)| ≤
Cec

∑k
i=1|xi|.

Theorem 9. (Yang, 2019, Theorem 5.4) Consider a NETSOR program that has forward computation
for a given finite-depth neural network. Suppose the Gaussian random initialization and controllable
activation functions for the given neural network. For any controllable ψ : RM → R, as width
n→ ∞, any finite collection of G-vars gα with size M satisfies

1

n

n∑
α=1

ψ(g0α, . . . , g
M
α)

a.s.→ Eψ(z0, · · · , zM), (39)

where {z0, · · · , zM} are Gaussian random variables whose mean and covariance are computed by
the corresponding NETSOR Program.

Notably, controllable functions are not necessarily smooth, although smooth functions can be eas-
ily shown to be controllable. Moreover, controllable functions, as defined in (Yang, 2019, Defi-
nition 5.3), can grow faster than exponential but remain L1 and L2-integrable with respect to the
Gaussian measure. However, the simplified definition presented here encompasses almost most
functions encountered in practice. Moreover, the vectors gℓ or G-vars are not necessary to encode
the same input x. Hence, gℓ(x) and gℓ(x̄) are two different G-vars in Tensor program. However,
Theorem 9 still holds for any finite collection of G-vars, even they have the different input encoded.
Therefore, by utilizing Theorem 9, we can show as n → ∞, the finite-depth network fLθ tends to a
Gaussian Process weakly and the result is stated in Proposition 3 and the associated Tensor program
for fLθ is provided in Algorithm 1.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 1 ResNet fLθ Forward Computation on Input x

Input: Ux/
√
d : G(n)

Input: W : A(n, n)
Input: v : G(n)

1: h0 := Ux/
√
d : G(n)

2: for ℓ ∈ [L] do
3: xℓ := ϕ(hℓ) : H(n)
4: gℓ :=Wxℓ−1/

√
n : G(n)

5: hℓ := hℓ−1 + κ · gℓ : G(n)
6: end for
7: xL = ϕ(hL) : H(n)

Output: vTxL/
√
n

In the rest of this subsection, we will provide rigours proof to show the NNGP correspondence for
fLθ through induction. For simplicity, the proof assume only one input x is given, while the result
for multiple inputs is similar. Additionally, we also assume σv = σw = σu = 1 since their values
are not significant in the proof as long as their values are strictly positive.

BASIC CASE L = 0

As L = 0, we have f0θ (x) = vTϕ(h0)/
√
n. Hence, we don’t have the hidden layers. Based on the

random initialization equation 3, we have

g0k
i.i.d.∼ :=Σ0(x,x)

Let B0 be the smallest σ-algebra generated by g0. By condition on B0, we have

f0θ |B0 ∼ N (0, ∥ϕ0∥2/n),

where ϕ0 := ϕ(h0). It follows from the law of large that

σ2
v∥ϕ0∥2/n =

σ2
v

n

n∑
k=1

∣∣ϕ(h0k)∣∣2 =
σ2
v

n

n∑
k=1

∣∣ϕ(g0k)∣∣2 a.s.−→ Eϕ(z0)2 := Σ1(x, x),

where z0 ∼ N (0,Σ0(x, x)). As the limit is deterministic, the conditional and unconditional distri-
bution converge to the same limit. Therefore, we have

f0θ → GP(0,Σ1),

where

Σ1(x, x̄) = Ez0∼Σ0ϕ(z0(x))ϕ(z0(x̄)).

where we use z0 ∼ Σ0 to denote centered Gaussian random variable(s) whose (co)variances can be
computed using covariance function Σ0.

GENERAL CASE L

Now consider fLθ (x) = vTϕ(hL)/
√
n. Here we have hL = hL−1 + βgL and gL = Wϕ(hL−1),

where β := T
L . As W is used before, let BL−1 be the smallest σ-algebra generated by

{g0, · · · , gL−1}. Then we can have

gℓ =Wϕ(hℓ−1), ∀ℓ ∈ {1, 2, · · · , L− 1}

or equivalently [
g1 · · · gL−1

]︸ ︷︷ ︸
:=G

=W
[
ϕ0 · · · ϕL−2

]︸ ︷︷ ︸
:=Φ

where G ∈ Rn×(L−1) and Φ ∈ Rn×(L−1).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

We can obtain the conditional distribution of W by solving the following optimization problem

min
W

1

2
∥W ∥2F , s.t . G = WΦ.

The Lagrange function is given by

L(W,V) =
1

2
∥W∥2F + ⟨V,G−WΦ⟩

Then

∇WL(W,V) =W − V ΦT = 0 =⇒W ∗ = V ΦT .

As G =WΦ, we have

G =WΦ = V ΦTΦ =⇒ V = G(ΦTΦ)† =⇒W ∗ = G(ΦTΦ)†ΦT .

Thus, we have

W |B =W ∗ + W̃ΠT = G(ΦTΦ)†ΦT + W̃
(
In − ΦΦ†) ,

where Π = In − ΦΦ†, W̃ is i.i.d.copy of W , and Φ† = (ΦTΦ)†ΦT .

Since gL =Wϕ(hL−1), we have the conditional distribution of gLk as follows

gLk |B
independent∼ N (Gk∗(Φ

TΦ)†ΦTϕ, ∥ΠTϕ∥2/n).

where Gk∗ denotes the k-th row of matrix G and ϕ = ϕL−1 for simplicity.

As Lipschitz continuous activation is controllable function, it follows from Theorem 9 and inductive
hypothesis that〈

ϕi, ϕj
〉
/n =

1

n

n∑
k=1

ϕ(hik)ϕ(h
j
k)

=
1

n

n∑
k=1

ϕ(g0k + βg1k + · · ·+ βgik)ϕ(g
0
k + βg1k + · · ·+ βgjk)

a.s.→Eϕ(z0 + βz1 + · · ·+ βzi)ϕ(z0 + βz1 + · · ·+ βzj)

=:Eϕ(ui)ϕ(uj),

where we define another Gaussian random variable ui to simplify the notation:

ui = z0 + βz1 + · · ·+ βzi.

Therefore, we have

(ΦTΦ)ij/n =
〈
ϕi, ϕj

〉
/n

a.s.→ Eϕ(ui)ϕ(uj),

(ΦTϕ)i/n =
〈
ϕi, ϕ

〉
/n

a.s.→ Eϕ(ui)ϕ(uL−1).

For ℓ ∈ {0, 1, · · · , L − 1}, let U ℓ = {u0, · · · , uℓ} be a collection of ui. We define Σ(U ℓ, Uk) ∈
R(ℓ+1)×(k+1) as

Σ(U ℓ, Uk)ij = Σ(ui, uj) = Eϕ(ui)ϕ(uj), ∀i ∈ {0, 1, · · · , ℓ}, j ∈ {0, 1, · · · , k}.

Therefore, we have

(ΦTΦ)†ΦTϕ = (ΦTΦ/n)†
(
ΦTϕ/n

)
→ Σ(UL−2, UL−2)†Σ(UL−2, uL−1).

Moreover, observe that

∥ΠTϕ∥2/n =
1

n
ϕT (In − ΦΦ†)ϕ

=
1

n
ϕTϕ− 1

n
ϕTΦ(ΦTΦ)†ΦTϕ

=ϕTϕ/n− (ϕTΦ/n)(ΦTΦ/n)†(ΦTϕ/n)

→Σ(uL−1, uL−1)− Σ(uL−1, UL−2)Σ(UL−2, UL−2)†Σ(UL−2, uL−1)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Therefore, for any controllable function ψ, it follows from Theorem 9 that

1

n

n∑
k=1

ψ(g0k, g
1
k, · · · , gLk) → E

[
ψ(z0, z1, · · · , zL)

]
,

where
Cov(z0(x), zℓ(x̄)) = 0, ∀ℓ ≥ 1

Cov(zℓ(x), zk(x̄)) = E
[
ϕ
(
uℓ−1(x)

)
ϕ
(
uk−1(x̄)

)]
, ∀ℓ, k ≥ 1

Let BL be the smallest σ-algebra generated by {g0, · · · , gL}. By condition on BL, we have

fLθ (x)|BL ∼ N (0, ∥ϕL∥2/n) (40)
where

∥ϕL∥2/n =
1

n

n∑
k=1

ϕ(hLk)
2

=
1

n

n∑
k=1

[
ϕ

(
g0k + β

L∑
i=1

gik

)]2

a.s.→E

[
ϕ

(
z0 + β

L∑
i=1

zi

)]2
= E[ϕ(uL)]2 := ΣL+1(x, x)

Thus, we obtain
fLθ → GP(0,ΣL+1)

where
ΣL+1(x, x̄) = E

[
ϕ
(
uL(x)

)
ϕ
(
uL(x̄)

)]
.

D.2 NEURAL ODES AS GAUSSIAN PROCESSES

In this subsection, we prove Neural ODEs tends to a Gaussian process as the width n → ∞. As
the output parameter v is independent from all previous weights, by conditioning on the previous
hidden layers, the Neural ODEs becomes a Gaussian random variable with covariance ∥ϕL(x)∥2/n,
i.e.,

fθ(x)|B ∼ N
where we denote ϕT (x) := ϕ(hT (x)) to simplify the notation, hT is the exact solution from the
forward ODE, and B is the smallest σ-algebra generated by previous hidden layers. Here we also
assume σv = σw = σu = σ as their values are not important in the proof as long as they are strictly
positive.

It follows from convergence analysis of Euler’s method, stated in Theorem 7, that

ϕL(x) → ϕT (x), as L→ ∞,

where we denote ϕℓ(x) := ϕ(hℓ(x)).

Thus, the focus of analysis becomes to study the convergence of this double sequence

an,L :=
〈
ϕL(x), ϕL(x̄)

〉
/n.

By leveraging the convergence result for Euler’s method in Theorem 7, we can show the double
sequence an,L converges as L→ ∞ and this convergence is uniform in n a.s.
Lemma 8. If ϕ is L1-Lipschitz continuous, then the following inequalities hold for every x ∈ Sd−1

a.s.:
∥ht∥ ≤ C

√
neCσL1t, ∀t ∈ [0, T] (41)

and

∥hℓ − h(tℓ)∥ ≤ A

2B

(
eBtℓ − 1

) T
L

√
n, (42)

where A := Cσ2L2
1e

CσL1T and B := CσL1 for some absolute constant C > 0.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof. Recall from Lemma 5 that the mapping f : x 7→ σ√
n
Wϕ(x) is σL1-Lipschitz continuous.

Observe that

d(ḣ) =dσWϕ(h(t))/
√
n

=
σ√
n
Wdiag [ϕ′(h(t))] dh(t)

=
σ√
n
Wdiag [ϕ′(h(t))] ḣ(t)dt

=
σ√
n
Wdiag [ϕ′(h(t))]

σ√
n
Wϕ(h(t))dt.

Then we have

ḧ =
d

dt
ḣ =

σ√
n
Wdiag [ϕ′(h(t))]

σ√
n
Wϕ(h(t))

and

∥ḧ∥ ≤ C2σ2L2
1∥h(t)∥

where we use the fact ∥W∥ ≤ C
√
n a.s. from Theorem 4 for some absolute constant C > 0 and ϕ

is L1-Lipschitz continuous.

Then

h(t) = h(0) +

∫ t

0

ḣds

implies

∥h(t)∥ ≤∥h(0)∥+
∫ t

0

∥ σ√
n
Wϕ(h(s))∥ds

≤∥h(0)∥+
∫ t

0

CσL1∥h(s)∥ds.

By using the Gronwall’s inequality, we have

∥h(t)∥ ≤ ∥h(0)∥ exp
(∫ t

0

CσL1ds

)
= ∥h(0)∥eCσL1t

Additionally, as ∥U∥ ≤ C
√
n almost surely and ∥x∥ = 1, we have ∥h(0)∥ ≤ C

√
n, and so we

obtain

∥h(t)∥ ≤ C
√
neCσL1t, ∀t ∈ [0, T].

Therefore, we obtain

∥ḧ(t)∥ ≤ Cσ2L2
1

√
neCσL1t, ∀t ∈ [0, T].

By the Euler’s convergence theorem stated in Theorem 7, we have

∥hℓ − h(tℓ)∥ ≤ A

2B

(
eBtℓ − 1

) T
L

√
n,

where A := Cσ2L2
1e

CσL1T and B := CσL1.

Lemma 9. Suppose L1-Lipschitz continuous activation ϕ and ht(x) is the exact solution with input
x. Given L, we have∣∣∣∣ 1n 〈ϕ(hk(x)), ϕ(hℓ(x̄))〉− 1

n
⟨ϕ(htk(x)), ϕ(htℓ(x̄))⟩

∣∣∣∣ ≤ C1L
−1, ∀k, ℓ ∈ [L] (43)

where tk = kβ and C1 > 0 is some constant that does not dependent on n and L. Therefore, the
double sequence

〈
ϕ(hk(x)), ϕ(hℓ(x̄))

〉
/n converges w.r.t. L and uniformly w.r.t. n.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Proof. For simplicity, we assume the activation function is 1-Lipschitz continuous, i.e., L1 = 1. For
ℓ ≤ k ≤ L, we denote ϕℓ = ϕ(hℓ(x)), ϕ̄ℓ = ϕ(hℓ(x̄)), ϕ(t) = ϕ(ht(x)), and ϕ̄(t) = ϕ(ht(x̄)),
where ht(x) is the exact solution to the ordinary differential equation that encodes input x. Then we
consider〈

ϕk, ϕ̄ℓ
〉
/n−

〈
ϕ(kβ)), ϕ̄(ℓβ)

〉
/n =

1

n

〈
ϕk, ϕ̄ℓ − ϕ̄(ℓβ)

〉
+

1

n

〈
ϕk − ϕ(kβ)), ϕ̄(ℓβ)

〉
,

where β = T/L is the time step.

