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Abstract: 

In tissue development, regeneration, and disease, cells differentiate into distinct, reproducible 
phenotypes. A ubiquitous challenge in studying these processes is to order events occurring 
during differentiation1–3, and to identify events that drive cells towards one phenotype or 
another. This challenge is common to understanding mechanisms in embryo development, 
stem cell self-renewal, cancer cell drug resistance, and tissue metaplasia1–3. 

At least two observational strategies help to order cellular events. Single-cell genome-wide 
profiling – such as by single-cell RNA sequencing (scRNA-seq) – offers a universal and 
scalable approach to observing dynamic states by densely sampling cells at different stages3–

10. However, scRNA-seq alone does not identify which early differences between cells drive or 
correlate with fate2,11–13. Conversely, lineage tracing offers a complementary family of methods 
that can clarify long-term dynamic relationships across multiple cell cycles. To carry out 
lineage tracing, individual cells are labeled at an early time point1–3. The state of their clonal 
progeny is analyzed at one or more later time points (Fig. 1a).  

Recently, a number of efforts from us and others have integrated lineage-tracing with single-
cell RNA sequencing (hereafter LT-scSeq) using unique, heritable, and expressed DNA 
barcodes2,12,14–19. These technologies identify cells that share a common ancestor and define 
their genomic state in an unbiased manner. LT-scSeq experiments have been used to 
successfully identify when fate decisions occur12,15, novel markers for stem cells18, and 
pathways which control cell fate choice15,18. The simplest of these methods labels cells at one 
time point12 (Fig. 1b); more complex methods allow the accumulation of barcodes over 
successive cell divisions to reveal the substructure of clones2,12,14–20 (Fig. 1c).  
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Emerging LT-scSeq methods have been successful at revealing regulators of cell fate15,18 and 
the fate potential of early progenitors12,15, but they also present challenges that may limit their 
utility in practice. At least five technical and biological challenges affect experimental design 
and interpretation (Fig. 1f): stochastic differentiation and variable expansion of clones21 (Fig. 
1f-i); cell loss during analysis (Fig. 1f-ii); barcode homoplasy wherein cells acquire the same 
barcode despite not having a lineage relationship2 (Fig. 1f-iii); access to clones only at a 
single time point22,23 (Fig. 1f-iv); and errors in determining the state of clonal progenitors due 
to a lag time between labeling cells and the first sampling (‘clonal dispersion’, Fig. 1f-v). 
Addressing these problems should greatly simplify the design and interpretation of LT-scSeq 
assays and put them in the hands of a wider research community.  
 

 
Fig. 1. Integrative analysis of lineage tracing and transcriptome data. 
 
 
Here, we advance on recent efforts24,25 to develop robust, computationally-efficient and 
generalizable approaches to analyze LT-scSeq experiments. We begin with a model of clonal 
dynamics in which cells divide, differentiate, or are lost from the sampled tissue in a 
stochastic manner, with rates that are state-dependent. We use this model to learn from the 
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data the fraction of progeny of cells, initially in one state, which are found to occupy a second 
state after some time interval (Fig. 1d). Our approach captures differentiation bias and fate 
hierarchies, and can reveal genes whose early expression is predictive of future fate choice.  
 
 

In this computational approach, we develop coherent, sparse optimization (CoSpar) to infer 
cell dynamics from single-cell transcriptomics integrated with lineage tracing. Built on 
assumptions of coherence and sparsity of transition maps, CoSpar is robust to severe down-
sampling and dispersion of lineage data, which enables simpler experimental designs and 
requires less calibration. In datasets representing hematopoiesis, reprogramming, and 
directed differentiation, CoSpar identifies early fate biases not previously detected, predicting 
transcription factors and receptors implicated in fate choice. Documentation and detailed 
examples for common experimental designs are available at https://cospar.readthedocs.io/. 
This work is recently published at Nature Biotechnology. 
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