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Abstract

Unsupervised sentence representation learn-001
ing is a fundamental problem in natural lan-002
guage processing and has been studied exten-003
sively in recent years. This paper presents004
Representation ALchemy (RepAL), an ex-005
tremely simple post-processing method that006
enhances unsupervised sentence representa-007
tions. The basic idea in RepAL is to ex-008
tract redundant information from the repre-009
sentation of a sentence generated by the ex-010
isting models and then refine the representa-011
tion through an embedding refinement opera-012
tion to filter such redundant information. In013
this paper, we analyze the redundant infor-014
mation from two levels: sentence-level and015
corpus-level, and the theoretical analysis for016
the latter is also conducted. We point out017
that RepAL is free of training and is a plug-018
and-play method that can be combined with019
most existing unsupervised sentence learning020
models. Extensive experiments demonstrate021
RepAL’s effectiveness and show that RepAL022
is a model-agnostic method for unsupervised023
sentence embedding enhancement. Besides,024
we also designed detailed ablation studies to025
understand why RepAL works and provided026
in-depth analysis and understanding of the re-027
dundant information.028

1 Introduction029

Learning high-quality sentence embeddings is a030

fundamental task in Natural Language Processing031

(NLP) field (Socher et al., 2011; Le and Mikolov,032

2014; Kiros et al., 2015; Reimers and Gurevych,033

2019; Gao et al., 2021). The goal is to map se-034

mantically similar sentences close and dissimilar035

sentences farther apart in the representation space.036

In real-world scenarios, especially when a large037

amount of supervised data is unavailable, an ap-038

proach that provides sentence embeddings in an039

unsupervised paradigm is of great value.040

Generally, the unsupervised sentence encoder041

(USE) can be categorized into two paradigms. The042

first is pre-trained language model (PTM) (Devlin 043

et al., 2019; Liu et al., 2019) based paradigm, which 044

are naturally good unsupervised sentence represen- 045

tation learning models. For example, BERT (De- 046

vlin et al., 2019) and BERT-like (Liu et al., 2019; 047

He et al., 2020; Raffel et al., 2020) models, com- 048

mit to design stronger pre-trained language models 049

by self-training with mask or next sentence pre- 050

diction. While designing stronger PTMs for is 051

extremely expensive, time-consuming, and labor- 052

intensive. Based on PTMs, secondary trained, e.g., 053

contrastive-based methods (Reimers and Gurevych, 054

2019; Logeswaran and Lee, 2018; Gao et al., 2021), 055

proved to be effective to further improve the repre- 056

sentation quality of sentences. As a representative 057

solution, SimCSE (Gao et al., 2021) minimizes the 058

distance between positive pairs of sentences and 059

pulls away from the negative pairs of sentences in 060

the embedding space, which is highly dependent 061

on a crucial data augmentation trick to create pos- 062

itive sentence pair. Nevertheless, designing NLP 063

augmentation tricks that significantly outperform 064

dropout (Srivastava et al., 2014) remains challeng- 065

ing. 066

This paper argues that the quality of sentence 067

embeddings generated by most existing unsuper- 068

vised methods can be further improved with a post- 069

processing operation free of training and extra data. 070

Our basic idea is to refine sentence representations 071

by removing the redundant information from the 072

levels of sentences and corpus. Specifically, given 073

a sentence, there are several trivial and inconse- 074

quential words within the sentence. Such words 075

are proven to bring a negative impact on down- 076

stream NLP tasks, like Natural Language Inference 077

(NLI) (Mahabadi et al., 2020; Zhou and Bansal, 078

2020) and text classification (Choi et al., 2020; 079

Qian et al., 2021). Besides, given a training cor- 080

pus, there is some information shared by the whole 081

corpus. Such information may lead to homoge- 082

nous properties for all sentence embeddings, which 083
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diminishes the distinctiveness between sentences.084

