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Abstract

Unsupervised sentence representation learn-
ing is a fundamental problem in natural lan-
guage processing and has been studied exten-
sively in recent years. This paper presents
Representation ALchemy (RepAL), an ex-
tremely simple post-processing method that
enhances unsupervised sentence representa-
tions. The basic idea in RepAL is to ex-
tract redundant information from the repre-
sentation of a sentence generated by the ex-
isting models and then refine the representa-
tion through an embedding refinement opera-
tion to filter such redundant information. In
this paper, we analyze the redundant infor-
mation from two levels: sentence-level and
corpus-level, and the theoretical analysis for
the latter is also conducted. We point out
that RepAL is free of training and is a plug-
and-play method that can be combined with
most existing unsupervised sentence learning
models. Extensive experiments demonstrate
RepAL’s effectiveness and show that RepAL
is a model-agnostic method for unsupervised
sentence embedding enhancement. Besides,
we also designed detailed ablation studies to
understand why RepAL works and provided
in-depth analysis and understanding of the re-
dundant information.

1 Introduction

Learning high-quality sentence embeddings is a
fundamental task in Natural Language Processing
(NLP) field (Socher et al., 2011; Le and Mikolov,
2014; Kiros et al., 2015; Reimers and Gurevych,
2019; Gao et al., 2021). The goal is to map se-
mantically similar sentences close and dissimilar
sentences farther apart in the representation space.
In real-world scenarios, especially when a large
amount of supervised data is unavailable, an ap-
proach that provides sentence embeddings in an
unsupervised paradigm is of great value.
Generally, the unsupervised sentence encoder
(USE) can be categorized into two paradigms. The

first is pre-trained language model (PTM) (Devlin
etal.,2019; Liu et al., 2019) based paradigm, which
are naturally good unsupervised sentence represen-
tation learning models. For example, BERT (De-
vlin et al., 2019) and BERT-like (Liu et al., 2019;
He et al., 2020; Raffel et al., 2020) models, com-
mit to design stronger pre-trained language models
by self-training with mask or next sentence pre-
diction. While designing stronger PTMs for is
extremely expensive, time-consuming, and labor-
intensive. Based on PTMs, secondary trained, e.g.,
contrastive-based methods (Reimers and Gurevych,
2019; Logeswaran and Lee, 2018; Gao et al., 2021),
proved to be effective to further improve the repre-
sentation quality of sentences. As a representative
solution, SimCSE (Gao et al., 2021) minimizes the
distance between positive pairs of sentences and
pulls away from the negative pairs of sentences in
the embedding space, which is highly dependent
on a crucial data augmentation trick to create pos-
itive sentence pair. Nevertheless, designing NLP
augmentation tricks that significantly outperform
dropout (Srivastava et al., 2014) remains challeng-
ing.

This paper argues that the quality of sentence
embeddings generated by most existing unsuper-
vised methods can be further improved with a post-
processing operation free of training and extra data.
Our basic idea is to refine sentence representations
by removing the redundant information from the
levels of sentences and corpus. Specifically, given
a sentence, there are several trivial and inconse-
quential words within the sentence. Such words
are proven to bring a negative impact on down-
stream NLP tasks, like Natural Language Inference
(NLI) (Mahabadi et al., 2020; Zhou and Bansal,
2020) and text classification (Choi et al., 2020;
Qian et al., 2021). Besides, given a training cor-
pus, there is some information shared by the whole
corpus. Such information may lead to homoge-
nous properties for all sentence embeddings, which



diminishes the distinctiveness between sentences.

This paper proposes a simple, straightforward,
and effective method called representation alchemy
(RepAL), which improves sentence representations
without training and extra resources. RepAL ac-
cepts raw sentence representations as inputs, which
are generated from existing unsupervised sentence
models. Then RepAL outputs refined representa-
tions by extracting two redundant representations
from different perspectives. Intuitively, it is like an
alchemy that improves sentence representation by
impurity refinement. It’s worth mentioning that our
proposed RepAL can be applied to almost USEs,
and is a plug-and-play method in sentence embed-
ding enhancement.