Note that

∥hℓ+1∥ = ∥hℓ + T

L

σ√
n
Wϕ(hℓ)∥ ≤ ∥hℓ∥+ Cσ

T

L
∥hℓ∥ = (1 + CσT/L)∥hℓ∥.

where we use the fact that ϕ is 1-Lipschitz continuous and ∥W∥ ≤ C
√
n a.s. Repeat this argument

ℓ times and we have

∥hℓ+1∥ ≤ (1 + CσT/L)ℓ+1∥h0∥

Therefore, we obtain

∥ϕℓ∥ ≤ ∥hℓ(x)∥ ≤ (1 + CσT/L)ℓ∥h0∥ ≤ eCσTℓ/L∥h0∥ ≤ C
√
neCσTℓ/L,

where we also use ∥U∥ ≤ C
√
n a.s. and ∥x∥ = 1.

Moreover, we have

∥ϕℓ − ϕ(ℓβ)∥ ≤ ∥hℓ − h(ℓβ)∥ ≤ C1

√
nL−1,

where C1 > 0 is a constant that does not dependent on n and L.

Therefore, we obtain∣∣〈ϕk, ϕ̄ℓ〉 /n−
〈
ϕ(kβ)), ϕ̄(ℓβ)

〉
/n
∣∣ ≤ 1

n
· C1

√
n · C1

√
nL−1 = C1L

−1.

Hence,
〈
ϕ(hℓ(x)), ϕ(hk(x̄))

〉
/n converges w.r.t. L and uniformly in n.

Combining Lemma 9 with Moore-Osgood theorem, stated in Theorem 8, the double sequence
an,L :=

〈
ϕ(hL(x)), ϕ(hL(x̄))

〉
/n has both iterated limits that are equal to the double limit, i.e.,

lim
n→∞

⟨ϕ(hT (x)), ϕ(hT (x̄))⟩ /n = lim
n→∞

lim
L→∞

〈
ϕ(hL(x)), ϕ(hL(x̄))

〉
/n

= lim
L→∞

lim
n→∞

〈
ϕ(hL(x)), ϕ(hL(x̄))

〉
/n

= lim
L→∞

ΣL+1(x, x̄)

=Σ∗(x, x̄).

As Σ∗ is a deterministic function, the conditioned and unconditioned distributions of fθ(x) are equal
in the limit: they are centered Gaussian random variables with covariance Σ∗(x, x). This complete
the proof of Theorem 1

E NTK FOR NEURAL ODE

In this section, we derive the neural tangent kernel (NTK) for Neural ODEs and provide sufficient
condition to show when the NTK is well defined for Neural ODEs. Under our exploration, the
smoothness of the activation function play an significant role to study the NTK of Neural ODEs.
For example, additionally smoothness is required to ensure the uniqueness and existence of the
adjoint state λt in the backward ODE equation 4 or augmented backward ODE equation 36.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E.1 CONVERGENCE ANALYSIS OF EULER’S METHOD FOR BACKWARD ODE

Similar to the forward ODE, we can also discretize the backward ODE as follows:

λ̃ℓ+1 = λ̃ℓ − β · σw√
n

diag[ϕ′(htℓ)]W
T λ̃ℓ, ∀ℓ ∈ [1, 2, · · · , L] (44)

where β = T/L and ht is the solution from the forward ODE equation 2 and tℓ := βℓ. Additionally,
we can further discretize ht and obtain

λℓ+1 = λℓ − β · σw√
n

diag[ϕ′(hℓ)]WTλℓ, ∀ℓ ∈ [1, 2, · · · , L]. (45)

As L → ∞ or β → ∞, we have hℓ → htℓ and λℓ → λtℓ . By utilizing the result from convergence
analysis of Euler’s method equation 7, we obtain the convergence rate, that indicates this conver-
gence is uniform in width n, if the activation function is smooth. This result serves as a fundamental
result to ensure the NTK for Neural ODE is well defined and allow us to study the training dynamics
of Neural ODEs under gradient-based methods.
Lemma 10. If ϕ and ϕ′ are L1- and L2-Lipschitz continuous, then the following inequalities hold
for every x ∈ Sd−1 a.s.:

∥λt∥ ≤ CσL1e
CσL1(T−t), ∀t ∈ [0, T] (46)

and

∥λℓ − λt∥ ≤ T

L

(
C1

C2
eC2(T−tℓ) − 1

)
, (47)

whereC1 = CL2
1L2σ

3eCσL1T ,C2 = CσL1+Cσ
2L1L2e

CσL1T for some absolute constantC > 0.

Proof. For the mapping f : (λ, t) 7→ − 1√
n

diag[ϕ′(ht)]WTλ, we consider

dλ̇ =d

(
− σ√

n
diag [ϕ′(h(t))]WTλ

)
=d
(
−ϕ′(h(t))⊙ W̃Tλ

)
=− [dϕ′(ht)]⊙ W̃Tλ

=− ϕ′′(ht)⊙ dht ⊙ W̃Tλ

=− ϕ′′(ht)⊙ W̃Tλ⊙ ḣdt

=− ϕ′′(ht)⊙ W̃Tλ⊙ W̃ϕ(ht)dt

=− diag (ϕ′′(ht)) diag
(
W̃Tλ

)
W̃ϕ(ht)dt,

where ⊙ denotes element-wise product and we denote W̃ = σW/
√
n. Thus, we have

∂tf(λ, t) = −diag (ϕ′′(ht)) diag
(
W̃Tλ

)
W̃ϕ(ht).

Let w̃k be the k-th column of W̃ . As in this case we consider λ as fixed, w̃T
k λ follows Gaussian

distribution with zero mean and variance σ2∥λ∥2/n. We obtain the inequality

∥∂tf(λ, t)∥ ≤ |ϕ′′| · σ√
n
∥λ∥ · ∥W̃∥ · ∥ϕ(ht)∥ ≤ CL1L2σ

2∥λ∥ · ∥ht∥/
√
n,

where we use the assumption |ϕ′′| ≤ L2 and C > 0 is some absolute constant.

Observe that

∥λt∥ ≤ ∥λT ∥+
∫ T

t

∥λ̇∥ts ≤ CσL1 +

∫ T

t

CσL1∥λs∥ds.

Then it follows from the Gronwall’s inequality that

∥λt∥ ≤ CσL1 exp

(∫ T

t

CσL1ds

)
≤ CσL1e

CσL1(T−t).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Combining the above bound of λt with equation 41, we have

∥∂tf(λ, t)∥ ≤ CL2
1L2σ

3eCσL1T := C1.

Note that C1 > 0 is independent from L and n.

With argument alike in Theorem 7, we can obtain the global truncation error for λℓ. In Proposition 1
and Proposition 2, we have shown the uniqueness and existence of ht and λt for all t ∈ [0, T]. To
study the convergence of λℓ to λtℓ , it is equivalent to apply Euler’s method to numerically solve λt
in the reverse order from t = 0 to t = T . Hence, we will assume λ0 is know and provide the global
truncation errors for λℓ.

Note that

∥λℓ+1 − λ(tℓ+1)∥ =

∥∥∥∥λℓ − βdiag[ϕ′(hℓ)]W̃Tλℓ −
[
λ(tℓ) + βλ̇(tℓ) +

β2

2
λ̈(tℓ)

]∥∥∥∥
≤∥λℓ − λ(tℓ)∥+ β∥diag[ϕ′(hℓ)]W̃Tλℓ − diag[ϕ′(h(tℓ))]W̃Tλ(tℓ)∥+

β2

2
C1,

where β = T/L and we use λ̈(tℓ) = ∥∂tf(tℓ)∥ ≤ C1. Additionally, the triangle inequality implies
that

∥diag[ϕ′(hℓ)]W̃Tλℓ − diag[ϕ′(h(tℓ))]W̃Tλ(tℓ)∥
≤∥diag[ϕ′(hℓ)]W̃T (λℓ − λtℓ)∥+ ∥(diag[ϕ′(hℓ)]− diag[ϕ′(h(tℓ))])W̃Tλ(tℓ)∥
≤L1∥W̃∥∥λℓ − λtℓ∥+ L2∥hℓ − htℓ∥∥W̃∥∥λtℓ∥
≤C2

(
∥λℓ − λtℓ∥+ ∥hℓ − htℓ∥

)
,

where the constant C2 = CσL1 + Cσ2L1L2e
CσL1T . Hence, we have

∥λℓ+1 − λtℓ+1
∥ ≤ ∥λℓ − λ(tℓ)∥+ βC2

(
∥λℓ − λtℓ∥+ ∥hℓ − htℓ∥

)
+ β2C1.

Denote Eℓ = ∥λℓ − λtℓ∥+ ∥hℓ − htℓ∥, then we have

∥λℓ − λtℓ∥ ≤ Eℓ ≤ (1 + βC2)E
ℓ−1 + β2C1.

By the induction, we have

Eℓ ≤ (1 + βC2)
ℓE0 + β2C1 ·

(1 + βC2)
ℓ − 1

(1 + βC2)− 1
.

Since E0 = 0 and β = T/L, we have

Eℓ ≤ T

L

(
C1

C2
eC2(T−tℓ) − 1

)
.

This competes the proof.

Additionally, as we know λt = ∂fθ/∂ht is the solution to the backward ODE. We have∥∥∥∥ ∂fθ∂htℓ
− ∂fLθ
∂hℓ

∥∥∥∥ ≤ C0L
−1, ∀ℓ ∈ [1, 2, · · · , L], (48)

where C0 > 0 is some constant that is not dependent on n and L.

E.2 NTK FOR FINITE-DEPTH NEURAL NETWORKS

For Neural ODE define equation 1, its NTK is given by

Kθ(x, x̄) = ⟨∇θfθ(x),∇θfθ(x̄)⟩ . (49)

As we have shown in Proposition 1 and 2, ∇θfθ(x) is well defined for every x ∈ Sd−1 (a.s). Hence,
Kθ(x, x̄) is well defined for every x, x̄ ∈ Sd−1. While Kθ is random and varies during the training,
as observed in Jacot et al. (2018), in the infinite-width limit, it converges to an explicit deterministic

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 2 ResNet fLθ Forward and Backward Computation on Input x

Input: Ux/
√
d : G(n)

Input: W : A(n, n)
Input: v : G(n)

1: h0 := Ux/
√
d : G(n)

2: for ℓ ∈ {1, 2, · · · , L} do
3: xℓ = ϕ(hℓ−1) : H(n)
4: gℓ :=Wxℓ/

√
n : G(n)

5: hℓ := hℓ−1 + κ · gℓ : G(n)
6: end for
7: xL = ϕ(hL) : H(n)
8: dxL = v/

√
n : G(n)

9: dhL = dxL ⊙ ϕ′(hL) : H(n)
10: for ℓ ∈ {L,L− 2, · · · , 1} do
11: dgℓ = κ · dhℓ : H(n)
12: dxℓ =W⊤dgℓ/

√
n : G(n)

13: dhℓ−1 = dhℓ + ϕ′(hℓ − 1)⊙ dxℓ : H(n)
14: end for
Output: ∥xL∥2/n+

∑L
ℓ=1

〈
dgℓxℓ⊤, dgℓxℓ⊤

〉
/n+

〈
dh0x⊤, dh0x⊤

〉
/d

kernel K∞ called limiting NTK. Hence, we will show K∞ is well defined and provide its explicit
form.

Recall that we use a finite-depth neural network fLθ defined in equation 10 that approximates Neural
ODE fθ. As a result, we can also approximate the NTK Kθ using KL

θ defined as follows

KL
θ (x, x̄) :=

〈
∇θf

L
θ (x),∇θf

L
θ (x̄)

〉
. (50)

We denote KL
∞ be the limit of KL

θ as width n → ∞. In this subsection, we provide the explicit
form for KL

∞. For the convergence analysis, we leverage the Master Theorem introduced in (Yang,
2020, Theorem 7.2). This result is similar to Theorem 9 but it consider the backward information
propagation, and it is reformed as follows.
Theorem 10. (Yang, 2020, Theorem 7.2) Consider a NETSOR⊤ program that has both forward and
backward computation for a given finite-depth neural network. Suppose the Gaussian random ini-
tialization and controllable activation functions for the given neural network. For any controllable
ψ : RM → R, as width n→ ∞, any finite collection of G-vars gα with size M satisfies

1

n

n∑
α=1

ψ(g0α, . . . , g
M
α)

a.s.→ Eψ(z0, · · · , zM), (51)

where {z0, · · · , zM} are Gaussian random variables whose mean and covariance are computed by
the corresponding NETSOR⊤.

As a result, this type of Tensor program is called NESTOR⊤ and it includes additional G-vals from
the backward information propagation. In our setup, to compute the gradients of fLθ defined in
equation 10, the following new G-vals are introduced

dgL+1 :=
σv√
n

diag[ϕ′(hL)]v,

dgℓ :=
σw√
n

diag[ϕ′(hℓ−1)]WT , ∀[1, 2, · · · , L].

and the associated NESTOR⊤ is given in Algorithm 2 In the rest of this subsection, we provide
rigorous proof to show the convergence of KL

θ to KL
∞, as stated in Proposition 4.