This paper proposes a simple, straightforward,085

and effective method called representation alchemy086

(RepAL), which improves sentence representations087

without training and extra resources. RepAL ac-088

cepts raw sentence representations as inputs, which089

are generated from existing unsupervised sentence090

models. Then RepAL outputs refined representa-091

tions by extracting two redundant representations092

from different perspectives. Intuitively, it is like an093

alchemy that improves sentence representation by094

impurity refinement. It’s worth mentioning that our095

proposed RepAL can be applied to almost USEs,096

and is a plug-and-play method in sentence embed-097

ding enhancement.098

To verify, we perform extensive experiments on099

the widely used benchmarks both in English and100

Chinese. The results demonstrate our RepAL’s ef-101

fectiveness: it can be well combined with existing102

USE. Besides, we also conduct detailed ablation103

studies to dive into the capacity of two embed-104

ding refinements, respectively. We conclude that105

sentence-level refinement can diminish the impact106

of trivial words when measuring semantic similar-107

ity. Corpus-level refinement diminishes the largest108

eigenvector for the embedding matrix, thus improv-109

ing sentence representation’s isotropy (Wang et al.,110

2019b,a). Our main contributions can be summa-111

rized as follows:112

• We propose RepAL, a plug-and-play method113

that enhances the sentence representations114

through redundant embedding generation and115

refinement. Experiments show that it can be116

well combined with different USE and im-117

prove their capacity in sentence representa-118

tions.119

• We ablate our method to illustrate the effec-120

tiveness of sentence-level and corpus-level re-121

finement operations with theoretical deriva-122

tion and empirical results.123

2 Related Work124

Methods for unsupervised sentence learning have125

been extensively explored. Early works are126

mainly based on distributional hypothesis (Socher127

et al., 2011; Le and Mikolov, 2014). Hill (Hill128

et al., 2016) proposed to learn sentence representa-129

tions with the internal structure of each sentence.130

Kiros (Kiros et al., 2015) proposed to predict the131

surrounding sentences of a given sentence like132

Word2Vec. Then Pagliardini (Pagliardini et al., 133

2018) proposed Sent2Vec, a simple unsupervised 134

model allowing to compose sentence embeddings 135

using word vectors along with n-gram embeddings. 136

Then the strong pre-trained language model (De- 137

vlin et al., 2019) emerged from the blue. The pow- 138

erful pre-trained models own strong potential to im- 139

prove the quality of sentence representation. How- 140

ever, models like BERT own strong anisotropy in 141

their embedding space which means the sentence 142

embeddings produced by BERT have extremely 143

high cosine similarity, leading to an unsatisfactory 144

performance on sentence embedding. 145

Some post-processing methods have been pro- 146

posed to improve the quality of contextual sentence 147

embeddings to solve such a problem. The post- 148

processing paradigm aims to enhance sentence em- 149

beddings through simple and efficient operations 150

without extra training or data. The most promising 151

method is whitening (Huang et al., 2021), dedicated 152

to transforming sentence embedding into Gaussian- 153

like embedding, which proved to be effective in 154

sentence embedding improvement. 155

Recently, contrastive learning began to play an 156

important role in unsupervised sentence representa- 157

tion learning (Zhang et al., 2020; Yan et al., 2021; 158

Meng et al., 2021; Gao et al., 2021; Wang et al., 159

2021). Such methods are based on the assumption 160

that high-quality embedding methods should bring 161

similar sentences closer while pushing away dis- 162

similar ones. Therefore, those methods use various 163

data augmentation tricks to generate two different 164

views for each sentence and design an effective 165

loss function to make them closer in the represen- 166

tation space. Among the data augmentation tricks, 167

dropout (Srivastava et al., 2014) is one representa- 168

tive and effective method. 169

Specifically, the most relevant work to ours is 170

whitening (Huang et al., 2021) since the corpus- 171

level refinement is similar to the average embed- 172

ding subtraction in whitening. However, there 173

are three principal differences between such two 174

works. Firstly, the motivation is different. Whiten- 175

ing aims at transforming the sentence embedding 176

to Gaussian-like embedding for distance measure- 177

ment on an orthogonal basis. Our method starts a 178

perspective of redundancy refinement, which aims 179

to diminish the impact of trivial words within a 180

sentence during similarity calculation. Second, the 181

methodology is different. Our method addition- 182

ally employs a partial mask to filter the redundancy 183
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and introduce weight factors to control the impact184

during embedding refinement. Lastly, the in-depth185

analysis shows that our method aims to diminish186

the upper bound of the largest eigenvalue of the187

embedding matrix and the impact of trivial words,188

which is irrelevant to whitening’s effects.189

3 Methodology190

3.1 Problem Formulation191

In unsupervised sentence representation learn-192

ing, we take a collection of unlabeled sentences193

{xi}ni=1, also we choose a suitable unsupervised194

sentence learning model (e.g., BERT) as the en-195

coder f(·; θ), where θ represents the trainable pa-196

rameters in f . Specifically, we have a carefully197

designed training objective L(xi, θ) for unsuper-198

vised training, and θ is then fixed as θ0 where199

θ0 = argminL(xi, θ). Finally, we obtain the sen-200

tence representation vi for xi by feeding it into the201

encoder, i.e., vi = f(xi; θ0).202

RepAL plays its role in refining vi to v′i with203

v′i = g(vi), instead of directly selecting vi for sen-204

tence representation. RepAL aims to extract and205

refine two types of redundancy, namely sentence-206

level redundancy and corpus-level redundancy, re-207

spectively. Sentence-level redundancy denotes the208

useless word information hidden in the target sen-209

tence, which may bias the representations that re-210

flect the core semantics of the sentence. Corpus-211

level redundancy denotes the shared redundant in-212

formation in all sentence representations within the213

dataset, making all the representations tend to be214

homogenous and thus reducing the distinction.215

RepAL generates x∗i by an operation called par-216

tial mask on xi, then feed x∗i into the encoder217

f(.; θ0) to obtain sentence-level redundancy em-218

beddings v∗i . Besides, RepAL produces a global219

vector v̂ as corpus-level redundancy embedding.220

Finally, RepAL generates the refined embedding221

v′i for downstream tasks through the embedding re-222

finement operation by combining vi, v∗i and v̂. The223

overview architecture of RepAL is illustrated in224

Figure 1, which consists of two principal stages:225

redundant embedding generation and embedding226

refinement.227

3.2 Redundant Embedding Generation228

In RepAL, we firstly detect redundant informa-229

tion and generate their embeddings from the target230

sentence, which is a groundbreaking step in our231

method and determines the performance.232

3.2.1 Sentence-level Redundancy 233

We apply a partial mask to extract the sentence- 234

level redundancy. Specifically, given a sentence 235

xi = {w1, w2, . . . , wN}, partial mask generates 236

a partially masked sentence x∗i , a mask version 237

of xi, where informative words in xi are replaced 238

with [MASK] to distill the trivial words from the 239

sentence. Specifically, we judge the words as 240

keywords according to their TF-IDF (Luhn, 1958; 241

Jones, 1972) values calculated on a general corpus. 242

Concretely, we denote the word set Sxi as the 243

keywords within sentence xi. In the following, 244

we generate partially masked sentence x∗i , where 245

only the keywords in the sentence xi are masked, 246

and f(x∗i ) as the corresponding redundant embed- 247

ding. Since the model is forced to see only the 248

non-masked context words, f(x∗i ) actually encode 249

the information from the trivial words. Thus, the 250

sentence-level redundant sentence embedding is 251

defined as follows: 252

x∗i = PartialMask(xi, keyword); v∗i = f(x∗i )
(1) 253

3.2.2 Corpus-level Redundancy 254

Given an unlabeled sentence set X = {xi}ni=1, we 255

feed all the sentences to the encoder f , and take 256

the average embedding v̂ as its corpus-level redun- 257

dant embedding, which can be formally defined as 258

follows: 259

v̂ =
Σn
i=1f(xi)