To verify, we perform extensive experiments on
the widely used benchmarks both in English and
Chinese. The results demonstrate our RepAL’s ef-
fectiveness: it can be well combined with existing
USE. Besides, we also conduct detailed ablation
studies to dive into the capacity of two embed-
ding refinements, respectively. We conclude that
sentence-level refinement can diminish the impact
of trivial words when measuring semantic similar-
ity. Corpus-level refinement diminishes the largest
eigenvector for the embedding matrix, thus improv-
ing sentence representation’s isotropy (Wang et al.,
2019b,a). Our main contributions can be summa-
rized as follows:

* We propose RepAL, a plug-and-play method
that enhances the sentence representations
through redundant embedding generation and
refinement. Experiments show that it can be
well combined with different USE and im-
prove their capacity in sentence representa-
tions.

* We ablate our method to illustrate the effec-
tiveness of sentence-level and corpus-level re-
finement operations with theoretical deriva-
tion and empirical results.

2 Related Work

Methods for unsupervised sentence learning have
been extensively explored. Early works are
mainly based on distributional hypothesis (Socher
et al., 2011; Le and Mikolov, 2014). Hill (Hill
et al., 2016) proposed to learn sentence representa-
tions with the internal structure of each sentence.
Kiros (Kiros et al., 2015) proposed to predict the
surrounding sentences of a given sentence like

Word2Vec. Then Pagliardini (Pagliardini et al.,
2018) proposed Sent2Vec, a simple unsupervised
model allowing to compose sentence embeddings
using word vectors along with n-gram embeddings.

Then the strong pre-trained language model (De-
vlin et al., 2019) emerged from the blue. The pow-
erful pre-trained models own strong potential to im-
prove the quality of sentence representation. How-
ever, models like BERT own strong anisotropy in
their embedding space which means the sentence
embeddings produced by BERT have extremely
high cosine similarity, leading to an unsatisfactory
performance on sentence embedding.

Some post-processing methods have been pro-
posed to improve the quality of contextual sentence
embeddings to solve such a problem. The post-
processing paradigm aims to enhance sentence em-
beddings through simple and efficient operations
without extra training or data. The most promising
method is whitening (Huang et al., 2021), dedicated
to transforming sentence embedding into Gaussian-
like embedding, which proved to be effective in
sentence embedding improvement.

Recently, contrastive learning began to play an
important role in unsupervised sentence representa-
tion learning (Zhang et al., 2020; Yan et al., 2021;
Meng et al., 2021; Gao et al., 2021; Wang et al.,
2021). Such methods are based on the assumption
that high-quality embedding methods should bring
similar sentences closer while pushing away dis-
similar ones. Therefore, those methods use various
data augmentation tricks to generate two different
views for each sentence and design an effective
loss function to make them closer in the represen-
tation space. Among the data augmentation tricks,
dropout (Srivastava et al., 2014) is one representa-
tive and effective method.

Specifically, the most relevant work to ours is
whitening (Huang et al., 2021) since the corpus-
level refinement is similar to the average embed-
ding subtraction in whitening. However, there
are three principal differences between such two
works. Firstly, the motivation is different. Whiten-
ing aims at transforming the sentence embedding
to Gaussian-like embedding for distance measure-
ment on an orthogonal basis. Our method starts a
perspective of redundancy refinement, which aims
to diminish the impact of trivial words within a
sentence during similarity calculation. Second, the
methodology is different. Our method addition-
ally employs a partial mask to filter the redundancy



and introduce weight factors to control the impact
during embedding refinement. Lastly, the in-depth
analysis shows that our method aims to diminish
the upper bound of the largest eigenvalue of the
embedding matrix and the impact of trivial words,
which is irrelevant to whitening’s effects.

