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Abstract. In video analysis, background models have many applications such as
background/foreground separation, change detection, anomaly detection, tracking,
and more. However, while learning such a model in a video captured by a static
camera is a fairly-solved task, in the case of a Moving-camera Background Model
(MCBM), the success has been far more modest due to algorithmic and scalability
challenges that arise due to the camera motion. Thus, existing MCBMs are limited
in their scope and their supported camera-motion types. These hurdles also im-
peded the employment, in this unsupervised task, of end-to-end solutions based on
deep learning (DL). Moreover, existing MCBMs usually model the background
either on the domain of a typically-large panoramic image or in an online fashion.
Unfortunately, the former creates several problems, including poor scalability,
while the latter prevents the recognition and leveraging of cases where the camera
revisits previously-seen parts of the scene. This paper proposes a new method,
called DeepMCBM, that eliminates all the aforementioned issues and achieves
state-of-the-art results. Concretely, first we identify the difficulties associated
with joint alignment of video frames in general and in a DL setting in particular.
Next, we propose a new strategy for joint alignment that lets us use a spatial
transformer net with neither a regularization nor any form of specialized (and
non-differentiable) initialization. Coupled with an autoencoder conditioned on
unwarped robust central moments (obtained from the joint alignment), this yields
an end-to-end regularization-free MCBM that supports a broad range of camera
motions and scales gracefully. We demonstrate DeepMCBM’s utility on a variety
of videos, including ones beyond the scope of other methods. Our code is available
at https://github.com/BGU-CS-VIL/DeepMCBM.

Keywords: unsupervised; background model; background subtraction; moving
camera; joint alignment; regularization-free; deep learning; video analysis.

1 Introduction

The unsupervised video-analysis task this paper focuses on is learning a background
model in a video captured by a moving camera. In the simpler case where the camera is
static, such models have been used successfully in many computer-vision applications
such as background/foreground separation, change or anomaly detection, and tracking.
Static-camera solutions, however, cannot be easily extended to the moving-camera
case since we do not know, a-priori, how the video frames should be aligned to each

https://github.com/BGU-CS-VIL/DeepMCBM
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(a) Examples for several input frames

(b) Alignment, visualized via the mean panoramic image (computed from the entire video)

(c) Background estimation using the Conditional Autoencoder

Fig. 1: Typical results of the proposed module. Note that despite the fact that the dog
spent long times being static in two locations (as is evident by the corresponding

ghosting effects in (b)) the model succeeded in eliminating it from the background.

other. Thus, most of the tools traditionally used in background models become less
applicable; e.g., methods based on learning a low-dimensional subspace via Robust
Principal Component Analysis (RPCA) assume that the frames are aligned to each other.

Seemingly, there is a straightforward solution: “simply” align the frames to each
other to reduce the problem back to the static-camera case, and then build a static-camera
background model based on the aligned frames. However, this is more complicated
than it might seem. First, the alignment problem itself is often difficult. For example,
methods based on creating a panoramic image by sequentially aligning each pair of
consecutive frames suffer from drift errors. Moreover, such methods cannot exploit the
information conveyed in situations where the camera revisits (possibly from a different
viewpoint) a previously-seen region in the scene. This, among other considerations,
motivates solutions based on Joint Alignment (JA) of the frames. However, even in
this formulation the problem is often still hard to solve, partially due to reasons we
analyze later in § 4. Second, and regardless of how the alignment is done, there is the
issue of scalability which pertains to not only the alignment problem itself but also the
subsequent learning of the background model: when the accumulative motion of the
camera throughout the video is substantial, the domain of the panoramic image can be
huge so background models learned in that domain must scale gracefully. Furthermore,
in such cases, when a frame is warped (i.e., aligned) towards the panorama, it captures
only a small portion of the latter. This means that most of the data in the panoramic
version of the warped images is missing. This is problematic in our context since existing
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solutions for subspace learning in the presence of missing data usually struggle in
such cases. Therefore, the missing-data issue, together with the scalability requirement,
considerably complicates the task. Due to the above reasons, the success in the case of a
Moving-camera Background Model (MCBM) is lagging far behind its static-camera
counterpart. Moreover, the difficulties above have also largely prevented the use of Deep
Learning (DL) for this task. This is unfortunate not only because the idea of harnessing
the power of DL is attractive but also since it hinders the usage of MCBMs within larger
end-to-end pipelines.