n
(2) 260

where v̂ is the corpus-level redundant embedding 261

of xi. 262

3.3 Embedding Refinement 263

As illustrates above, two redundant embeddings 264

from two levels are obtained. Then the embed- 265

ding refinement operation can be formalized via 266

the conceptually simple and empirically powerful 267

element-wise subtraction operation, which is de- 268

fined as follows: 269

v′ = f(xi)− λ1 · v∗i − λ2 · v̂ (3) 270

where f(x) corresponds to the original embedding 271

of xi, and v∗i and v̂ represent the redundant embed- 272

ding at two levels, respectively. 273

Since the two redundant embeddings typically 274

do not contribute completely equal to the embed- 275

ding v, directly subtracting without adaptive param- 276

eters would cause that mitigating sentences’ redun- 277

dancy too much or too little for a specific dataset. 278
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Figure 1: The overview of RepAL.

We introduce two independent hyper-parameters279

λ1 and λ2 to balance the two terms.280

3.4 Theoretical analysis for corpus-level281

refinement282

The operation that subtracts average embedding283

(i.e., v̂) is widely used in deep neural networks (e.g.,284

Batch Normalization), which controls the change285

of the layers’ input distributions during training.286

In this section, we specifically delve into the ef-287

fectiveness of such a subtraction operation in the288

sentence embedding improvement by analyzing the289

largest eigenvalue of the embedding matrix. We290

present two theorems to explain how corpus-level291

refinement diminishes the largest eigenvalue of the292

embedding matrix.293

Let E be the embedding matrix for sentences294

{xi}ni=1, and i-th row of E represents the sentence295

embedding of xi. Assume we obtain the embed-296

ding matrix E through an unsupervised sentence297

encoder. Then the embedding matrix E∗ after the298

corpus-level refinement operation is defined as fol-299

lows:300

E∗ = E − λ · Ê (4)301

where Ê is a matrix whose each row is the same and302

assigned by average embedding v̂ = 1
n

∑n
i=1 vi.303

According to previous works (Wang et al., 2019b,a),304

the largest eigenvalue of E∗E∗T is dominant in305

controlling the quality of embedding space.306

Therefore, controlling the largest eigenvalue of307

the matrix E∗E∗T can alleviate the degeneration308

problem and improves the quality of the learned 309

sentence representations (Wang et al., 2019b). 310

Formally, given a real symmetric matrix 311

E∗E∗T ∈ Rn×n, the upper bound (Ostrowski, 312

1960; Zhan, 2005) of its largest eigenvalue σ is 313

obtained as follows: 314

σ ≤ 1

2

(
nb+

√
b2 + (n2 − 1) a2

)
(5) 315

where a and b represent the max value and min 316

value in the matrix E∗E∗T . Such a bound guides 317

us in the direction of optimizing the sentence repre- 318

sentation space and embedding performance. That 319

is, if we can minimize the upper bound of the 320

largest eigenvalue of the matrix by selecting a 321

proper weight λ, then we can improve the qual- 322

ity sentence embeddings. 323

Next, we provide theoretical derivation that there 324

exists suitable λ that can minimize the upper bound 325

of the largest eigenvalue of E∗E∗T , thus improves 326

the quality of sentence embeddings. 327

Theorem 1. For a real matrix E ∈ Rn×d and 328

its row-average matrix Ê. We denote W and 329

W ∗ as EET and E∗E∗T , where E∗ refers to 330

Eq 4. Then ∃ λ, s.t. upper_bound(W ∗, ρ) < 331

upper_bound(W,ρ), where upper_bound(W,ρ) 332

denotes the upper bound of the largest eigenvalue 333

of the matrix W . 334

The theorem above demonstrates the existence 335

of λ and illustrates that if we choose such λ for 336

the corpus-level refinement, then it is equivalent to 337
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minimizing the largest eigenvalue of the embedding338