Without loss of generality, we assume σu = σw = 1 and σv/
√
d = 1. As θ = vec(v,W,U), we

have
KL

θ (x, x̄) =
〈
∇vf

L
θ (x),∇vf

L
θ (x̄)

〉
+
〈
∇W fLθ (x),∇W fLθ (x̄)

〉
+
〈
∇Uf

L
θ (x),∇Uf

L
θ (x̄)

〉
.

Hence, we will show the convergence of each term. To simplify the notation, we abbreviate f :=
fLθ (x) and f̄ := fLθ (x̄).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

CONVERGENCE OF
〈
∇vf,∇v f̄

〉
The differential of f is given by

df = d
∑
i

viϕ(h
L
i)/

√
n =

∑
i

(dvi)ϕ(h
L
i)/

√
n+ viϕ

′(hLi)/
√
ndhLi

Then we have
∂f

∂vi
= ϕ(hLi)/

√
n (52)

∂f

∂hLi
= viϕ

′(hLi)/
√
n. (53)

Hence, we obtain〈
∇vf,∇v f̄

〉
=
∑
i

∂f

∂vi

∂f̄

∂vi
=

1

n

∑
i

ϕ(hLi)ϕ(h̄
L
i)

a.s.−→ Eϕ(uL)ϕ(ūL) := CL+1,L+1(x, x̄), (54)

where uℓ = z0 + κ
∑ℓ

i=1 z
i is a centered Gaussian random variable, zi are centered Gaussian

random variables defined in Proposition 3, the convergence result follows Theorem 9.

CONVERGENCE OF
〈
∇W f,∇W f̄

〉
Next, observe that〈

∇W f,∇W f̄
〉
=
∑
i,j

∂f

∂Wij

∂f̄

∂Wij

=
∑
i,j

(
L∑

ℓ=1

∑
α

∂hℓα
∂Wij

∂f

∂hℓα

) L∑
k=1

∑
β

∂h̄kβ
∂Wij

∂f̄

∂h̄kβ


=

L∑
ℓ,k=1

∑
α,β

∂f

∂hℓα

∂f̄

∂h̄kβ

∑
i,j

∂hℓα
∂Wij

∂h̄kβ
∂Wij

.

To compute the partial derivatives of hℓα w.r.t. Wij , we note that

dhℓi = dhℓ−1
i + d

κ√
n

∑
j

Wijϕ(h
ℓ−1
j)

= dhℓ−1
i +

κ√
n

∑
j

(dWij)ϕ(h
ℓ−1
j) +Wijϕ

′(hℓ−1
j)dhℓ−1

j .

Then the partial derivatives of hℓα are given by

∂hℓα
∂Wij

= δαi
κ√
n
ϕ(hℓ−1

j), ∀ℓ ∈ {1, 2, · · · , L}

∂hℓα
∂hℓ−1

β

= δα,β +
κ√
n
Wα,βϕ

′(hℓ−1
β), ∀ℓ ∈ {1, 2, · · · , L}

Then we can compute∑
i,j

∂hℓα
∂Wij

∂h̄kβ
∂Wij

=
κ2

n

∑
i,j

δα,iδβ,iϕ(h
ℓ−1
j)ϕ(h̄ℓ−1

j) =
κ2

n
δα,β

∑
j

ϕ(hℓ−1
j)ϕ(h̄ℓ−1

j).

Then we have 〈
∇W f,∇W f̄

〉
= κ2

L∑
ℓ,k=1

1

n

∑
j

ϕ(hℓ−1
j)ϕ(h̄ℓ−1

j) ·
∑
α

∂f

∂hℓα

∂f̄

∂h̄kα
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

It follows from Theorem 9 that
1

n

∑
j

ϕ(hℓ−1
j)ϕ(h̄ℓ−1

j)
a.s.→ Eϕ(uℓ−1)ϕ(ūk−1) := Cℓ,k(x, x̄), ∀ℓ, k ∈ {1, 2, · · · , L}. (55)

As we have recurrent relation ∂hℓα/∂h
ℓ−1
β , we can show the convergence of

∑
α

∂f
∂hℓ

α

∂f̄
∂h̄k

α
by induc-

tion. For the basic case, we consider ℓ = k = L. Then∑
α

∂f

∂hLα

∂f̄

∂h̄Lα
=

1

n

∑
α

v2αϕ
′(hLα)ϕ

′(h̄Lα)
a.s.−→ Eϕ′(uL)ϕ′(ūL) := DL,L(x, x̄), (56)

where we use Theorem 10 to obtain the convergence. Additionally, we observe that for any k ∈
{0, 1, 2, · · · , L− 1}∑

α

∂f

∂hLα

∂f̄

∂h̄kα
=
∑
α

∂f

∂hLα

∑
β

∂h̄k+1
β

∂h̄kα

∂f̄

∂h̄k+1
β

=
∑
β

[∑
α

1√
n
vαϕ

′(hLα)

(
δβ,α +

κ√
n
Wβαϕ

′(hkα)

)]
∂f̄

∂h̄k+1
β

=
∑
β

[∑
α

δβ,α
1√
n
vαϕ

′(hLα)

]
∂f̄

∂h̄k+1
β

+ o (1)

=
∑
β

1√
n
vβϕ

′(hLβ)
∂f̄

∂h̄k+1
β

+ o (1)

=
∑
β

∂f

∂hLβ

∂f̄

∂h̄kβ
+ o (1) ,

where we use vα and Wβ,α are independent and have mean zero. Hence, we obtain∑
α

∂f

∂hLα

∂f̄

∂h̄kα
=
∑
α

∂f

∂hLα

∂f̄

∂h̄k+1
α

+ o (1) , ∀k ∈ {0, 1, · · · , L− 1}.

By using this recurrent relation, we have∑
α

∂f

∂hLα

∂f̄

∂h̄kα
=
∑
α

∂f

∂hLα

∂f̄

∂h̄Lα
+ o (1)

a.s.→ DL,L(x, x̄), ∀k ∈ {0, 1, 2 · · · , L}. (57)

For general case, we consider ℓ, k ∈ {1, 2, · · · , L − 1}. Assume the inductive hypothesis. Using
recurrent relation ∂hℓα/∂h

ℓ−1
β , we have

∑
α

∂f

∂hℓα

∂f̄

∂h̄kα
=
∑
α

∑
β

∂hℓ+1
β

∂hℓα

∂f

∂hℓ+1
β

∑
β′

∂hk+1
β′

∂hkα

∂f

∂hk+1
β′


=
∑
β,β′

∂f

∂hℓ+1
β

∂f̄

∂h̄k+1
β′

∑
α

(
δβ,α +

κ√
n
Wβ,αϕ

′(hℓα)

)(
δβ′,α +

κ√
n
Wβ′,αϕ

′(hkα)

)
.

Here we have

κ2

n

∑
α

Wβ,αWβ′,αϕ
′(hℓα)ϕ

′(h̄kα)
a.s.→ κ2δβ,β′Eϕ′(uℓ)ϕ′(ūk)

where we use the fact that Wβ,α and Wβ′,α are independent unless β = β′ and mean zero and unit
variance. We also have ∑

α

δβ,α
κ√
n
Wβ′,αϕ

′(hkα) =
κ√
n
Wβ′βϕ

′(hkβ) → 0.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Using
∑

α δβ,αδβ′,α = δβ,β′ , it is equivalent to rewrite as follows∑
α

∂f

∂hℓα

∂f̄

∂h̄kα
=
∑
β,β′

∂f

∂hℓ+1
β

∂f̄

∂h̄k+1
β′

· δβ,β′

(
1 +

κ2

n

∑
α

W 2
β,αϕ

′(hℓα)ϕ
′(hkα)

)

=
∑
β

∂f

∂hℓ+1
β

∂f̄

∂h̄k+1
β

(
1 +

κ2

n

∑
α

W 2
β,αϕ

′(hℓα)ϕ
′(hkα)

)
Then it follows Theorem 10 that∑

α

∂f

∂hℓα

∂f̄

∂h̄kα

a.s.−→ Dℓ+1,k+1(x, x̄)(1 + κ2Eϕ′(uℓ)ϕ′(ūk))

and
Dℓ,k(x, x̄) = Dℓ+1,k+1(x, x̄)(1 + κ2Eϕ′(uℓ)ϕ′(ūk)), ∀ℓ, k ∈ {1, 2, · · · , L− 1}

As a result, we have 〈
∇W f,∇W f̄

〉 a.s.−→ κ2
L∑

ℓ,k=1

Cℓ,k(x, x̄)Dℓ,k(x, x̄) (58)

CONVERGENCE OF
〈
∇Uf,∇U f̄

〉
As h0 = Ux, h0i =

∑d
j=1 Uijxj implies

∂h0k/∂Uij = δk,ixj .

Observe that 〈
∇Uf,∇U f̄

〉
=
∑
i,j

∂f

∂Uij

∂f̄

Uij

=
∑
ij

(∑
α

∂h0α
∂Uij

∂f

∂h0α

)∑
β

∂h̄0β
∂Uij

∂f̄

∂h̄0β


=
∑
α,β

∂f

∂h0α

∂f̄

∂h̄0β

∑
i,j

∂h0α
∂Uij

∂h̄0β
∂Uij

=
∑
α,β

∂f

∂h0α

∂f̄

∂h̄0β

∑
i,j

δα,ixjδβ,ix̄j

=
∑
α,β

∂f

∂h0α

∂f̄

∂h̄0β
· δα,βxT x̄

=
∑
α

∂f

∂h0α

∂f̄

∂h̄0α
· xT x̄

a.s.→ D0,0(x, x̄)C0,0(x, x̄),

where C0,0(x, x̄) = xT x̄.

Putting everything together yields〈
∇θf,∇θf̄

〉
=
〈
∇vf,∇v f̄

〉
+
〈
∇W f,∇W f̄

〉
+
〈
∇Uf,∇U f̄

〉
a.s.−→ CL+1,L+1(x, x̄) +

L∑
ℓ,k=1

Cℓ,k(x, x̄)Dℓ,k(x, x̄) + C0,0(x, x̄)D0,0(x, x̄)

Hence, we obtain KL
θ (x, x̄) converges a.s. to KL

∞(x, x̄) defined as follows

KL
∞(x, x̄) = CL+1,L+1(x, x̄) +

L∑
ℓ,k=1

Cℓ,k(x, x̄)Dℓ,k(x, x̄) + C0,0(x, x̄)D0,0(x, x̄).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

E.3 NTK FOR NEURAL ODES

In the previous subsection, we have shown the NTK KL
θ converges to a deterministic limiting NTK

KL
∞ as the width n→ ∞. In this subsection, in the same limit, we will show the NTK Kθ of Neural

ODE fθ defined in equation 1 converges to the limiting NTK K∞.

Similar to the NNGP kernel Σ∗, the NTK K∞ can be considered as the limit of a double sequence:

K∞(x, x̄) = lim
n→∞

〈
∇θfθ,∇θf̄θ

〉
= lim

n→∞
lim

L→∞

〈
∇θf

L
θ ,∇θf̄

L
θ

〉
We have shown lim

n→∞

〈
∇θf

L
θ ,∇θf̄

L
θ

〉
= KL

∞(x, x̄) in the previous subsection. Hence, the con-
vergence of K∞ is equivalent to show the two indices, i.e., depth and width, are interchangeable.
Fortunately, if the activation function ϕ is sufficiently smooth, the two indices are indeed swappable
and so the NTK K∞ is well defined.

Based on Moore-Osgood Theorem stated in Theorem 8, a double sequence has well defined iterated
limits that are equal to the double limit if the double sequence converges in one index and uniformly
in the other. Hence, we will show the NTK KL

θ as the double sequence converges in depth L and
uniformly with respect to the width n.

Proof. Without loss of generality, we will assume σv = σw = 1 and σu/
√
d = 1. Observe that

Kθ(x, x̄) = ⟨∇vfθ(x),∇vfθ(x̄)⟩+ ⟨∇W fθ(x),∇W fθ(x̄)⟩+ ⟨∇Ufθ(x),∇Ufθ(x̄)⟩ .

Hence, the rest proof is to establish the convergence rate for each term in the summation.

Note that∣∣〈∇vf
L(x),∇vf

L(x̄)
〉
− ⟨∇vfθ(x),∇vfθ(x̄)⟩

∣∣
=

∣∣∣∣ 1n 〈ϕ(hL(x)), ϕ(hL(x̄))〉− 1

n
⟨ϕ(h(x, T)), ϕ(h(x̄, T))⟩

∣∣∣∣
=
1

n

〈
ϕ(hL(x)), ϕ(hL(x̄))− ϕ(h(x̄, T))

〉
+

1

n

〈
ϕ(hL(x))− ϕ(h(x, T)), ϕ(h(x̄, T))

〉
≤L

2
1

n
∥hL(x)∥∥hL(x̄)− h(x̄, T)∥+ L2

1

n
∥hL(x)− h(x, T)∥∥h(x̄, T)∥

≤ 1

n
C
√
n ·

√
nL−1

=CL−1,

where we use Lipschitz continuous of ϕ and Lemma 8.