With this in mind, the goal of this paper is to provide an effective and scalable
DL-based MCBM. To that aim, we start by identifying more precisely what makes
JA of video frames challenging: first in the general case and then in the more specific
DL context. Next, we design a new JA strategy based on a regularization-free Spatial
Transformer Net (STN) and a JA loss involving a memory aspect. Our method requires no
auxiliary tools (such as the brittle and non-differentiable initialization used in [10]) that
would prohibit its usage within end-to-end pipelines. We also propose a new deep module
for learning a background model. The model, based on a Conditional Autoencoder (CAE)
and the output of the JA module, is learned in the small domain of the input frames
instead of the much-larger panoramic domain. This eliminates scalability issues and
targets the goal of estimating the background more directly. Importantly, this module
too can be used within end-to-end pipelines. Figure 1 demonstrates the type of results
obtained by the proposed modules. Taken together, the proposed two modules give rise
to a new and highly-effective MCBM method, coined DeepMCBM, which supports a
broad range of camera motions and scales gracefully. We demonstrate DeepMCBM’s
utility on a variety of videos, including ones beyond the scope of competing methods.

Our key contributions are: 1) a DL module, for jointly aligning video frames, that
relies on an STN-based optimization and a new training strategy that requires neither
regularization nor initialization; 2) a DL background-modeling module that leverages
the JA via a CAE conditioned on unwarped robust central moments derived from the JA;
3) together, these two modules form an end-to-end unsupervised MCBM that achieves
SOTA results, that scales gracefully, and that supports a wide range of camera motions.

2 Related Work

STN [26] is a DL module that learns and applies a parameterized input-dependent spatial
transformation. Given a parameterized transformation family and an input image f , the
STN’s output consists of a parameter vector θ and a warped image obtained by warping
f using T θ (a transformation parameterized by θ). During training, the differentiation
of a loss propagates through the STN. In practice, however, and despite their elegance,
potential strength, and usage in numerous papers, STNs are often hard to train. Part of
our solution addresses exactly such a case, where we take an STN-based optimization
problem that was thought to be too difficult [10] and show how it can, in fact, be solved
easily, without resorting to a regularization or a sophisticated limiting initialization.

Static-camera background models. Early methods were pixelwise (e.g., [41]) but
later the focus has shifted to subspace estimation using Robust Principal Component
Analysis and its variants (e.g., [44,7,50,20]). While those models usually do not scale
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well, there also exist scalable RPCA models (e.g., [21,8]).
Image alignment. In [13,34], pairwise homographies are estimated between con-

secutive frames while [27] uses a multi-layer homography. An adaptive panoramic
image is built in [47,32] while [43] relies on the assumption that a PTZ camera is used.
Most of the works above make stringent assumptions about the camera motion and
estimate transformations between pairs of images, sometimes even sequentially. This ap-
proach, however, can lead to accumulative errors and/or significant distortions. To avoid
such issues, AutoStitch [6] employs bundle adjustment. However, publicly-available
implementations of AutoStitch scale poorly with the number of images (e.g., cannot
handle more than a few hundreds of frames). This is unlike the proposed approach
which scales gracefully. Alignment methods relying on depth or expensive 3D infor-
mation/reconstruction include [35,30,29,46]. Unlike those works, and similarly to, e.g.,
[10], the JA approach in this paper is purely 2D-based.

MCBMs. Online RPCA methods (e.g., [3,22,19]) were extended to the case of
camera jitter [23] as well as more significant motions [18]. DECOLOR [49] is another
MCBM, based on motion detection, that is restricted to small motions. IncPCP-PTI [9]
targets a PTZ-camera setting by updating a low-dimensional subspace with the help
of an estimated rigid motion between consecutive frames. Several MCBMs are built
by first aligning the frames to each other, and then, in the usually-large domain of the
obtained panoramic image, learning a background model from the warped images using
a static-camera background model that can handle missing data (since each warped
image covers only a portion of the panoramic domain). A prime example for such meth-
ods is PRPCA [34]. Also of note are methods targeting moving-object detection in a
moving camera; e.g., [48,39,4]. These works, however, cannot detect changes unrelated
to motion and also do not scale well.

STN-based JA. As we explain in § 4, STN-based JA poses several difficulties. On
that note, the closest work to ours is JA-POLS [10] which handles some of the difficulties
via the usage of a non-differentiable and non-robust initialization, together with a fairly-
restrictive regularization. While JA-POLS is effective in cases where it is applicable, it
is limited in the camera-motion types it supports and is not an end-to-end solution. We
will return to JA-POLS in more detail later on.

Learning background models in the panoramic domain. Once alignment is ob-
tained, in principle a background model can be learned. However, panoramic-size models
(e.g., [34]) do not scale while using an ensemble of Partially-overlapping Local Sub-
spaces (POLS) [10] is cumbersome and also suffers from the fact the number of models
grows with the size of the panorama. Either way, the existing methods do not offer an
end-to-end solution that can be used easily within DL pipelines.