matrix.339

Besides the theoretical analysis, we also launch340

numerical experiments to investigate whether such341

a conclusion still holds in downstream tasks, and342

conclude that we need to subtract the average343

embedding with adaptive weights, which are in344

Sec 5.2. The proofs of the theorems are deferred to345

the appendix A.346

4 Experiments347

In this section, we show that our method can be348

adaptive to various USE and improves their perfor-349

mance.350

4.1 Baselines351

To verify the effectiveness of our method, we eval-352

uate RepAL on both Chinese and English settings.353

To investigate whether our method can be applied354

to various unsupervised sentence encoder (USE),355

we choose two kinds of encoders: vanilla USE and356

secondary trained USE. For vanilla USE, we select357

BERT (Devlin et al., 2019), RoBerTa (Liu et al.,358

2019), RoFormer (Su et al., 2021) and NEZHA359

(Wei et al., 2019) for Chinese; for English, we360

select BERTbase, BERTlarge (Devlin et al., 2019)361

and RoBERTabase (Reimers and Gurevych, 2019).362

Specifically, we name the secondary trained USE363

equipped with whitening (Huang et al., 2021), Con-364

SERT (Yan et al., 2021), and SimCSE (Gao et al.,365

2021) as W-USE (e.g., W-BERT), C-USE (e.g.,366

C-BERT), and Sim-USE (e.g., Sim-BERT), respec-367

tively. Results of Sim-USE and C-USE are from368

our implementation.369

4.2 Benchmarks370

• Chinese: We select five Chinese benchmarks1371

for evaluation. (1) AETC: A semantic simi-372

larity dataset related to customer service; (2)373

LCQMC: A dataset consisting problem match-374

ing across multiple domains; (3) BQ: a dataset375

consisting problem matching related to bank376

and finance; (4) PAWSX (Yang et al., 2019) :377

The dataset contains multilingual paraphrase378

and non-paraphrase pairs, we select the Chi-379

nese part; (5) STS-B: A Chinese benchmark380

labeled by semantic correlation between two381

sentences.382

• English: We select STS task benchmarks as383

our English datasets. 7 datasets including STS384

1https://github.com/IceFlameWorm/NLP_Datasets

2012-2016 tasks (Agirre et al., 2012, 2013, 385

2014, 2015, 2016), the STS benchmark (Cer 386

et al., 2017) and the SICK-Relatedness dataset 387

(Marelli et al., 2014) are adopted as our bench- 388

marks for evaluation. 389

4.3 Training and Evaluation Settings 390

The vanilla USE in our experiments is the same 391

as their original settings. Specifically, for Chinese 392

USE, we select the [CLS] pooling; for English 393

USE, we choose the average of outputs in the first 394

and last layers. Besides, we keep the settings of 395

whitening, ConSERT, and SimCSE the same as 396

their original ones. As for hyper-parameters, we 397

search the adaptive parameters on the validation 398

set to select the weights of redundant embeddings, 399

which can dynamically adapt to different datasets. 400

The results are evaluated through weighted aver- 401

age Spearman correlation (Huang et al., 2021; Gao 402

et al., 2021). Higher Spearman correlation indi- 403

cates better capacity in sentence representation. In 404

RepAL, we use the Jieba toolkit to extract the key- 405

words within a sentence. 406

4.4 Performance on Chinese Benchmarks 407

As shown in Table 1, RepAL improves the base- 408

lines’ performance in most cases. For exam- 409

ple, RepAL produces 4.65%, 1.65%, 1.27%, and 410

0.88% improvement to BERT, W-BERT, C-BERT, 411

and Sim-BERT, respectively. Generally, as USE 412

becomes stronger, the improvements brought by 413

RepAL decrease. Still, for strong baselines like C- 414

BERT and Sim-BERT, RepAL still makes progress 415

over them. Specifically, RepAL achieves 1.27% 416

and 0.88% performance increase for C-BERT and 417

Sim-BERT, indicating the effectiveness of RepAL 418

on extremely strong baselines. Such experimental 419

results demonstrate that RepAL is a general and 420

powerful post-processing method for sentence em- 421

bedding enhancement. 422

4.5 Performance on English Benchmarks 423

The experimental results on English benchmarks 424

are listed in Table 2 and Table 3. As illustrated 425

in Table 2, RepAL obtains improvements over 426

the baselines averagely. Both results on Chinese 427

and English benchmarks comprehensively demon- 428

strate the effectiveness of RepAL and illustrate that 429

RepAL is a plug-and-play method in unsupervised 430

sentence representation learning. 431
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Baseline ATEC BQ LCQMC PAWSX STS-B Avg

BERT 16.51→19.58 29.35→32.89 41.71→44.53 9.84→11.28 34.65→47.00 26.41→31.06(+4.65)
RoBERTa 24.61→27.00 40.54→39.51 70.55→70.98 16.23→16.98 63.55→64.01 43.10→43.70(+0.60)
RoFormer 24.29→25.07 41.91→42.56 64.87→65.33 20.15→20.13 56.65→57.23 41.57→42.06(+0.49)
NEZHA 17.39→18.98 29.63→30.53 40.60→41.85 14.90→15.43 35.84→36.68 27.67→28.69(+1.02)

W-BERT 20.61→23.29 25.76→29.83 48.91→50.01 16.82→16.96 61.19→61.46 34.66→36.31(+1.65)
W-RoBERTa 29.59→30.44 28.95→43.12 70.82→71.39 17.99→18.48 69.19→70.92 43.31→46.87(+2.56)
W-RoFormer 26.04→27.68 28.13→42.63 60.92→61.55 23.08→23.05 66.96→67.13 41.03→44.38(+3.35)
W-NEZHA 18.83→21.33 21.94→23.02 50.52→52.01 18.15→19.00 60.84→60.82 34.06→35.24(+1.18)

C-BERT 26.35→28.69 46.68→48.02 69.22→69.98 10.89→12.03 68.89→69.66 44.41→45.68(+1.27)
C-RoBERTa 27.39→28.43 47.20→47.14 67.34→67.98 09.36→10.55 72.02→71.80 44.66→45.18(+0.52)
C-RoFormer 26.24→27.68 47.13→47.63 66.92→67.85 11.08→11.65 69.84→69.73 44.24→44.91(+0.67)
C-NEZHA 26.02→26.73 47.44→48.02 70.02→70.63 11.46→11.80 68.97→69.53 44.78→45.34(+0.56)

Sim-BERT 33.14→33.48 50.67→51.14 69.99→72.44 12.95→13.58 69.04→69.55 47.16→48.04(+0.88)
Sim-RoBERTa 32.23→33.10 50.61→51.53 74.22→74.77 12.25→13.28 71.13→72.20 48.09→48.98(+0.89)
Sim-RoFormer 32.33→32.59 49.13→49.46 71.61→72.13 15.25→15.69 69.45→70.01 47.55→48.02(+0.47)
Sim-NEZHA 32.14→32.52 46.08→47.42 60.38→60.51 16.60→16.58 68.50→69.19 44.74→45.26(+0.52)

Table 1: The experimental results of RepAL on Chinese semantic similarity benchmarks. The numbers before
→ indicate the performance without RepAL and the numbers after → mean the performance with RepAL. Blue
numbers indicate RepAL improves the baseline.