Next, we can first show ∥∇W f∥ and ∥∇W fL∥ are upper bounded by some constants as long as
T <∞. Observe that

∥∇W f(x)∥ =∥
∫ T

0

1√
n
λtϕ(ht)dt∥

≤∥
∫ T

0

1√
n
· eCσ(T−t) ·

√
neCσtdt∥

≤CσTeCσT ,

where we use Lemma 8 and 10.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Similarly, we have

∥∇W fL(x)∥ =∥
L∑

ℓ=1

T

L

1√
n

∂fL

∂hℓ
ϕ(hℓ−1)∥

≤T
L

L∑
ℓ=1

1√
n
∥∂f

L

∂hℓ
∥∥hℓ−1∥

≤T
L

L∑
ℓ=1

1√
n
· (1 + σT/L)L−ℓ · (1 + σT/L)ℓ−1 · Cσ

√
n

≤CσTeσT ,

where we have the facts

∥hℓ∥ ≤ (1 + σT/L)ℓ∥h0∥, (59)

∥∂f
L

∂hℓ
∥ ≤ (1 + σT/L)L−ℓ∥∂fL/∂hL∥, (60)

for all ℓ ∈ {0, 1, · · · , L}.

Additionally, it follows from Lemma 8 and 10 that

∥∇W fL(x)−∇W fθ(x)∥

=

∥∥∥∥∥
∫ T

0

1√
n

∂f

∂ht
ϕ(ht)dt−

L∑
ℓ=1

T

L

1√
n

∂fL

∂hℓ
ϕ(hℓ−1)

∥∥∥∥∥
≤ 1√

n

L∑
ℓ=1

∫ tℓ

tℓ−1

∥∥∥∥ ∂f∂htϕ(ht)− ∂fL

∂hℓ
ϕ(hℓ−1)

∥∥∥∥ dt
≤ 1√

n

L∑
ℓ=1

∫ tℓ

tℓ−1

∥∥∥∥ ∂f∂ht − ∂fL

∂hℓ

∥∥∥∥ ∥ht∥+ ∥∂f
L

∂hℓ
∥∥ht − hℓ−1∥dt

≤ C√
n

L∑
ℓ=1

∫ tℓ

tℓ−1

√
nL−1dt

≤C
L∑

ℓ=1

L−2 = CL−1.

Hence, we obtain〈
∇W fL(x),∇W fL(x̄)

〉
− ⟨∇W fθ(x),∇W fθ(x̄)⟩

≤
〈
∇W fL(x),∇W fL(x̄)−∇W fθ(x̄)

〉
+
〈
∇W fL(x)−∇W fθ(x),∇W fθ(x̄)

〉
≤∥∇W fL(x)∥ · ∥∇W fL(x̄)−∇W fθ(x̄)∥+ ∥∇W fL(x)−∇W fθ(x)∥∥∇W fθ(x̄)∥
≤CL−1,

or equivalently ∣∣〈∇W fL(x),∇W fL(x̄)
〉
− ⟨∇W fθ(x),∇W fθ(x̄)⟩

∣∣ ≤ CL−1. (61)

Next, observe that 〈
∇Uf

L(x),∇Uf
L(x̄)

〉
− ⟨∇Ufθ(x),∇Ufθ(x̄)⟩

= ⟨x, x̄⟩
〈
∂fL(x)

∂h0(x)
,
∂fL(x̄)

∂h0(x̄)

〉
− ⟨x, x̄⟩

〈
∂fθ(x)

∂h(x, 0)
,
∂fθ(x̄)

∂h(x̄, 0)

〉
.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Then we have〈
∂fL(x)

∂h0(x)
,
∂fL(x̄)

∂h0(x̄)

〉
−
〈
∂fθ(x)

∂h(x, 0)
,
∂fθ(x̄)

∂h(x̄, 0)

〉
≤
〈
∂fL(x)

∂h0(x)
,
∂fL(x̄)

∂h0(x̄)
− ∂fθ(x̄)

∂h(x̄, 0)

〉
+

〈
∂fL(x)

∂h0(x)
− ∂fθ(x)

∂h(x, 0)
,
∂fθ(x̄)

∂h(0, x̄)

〉
≤∥∂f

L(x)

∂h0(x)
∥ · ∥∂f

L(x̄)

∂h0(x̄)
− ∂fθ(x̄)

∂h(x̄, 0)
∥+ ∥∂f

L(x)

∂h0(x)
− ∂fθ(x)

∂h(x, 0)
∥ · ∥ ∂fθ(x̄)

∂h(0, x̄)
∥

≤CL−1,

where we use the Lipschitz smoothness of ϕ′ and Lemma 10. Therefore, we have∣∣〈∇Uf
L(x),∇Uf

L(x̄)
〉
− ⟨∇Ufθ(x),∇Ufθ(x̄)⟩

∣∣ ≤ CL−1.

Then putting everything together yields∣∣〈∇θf
L(x),∇θf

L(x̄)
〉
− ⟨∇θfθ(x),∇θfθ(x̄)⟩

∣∣ ≤ CL−1. (62)

Therefore, it converges uniformly in L and uniformly in n.

Combining Lemma 2 with Proposition 4 and Moore-Osgood Theorem 8, we can switch L and n in
the double sequence Kθ(x, x̄) and obtain the desired result

K∞(x, x̄) = lim
n→∞

Kθ(x, x̄)

= lim
n→∞

〈
∇θfθ,∇θf̄θ

〉
= lim

n→∞
lim

L→∞

〈
∇θf

L
θ ,∇θf̄

L
θ

〉
= lim

L→∞
lim
n→∞

〈
∇θf

L
θ ,∇θf̄

L
θ

〉
= lim

L→∞
KL

∞(x, x̄).

F STRICT POSITIVE DEFINITENESS OF NEURAL ODE’S NTK

In this subsection, we will prove the NTK K∞ of Neural ODEs are strictly positive definite. We
first recall the definition of strict positive definite for a kernel function.

Definition 2. A kernel function k : X × X → R is strictly positive definite (SPD) if, for any finite
set of distinct points x1, · · · , xN ∈ X, the symmetric matrix K = [k(xi, xj)]

N
i,j=1 is strictly positive

definite, i.e., c⊤Kc > 0 for all nonzero vector c.

Recall that

Kθ(x, x̄) = ⟨∇vfθ(x),∇vfθ(x̄)⟩+ ⟨∇W fθ(x),∇W fθ(x̄)⟩+ ⟨∇Ufθ(x),∇Ufθ(x̄)⟩ .

In Theorem 2, we have shown that Kθ(x, x̄) → K∞(x, x̄) as n → ∞, provided ϕ is sufficient
smooth, and

⟨∇vfθ(x),∇vfθ(x̄)⟩ → Σ∗(x, x̄).

Hence, to show K∞ is SPD, it is sufficient to show Σ∗ is SPD.

Moreover, it follows from Theorem 1 that lim
L→∞

ΣL(x, x̄) = Σ∗(x, x̄). We first show ΣL is SPD.

F.1 DUAL ACTIVATION AND SPD OF FINITE-DEPTH NETWORK’S NNGP KERNEL

We first provide the result for finite-depth network fLθ defined by 10, where the depth L <∞.

Proposition 6. Suppose ϕ is L1-Lipschitz continuous. If ϕ is non-polynomial nonlinear, then ΣL is
SPD on Sd−1 for 1 ≤ L <∞.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

The proof is based on the concept of dual activation and Hermitian expansion. Here a brief intro-
duction is provided as follows. For details, we refer readers to Appendices from (Gao et al., 2021;
Daniely et al., 2016).

Let x ∼ N (0, 1) and f : R → R be a real-valued function. We can define an inner product using
expectation:

⟨f, g⟩ := Ex∼N (0,1)f(x)g(x).

Thus, we can further define a Hilbert space of functions H, that is, f ∈ H if and only if

∥f∥2 = ⟨f, f⟩ = Ex∼N (0,1) |f(x)|
2
<∞.

Apply Gram-Schmidt process to the polynomial functions {1, x, x2, · · · , } w.r.t. to the inner product
we defined before, and we obtain {hn} the (normalized) Hermite polynomials that is an orthonor-
mal basis to the Hilbert space H:

hn(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 ,

The dual activation ϕ̂ : [−1, 1] → R of an activation function ϕ is defined by

ϕ̂(ρ) := E(u,v)∼Nρ
ϕ(u)ϕ(v).

where Nρ is multidimensional Gaussian distribution with mean 0 and covariance matrix
[
1 ρ
ρ 1

]
.

Then the dual kernel Kϕ is defined over the unit sphere Sd−1: for every pair x, x̄ ∈ Sd−1, the dual
kernel Kϕ : Sd−1 × Sd−1 → R is defined by

Kϕ(x, x̄) := ϕ̂(xT x̄).

If a function ϕ ∈ H, we not only can obtain an expansion of ϕ by using the orthonormal basis of
Hermitian polynomials but also an expansion to the dual activation ϕ̂ by using the same Hermitian
coefficients. As a consequence, the corresponding dual kernel Kϕ can be shown to be strict positive
definite by using the Hermitian expansion.
Lemma 11. (Daniely et al., 2016, Lemma 12) If ϕ ∈ H, then the Hermitian expansion is given by

ϕ(x) =

∞∑
n=0

anhn(x), (63)

ϕ̂(ρ) =

∞∑
n=0

a2nρ
n. (64)

where an := ⟨hn, ϕ⟩ is the Hermite coefficients.
Theorem 11. (Jacot et al., 2018, Theorem 3)(Gneiting, 2013, Theorem 1) For a function f :
[−1, 1] → R with f(ρ) =

∑∞
n=0 bnρ

n, the kernel Kf : Sd−1 × Sd−1 → R defined by

Kf (x, x̄) := f(xT x̄)

is strictly positive define for any d ≥ 1 if and only if the coefficients bn > 0 for infinitely many even
and odd integer n.

Now, with these results, we are ready to prove the SPD of ΣL.
Lemma 12. If ϕ is nonlinear and non-polynomial, then Σ1 is SPD.

Proof. We first show Σ1 is SPD. As Σ0(x, x̄) =
σ2
u

d ⟨x, x̄⟩ and we have

Σ1(x, x̄) = σ2
wE(u,v)∼N (0,G0) [ϕ(u)ϕ(v)] ,

where

G0 =
σ2
u

d

[
1 ⟨x, x̄⟩

⟨x̄, x⟩ 1

]
.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

By the notion of dual activation, we have

Σ1(x, x̄) = σ2
wµ̂(x

T x̄),

where µ(x) := ϕ(σux/
√
d).

Clearly, µ is Lipschitz continuous since ϕ is. Then µ ∈ H and let the expansion of µ in Hermite
polynomials {hn}∞n=0 to be given as µ =

∑∞
n=0 anhn, where an = ⟨µ, hn⟩ are the Hermitian

coefficients. Then we can write µ̂ as µ̂(ρ) =
∑∞

n=0 a
2
nρ

n and we have

Σ1(x, x̄) = σ2
wµ̂(x

T x̄) = σ2
w

∞∑
n=0

a2n(x
T x̄)n.

Note that µ is non-polynomial if and only if ϕ is non-polynomial. As we assume ϕ is non-
polynomial, we have µ is non-polynomial, hence there are infinitely many number of nonzero an in
the expansion. That indicates bn := a2n > 0 for infinitely many even and odd numbers. As σ2

w > 0,
we have Σ1 is strictly positive definite.

Next, we can show if ΣL is SPD, then ΣL+1 is also SPD for all L ≥ 1.

Lemma 13. Suppose nonlinear non-polynomial ϕ. Given L <∞, then

1. E[uℓūℓ] = C0,0(x, x̄) + κ2
∑ℓ

i,j=1 C
i,j(x, x̄) is SPD for all ℓ ∈ {1, 2, · · · , L+ 1},

2. ΣL is also SPD.

Proof. As we are working with finite-depth network fLθ , it is fine to assume κ = 1 to simplify the
notations. Then Σℓ and ΣL have the recurrent relation, stated in Proposition 3, and so as Cℓ,k and
CL,K . By Theorem 12, we have C1,1 is SPD. Additionally, we have

C1,ℓ(x, x̄) = Eϕ(u0)ϕ(ū1) = Eϕ(u0)ϕ(ū0) = C1,1,

where we use the fact E[z0z̄ℓ] = δ0,ℓC
0,0(x, x̄). Thus, C1,ℓ is SPD for all ℓ. Recall that E[uℓūk] =

C0,0(x, x̄) +
∑ℓ

i=1

∑k
j=1 C

i,j(x, x̄). Using this relation, we can write

E[uℓūℓ] = C0,0(x, x̄) + C1,1(x, x̄) + 2

ℓ∑
i=2

C1,i(x, x̄) +

ℓ∑
i,j=2

Ci,j(x, x̄).

As C1,i is SPD for all i, the symmetry of Ci,j implies E[uℓūℓ] is SPD.

Now, assume the contrary, i.e., Σℓ+1 = Cℓ+1,ℓ+1 is not SPD. Then there exists distinct
{x1, · · · , xN} and nonzero a ∈ RN such that

0 =

N∑
i,j=1

aiajC
ℓ+1,ℓ+1(xi, xj) =

∑
i,j

aiajE[ϕ(uℓi)ϕ(uℓj)] = E

[
N∑
i=1

aiϕ(u
ℓ
i)

]2
.

We must have
∑

i aiϕ(u
ℓ
i) = 0. As we already show uℓ := (uℓ1, · · · , uℓN) ∈ RN is a non-degenerate

Gaussian random variables, nonlinearity of ϕ implies a = 0, which contradicts a ̸= 0. Hence,
Σℓ+1 = Cℓ+1,ℓ+1 is SPD.