3 Methodology

3.1 Problem Formulation

In unsupervised sentence representation learn-
ing, we take a collection of unlabeled sentences
{z;}7_,, also we choose a suitable unsupervised
sentence learning model (e.g., BERT) as the en-
coder f(-;0), where 6 represents the trainable pa-
rameters in f. Specifically, we have a carefully
designed training objective L(z;,6) for unsuper-
vised training, and @ is then fixed as 6y where
6o = argmin L(x;, §). Finally, we obtain the sen-
tence representation v; for x; by feeding it into the
encoder, i.e., v; = f(x;;60).

RepAL plays its role in refining v; to v, with
v} = g(v;), instead of directly selecting v; for sen-
tence representation. RepAL aims to extract and
refine two types of redundancy, namely sentence-
level redundancy and corpus-level redundancy, re-
spectively. Sentence-level redundancy denotes the
useless word information hidden in the target sen-
tence, which may bias the representations that re-
flect the core semantics of the sentence. Corpus-
level redundancy denotes the shared redundant in-
formation in all sentence representations within the
dataset, making all the representations tend to be
homogenous and thus reducing the distinction.

RepAL generates x; by an operation called par-
tial mask on xz;, then feed z] into the encoder
f(:;6p) to obtain sentence-level redundancy em-
beddings v;. Besides, RepAL produces a global
vector v as corpus-level redundancy embedding.
Finally, RepAL generates the refined embedding
v} for downstream tasks through the embedding re-
finement operation by combining v;, v;" and ©. The
overview architecture of RepAL is illustrated in
Figure 1, which consists of two principal stages:
redundant embedding generation and embedding
refinement.

3.2 Redundant Embedding Generation

In RepAL, we firstly detect redundant informa-
tion and generate their embeddings from the target
sentence, which is a groundbreaking step in our
method and determines the performance.

3.2.1 Sentence-level Redundancy

We apply a partial mask to extract the sentence-
level redundancy. Specifically, given a sentence
x; = {wi,we, ..., wy}, partial mask generates
a partially masked sentence x;, a mask version
of x;, where informative words in x; are replaced
with [MASK] to distill the trivial words from the
sentence. Specifically, we judge the words as
keywords according to their TF-IDF (Luhn, 1958;
Jones, 1972) values calculated on a general corpus.

Concretely, we denote the word set S, as the
keywords within sentence z;. In the following,
we generate partially masked sentence x;, where
only the keywords in the sentence z; are masked,
and f(z7) as the corresponding redundant embed-
ding. Since the model is forced to see only the
non-masked context words, f(z}) actually encode
the information from the trivial words. Thus, the
sentence-level redundant sentence embedding is
defined as follows:

vi = f(x7)
)]

x; = PartialMask(x;, keyword);

3.2.2 Corpus-level Redundancy

Given an unlabeled sentence set X = {z;}7" |, we
feed all the sentences to the encoder f, and take
the average embedding © as its corpus-level redun-
dant embedding, which can be formally defined as
follows: .

b= i f (i) )

n

where © is the corpus-level redundant embedding
of x;.

3.3 Embedding Refinement

As illustrates above, two redundant embeddings
from two levels are obtained. Then the embed-
ding refinement operation can be formalized via
the conceptually simple and empirically powerful
element-wise subtraction operation, which is de-
fined as follows:

V= fz) =M vf — Ay 3)

where f(x) corresponds to the original embedding
of x;, and v] and 0 represent the redundant embed-
ding at two levels, respectively.

Since the two redundant embeddings typically
do not contribute completely equal to the embed-
ding v, directly subtracting without adaptive param-
eters would cause that mitigating sentences’ redun-
dancy too much or too little for a specific dataset.
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Figure 1: The overview of RepAL.

We introduce two independent hyper-parameters
A1 and Ag to balance the two terms.

3.4 Theoretical analysis for corpus-level
refinement

The operation that subtracts average embedding
(i.e., ¥) is widely used in deep neural networks (e.g.,
Batch Normalization), which controls the change
of the layers’ input distributions during training.
In this section, we specifically delve into the ef-
fectiveness of such a subtraction operation in the
sentence embedding improvement by analyzing the
largest eigenvalue of the embedding matrix. We
present two theorems to explain how corpus-level
refinement diminishes the largest eigenvalue of the
embedding matrix.