Baseline STS-12 STS-13 STS-14 STS-15 STS-16 Avg

BERT 57.86→59.55 61.97→66.20 62.49→65.19 70.96→73.50 69.76→72.10 63.69→66.70(+3.01)
BERTl 57.74→59.90 61.16→66.20 61.18→65.62 68.06→73.01 70.30→74.72 62.62→67.47(+4.85)

RoBERTa 58.52→60.88 56.21→62.20 60.12→64.10 69.12→71.41 63.69→69.94 60.59→65.41 (+4.82)

W-BERT 63.62→64.50 73.02→73.69 69.23→69.69 74.52→74.69 72.15→76.11 69.21→70.39 (+1.18)
W-BERTl 63.62→63.90 73.02→73.41 69.23→70.01 74.52→75.18 72.15→75.89 69.21→70.39 (+1.18)

W-RoBERTa 68.18→68.85 62.21→63.03 67.13→67.69 67.63→68.23 74.78→75.44 67.17→68.43 (+1.26)

C-BERT 64.09→65.01 78.21→78.54 68.68→69.04 79.56→79.90 75.41→75.74 72.27→72.69 (+0.42)
C-BERTl 70.23→70.70 82.13→82.54 73.60→74.12 81.72→82.01 77.01→77.58 76.03→76.48 (+0.45)

Sim-BERT 68.93→69.33 78.68→78.93 73.57→73.95 79.68→80.01 79.11→79.29 75.11→75.44 (+0.33)
Sim-BERTl 69.25→69.60 78.96→79.30 73.64→73.92 80.06→80.31 79.08→79.42 75.31→75.61 (+0.30)

Table 2: The experimental results of RepAL on English semantic similarity benchmarks. ‘Avg’ indicates the
average performance of all English benchmarks including STS-B and SICK-R in Table 3, and BERTl means
BERTlarge during the experiments.

Baseline STS-B SICK-R

BERT 59.04→ 66.35 63.75→ 64.55
BERTl 59.59→ 68.21 60.34→ 64.61

RoBERTa 55.16→ 65.75 61.33→ 63.61

W-BERT 71.34→ 71.45 60.60→ 62.61
W-BERTl 71.34→ 69.56 60.60→ 65.00

W-RoBERTa 71.43→ 72.03 58.80→ 63.95

C-BERT 73.12→ 73.45 66.79→ 67.15
C-BERTl 77.48→ 77.91 70.02→ 70.51

Sim-BERT 75.71→ 76.00 70.12→ 70.51
Sim-BERTl 75.84→ 76.11 70.34→ 70.61

Table 3: The results of RepAL on STS-B and SICK-R

4.6 Hyper-parameters432

Specifically, we search for λ2 firstly and fix the433

best λ2 to search for optimal λ1 based on the dev434

set. Though there are two hyper-parameters in our 435

method, searching for the optimal parameters is 436

not computationally heavy since that our method 437

is free of training. Generally. as the USE becomes 438

stronger, the searched λ1 and λ2 become smaller. 439

5 Detailed Analysis and Discussion 440

The proposed RepAL enhances sentence embed- 441

ding by filtering redundant information from two 442

levels: sentence-level and corpus-level. Despite the 443

presentations of the overall experiment results and 444

analysis, the intrinsic properties of RepAL remain 445

unclear. In this section, we illustrate the reasons 446

why RepAL is effective in enhancing sentence em- 447

bedding. 448

In Sec 5.1, we provide the evidence about the 449
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Method STS-12 STS-13 STS-14 STS-15 STS-16 STS-B SICK-R Avg

None 57.86 61.97 62.49 70.96 69.76 59.04 63.75 63.69
Tri-mask(individual) 58.12 63.05 63.71 71.02 71.19 61.29 63.90 64.61 (+0.92)
Key-mask(individual) 55.68 60.21 60.32 68.77 67.02 55.69 60.98 61.24 (-2.45)

Tri-mask(all) 59.55 66.20 65.19 73.50 72.10 66.35 64.55 66.70 (+3.01)
Key-mask(all) 57.76 62.56 63.35 70.49 70.93 61.31 63.50 64.27 (+0.58)

Table 4: The performance of two SR on the English benchmarks. ‘Individual’ indicates only applying SR and ‘all’
means combined with corpus-level refinement. The USE is BERTbase here.