F.2 STRICT POSITIVE DEFINITENESS OF NEURAL ODE’S NNGP KERNEL

Observe that the previous result uses induction to show ΣL is SPD. However, the strict positive
definiteness of ΣL might diminish as L →. To address this, we conduct a fine-grained analysis of
the properties of ΣL and demonstrate that these properties persist when L→ ∞. Consequently, Σ∗

retains these essential properties, which are crucial for proving that Σ∗ is SPD.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Recall from Theorem 1 that

Σ∗(x, x̄) = E[ϕ(u∗)ϕ(ū∗)],

where (u∗, ū∗) are centered Gaussian random variables with covariance S∗(x, x̄) defined as the limit
of SL(x, x̄), i.e.,

SL(x, x̄) = C0,0(x, x̄) + κ2
L∑

ℓ,k=1

Cℓ,k(x, x̄) → S∗(x, x̄), as L→ ∞. (65)

Based on the proof of Theorem 1, S∗ is well defined. Some essential properties of SL and S∗ are
given as follows.

Lemma 14. Suppose L <∞. For any x, x̄ ∈ Sd−1, we have

1. SL(x, x) = SL(x̄, x̄)

2. SL(x, x) ≥ SL(x, x̄) and the equality holds if and only if x = x̄

Proof. As L <∞, we can assume κ = 1 for simplicity. To prove the result, we make the inductive
hypothesis that Cℓ,k(x, x) = Cℓ,k(x̄, x̄) for all ℓ, k ≤ L. Then observe that

SL+1(x, x̄) = SL(x, x̄) + 2

L∑
ℓ=1

Cℓ,L+1(x, x̄) + CL+1,L+1(x, x̄).

Using the inductive hypothesis, for any ℓ ∈ {1, 2, · · · , L+ 1} we have

Cℓ,L+1(x, x) = Eϕ(uℓ−1)ϕ(uL) = Eϕ(ūℓ−1)ϕ(ūL) = Cℓ,L+1(x̄, x̄),

where (uℓ−1, uL) are centered Gaussian random variables with covariance

E[uℓ−1uL] = C0,0(x, x) +

ℓ−1,L∑
i,j=1

Ci,j(x, x) = C0,0(x̄, x̄) +

ℓ−1,L∑
i,j=1

Ci,j(x̄, x̄) = E[ūℓ−1ūL].

This shows SL+1(x, x) = SL+1(x̄, x̄) and also Cℓ,k(x, x) = Cℓ,k(x̄, x̄) for all ℓ, k ≤ L+ 1.

Next, using Cℓ,k(x, x) = Cℓ,k(x̄, x̄), we have

SL(x, x)− SL(x, x̄) =
1

2
∥x− x̄∥2 + 1

2
E
∣∣gL(x)− gL(x̄)

∣∣2 ,
where the function gL(x) := κ

∑L
ℓ=1 ϕ(u

ℓ). This indicates SL(x, x) ≥ SL(x, x̄) and the equality
holds if and only if x̄ = x.

Corollary 2. For any x, x̄ ∈ Sd−1, we have

1. 0 < S∗(x, x) = S∗(x̄, x̄) <∞

2. S∗(x, x) ≥ S∗(x, x̄) and the equality holds if and only if x = x̄.

Proof. Observe that

S∗(x, x̄) = xT x̄+ E [g(x)g(x̄)] ,

where g(x) := lim
L→∞

gL(x) for gL(x) = L−1
∑L

ℓ=1 ϕ(u
ℓ). By Lemma 17, we obtain

∣∣gL(x)∣∣ =
O (1) uniform in L. Hence, g(x) is well defined and |g(x)| = O (1). Therefore, we obtain
S∗(x, x̄) = Θ(1). Additionally, it follows from the relation of SL(x, x)− SL(x, x̄) that

S∗(x, x)− S∗(x, x̄) =
1

2
∥x− x̄∥2 + 1

2
E |g(x)− g(x̄)|2 ,

which allows us to obtain the second result.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Now, we are ready to prove the SPD of Σ∗.
Lemma 15. If ϕ is nonlinear and non-polynomial, then Σ∗ is SPD.

Proof. As ϕ is Lipschitz continuous, we can use Hermitian expansion to rewrite Σ∗:

Σ∗(x, x̄) = E(u,ū)∼S∗(x,x̄)[ϕ(u)ϕ(ū)] =

∞∑
n=0

a2n[S
∗(x, x̄)/S0]

n,

where we use (u, ū) ∼ S∗(x, x̄) to denote centered Gaussian random variables with covariance
computed using kernel S∗(x, x̄), an is the Hermitian coefficients of function ψ(u) := ϕ(

√
S0u) with

S0 := S∗(x, x), and we also use the facts S0 = S∗(x, x) = S∗(x̄, x̄) for all x, x̄ and S0 = Θ(1)
from Corollary 2.

Suppose we are given any finite distinct {xi}Ni=1 from Sd−1 and nonzero c ∈ RN . Observe that

N∑
i,j=1

cicjΣ
∗(xi, xj) =

∞∑
n=0

a2nS
−n
0

N∑
i,j=1

cicj [S
∗(xi, xj)]

n

=

∞∑
n=0

a2nS
−n
0

N∑
i,j=1

cicj
[
xTi xj + Eg(xi)g(xj)

]n
,

where we use S∗(x, x̄) = xT x̄+ Eg(x)g(x̄). By using fundamental properties for positive definite
matrices from linear algebra, we have

N∑
i,j=1

cicj
[
xTi xj + Eg(xi)g(xj)

]n
=cT (XXT + Eg(X)g(X)T)⊙nc

≥cT (XXT)⊙nc =

N∑
i,j=1

cicj
[
xTi xj

]n
,

where ⊙ is Hadamard product. Then we obtain
N∑

i,j=1

cicjΣ
∗(xi, xj) ≥

∞∑
n=0

a2nS
−n
0

N∑
i,j=1

cicj
(
xTi xj

)n
=

N∑
i,j=1

cicj

∞∑
n=0

a2n(x
T
i xj/S0)

n

=

N∑
i,j=1

cicjE(u,ū)∼xT
i xj/S0

[ψ(u)ψ(ū)]

=

N∑
i,j=1

cicjE(u,ū)∼xT
i xj

[ψ(u/
√
S0)ψ(ū/

√
S0)]

=

N∑
i,j=1

cicjE(u,ū)∼xT
i xj

[ϕ(u)ϕ(ū)]

=

N∑
i,j=1

cicjΣ
1(xi, xj),

where we use the definitions of Hermitian coefficients an and ψ. By Lemma 12, Σ1 is SPD and so
Σ∗ is also SPD.

As a corollary result, we have the NTK of Neural ODE is also SPD.
Corollary 3. Suppose ϕ and ϕ′ are nonlinear Lipschitz continuous. If ϕ is non-polynomial, then the
NTK K∞ of Neural ODE is SPD.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Theorem 12. Let {xi, yi}Ni=1 be a training set. Assume

1. xi ∈ Sd−1, |yi| ≤ 1, and xi ̸= xj for all i ̸= j.

2. the activation ϕ is L1-Lipschitz nonlinear continuous, but non-polynomial,

3. its derivative ϕ′ are L2-Lipschitz nonlinear continuous,

4. and we choose the learning rate η ≤ 1/∥X∥2.

For any δ > 0, there exists a natural number nδ such that for all n ≥ nδ the parameter θk stays in
a neighborhood of θ0, i.e.,

∥θk − θ0∥ ≤ C∥X∥∥u0 − y∥/λ0, (66)
and the loss function L(θk) consistently decrease to zero at an exponential rate, i.e.,

L(θk) ≤
(
1− ηλ0

16

)k

L(θ0), (67)

where C > 0 is some constant only depends on L1, L2, σv , σw, σu, and T .

Proof. Given a distinct {xi}Ni=1, we consider the limiting NTK matrix H∞ ∈ RN×N defined as
H∞

ij = K∞(xi, xj). As ϕ is non-polynomial, we have λ0 := λmin{H∞} > 0. Let θ0 denote
the parameters at initialization and H(0) ∈ RN×N be the corresponding NTK computed by θ0 at
initialization.

By Theorem 2, we have H(0) converges a.s. to H∞, as the width n → ∞. Then for any δ0 > 0,
there exists a natural number n0 such that with probability at least (1−δ0) over random initialization
λmin{H(0)} ≥ λ0/2 for all n ≥ n0. By Lemma 19, there exists another natural number n1 such
that with probability at least (1−δ0), the initial residual ∥u0−y∥ ≤ σ∗

√
2N logN/δ for all n ≥ n1.

Therefore, for any δ > 0, we choose δ0 = δ/2, and it follows from Lemma 16 that, with probability
at least (1− δ) over random initialization, we have

∥vk − v0∥, ∥W k −W 0∥, ∥Uk − U0∥ ≤ C∥X∥∥u0 − y∥/λ0,
and

∥uk − y∥ ≤
(
1− ηλ0

16

)k

∥u0 − y∥,

for all
n ≥ max

{
n0, n1, C0N

3 log(N/δ)/λ30
}
.

G GLOBAL CONVERGENCE OF NEURAL ODES

In this section, we provide the convergence analysis of Neural ODEs defined equation 1 under
gradient descent.

As we use square loss, the loss function is given by

L(θ) :=

N∑
i=1

1

2
(fθ(xi)− yi)

2. (68)

By using the vectorization form equation 35 and chain rule, the gradients are given by

∂L(θ)

∂v
=

N∑
i=1

σv√
n
ϕ(hT (xi))(fθ(xi)− yi), (69)

∂L(θ)

∂W
=

N∑
i=1

[∫ T

0

σw√
n
ϕ(ht(xi))⊗ λt(xi)dt

]
(fθ(xi)− yi), (70)

∂L(θ)

∂U
=

N∑
i=1

σu√
d
[xi ⊗ λ0(xi)] (fθ(xi)− yi). (71)

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Consider the gradient descent

θk+1 = θk − η
∂L(θk)

∂θ
. (72)

Assume the inductive hypothesis: For all i ≤ k, there exist some constants αv, αw, αu > 0 such
that

1. ∥vi∥, ∥Wi∥, ∥Ui∥ ≤ C
√
n,

2. ∥ui − y∥ ≤ (1− ηα2
0)

i∥u0 − y∥,

where C > 0 is a constant and α0 := σmin

(
σv√
n
Φ0
)

.

Without loss generality, we assume σv = 1, σw = σ, σu/
√
d = 1 and L1 = L2 = 1.

Observe that

∥∂fθ
∂v

∥ = ∥ 1√
n
ϕ(hT)∥ ≤ 1√

n
∥U∥∥x∥eσT∥W∥/

√
n.

Note that

∥ ∂fθ
∂W

∥ ≤ σ√
n

∫ T

0

∥ϕ(ht)∥∥λt∥dt

≤ σ√
n

∫ T

0

∥U∥∥x∥eσt∥W∥/
√
n · ∥v∥√

n
eσ(T−t)∥W∥/

√
ndt

=(σT)
∥U∥√
n

∥v∥√
n
∥x∥eσT∥W∥/

√
n.

Observe that

∥∂fθ
∂U

∥ ≤ ∥x∥∥λ0∥ ≤ ∥x∥ · ∥v∥√
n
exp

{
σT∥W∥/

√
n
}

By using the inductive hypothesis, we obtain

∥∂fθ
∂v

∥ ≤ CeCσT ∥x∥, (73)

∥ ∂fθ
∂W

∥ ≤ (σT)CeCσT ∥x∥, (74)

∥∂fθ
∂U

∥ ≤ CeCσT ∥x∥. (75)

Then we obtain

∥vk+1 − v0∥ ≤η
k∑

i=0

∥∂L(θ
i)

∂v
∥

≤η
k∑

i=0

CeCσT ∥X∥∥ui − y∥

≤ηCeCσT ∥X∥
k∑

i=0

(1− ηα2
0)

i∥u0 − y∥

≤CeCσT ∥X∥∥u0 − y∥/α2
0

Note that the RHS is an constant after initialization. If we assume ∥x∥ = 1 and |y| = 1, then we
need to ensure

CeCσT ∥X∥∥u0 − y∥/α2
0 ≤ C

√
n. (76)

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

And as a result, we have
∥vk+1∥ ≤ ∥vk+1 − v0∥+ ∥v0∥ ≤ C

√
n.

Similarly, we have

∥W k+1 −W 0∥ ≤η
k∑

i=0

∥∂L(θ
i)

∂W
∥

≤η
k∑

i=0

(σT)CeCσT ∥X∥∥ui − y∥

≤η(σT)CeCσT ∥X∥
k∑

i=0

(1− ηα2
0)∥u0 − y∥

≤(σT)CeCσT ∥X∥∥u0 − y∥/α2
0.

Then we need to ensure
(σT)CeCσT ∥X∥∥u0 − y∥/α2

0 ≤ C
√
n. (77)

Then we obtain
∥W k+1∥ ≤ ∥W k+1 −W 0∥+ ∥W 0∥ ≤ C

√
n.

Observe that

∥Uk+1 − U0∥ ≤η
k∑

i=0

∥∂L(θ
i)

∂U
∥

≤η
k∑

i=0

CeCσT ∥X∥∥ui − y∥

≤ηCeCσT ∥X∥
k∑

i=0

(1− ηα2
0)

i∥u0 − y∥

≤CeCσT ∥X∥∥u0 − y∥/α2
0.

Hence, we obtain
∥Uk+1∥ ≤ ∥Uk+1 − U0∥+ ∥U0∥ ≤ C

√
n.