Let E be the embedding matrix for sentences
{z;}7_,, and i-th row of E represents the sentence
embedding of x;. Assume we obtain the embed-
ding matrix £ through an unsupervised sentence
encoder. Then the embedding matrix £* after the
corpus-level refinement operation is defined as fol-
lows:

E*=E—-\X-E 4)

where F is a matrix whose each row is the same and
assigned by average embedding v = % o v
According to previous works (Wang et al., 2019b,a),
the largest eigenvalue of E£*E*T is dominant in
controlling the quality of embedding space.
Therefore, controlling the largest eigenvalue of
the matrix £*E*T can alleviate the degeneration

problem and improves the quality of the learned
sentence representations (Wang et al., 2019b).

Formally, given a real symmetric matrix
E*E*T ¢ R™ ™, the upper bound (Ostrowski,
1960; Zhan, 2005) of its largest eigenvalue o is
obtained as follows:

o< (nb+ N 1)a2> 5)
where a and b represent the max value and min
value in the matrix E*E*T. Such a bound guides
us in the direction of optimizing the sentence repre-
sentation space and embedding performance. That
is, if we can minimize the upper bound of the
largest eigenvalue of the matrix by selecting a
proper weight A, then we can improve the qual-
ity sentence embeddings.

Next, we provide theoretical derivation that there
exists suitable A that can minimize the upper bound
of the largest eigenvalue of E*E*T, thus improves
the quality of sentence embeddings.

Theorem 1. For a real matrix E € R™% and
its row-average matrix E. We denote W and
W* as EET and E*E*T, where E* refers to
Eq 4. Then 3 )\, s.t. upper_bound(W*,p) <
upper_bound(W, p), where upper_bound(W, p)
denotes the upper bound of the largest eigenvalue
of the matrix W.

The theorem above demonstrates the existence
of X\ and illustrates that if we choose such \ for
the corpus-level refinement, then it is equivalent to



minimizing the largest eigenvalue of the embedding
matrix.

Besides the theoretical analysis, we also launch
numerical experiments to investigate whether such
a conclusion still holds in downstream tasks, and
conclude that we need to subtract the average
embedding with adaptive weights, which are in
Sec 5.2. The proofs of the theorems are deferred to
the appendix A.

4 Experiments

In this section, we show that our method can be
adaptive to various USE and improves their perfor-
mance.

4.1 Baselines

To verify the effectiveness of our method, we eval-
uate RepAL on both Chinese and English settings.
To investigate whether our method can be applied
to various unsupervised sentence encoder (USE),
we choose two kinds of encoders: vanilla USE and
secondary trained USE. For vanilla USE, we select
BERT (Devlin et al., 2019), RoBerTa (Liu et al.,
2019), RoFormer (Su et al., 2021) and NEZHA
(Wei et al., 2019) for Chinese; for English, we
select BERTq5¢, BERT 44 (Devlin et al., 2019)
and RoBERTa;,,s. (Reimers and Gurevych, 2019).
Specifically, we name the secondary trained USE
equipped with whitening (Huang et al., 2021), Con-
SERT (Yan et al., 2021), and SimCSE (Gao et al.,
2021) as W-USE (e.g., W-BERT), C-USE (e.g.,
C-BERT), and Sim-USE (e.g., Sim-BERT), respec-
tively. Results of Sim-USE and C-USE are from
our implementation.

4.2 Benchmarks

+ Chinese: We select five Chinese benchmarks!
for evaluation. (1) AETC: A semantic simi-
larity dataset related to customer service; (2)
LCQMC: A dataset consisting problem match-
ing across multiple domains; (3) BQ: a dataset
consisting problem matching related to bank
and finance; (4) PAWSX (Yang et al., 2019) :
The dataset contains multilingual paraphrase
and non-paraphrase pairs, we select the Chi-
nese part; (5) STS-B: A Chinese benchmark
labeled by semantic correlation between two
sentences.