impact of trivial words in sentence embedding and450

show the capacity of our sentence-level embed-451

ding refinement. In Sec 5.2, we show why the452

corpus-level embedding refinement enhances sen-453

tence embedding and illustrate the relation between454

the largest eigenvalue and performance.455

5.1 Sentence-level Refinement456

There are two ablation studies for sentence-level457

refinement (SR): (1) we investigate the impact of458

trivial words w/o RepAL, which explains the ne-459

cessity of removing such redundancy information460

and validates the effectiveness of SR. (2) We pro-461

vide another sentence-level refinement solution by462

masking trivial words and then making compar-463

isons, which further validates the effectiveness of464

SR.465

5.1.1 Impact of trivial words466

We set up experiments to investigate the capacity of467

sentence-level refinement individually and remove468

the corpus-level refinement. We first define the im-469

portance H of word w ∈ xi in semantic similarity470

calculation, which can be defined as follows:471

H(xi, x
−
i ;w) = Sim(xi, x

−
i )− Sim(xi/w, x

−
i )
(6)472

where xi and x−i are a pair of sentences and xi/wi473

means deleting the word wi from xi. Note that474

we do not consider the words in x−i since it is475

equivalent to evaluation on more sentences. Then476

we define the set of trivial words within xi as S(xi),477

which are unmasked by jieba. Thus we can define478

the redundancy overlap ratio r(pi) of a sentence479

pair pi = (xi, x
−
i ) as follows:480

r(pi) =
|S(xi) ∩ T (xi)|
|T (xi)|

(7)481

where T (xi) represents the top-5 words with high-482

est importance H in xi. r(pi) is a metric to reflect483

the impact of trivial words in semantic similarity484

between the sentence pair pi, since higher r(pi) in- 485

dicates more trivial words are important towards se- 486

mantic similarity calculation. We randomly sample 487

300 sentence pairs from STS-B (Cer et al., 2017) 488

and select BERT as the USE, and we calculate the 489

average redundancy overlap ratio r̂ =
∑N

i=1 r(pi)
N 490

w/o SR. The results show that r̂ reaches 10.2% 491

without SR, after applying SR, r̂ drops to 7.1%2 492

The results demonstrate that SR diminishes the 493

impact of trivial words when measuring semantic 494

similarity. 495

Moreover, we select some representative words 496

and evaluate their importance w/o RepAL. As 497

shown in Table 5, the results show that our SR 498

indeed diminishes the impact of such trivial words 499

when calculating semantic similarity. 500

Word No Refinement With Refinement ∆

the 1.02 0.56 -0.46
a 0.98 0.43 -0.55
to 0.59 0.32 -0.27
in 0.68 0.21 -0.47

some 0.60 0.31 -0.29
with 0.72 0.24 -0.48
and 0.99 0.61 -0.38

Table 5: The importance of trivial words w/o sentence-
level refinement. ∆ means the importance change.

5.1.2 Comparison with Another 501

Sentence-level Refinement Solution 502

Our SR generates redundant embedding by mask- 503

ing keywords and subtracts the redundant embed- 504

ding from original embedding with an adaptive 505

factor. 506

x∗i = PartialMask(xi, keywords)

vi = f(xi)− λf(x∗i )
507

Then we propose another SR which masks the triv- 508

ial words within the sentence and directly utilize 509

2r̂ changes since the inputs during similarity calcu-
lation have changed when SR activates. After SR.
Eq 6 becomes H(xi, x

−
i ;w) = Sim(G(xi), G(x−

i )) −
Sim(G(xi/w), G(x−

i )) where G(·) represents SR operation.

7



(a) STS-12 (b) STS-13 (c) STS-14

(d) STS-15 (e) STS-16 (f) STS-B

Figure 2: Relation of upper bound of eigen value of embedding matrix and performance.

the embedding of sentence composed of remaining510

keywords, which can be defined as follows:511

vi = f(PartialMask(xi, trivial words)) (8)512

According to the words they mask, we name the513

two methods as tri-mask and key-mask.514

We compare their performance on the English515

benchmarks. As shown in Table 4, tri-mask signifi-516

cantly outperforms key-mask. Specifically, when517

key-mask is applied individually, the performance518

even degrades worse than vanilla BERT. Intuitively,519

the key-mask performs poorly because it deletes all520

the trivial words within the sentence, which hurts521

the linguistic properties of the sentence (e.g., syn-522

tax information). In contrast, tri-mask eliminates523

the impact of trivial words through the subtraction524

with an adaptive weight factor, which preserves525

syntax information well.526

5.2 Corpus-level Refinement527

To investigate whether corpus-level refinement di-528

minishes the upper bound of the eigenvalue of em-529

bedding E∗, we make numerical experiments to530

dive into the relationship between the performance531

(Spearman correlation), λ and the upper bound of532

the largest eigenvalue of E∗.533

Specifically, we launch the experiments on six534

English benchmarks with BERTbase. As shown535

in Figure 2, when performance rises at peak, the536

upper bound of the largest eigenvalue of the embed-537

ding matrix E∗ is around the minimum, showing538

a coincidence between the two. The numerical539

results show that the corpus-level refinement en- 540

hances sentence embedding since it diminishes the 541

largest eigenvalue ofE∗. Previous methods (Huang 542

et al., 2021) is equivalent to subtracting the average 543

vector with λ = 1.0, which fails to suppress the 544

largest eigenvalue of embedding matrix extremely. 545

However, our method chooses to subtract a larger 546

λ with adaptive weight, further suppressing the 547

upper bound of the largest eigenvalue of the em- 548

bedding matrix. The results show that the average 549

embedding subtraction needs an adaptive weight. 550

Moreover, this also illustrates why our method can 551

still improve the performance on W-BERT with 552

substantial progress. 553

6 Conclusion 554

In this paper, we propose RepAL, a universal 555

method for unsupervised sentence representation 556

enhancement that combines with various USEs. 557

Based on the idea that redundant information is 558

contained in USE, RepAL extracts then refines re- 559

dundant information for the sentence embedding 560

at sentence-level and corpus-level. Sentence-level 561

refinement aims at mitigating the impact of trivial 562

words within the sentence; corpus-level refinement 563

explicitly diminishes the upper bound of the largest 564

eigenvalue of the embedding matrix. Combining 565

them into one, RepAL successfully achieves im- 566

provements on both Chinese and English bench- 567

marks and is proved to be a simple and plug-and- 568

play method in modern techniques for unsuper- 569

vised sentence representation. 570

8



References571

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel572
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei573
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada574
Mihalcea, et al. 2015. Semeval-2015 task 2: Seman-575
tic textual similarity, english, spanish and pilot on576
interpretability. In Proceedings of the 9th interna-577
tional workshop on semantic evaluation (SemEval578
2015), pages 252–263.579