Next, observe that
uk+1 − y =uk+1 − uk + (uk − y)

=

(
∂ũ

∂θ

)⊤

(θk+1 − θk) + (uk − y)

=

(
∂ũ

∂θ

)⊤(
−η ∂u

k

∂θ

)
(uk − y) + (uk − y)

=

[
I − η

(
∂ũ

∂θ

)⊤(
∂uk

∂θ

)]
(uk − y)

=

[
I − η

(
∂uk

∂θ

)⊤(
∂uk

∂θ

)]
(uk − y) + η

(
∂uk

∂θ
− ∂ũ

∂θ

)⊤(
∂uk

∂θ

)
(uk − y)

where ũ = u(θ̃) and θ̃ is an interpolation in between θk and θk+1.

Note that

∥∂f
∂v

− ∂f̄

∂v
∥ =∥ 1√

n
ϕ(hT)−

1√
n
ϕ(h̄T)∥

≤ 1√
n
∥hT − h̄T ∥

≤ C√
n
∥θ − θ̄∥eCσT ∥x∥

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

where we use the Lemma and the inductive hypotheses.

Similarly, note that

∥ ∂f
∂W

− ∂f̄

∂W
∥ ≤ σ√

n
∥
∫ T

0

ϕ(ht)⊗ λt − ϕ(h̄t)⊗ λ̄tdt∥

≤ σ√
n

∫ T

0

(
∥ht − h̄t∥∥λt∥+ ∥h̄t∥∥λt − λ̄t∥

)
dt

≤C σ√
n

∫ T

0

∥θ − θ̄∥eCσt∥x∥ · eCσ(T−t)dt

≤(σT)
C√
n
∥θ − θ̄∥eCσT ∥x∥.

and

∥ ∂f
∂U

− ∂f̄

∂U
∥ ≤ ∥x∥∥λ0 − λ̄0∥ ≤ C√

n
∥θ − θ̄∥eCσT ∥x∥.

Hence, we have

∥∂f
∂θ

− ∂f̄

∂θ
∥ = ∥∂f

∂v
− ∂f̄

∂v
∥+ ∥ ∂f

∂W
− ∂f̄

∂W
∥+ ∥ ∂f

∂U
− ∂f̄

∂U
∥ ≤ (σT)

C√
n
∥θ − θ̄∥eCσT ∥x∥.

Then

∥∂u
k

∂θ
− ∂ũ

∂θ
∥ ≤ (σT)

C√
n
∥θk − θ̃∥eCσT ∥X∥ ≤ (σT)

C√
n
∥θk − θk+1∥eCσT ∥X∥,

where we use the fact θ̃ = αθk + (1− α)θk+1 for some α ∈ [0, 1].

Observe that

∥θk+1 − θk∥ = η∥∂L(θ
k)

∂θ
∥ = η∥

(
∂uk

∂θ

)⊤

(uk − y)∥ ≤ η(σT)CeCσT ∥X∥∥uk − y∥.

Hence, we obtain

∥∂u
k

∂θ
− ∂ũ

∂θ
∥ ≤ η(σT)2

C√
n
eCσT ∥X∥2∥uk − y∥,

and

∥∂u
k

∂θ
− ∂u0

∂θ
∥ ≤(σT)

C√
n
∥θk − θ0∥eCσT ∥X∥

≤(σT)
C√
n
eCσT ∥X∥

k−1∑
i=0

∥θi+1 − θi∥

≤η(σT)2 C√
n
eCσT ∥X∥2

k−1∑
i=0

∥ui − y∥

≤η(σT)2 C√
n
eCσT ∥X∥2

k−1∑
i=0

(1− ηα2
0)

i∥u0 − y∥

≤(σT)2
C√
n
eCσT ∥X∥2∥u0 − y∥/α2

0

≤α0/2,

where we use the assumption
√
n ≥ C(σT)2eCσT ∥X∥2∥u0 − y∥/α3

0. (78)

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

It follows from the Weyl’s inequality that

σmin

(
∂uk

∂θ

)
≥ σmin

(
∂u0

∂θ

)
− ∥∂u

k

∂θ
− ∂u0

∂θ
∥ ≥ α0/2.

and so

λmin

[(
∂uk

∂θ

)T (
∂uk

∂θ

)]
≥ α2

0/4.

Therefore, we obtain

∥uk+1 − y∥ ≤
[
1− ηα2

0/4
]
∥uk − y∥+ η2(σT)3

C√
n
eCσT ∥X∥3∥uk − y∥2

≤
[
1− ηα2

0/4 + η2(σT)3
C√
n
eCσT ∥X∥3∥u0 − y∥

]
∥uk − y∥

=

[
1− η

(
α2
0/4− η(σT)3

C√
n
eCσT ∥X∥3∥u0 − y∥

)]
∥uk − y∥

≤
[
1− ηα2

0/8
]
∥uk − y∥,

where we assume

α2
0

8
≥ η(σT)3

C√
n
eCσT ∥X∥3∥u0 − y∥. (79)

Lemma 16. Assume ϕ and ϕ′ are L1- and L2-Lipschitz continuous and λ0 := λmin(Kθ0) > 0.
Suppose we choose the width n = Ω(∥X∥4∥u0 − y∥2/λ30) and the learning rate η ≤ 1

∥X∥2 . Then
the parameters θk stays in the neighborhood of θ0, i.e.,

∥vk − v0∥, ∥W k −W 0∥, ∥Uk − U0∥ ≤ C∥X∥∥u0 − y∥/λ0, (80)

and the residual ∥uk − y∥ consistently decreases

∥uk − y∥ ≤
(
1− ηλ0

8

)k

∥u0 − y∥, (81)

where C > 0 is some constant only depends on L1, L2, σv , σw, σu, and T .

Lemma 17. Given θ, we have

∥ht∥ ≤ ∥U∥∥x∥ exp
{
σt√
n
∥W∥

}
, (82)

∥λt∥ ≤ ∥v∥√
n
exp

{
σ(T − t)√

n
∥W∥

}
, (83)

for all t ∈ [0, T]

Proof. Observe that

ht = h0 +

∫ t

0

σ√
n
Wϕ(hs)ds

and so

∥ht∥ ≤ ∥h0∥+
σ√
n
∥W∥

∫ t

0

∥hs∥ds

Then it follows from the Gronwall’s inequality that

∥ht∥ ≤ ∥U∥∥x∥ exp
{
σt√
n
∥W∥

}
, ∀t ∈ [0, T]. (84)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Similarly, we have

λt = λT +

∫ T

t

− σ√
n

diag[ϕ′(ht)]W⊤λsds

implies

∥λt∥ ≤ ∥λT ∥+
σ√
n
L1∥W∥

∫ T

t

∥λs∥ds.

By the Gronwall’s inequality, we obtain

∥λt∥ ≤∥λT ∥ exp

{∫ T

t

σ∥W∥/
√
nds

}
≤∥λT ∥ exp

{
σ∥W∥/

√
n(T − t)

}
.

By λT = 1√
n

diag[ϕ′(hT)]v, we obtain the final result.

Lemma 18. Given θ, θ̄, we have

∥ht − h̄t∥ ≤∥θ − θ̄∥ ∥U∥
∥W∥

eσt(∥W∥+∥W̄∥)/
√
n∥x∥ (85)

∥λt − λ̄t∥ ≤∥θ − θ̄∥ ∥v∥
∥W∥

eσ(T−t)(∥W∥+∥W̄∥)/
√
n/

√
n (86)

for all t ∈ [0, T]

Proof. Observer that

ht − h̄t = (h0 − h̄0) +
σ√
n

∫ t

0

[
Wϕ(hs)− W̄ϕ(h̄s)

]
ds

Then we have

∥ht − h̄t∥ ≤∥h0 − h̄0∥+
σ√
n

∫ t

0

[
∥W − W̄∥∥hs∥+ ∥W̄∥∥hs − h̄s∥

]
ds

≤∥h0 − h̄0∥+
σ√
n
∥W − W̄∥

∫ t

0

∥Ux∥ exp
{
σs∥W∥/

√
n
}
ds+

σ√
n
∥W̄∥

∫ t

0

∥hs − h̄s∥ds

Using the bound of ∥hs∥, we have

σ√
n
∥Ux∥∥W − W̄∥

∫ t

0

exp
{
σs∥W∥/

√
n
}
ds

=
σ√
n
∥Ux∥∥W − W̄∥ ·

(
σ√
n
∥W∥

)−1 (
eσt∥W∥/

√
n − 1

)
=

∥U∥
∥W∥

∥W − W̄∥
(
eσt∥W∥/

√
n − 1

)
∥x∥.

Then by Grownwall’s inequality, we obtain

∥ht − h̄t∥ ≤
(
∥h0 − h̄0∥+ ∥W − W̄∥ ∥U∥

∥W∥

(
eσ∥W∥t/

√
n − 1

)
∥x∥
)
eσ∥W̄∥t/

√
n

≤
(
∥U − Ū∥+ ∥W − W̄∥

) ∥U∥
∥W∥

eσt(∥W∥+∥W̄)∥/
√
n∥x∥.

Then we obtain the result.

Observe that

λt − λ̄t = (λT − λ̄T) +
σ√
n

∫ T

t

diag[ϕ′(hs)]W⊤λs − diag[ϕ′(h̄s)]W̄⊤λ̄sds.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Then we obtain

∥λt − λ̄t∥ ≤ ∥λT − λ̄T ∥+
σ√
n

∫ T

t

(
∥W − W̄∥∥λs∥+ ∥W̄∥∥λs − λ̄s∥

)
ds

By using the bound of ∥λs∥, we obtain

σ√
n
∥W − W̄∥∥v∥√

n

∫ T

t

exp

{
σ(T − s)√

n
∥W∥

}
ds

≤ σ√
n
∥W − W̄∥∥v∥√

n

(
σ√
n
∥W∥

)−1 (
eσ(T−t)∥W∥/

√
n − 1

)
=

1√
n
∥W − W̄∥ ∥v∥

∥W∥

(
eσ(T−t)∥W∥/

√
n − 1

)
.

Then by Grownwall’s inequality, we have

∥λt − λ̄t∥ ≤
(
∥λT − λ̄T ∥+

1√
n
∥W − W̄∥ ∥v∥

∥W∥

(
eσ(T−t)∥W∥/

√
n − 1

))
eσ(T−t)∥W̄∥/

√
n

≤ 1√
n

(
∥v − v̄∥+ ∥W − W̄∥

) ∥v∥
∥W∥

eσ(T−t)(∥W∥+∥W̄∥)/
√
n

Lemma 19. Given δ > 0, there exists a natural number nδ such that for all n ≥ nδ , with probability
at least 1− δ over random initialization, we have

∥u∥ ≤ σ
√

2N log(N/δ), (87)

where σ2 := Σ∗(x, x) for x ∈ Sd−1.

Proof. Fix x, denote u := fθ(x) = vTϕ(hT (x))/
√
n. By Theorem 1, we have u converges in

distribution to a centered Gaussian random variable with variance σ2 := Σ∗(x, x). Hence, given
δ > 0, we have there exists nδ such that n ≥ nδ implies

|P (u ≥ ε)− P (z ≥ ε)| ≤ δ/2,

where z ∼ N (0, σ2). Then we have

P (u ≥ ε) ≤ δ/2 + P (z ≥ ε) ≤ δ/2 + e−ε2/2σ2

≤ δ,

where the last inequality is due to ε := σ
√

2 log(2/δ). Similarly, we obtain two two-tailed bound,
i.e.,

P (|u| ≥ ε) ≤ δ.

Now, denote u = fθ(X) ∈ RN as a vector. We have

P (∥u∥ ≥ ε0) =P (∥u∥2 ≥ ε20) = P (

N∑
i=1

|ui|2 ≥ ε20)

≤
N∑
i=1

P (|ui|2 ≥ ε20/N) =

N∑
i=1

P (|ui| ≥ ε0/
√
N)

≤δ,

where we use the fact P (
∑N

i=1 xi ≥ ε) ≤
∑N

i=1 P (xi ≥ ε/N) and ε0 := σ
√

2N log(N/δ).

H ADDITIONAL EXPERIMENTS

In this appendix, we provide supplementary experiments that complement the results in the main
paper. These experiments explore the impact of different activation functions, scaling for long time
horizons, and the behavior of Neural ODEs when approximated by Gaussian processes. Addition-
ally, we examine the behavior of the NTK when using polynomial activations.

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

H.1 SCALING FOR LONG-TIME HORIZONS

As discussed in Proposition 1 and Proposition 2, smooth activations ensure that the forward and
backward dynamics of Neural ODEs have globally unique solutions. However, extending the time
range or working with long-time horizons in the dynamics can introduce difficulties for numerical
solvers, leading to higher numerical errors. To understand how Neural ODEs behave over extended
time horizons, we investigated their behavior at initialization as the time horizon increases, focusing
on how output magnitudes and variance are affected. The objective was to understand how extending
the time horizon impacts the model’s outputs and the subsequent training process.

At initialization, as the time horizon T increases, the output magnitudes grow larger, resulting in
increased variance, as shown in Figure 3(a). This increased variance negatively impacts the training
of Neural ODEs with gradient descent, leading to damping in the early stages of training as illus-
trated in Figure 3(b). We observed that increasing the width of neural networks reduced the output
variance, as shown in Figure 3(a). Additionally, for long-time horizons, where T is large, we suggest
scaling the dynamics by setting the weight variance σw ∼ 1/T . This approach effectively mitigates
the growth in output magnitudes, as shown in Figure 3(c), and reduces early-stage damping during
training, as illustrated in Figure 3(d).