¢ English: We select STS task benchmarks as
our English datasets. 7 datasets including STS

"https://github.com/IceFlameWorm/NLP_Datasets

2012-2016 tasks (Agirre et al., 2012, 2013,
2014, 2015, 2016), the STS benchmark (Cer
etal., 2017) and the SICK-Relatedness dataset
(Marelli et al., 2014) are adopted as our bench-
marks for evaluation.

4.3 Training and Evaluation Settings

The vanilla USE in our experiments is the same
as their original settings. Specifically, for Chinese
USE, we select the [CLS] pooling; for English
USE, we choose the average of outputs in the first
and last layers. Besides, we keep the settings of
whitening, ConSERT, and SimCSE the same as
their original ones. As for hyper-parameters, we
search the adaptive parameters on the validation
set to select the weights of redundant embeddings,
which can dynamically adapt to different datasets.
The results are evaluated through weighted aver-
age Spearman correlation (Huang et al., 2021; Gao
et al., 2021). Higher Spearman correlation indi-
cates better capacity in sentence representation. In
RepAL, we use the Jieba toolkit to extract the key-
words within a sentence.

4.4 Performance on Chinese Benchmarks

As shown in Table 1, RepAL improves the base-
lines’ performance in most cases. For exam-
ple, RepAL produces 4.65%, 1.65%, 1.27%, and
0.88% improvement to BERT, W-BERT, C-BERT,
and Sim-BERT, respectively. Generally, as USE
becomes stronger, the improvements brought by
RepAL decrease. Still, for strong baselines like C-
BERT and Sim-BERT, RepAL still makes progress
over them. Specifically, RepAL achieves 1.27%
and 0.88% performance increase for C-BERT and
Sim-BERT, indicating the effectiveness of RepAL
on extremely strong baselines. Such experimental
results demonstrate that RepAL is a general and
powerful post-processing method for sentence em-
bedding enhancement.

4.5 Performance on English Benchmarks

The experimental results on English benchmarks
are listed in Table 2 and Table 3. As illustrated
in Table 2, RepAL obtains improvements over
the baselines averagely. Both results on Chinese
and English benchmarks comprehensively demon-
strate the effectiveness of RepAL and illustrate that
RepAL is a plug-and-play method in unsupervised
sentence representation learning.



Baseline ATEC BQ LCQMC PAWSX STS-B Avg
BERT 16.51—+19.58 29.35—32.89 41.71—44.53 9.84—11.28 34.65—47.00 | 26.41—31.06(+4.65)
RoBERTa 24.61—27.00 40.54—39.51 70.55—70.98 16.23—16.98 63.55—64.01 | 43.10—43.70(+0.60)
RoFormer 24.29—25.07 41.91—=42.56 64.87—65.33 20.15—20.13 56.65—57.23 | 41.57—42.06(+0.49)
NEZHA 17.39—18.98  29.63—30.53 40.60—41.85 14.90—15.43 35.84—36.68 | 27.67—28.69(+1.02)
W-BERT 20.61—23.29 25.76—29.83 48.91—50.01 16.82—16.96 61.19—=61.46 | 34.66—36.31(+1.65)
W-RoBERTa | 29.59—30.44 28.95—43.12 70.82—71.39 17.99—18.48 69.19—70.92 | 43.31—46.87(+2.56)
W-RoFormer | 26.04—27.68 28.13—42.63 60.92—61.55 23.08—23.05 66.96—67.13 | 41.03—44.38(+3.35)
W-NEZHA 18.83—21.33  21.94—23.02 50.52—52.01 18.15—19.00 60.84—60.82 | 34.06—35.24(+1.18)
C-BERT 26.35—28.69 46.68—48.02 69.22—69.98 10.89—12.03 68.89—69.66 | 44.41—45.68(+1.27)
C-RoBERTa | 27.39—28.43 47.20—47.14 67.34—67.98 09.36—10.55 72.02—71.80 | 44.66—45.18(+0.52)
C-RoFormer | 26.24—27.68 47.13—47.63 66.92—67.85 11.08—11.65 69.84—09.73 | 44.24—44.91(+0.67)
C-NEZHA 26.02—26.73 47.44—48.02 70.02—70.63 11.46—11.80 68.97—69.53 | 44.78—45.34(+0.56)
Sim-BERT 33.14—33.48 50.67—51.14 69.99—72.44 12.95—13.58 69.04—69.55 | 47.16—48.04(+0.88)
Sim-RoBERTa | 32.23—33.10 50.61—51.53 74.22—=74.77 12.25—13.28 71.13—=72.20 | 48.09—48.98(+0.89)
Sim-RoFormer | 32.33—32.59 49.13—49.46 71.61—=72.13 15.25—15.69 69.45—70.01 | 47.55—48.02(+0.47)
Sim-NEZHA | 32.14—32.52 46.08—47.42 60.38—60.51 16.60—16.58 68.50—69.19 | 44.74—45.26(+0.52)