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel580
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei581
Guo, Rada Mihalcea, German Rigau, and Janyce582
Wiebe. 2014. Semeval-2014 task 10: Multilingual583
semantic textual similarity. In Proceedings of the584
8th international workshop on semantic evaluation585
(SemEval 2014), pages 81–91.586

Eneko Agirre, Carmen Banea, Daniel Cer, Mona587
Diab, Aitor Gonzalez Agirre, Rada Mihalcea, Ger-588
man Rigau Claramunt, and Janyce Wiebe. 2016.589
Semeval-2016 task 1: Semantic textual similar-590
ity, monolingual and cross-lingual evaluation. In591
SemEval-2016. 10th International Workshop on Se-592
mantic Evaluation; 2016 Jun 16-17; San Diego, CA.593
Stroudsburg (PA): ACL; 2016. p. 497-511. ACL (As-594
sociation for Computational Linguistics).595

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor596
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-597
lot on semantic textual similarity. In * SEM 2012:598
The First Joint Conference on Lexical and Compu-599
tational Semantics–Volume 1: Proceedings of the600
main conference and the shared task, and Volume601
2: Proceedings of the Sixth International Workshop602
on Semantic Evaluation (SemEval 2012), pages 385–603
393.604

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-605
Agirre, and Weiwei Guo. 2013. * sem 2013 shared606
task: Semantic textual similarity. In Second joint607
conference on lexical and computational semantics608
(* SEM), volume 1: proceedings of the Main confer-609
ence and the shared task: semantic textual similar-610
ity, pages 32–43.611

Daniel Cer, Mona Diab, Eneko Agirre, Inigo Lopez-612
Gazpio, and Lucia Specia. 2017. Semeval-2017613
task 1: Semantic textual similarity-multilingual and614
cross-lingual focused evaluation. arXiv preprint615
arXiv:1708.00055.616

Seungtaek Choi, Haeju Park, Jinyoung Yeo, and Seung-617
won Hwang. 2020. Less is more: Attention supervi-618
sion with counterfactuals for text classification. In619
Proceedings of the 2020 Conference on Empirical620
Methods in Natural Language Processing (EMNLP),621
pages 6695–6704.622

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and623
Kristina Toutanova. 2019. Bert: Pre-training of624
deep bidirectional transformers for language under-625
standing. In Proceedings of the 2019 Conference of626
the North American Chapter of the Association for627

Computational Linguistics: Human Language Tech- 628
nologies, Volume 1 (Long and Short Papers), pages 629
4171–4186. 630

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 631
Simcse: Simple contrastive learning of sentence em- 632
beddings. arXiv preprint arXiv:2104.08821. 633

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and 634
Weizhu Chen. 2020. Deberta: Decoding-enhanced 635
bert with disentangled attention. In International 636
Conference on Learning Representations. 637

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016. 638
Learning distributed representations of sentences 639
from unlabelled data. In Proceedings of the 2016 640
Conference of the North American Chapter of the 641
Association for Computational Linguistics: Human 642
Language Technologies, pages 1367–1377. 643

Junjie Huang, Duyu Tang, Wanjun Zhong, Shuai Lu, 644
Linjun Shou, Ming Gong, Daxin Jiang, and Nan 645
Duan. 2021. Whiteningbert: An easy unsuper- 646
vised sentence embedding approach. arXiv preprint 647
arXiv:2104.01767. 648

Karen Sparck Jones. 1972. A statistical interpretation 649
of term specificity and its application in retrieval. 650
Journal of documentation. 651

Ryan Kiros, Yukun Zhu, Russ R Salakhutdinov, 652
Richard Zemel, Raquel Urtasun, Antonio Torralba, 653
and Sanja Fidler. 2015. Skip-thought vectors. In 654
Advances in neural information processing systems, 655
pages 3294–3302. 656

Quoc Le and Tomas Mikolov. 2014. Distributed repre- 657
sentations of sentences and documents. In Interna- 658
tional conference on machine learning, pages 1188– 659
1196. PMLR. 660

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 661
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 662
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 663
Roberta: A robustly optimized bert pretraining ap- 664
proach. 665

Lajanugen Logeswaran and Honglak Lee. 2018. An ef- 666
ficient framework for learning sentence representa- 667
tions. In International Conference on Learning Rep- 668
resentations. 669

Hans Peter Luhn. 1958. The automatic creation of lit- 670
erature abstracts. IBM Journal of research and de- 671
velopment, 2(2):159–165. 672

Rabeeh Karimi Mahabadi, Yonatan Belinkov, and 673
James Henderson. 2020. End-to-end bias mitigation 674
by modelling biases in corpora. In Proceedings of 675
the 58th Annual Meeting of the Association for Com- 676
putational Linguistics, pages 8706–8716. 677

Marco Marelli, Stefano Menini, Marco Baroni, Luisa 678
Bentivogli, Raffaella Bernardi, Roberto Zamparelli, 679
et al. 2014. A sick cure for the evaluation of com- 680
positional distributional semantic models. In Lrec, 681
pages 216–223. Reykjavik. 682

9



Yu Meng, Chenyan Xiong, Payal Bajaj, Saurabh Ti-683
wary, Paul Bennett, Jiawei Han, and Xia Song. 2021.684
Coco-lm: Correcting and contrasting text sequences685
for language model pretraining.686

Alexander Markowich Ostrowski. 1960. On the eigen-687
vector belonging to the maximal root of a non-688
negative matrix. Proceedings of the Edinburgh689
Mathematical Society, 12(2):107–112.690