(a) (b) (c) (d)

Figure 3: Effects of increasing time horizons on Neural ODE outputs and training. (a) Output
variance increases as the time horizon T becomes large at initialization. (b) This leads to damping
during the early stages of training with gradient descent. (c) Scaling the dynamics by setting the
weight variance σw ∼ 1/T reduces the output variance. (d) This scaling also mitigates early-stage
damping, improving training stability.

H.2 GAUSSIAN PROCESS APPROXIMATION

In Section 4, we established that Neural ODEs tend toward a Gaussian Process (GP) as their width
increases, as demonstrated in Theorem 1. The associated NNGP kernel of this Gaussian process is
non-degenerate, as stated in Lemma 5. To empirically verify these theoretical findings, we conducted
a series of experiments.

First, we fixed an input x and initialized 10,000 random Neural ODEs. We then plotted the output
histograms for various network widths and fitted the distributions with a Gaussian model, as shown
in Figure 4. Additionally, we ran statistical tests to confirm whether the output distributions followed
a Gaussian distribution. The Kolmogorov-Smirnov (KS) test statistics and p-values indicated that as
long as the width exceeds 100, the outputs closely follow a Gaussian distribution.

Next, we analyzed the independence of the output neurons by plotting pairwise outputs across two
coordinates. According to Theorem 1, the output neurons should become independent as the width
increases. Figure 5 confirms this: while the diagonal plots show Gaussian bell shapes, the off-
diagonal plots resemble random ball shapes, indicating that the neurons are uncorrelated and, there-
fore, independent as the width increases.

Finally, we investigated whether Neural ODEs preserve the structure of input data at the output. We
constructed a matrix X of 10 samples and calculated the input covariance matrix XX⊤. Then, we
initialized 10,000 Neural ODEs with random weights and evaluated them on the input X , computing
the output covariance matrix. As shown in Figure 6, the output covariance matrix retained the cor-
relation patterns of the input matrix but with reduced magnitudes, indicating that Neural ODEs act
as structure-preserving smoothers, reducing the spread of the data while maintaining its underlying
relationships.

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

(a) KS Statistic: 0.0730,
P-value: 0.0000.

(b) KS Statistic: 0.0200,
P-value: 0.0366.

(c) KS Statistic: 0.0130,
P-value: 0.3609.

(d) KS Statistic: 0.0085,
P-value: 0.8600.

(e) KS Statistic: 0.0079,
P-value: 0.9084.

(a) KS Statistic: 0.0069,
P-value: 0.9688.

Figure 4: Gaussian fit of the sample distribution from 10,000 randomly initialized Neural ODEs
across widths 10, 50, 100, 200, 500, and 1000. The corresponding KS statistics and p-values are
displayed, showing improved Gaussian fit as width increases.

Figure 5: Pairplots of output neurons given the same input data, showing that output neurons become
independent as network width increases.

Additionally, we computed the smallest eigenvalues of the output covariance matrix. By sampling
500 examples from the MNIST training set and computing the covariance matrix for 10,000 inde-
pendently initialized Neural ODEs, we found that the smallest eigenvalues became strictly positive
when the width exceeded the number of samples. This result indicates that the NNGP and NTK
kernels are strictly positive definite, aligning with our theoretical findings.

H.3 SMOOTH VS. NON-SMOOTH ACTIVATIONS

To compare the performance of smooth and non-smooth activation functions, we evaluated both
Softplus (smooth) and ReLU (non-smooth) across different widths, measuring their training and test
losses, parameter distances, and NTK least eigenvalues. The results highlight several key differences
between these activations.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

(a) Input Covariance (b) Output Covariance (c) Least Eigenvalues

Figure 6: Comparison of input and output covariance matrices. (a) Input covariance matrix. (b)
Output covariance matrix from Neural ODEs, showing similar structure but reduced variance. (c)
Least eigenvalues of the covariance matrices, confirming positive definiteness as width increases.

Training and Test Loss Behavior: As illustrated in Figure 7(a)-(b), the log-scale plots show that
Softplus consistently converges faster than ReLU. ReLU experiences slower convergence, particu-
larly during the early stages of training, while Softplus benefits from smoother and faster optimiza-
tion, especially at larger widths.

Parameter Distance: We also measured the distance between the model parameters and their initial
values throughout training. As shown in Figure 7(c), parameters remained relatively closer to their
initialization for Softplus, while the parameter distance for ReLU was significantly higher. This
suggests that Softplus’s smoother nature results in more stable parameter updates during training,
contributing to its faster convergence.

NTK Least Eigenvalues: Regarding the NTK least eigenvalues, the results shown in Figure 7(d)
indicates both activations exhibited strictly positive eigenvalues, with ReLU’s slightly larger than
Softplus’s. However, despite this, Softplus converged more rapidly based on both training and test
loss results. We hypothesize that Softplus’s smoothness allows for more accurate gradient computa-
tion by the numerical solver, leading to more efficient optimization compared to ReLU, which may
suffer from less precise gradient calculations due to its non-smooth nature.

In summary, Softplus not only converges faster in terms of loss, but it also leads to more stable
parameter behavior during training, despite the slightly smaller NTK least eigenvalues compared to
ReLU. These findings suggest that the smoother nature of Softplus provides significant advantages
for Neural ODE training.

(a) (b) (c) (d)

Figure 7: Comparison of Smooth (Softplus) and Non-Smooth (ReLU) Activation Functions across
Neural ODE Training. (a) Log-scale plot of training loss shows faster convergence for Softplus
compared to ReLU, especially at larger widths. (b) Log-scale plot of test loss similarly demon-
strates faster convergence for Softplus, with ReLU exhibiting slower progress in the early stages.
(c) Parameter distance from initialization, showing that Softplus keeps parameters closer to their
initial values, suggesting more stable updates. (d) NTK least eigenvalues for both activations, where
ReLU’s eigenvalues are slightly larger, though Softplus achieves faster overall convergence.

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

Figure 8: Comparison of Neural ODEs with Softplus (non-polynomial) and Quadratic (polynomial)
activation functions. (a) Training loss for Softplus and Quadratic activations, showing slower con-
vergence for the Quadratic case. (b) Test loss comparison, further illustrating the slower convergence
for Quadratic activations. (c) Parameter differences from initialization, showing that Quadratic ac-
tivations lead to slightly larger parameter drift compared to Softplus. (d) NTK least eigenvalues,
where both activations show strictly positive eigenvalues, with Quadratic’s being slightly larger than
Softplus’s.

H.4 POLYNOMIAL ACTIVATIONS FOR NTK AND GLOBAL CONVERGENCE

In this experiment, we tested quadratic activation functions to assess their impact on NTK behavior
and convergence. While previous results suggested that nonlinearity but non-polynomiality is a
sufficient condition for the strict positive definiteness (SPD) of the NTK, our experiments reveal
that it is not a necessary condition.

We observed that the NTK of Neural ODEs using quadratic activation is also strictly positive definite,
with the smallest eigenvalue slightly higher than that of Softplus, as shown in Figure 8(d). Despite
this, the quadratic Neural ODE converged much more slowly than Softplus, as illustrated in the
training and test losses (Figure 8(a)-(b)).

In terms of parameter behavior (Figure 8(c)), the parameter differences for the quadratic activation
were slightly larger than those for Softplus, meaning the parameters drifted further from their initial
values. However, these differences remained within the same order of magnitude, indicating that the
model still satisfies the conditions for global convergence, even though it does not meet the sufficient
condition of being non-polynomial.

In summary, while quadratic activation functions result in strictly positive definite NTKs similar to
non-polynomial activations, they lead to slower convergence and slightly less stable parameter be-
havior compared to smoother activations like Softplus. This suggests that while non-polynomiality
is not strictly necessary for SPD and convergence, smoother activations may offer practical benefits
for faster and more stable training.

H.5 CONVERGENCE ANALYSIS ON DIVERSE DATASETS

In the main paper, we focused on the convergence properties of Neural ODEs using different activa-
tion functions on the MNIST dataset. To ensure that these findings generalize across different types
of data and tasks, we extended our experiments to three additional datasets: CIFAR-10 (image clas-
sification), AG News (text classification), and Daily Climate (time series forecasting). This section
details the performance of three key activation functions—Softplus, ReLU, and GELU—on these
datasets, highlighting their effects on convergence speed, stability, and generalization.

For each dataset, we trained Neural ODE models with different widths (i.e., 500, 1000, 2000, 3000)
using Softplus, ReLU, and GELU activations. We monitored the training loss and test loss, compar-
ing how different activations influence convergence behavior across datasets. The optimizer used
was gradient descent with a learning rate of 0.1, and models were trained for 100 epochs.

For CIFAR-10, the results showed minimal differences between the activation functions.

• Softplus, ReLU, and GELU all exhibited similar convergence patterns, with larger widths leading
to faster convergence across the board.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

• Larger widths consistently resulted in lower training and test losses, but the specific choice of
activation did not have a significant impact on the overall performance or convergence speed.

These results suggest that for CIFAR-10, the activation function choice is less critical, particularly
when the network is sufficiently wide, i.e., see Figure 9.

(a) Softplus (b) ReLU (c) GELU

Figure 9: Training and test loss behavior for CIFAR-10 across different activations: (a) Softplus, (b)
ReLU, and (c) GELU. All activations show similar convergence patterns, with larger widths leading
to faster convergence.

For AG News, we observed distinct convergence patterns across the activation functions:

• Softplus converged the fastest, followed by ReLU, with GELU converging the slowest. Despite
GELU being a smooth activation, its derivative differs significantly compared to the other activa-
tions, which may explain the slower convergence rate.

• All three activations shared the same trend: larger widths led to faster convergence and lower test
losses. However, the differences between activation functions were more pronounced at smaller
widths, where GELU lagged behind (Figure 10).

This suggests that while GELU’s smoothness offers theoretical benefits, in practice, its derivative
may cause slower optimization dynamics, particularly for text-based tasks like AG News.

(a) Softplus (b) ReLU (c) GELU

Figure 10: Training and test loss behavior for AG News across different activations: (a) Softplus, (b)
ReLU, and (c) GELU. Softplus converges fastest, while GELU lags due to its derivative behavior.

(a) Softplus (b) ReLU (c) GELU

Figure 11: Training and test loss behavior for Daily Climate time series forecasting: (a) Softplus,
(b) ReLU, and (c) GELU. All activations show similar convergence, with larger widths leading to
faster results.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

H.6 NON-SMOOTH ACTIVATION FUNCTIONS: COMPARING “DISCRETIZE-THEN-OPTIMIZE”
AND “OPTIMIZE-THEN-DISCRETIZE”

(a) (b) (c) (d)

Figure 12: Comparison of Neural ODEs and ResNets with Softplus (smooth) and ReLU (non-
smooth) activations. (a, b) Softplus: Output and gradient differences in log-log scale, both showing
1/L convergence. (c, d) ReLU: Output difference shows 1/L convergence, while gradient differ-
ence remains constant as depth L increases.

(a) (b) (c) (d)

Figure 13: Training comparison of Neural ODEs and ResNets with ReLU (non-smooth) activation.
(a) Training loss decreases consistently and aligns closely for both Neural ODEs and ResNets. (b)
Test loss shows a similar trend, consistently decreasing for both models. (c) Output difference
remains consistently small throughout training. (d) Gradient difference oscillates during training.

In this experiment, we investigate the impact of non-smooth activation functions, specifically ReLU,
on the performance of Neural ODEs and their ResNet approximations under the “Discretize-Then-
Optimize” and “Optimize-Then-Discretize” frameworks. While the output differences between the
two frameworks decrease as the depth L increases, our results reveal that the backward gradients
fail to converge due to the non-smooth nature of ReLU’s derivative.

Smooth Activation Functions (Softplus). For smooth activation functions like Softplus, both the
output difference and gradient difference between the two frameworks decrease at a rate of 1/L as
the depth L increases. This behavior aligns with Proposition 2 and is illustrated in Figure 12(a)-(b).

Non-Smooth Activation Functions (ReLU). In contrast, for ReLU, the output difference still
decreases at a rate of 1/L, as shown in Figure 12(c). However, the gradient difference fails to
converge, as illustrated in Figure 12(d). Initially, the gradient difference reduces as depth increases,
but it eventually stagnates at a fixed error level. Increasing the network width does not resolve this
issue. Notably, the largest gradient difference is observed at width 500, whereas smaller errors are
achieved for both smaller and larger widths, such as width 200 and 1000. These results confirm
that the lack of a continuous derivative in ReLU introduces inconsistencies in gradient computations
between the two frameworks.

Training Dynamics. Despite this mismatch in gradient computation, we did not observe signif-
icant differences in the training dynamics between Neural ODEs and ResNets. We trained Neural
ODEs and their finite-depth ResNet approximations (fixed at depth 200, as further depth increases
did not reduce errors, as shown in Figure 12(d)) on a subset of MNIST. As illustrated in Figure 13,
both models exhibit similar training and test losses. While the output differences remain consis-
tently small during training, the gradient differences oscillate, as shown in Figure 13. ResNets, as
finite-depth networks, are known to exhibit global convergence guarantees under gradient descent in
overparameterized regimes (Du et al., 2019a), so their convergence is unsurprising. What is unex-
pected, however, is the near-identical training dynamics between Neural ODEs and ResNets despite
the gradient mismatch caused by ReLU’s non-smoothness. Our hypothesis is that while gradient
differences oscillate during training, they remain within small magnitudes because MNIST is a sim-
ple dataset and ReLU’s derivative is almost continuous everywhere except at the origin. This partial

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

smoothness may mitigate the adverse effects of the gradient mismatch. However, we anticipate that
in realistic applications involving more complex datasets, these differences could lead to divergent
training trajectories and dynamics for Neural ODEs and ResNets using non-smooth activations.