Table 1: The experimental results of RepAL on Chinese semantic similarity benchmarks. The numbers before
— indicate the performance without RepAL and the numbers after — mean the performance with RepAL. Blue
numbers indicate RepAL improves the baseline.

Baseline ‘ STS-12 STS-13 STS-14 STS-15 STS-16 Avg
BERT 57.86—59.55 61.97—66.20 62.49—65.19 70.96—73.50 69.76—72.10 | 63.69—66.70(+3.01)
BERT; 57.74—59.90 61.16—66.20 61.18—65.62 68.06—73.01  70.30—74.72 | 62.62—67.47(+4.85)
RoBERTa 58.52—60.88  56.21—62.20 60.12—64.10  69.12—71.41  63.69—69.94 | 60.59—65.41 (+4.82)
W-BERT 63.62—64.50 73.02—73.69 69.23—69.69  74.52—74.69  72.15—76.11 | 69.21—70.39 (+1.18)
W-BERT; 63.62—63.90 73.02—73.41 69.23—70.01 74.52—75.18 72.15—75.89 | 69.21—70.39 (+1.18)
W-RoBERTa | 68.18—68.85 62.21—63.03 67.13—607.69 67.63—068.23 74.78—=75.44 | 67.17—68.43 (+1.26)
C-BERT 64.09—65.01  78.21—78.54  68.68—69.04  79.56—79.90 75.41—75.74 | 72.27—72.69 (+0.42)
C-BERT; 70.23—70.70  82.13—82.54  73.60—74.12  81.72—82.01  77.01—=77.58 | 76.03—76.48 (+0.45)
Sim-BERT | 68.93—69.33  78.68—78.93 73.57—73.95 79.68—80.01  79.11—79.29 | 75.11—75.44 (+0.33)
Sim-BERT; | 69.25—69.60 78.96—79.30 73.64—73.92 80.06—80.31  79.08—79.42 | 75.31—=75.61 (+0.30)

Table 2: The experimental results of RepAL on English semantic similarity benchmarks. ‘Avg’ indicates the
average performance of all English benchmarks including STS-B and SICK-R in Table 3, and BERT; means

BERT4. during the experiments.

Baseline | STS-B SICK-R
BERT 59.04— 66.35  63.75— 64.55
BERT; 59.59— 68.21  60.34— 64.61

RoBERTa 55.16— 65.75 61.33— 63.61

W-BERT 71.34— 7145 60.60— 62.61

‘W-BERT;, 71.34— 69.56  60.60— 65.00
W-RoBERTa | 71.43— 72.03 58.80— 63.95
C-BERT 73.12— 73.45  66.79— 67.15
C-BERT;, 77.48— 7791 70.02— 70.51
Sim-BERT 75.71— 76.00 70.12— 70.51
Sim-BERT; 75.84— 76.11  70.34— 70.61

Table 3: The results of RepAL on STS-B and SICK-R

4.6 Hyper-parameters

Specifically, we search for \s firstly and fix the
best Ay to search for optimal A; based on the dev

set. Though there are two hyper-parameters in our
method, searching for the optimal parameters is
not computationally heavy since that our method
is free of training. Generally. as the USE becomes
stronger, the searched A; and A, become smaller.