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.691
2018. Unsupervised learning of sentence embed-692
dings using compositional n-gram features. In Pro-693
ceedings of the 2018 Conference of the North Amer-694
ican Chapter of the Association for Computational695
Linguistics: Human Language Technologies, Vol-696
ume 1 (Long Papers), pages 528–540.697

Chen Qian, Fuli Feng, Lijie Wen, Chunping Ma, and698
Pengjun Xie. 2021. Counterfactual inference for699
text classification debiasing. In Proceedings of the700
59th Annual Meeting of the Association for Compu-701
tational Linguistics and the 11th International Joint702
Conference on Natural Language Processing (Vol-703
ume 1: Long Papers), pages 5434–5445.704

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine705
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,706
Wei Li, and Peter J Liu. 2020. Exploring the lim-707
its of transfer learning with a unified text-to-text708
transformer. Journal of Machine Learning Research,709
21(140):1–67.710

Nils Reimers and Iryna Gurevych. 2019. Sentence-711
bert: Sentence embeddings using siamese bert-712
networks. In Proceedings of the 2019 Conference on713
Empirical Methods in Natural Language Processing714
and the 9th International Joint Conference on Natu-715
ral Language Processing (EMNLP-IJCNLP), pages716
3982–3992.717

Richard Socher, Eric Huang, Jeffrey Pennin, Christo-718
pher D Manning, and Andrew Ng. 2011. Dynamic719
pooling and unfolding recursive autoencoders for720
paraphrase detection. Advances in neural informa-721
tion processing systems, 24.722

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,723
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.724
Dropout: a simple way to prevent neural networks725
from overfitting. The journal of machine learning726
research, 15(1):1929–1958.727

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yun-728
feng Liu. 2021. Roformer: Enhanced transformer729
with rotary position embedding. arXiv preprint730
arXiv:2104.09864.731

Dilin Wang, Chengyue Gong, and Qiang Liu. 2019a.732
Improving neural language modeling via adversarial733
training. In International Conference on Machine734
Learning, pages 6555–6565. PMLR.735

Dong Wang, Ning Ding, Piji Li, and Haitao Zheng.736
2021. Cline: Contrastive learning with semantic737

negative examples for natural language understand- 738
ing. In Proceedings of the 59th Annual Meeting of 739
the Association for Computational Linguistics and 740
the 11th International Joint Conference on Natu- 741
ral Language Processing (Volume 1: Long Papers), 742
pages 2332–2342. 743

Lingxiao Wang, Jing Huang, Kevin Huang, Ziniu Hu, 744
Guangtao Wang, and Quanquan Gu. 2019b. Improv- 745
ing neural language generation with spectrum con- 746
trol. In International Conference on Learning Rep- 747
resentations. 748

Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Weny- 749
ong Huang, Yi Liao, Yasheng Wang, Jiashu 750
Lin, Xin Jiang, Xiao Chen, and Qun Liu. 2019. 751
Nezha: Neural contextualized representation for 752
chinese language understanding. arXiv preprint 753
arXiv:1909.00204. 754

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng 755
Zhang, Wei Wu, and Weiran Xu. 2021. Con- 756
sert: A contrastive framework for self-supervised 757
sentence representation transfer. arXiv preprint 758
arXiv:2105.11741. 759

Yinfei Yang, Yuan Zhang, Chris Tar, and Jason 760
Baldridge. 2019. Paws-x: A cross-lingual adversar- 761
ial dataset for paraphrase identification. In Proceed- 762
ings of the 2019 Conference on Empirical Methods 763
in Natural Language Processing and the 9th Inter- 764
national Joint Conference on Natural Language Pro- 765
cessing (EMNLP-IJCNLP), pages 3687–3692. 766

Xingzhi Zhan. 2005. Extremal eigenvalues of real 767
symmetric matrices with entries in an interval. 768
SIAM journal on matrix analysis and applications, 769
27(3):851–860. 770

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim, 771
and Lidong Bing. 2020. An unsupervised sentence 772
embedding method by mutual information maxi- 773
mization. In Proceedings of the 2020 Conference on 774
Empirical Methods in Natural Language Processing 775
(EMNLP), pages 1601–1610. 776

Xiang Zhou and Mohit Bansal. 2020. Towards robus- 777
tifying nli models against lexical dataset biases. In 778
Proceedings of the 58th Annual Meeting of the Asso- 779
ciation for Computational Linguistics, pages 8759– 780
8771. 781

10



A Proof of Theorem 1782

Formally, we denote σW and σW ∗ for ρ(W ) and783

ρ(W ∗) for brevity. Then we have:784

W =
∥∥ETE∥∥ (9)785

786

W ∗ =
∥∥∥(E − λÊ)T (E − λÊ)

∥∥∥ (10)787

Based on the properties of singular value, given a788

matrix A, for an arbitary vector x, we have:789

‖Ax‖ ≤ σA‖x‖ (11)790

where σA represent the largest singular value of A.791

Therefore, for a unit eigenvector v of W ∗, we have792

the following derivation:793

σW ∗ = ‖σW ∗v‖ =
∥∥∥(E − λÊ)T (E − λÊ)v

∥∥∥
≤
∥∥∥EÊT v∥∥∥− ∥∥∥λEÊT v∥∥∥

−
∥∥∥λÊET v∥∥∥+

∥∥∥λ2ÊÊT v∥∥∥
≤ σ2E − 2λσEσÊ + λ2σ2

Ê

= (σE − λσÊ)2

(12)794

where σE and σÊ represent the largest singular795

value of E and Ê, respectively. Similarily, we can796

obtain the upper bound for σW ∗ , which is σ2E . Let797

λ be c
σÊ

where c is a positive constant, the upper798

bound of σW ∗ is apparently lower than σW , which799

completes the proof.800
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