H.7 SENSITIVITY OF “OPTIMIZE-THEN-DISCRETIZE” TO ODE SOLVERS

(a) (b) (c)

Figure 14: Sensitivity of “Optimize-then-discretize” to ODE solvers. (a) Training and test losses
decrease consistently for all three solvers at width 500. (b) Training and test losses decrease consis-
tently for all three solvers at width 2000. (c) Time taken by each ODE solver across different widths,
highlighting the scalability advantage of fixed-step solvers.

In this subsection, we investigate the impact of different numerical ODE solvers on the accuracy of
gradient computation and overall training dynamics in the “Optimize-then-discretize” framework.
The solvers considered in our experiments are Euler, rk4, and dopri5.

As illustrated in Figure 14(a)-(b), the choice of ODE solver does not significantly affect the accuracy
of gradient computation or the overall training dynamics in our specific setting. This is consistent
with the theoretical guarantees established in Proposition 1, where we demonstrated that the ODE
dynamics in Equations Eq. (2) and Eq. (4) possess globally unique solutions under the smoothness
conditions on activation functions. Given the relatively simple nature of the system studied, the
numerical errors introduced by the solvers appear to be negligible in this context. However, this
observation may not generalize to more complex systems or practical applications where numerical
errors can be influenced by other factors such as stiffness or stability in the dynamics, which are
beyond the scope of this paper.

An interesting observation from our experiments is the computational efficiency of the solvers.
While adaptive solvers like dopri5 provide high accuracy, they require significantly more computa-
tion time as the neural network width increases. In contrast, fixed-step methods such as Euler and
rk4 scale more efficiently with width, making them preferable in scenarios where computational
cost is a concern. This is illustrated in Figure 14(c), where we compare the time taken by the solvers
across different widths.

I DISCUSSION ON GENERAL DYNAMIC FORM IN NEURAL ODES

In this section, we discuss extending our results from the specific form equation 1 and equation 2 to
a more general dynamic formulation. Specifically, we first consider a generalized nonlinear trans-
formation:

ḣt =
σw√
n
Wf(ht, t), ∀t ∈ [0, T],

where the original nonlinear activation function ϕ in equation 2 is replaced by a general nonlinear
mapping f : Rn×R → Rn, defined as f : (h, t) 7→ f(h, t). This generalization introduces explicit
time dependence, transforming the system from an autonomous to a non-autonomous system. Non-
autonomous systems are prevalent in applications such as diffusion models (Song et al., 2020) and
physics-informed neural networks (PINNs) (Sholokhov et al., 2023). The function f can represent
another shallow neural network or more complex operations, such as convolution layers (LeCun
et al., 1998), gating mechanisms (Hochreiter, 1997), attention mechanisms (Vaswani, 2017), or batch
normalization (Ioffe, 2015).

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

For this generalized form, the backward dynamics take the form:

λ̇t = − σw√
n
J(ht, t)W

⊤λt,

where J = ∂f/∂h ∈ Rn×n is the Jacobian matrix of f with respect to h. By Theorem 5, the
forward ODE has unique global solutions if f is continuous in t and Lipschitz continuous in h, with
a Lipschitz constant independent of t. This generalizes the continuity requirement for the activation
function ϕ to f . Additionally, if the Jacobian matrix J is globally bounded, the backward ODE
also admits a unique global solution. Since f is Lipschitz continuous in h, the boundedness of J
is naturally satisfied (on a compact set). Therefore, appropriate smoothness conditions on f ensure
well-posed forward and backward dynamics with unique solutions.

Using Euler’s method, we discretize the forward and backward dynamics as follows:

hℓ+1 = hℓ + κ · σw√
n
Wf(hℓ, tnℓ

),

λℓ+1 = λℓ − κ · σw√
n
J(hℓ, tnℓ

)W⊤λℓ,

where κ = T/L. Ensuring convergence of (hℓ,λℓ) to (ht,λt) is critical to aligning the gradients
obtained from the “discretize-then-optimize” and “optimize-then-discretize” methods. As discussed
in Proposition 2, additional smoothness of the backward ODE is required for gradient equivalence.
By Theorem 7, the mapping t 7→ J(ht, t) must be continuous in t, which implies that J is Lipschitz
continuous in h with a Lipschitz constant independent of t. The smoothness of J with respect to
h can be guaranteed by imposing second-order regularity conditions on f . Specifically, bounding
the Jacobian tensor ∂J/∂h under suitable norms, such as the operator norm or Frobenius norm,
ensures the required regularity. Although ∂J/∂h represents a higher-order tensor, these regularity
conditions allow the gradient consistency results from Proposition 2 to extend seamlessly to this
generalized formulation.

Theorem 7 provides not only convergence guarantees but also a uniform convergence rate un-
der globally uniform smoothness conditions. Consequently, by Theorem 8, the iterated limits in
Lemma 1 and Lemma 2 converge to the same double limit. As a result, the NNGP and NTK of
the generalized Neural ODE remain well-defined. If the limiting NNGP or NTK is strictly positive
definite (SPD), global convergence under gradient descent can also be established.

Finally, we discuss extending the dynamics to a post-activation formulation:

ḣt = f

(
σw√
n
Wht, t

)
,

where the linear transformation h 7→ σw√
n
Wh is applied before the nonlinear mapping f . The anal-

ysis remains analogous because the linear transformation is globally 1-Lipschitz continuous under
Theorem 4. However, we focus primarily on the pre-activation form, as it consistently achieves
superior empirical performance compared to the post-activation formulation (He et al., 2016b).

J RELATED WORKS

Neural Ordinary Differential Equations (Neural ODEs) (Chen et al., 2018b) introduced a continuous-
depth framework for modeling dynamics by replacing discrete-layer transformations with parame-
terized differential equations. This innovative framework has since inspired extensive research,
leading to both theoretical advancements and practical applications.

Neural ODEs are distinguished by their continuous-time representation and memory efficiency
through parameter sharing, setting them apart from traditional architectures like ResNet (He et al.,
2016a). Building on this foundation, several extensions have been proposed to address more
complex systems. Notable examples include Neural Stochastic Differential Equations (SDEs) for
stochastic dynamics (Li et al., 2020), Neural Partial Differential Equations (PDEs) for spatiotem-
poral systems (Sirignano & Spiliopoulos, 2018; Raissi et al., 2019), Neural Controlled Differential
Equations (CDEs) for irregular time-series data (Kidger et al., 2020), and Neural Variational and
Hamiltonian Systems for capturing conserved quantities in physical dynamics (Greydanus et al.,

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

2019). These advanced formulations have broadened the applicability of Neural ODEs to diverse
domains, such as time-series modeling (Rubanova et al., 2019), computer vision (Chen et al., 2018b;
Park et al., 2021), and reinforcement learning (Du et al., 2020). In generative modeling, Neu-
ral SDEs underpin approaches like FFJORD (Grathwohl et al., 2018), score-based methods (Song
et al., 2020), and diffusion models (Ho et al., 2020). Similarly, in physics-informed machine learn-
ing, Neural PDEs and Physics-Informed Neural Networks (PINNs) have proven critical for solving
physical systems while incorporating domain-specific knowledge (Sholokhov et al., 2023; Karni-
adakis et al., 2021; Raissi et al., 2019). However, while these features offer flexibility and efficiency,
they also introduce significant challenges during training.

A key challenge in training Neural ODEs lies in gradient computation. The original adjoint method
introduced by Chen et al. (2018b) computes gradients with minimal memory overhead. However,
this approach can suffer from numerical instabilities, as observed in Gholaminejad et al. (2019). To
address these issues, advanced methods have been developed. For instance, Zhuang et al. (2020a)
integrates adjoint techniques with checkpointing to balance memory usage and computational cost,
while Matsubara et al. (2021) employs symplectic integrators to preserve ODE structure, ensuring
stability in long-time horizons and oscillatory systems. Finlay et al. (2020) regularizes the Jaco-
bian norm of the dynamics to improve stability and generalization. Ko et al. (2023) introduces a
homotopy-based approach, starting with simplified dynamics and gradually transitioning to target
dynamics. These methods generally follow an “optimize-then-discretize” approach, where (aug-
mented) backward ODEs are solved numerically to compute gradients. Conversely, the “discretize-
then-optimize” approach, which discretizes the forward ODE into a finite-depth network for gradient
computation via backpropagation, has been explored by Massaroli et al. (2020). However, as noted
in Zhuang et al. (2020a;b), this method often results in deeper computational graphs, raising con-
cerns about gradient accuracy.

To address the challenge in gradient computation, several theoretical studies have been conducted,
focusing on well-posedness and stability. For instance, Gholaminejad et al. (2019) highlighted sig-
nificant numerical instabilities when using ReLU activations in Neural ODEs. Meanwhile, Ro-
driguez et al. (2022) investigated the stability of Neural ODEs through a Lyapunov framework de-
rived from control theory. Despite these advancements, none of these works address when and how
the “discretize-then-optimize” and “optimize-then-discretize” methods can yield equivalent gradi-
ents. Moreover, the question of whether simple first-order optimization methods, such as stochastic
gradient descent, can reliably train Neural ODEs to convergence remains unexplored.

Another essential challenge lies in analyzing the training dynamics of Neural ODEs due to the in-
herent nonconvexity of neural network optimization. A significant breakthrough in this area came
from the Neural Tangent Kernel (NTK) framework introduced by Jacot et al. (2018), which demon-
strated that the NTK governs the training dynamics of feedforward networks (FFNs) under gradient
descent and converges to a deterministic limit as network width increases. This convergence facili-
tates global convergence guarantees for gradient-based optimization in overparameterized regimes,
provided the NTK remains strictly positive definite (SPD) (Du et al., 2019a; Allen-Zhu et al., 2019;
Nguyen, 2021). The strict positive definiteness of the NTK has been extensively studied, beginning
with dual activation analysis for two-layer networks (Daniely et al., 2016) and later extended to
finite-depth FFNs (Jacot et al., 2018; Du et al., 2019a). Recent work has further applied NTK the-
ory to diverse architectures, including convolutional neural networks (CNNs) (Arora et al., 2019),
recurrent neural networks (RNNs) (Yang, 2020), transformers (Hron et al., 2020), physics-informed
neural networks (PINNs) (Wang et al., 2022), and graph neural networks (GNNs) (Du et al., 2019b).
NTK analysis has also been explored for various optimization methods, such as stochastic gradient
descent (SGD) (Zou et al., 2020) and adaptive gradient algorithms (Chen et al., 2018a). However,
applying NTK theory to continuous-depth models like Neural ODEs and determining whether sim-
ilar SPD and convergence properties hold remains an open and active area of research.

Despite significant advancements, challenges persist in understanding the training dynamics of Neu-
ral ODEs and ensuring gradient consistency between the “discretize-then-optimize” and “optimize-
then-discretize” approaches. Our work addresses these gaps by:

1. Gradient Equivalence: Establishing conditions under which the gradients computed by the two
methods are equivalent, as demonstrated in Proposition 1 and Proposition 2, emphasizing the role
of smooth activations.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

2. NTK Analysis: Providing rigorous conditions for the well-definedness of the Neural ODE NTK,
demonstrating its strict positive definiteness (SPD) under suitable activation function properties,
as stated in Theorem 2 and Corollary 1.

3. Global Convergence: Extending global convergence guarantees for gradient descent in overpa-
rameterized Neural ODEs, bridging the gap between discrete and continuous-depth models, as
outlined in Theorem 3.

54

	Introduction
	Preliminaries
	Neural ODEs
	Neural Tangent Kernel

	Well-Posedness of Neural ODEs and Its Gradients
	Optimize-Then-Discretize Method
	Discretize-Then-Optimize Method

	NNGP and NTK for Neural ODEs
	NNGP: Forward Propagation of Inputs
	NTK: Backpropagation of Gradients

	Global Convergence Analysis for Neural ODEs
	Experiments
	Conclusions
	Useful Mathematical Results
	Derivation of Gradient Through Adjoint Method
	Well Posedness of Neural ODEs and its Gradients
	Forward ODE is well-posed
	Backward ODE is well posed
	Augmented backward ODE is well posed under the same regularity

	NNGP Correspondence for Neural ODEs
	Finite-Depth Neural Networks as Gaussian Processes
	Neural ODEs as Gaussian Processes

	NTK for Neural ODE
	Convergence Analysis of Euler's method for Backward ODE
	NTK for Finite-Depth Neural Networks
	NTK for Neural ODEs

	Strict Positive Definiteness of Neural ODE's NTK
	Dual Activation and SPD of Finite-Depth Network's NNGP Kernel
	Strict Positive Definiteness of Neural ODE's NNGP Kernel

	Global Convergence of Neural ODEs
	Additional Experiments
	Scaling for Long-Time Horizons
	Gaussian Process Approximation
	Smooth vs. Non-Smooth Activations
	Polynomial Activations for NTK and Global Convergence
	Convergence Analysis on Diverse Datasets
	Non-Smooth Activation Functions: Comparing ``Discretize-Then-Optimize” and “Optimize-Then-Discretize"
	Sensitivity of ``Optimize-then-discretize” to ODE Solvers

	Discussion on General Dynamic Form in Neural ODEs
	Related Works