5 Detailed Analysis and Discussion

The proposed RepAL enhances sentence embed-
ding by filtering redundant information from two
levels: sentence-level and corpus-level. Despite the
presentations of the overall experiment results and
analysis, the intrinsic properties of RepAL remain
unclear. In this section, we illustrate the reasons
why RepAL is effective in enhancing sentence em-
bedding.

In Sec 5.1, we provide the evidence about the



Method | STS-12  STS-13  STS-14 STS-15 STS-16 STS-B  SICK-R | Avg

None 57.86 61.97 62.49 70.96 69.76 59.04 63.75 63.69
Tri-mask(individual) 58.12 63.05 63.71 71.02 71.19 61.29 63.90 64.61 (+0.92)
Key-mask(individual) | 55.68 60.21 60.32 68.77 67.02 55.69 60.98 61.24 (-2.45)
Tri-mask(all) 59.55 66.20 65.19 73.50 72.10 66.35 64.55 66.70 (+3.01)
Key-mask(all) 57.76 62.56 63.35 70.49 70.93 61.31 63.50 64.27 (+0.58)

Table 4: The performance of two SR on the English benchmarks. ‘Individual’ indicates only applying SR and ‘all’
means combined with corpus-level refinement. The USE is BERT}, s here.

impact of trivial words in sentence embedding and
show the capacity of our sentence-level embed-
ding refinement. In Sec 5.2, we show why the
corpus-level embedding refinement enhances sen-
tence embedding and illustrate the relation between
the largest eigenvalue and performance.

5.1 Sentence-level Refinement

There are two ablation studies for sentence-level
refinement (SR): (1) we investigate the impact of
trivial words w/o RepAL, which explains the ne-
cessity of removing such redundancy information
and validates the effectiveness of SR. (2) We pro-
vide another sentence-level refinement solution by
masking trivial words and then making compar-
isons, which further validates the effectiveness of
SR.

5.1.1 Impact of trivial words

We set up experiments to investigate the capacity of
sentence-level refinement individually and remove
the corpus-level refinement. We first define the im-
portance I of word w € z; in semantic similarity
calculation, which can be defined as follows:

H(zi,x; ;w) = Sim(z;, z; ) — Sim(z; /w, x;)

(6)
where z; and x; are a pair of sentences and z; /w;
means deleting the word w; from z;. Note that
we do not consider the words in x; since it is
equivalent to evaluation on more sentences. Then
we define the set of trivial words within x; as S(z;),
which are unmasked by jieba. Thus we can define
the redundancy overlap ratio r(p;) of a sentence
pair p; = (x;,x; ) as follows:

|S(zi) N T(xi)|

7
T(@)] @

r(p;) =

where T'(x;) represents the top-5 words with high-
est importance H in x;. r(p;) is a metric to reflect
the impact of trivial words in semantic similarity

between the sentence pair p;, since higher 7(p;) in-
dicates more trivial words are important towards se-
mantic similarity calculation. We randomly sample
300 sentence pairs from STS-B (Cer et al., 2017)
and select BERT as the USE, and we calculate the

average redundancy overlap ratio © = M
w/o SR. The results show that 7 reaches 10.2%
without SR, after applying SR, # drops to 7.1%?>
The results demonstrate that SR diminishes the
impact of trivial words when measuring semantic
similarity.

Moreover, we select some representative words
and evaluate their importance w/o RepAL. As
shown in Table 5, the results show that our SR
indeed diminishes the impact of such trivial words
when calculating semantic similarity.

Word | No Refinement ~ With Refinement | A

the 1.02 0.56 -0.46
a 0.98 0.43 -0.55
to 0.59 0.32 -0.27
in 0.68 0.21 -0.47
some 0.60 0.31 -0.29
with 0.72 0.24 -0.48
and 0.99 0.61 -0.38

Table 5: The importance of trivial words w/o sentence-
level refinement. A means the importance change.

5.1.2 Comparison with Another
Sentence-level Refinement Solution

Our SR generates redundant embedding by mask-
ing keywords and subtracts the redundant embed-
ding from original embedding with an adaptive
factor.

x} = PartialMask(x;, keywords)

vi = flai) = Af(27)
Then we propose another SR which masks the triv-
ial words within the sentence and directly utilize

% changes since the inputs during similarity calcu-
lation have changed when SR activates.  After SR.
Eq 6 becomes H(z;,z; ;w) = Sim(G(z:),G(z;)) —
Sim(G(zi/w), G(x; )) where G(-) represents SR operation.
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Figure 2: Relation of upper bound of eigen value of embedding matrix and performance.

the embedding of sentence composed of remaining
keywords, which can be defined as follows:

v; = f(PartialMask(x;, trivial words))  (8)

According to the words they mask, we name the
two methods as tri-mask and key-mask.

We compare their performance on the English
benchmarks. As shown in Table 4, tri-mask signifi-
cantly outperforms key-mask. Specifically, when
key-mask is applied individually, the performance
even degrades worse than vanilla BERT. Intuitively,
the key-mask performs poorly because it deletes all
the trivial words within the sentence, which hurts
the linguistic properties of the sentence (e.g., syn-
tax information). In contrast, tri-mask eliminates
the impact of trivial words through the subtraction
with an adaptive weight factor, which preserves
syntax information well.

5.2 Corpus-level Refinement

To investigate whether corpus-level refinement di-
minishes the upper bound of the eigenvalue of em-
bedding £*, we make numerical experiments to
dive into the relationship between the performance
(Spearman correlation), A and the upper bound of
the largest eigenvalue of E*.

Specifically, we launch the experiments on six
English benchmarks with BERT},s.. As shown
in Figure 2, when performance rises at peak, the
upper bound of the largest eigenvalue of the embed-
ding matrix £* is around the minimum, showing
a coincidence between the two. The numerical

results show that the corpus-level refinement en-
hances sentence embedding since it diminishes the
largest eigenvalue of E*. Previous methods (Huang
et al., 2021) is equivalent to subtracting the average
vector with A = 1.0, which fails to suppress the
largest eigenvalue of embedding matrix extremely.
However, our method chooses to subtract a larger
A with adaptive weight, further suppressing the
upper bound of the largest eigenvalue of the em-
bedding matrix. The results show that the average
embedding subtraction needs an adaptive weight.
Moreover, this also illustrates why our method can
still improve the performance on W-BERT with
substantial progress.

6 Conclusion

In this paper, we propose RepAL, a universal
method for unsupervised sentence representation
enhancement that combines with various USEs.
Based on the idea that redundant information is
contained in USE, RepAL extracts then refines re-
dundant information for the sentence embedding
at sentence-level and corpus-level. Sentence-level
refinement aims at mitigating the impact of trivial
words within the sentence; corpus-level refinement
explicitly diminishes the upper bound of the largest
eigenvalue of the embedding matrix. Combining
them into one, RepAL successfully achieves im-
provements on both Chinese and English bench-
marks and is proved to be a simple and plug-and-
play method in modern techniques for unsuper-
vised sentence representation.
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A Proof of Theorem 1

Formally, we denote oy and oy« for p(W) and
p(W*) for brevity. Then we have:

W = ||ETE| 9

W = H(E ABYT(E - )\E)H (10)

Based on the properties of singular value, given a
matrix A, for an arbitary vector x, we have:

[Az]| < o] (11)

where o 4 represent the largest singular value of A.

Therefore, for a unit eigenvector v of W*, we have
the following derivation:

o = |lowv| = H(E AEYT(E - AE)U\)
<||BET| - [reET
- [reETo] + 2227
<o%— 2 \op0; + /\2012@
= (O‘E — )\UE)Q
(12)

where op and o, represent the largest singular
value of E and E, respectively. Similarily, we can
obtain the upper bound for o+, which is 0%. Let
A be é where c is a positive constant, the upper
bound of oy« is apparently lower than oy, which
completes the proof.
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