3 Preliminaries: Joint Alignment (JA)

Let (fn)Nn=1 be the frames of the input video and assume the size of each frame is h×w
pixels. Let C be the number of input channels; e.g., C = 3 for RGB images (the case
considered in this paper). Let Ω ⊂ R2 denote the rectangular h× w common domain of
each fn, and let θn denote the (latent) parameter vector of the spatial transformation
associated with the sought-after alignment of fn : Ω → RC . The transformation itself,
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denoted by T θn , is viewed as an R2 → R2 map (not just Ω → R2). The value of
d = dim(θn) depends on the transformation family; e.g., in the affine case, d = 6.
The warped version of Ω is Ωn ≜ T θn(Ω) ≜ {x : ∃x′ ∈ Ω s.t. T θn(x′) = x} ⊂ R2.
Mathematically, we define the warped image as gn : Ωn → RC using the equality

gn(T θn(x′)) = fn(x′) ∀x′ ∈ Ω . (1)

However, due to technical reasons related to image warping [42], it is more convenient
and customary to define gn via the inverse transformation of T θn :

gnx ≜ gn(x) = fn((T θn)−1(x)) ∀x ∈ Ωn . (2)

Note that gn depends on θn and fn. Let H and W be the height and width, respectively,
of a rectangle, denoted by Ωscene ⊂ R2, that is large enough to contain

⋃
n Ω

n. We
now define a mask that will be useful for reasons to become clear shortly. Let MΩ be a
single-channel h×w image whose domain is Ω and whose values are all equal to 1. Let
Mn : Ωscene 7→ [0, 1] be a non-binary H ×W mask obtained by image warping of MΩ ,
according to T θn , using zero padding and a bilinear interpolation kernel. That is, for any
integral location x in Ωscene, the value of Mn at x, denoted by Mn

x , is given by

Mn
x = M̃Ω

x′ x′ = T−θn(x) ∈ R2 (3)

where M̃Ω
x′ is interpolated from the values of MΩ at the 4 integral locations nearest

to x′ where whenever any of those integral locations falls outside Ω the value of MΩ

at that location is taken to be zero. Thus, Mn
x = 0 if all those 4 locations are outside

Ω, Mn
x = 1 it they all fall inside it, and 0 < Mn

x < 1 otherwise. Let gnx,c denote the
value of gnx at channel c. We will refer to px,c ≜ (gnx,c)

N
n=1 where c ∈ {1, . . . , C} as

the C pixel stacks at location x. Similarly, we define the mask stack at location x as
mx ≜ (Mn

x )
N
n=1 . Note that px,c and mx depend on (θn)

N
n=1. A joint-alignment loss,

to be minimized w.r.t. (θn)Nn=1, may be formulated in terms of

LJA = func(((px,c)
C
c=1,mx)x∈Ωscene

) . (4)

For example, in the early works on congealing (e.g., [33,31,25,24]) that loss was based
on entropy minimization. Later, other researchers [11,12] showed the benefits of a loss
based on least squares. A robust variant (used in [10]) of the latter is

LJA =
1

N

∑N

n=1

1

C

∑C

c=1

∑
x∈Ωscene

Mn
xρJA(g

n
x,c − µx,c)∑

x∈Ωscene
Mn

x

(5)

where µx,c =
∑N

n=1 Mn
x gn

x,c∑N
n=1 Mn

x

and ρJA is a differentiable robust error function [5].
Let µ be the mean of the warped images; i.e., the value of µ at location x and channel

c is µx,c. Note that µ may be viewed as the “moving target” to which the frames should
be aligned. It “moves”, during the optimization, in the following sense. As the alignment
of the frames keeps changing, µ changes too since it is computed using the (weighted)
average of the warped images. Assuming that the parameterization θn → T θn is differen-
tiable and that the transformation family is sufficiently well-behaved (as is the case, e.g.,
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(a) A typical problem: if Ωscene is not very large, the process is prone to a poor global minimum.

(b) A typical problem: drastic spatial changes in µ (note also that the end result is quite blurry).

Fig. 2: Typical problems in JA. Rightmost images are post-convergence results.

with the affine group or, more generally, spaces of diffeomorphisms [15,16,40,38,28]),
the loss in Eq. (5) is differentiable. Thus, if θn is predicted using an STN (so, in par-
ticular, θn is a differentiable function of fn, the STN’s input), the loss can, at least in
principle, be minimized using standard DL training.

4 Identifying Key Challenges in Solving Joint-alignment Problems

Below we discuss three issues that might arise when solving JA problems: 1) poor global
minima; 2) the need of regularization; 3) the need of a good initialization.

Usually when trying to minimize a loss, reaching a global minimum is hard or even
impossible, and if this feat happens to be achieved, it is deemed to be the ultimate
success. Sadly, global minima of LJA, while being (very) easy to achieve, reflect, in fact,
an ultimate failure; e.g., the non-negative LJA can attain its global minimum (i.e., zero)
when all the frames are shrunk to an infinitesimally-small point. A similar phenomenon
occurs if all the frames are warped outside Ωscene (e.g., see Figure 2a) or if the frames
are warped such that there will be no pairwise overlap between them.

A popular solution in such cases is adding some type of regularization over (θn)Nn=1.
However, while various forms of regularization have been suggested, each of them
imposes a certain bias; e.g., the regularization term in [31] favors symmetric distributions
while the one in [10] pushes the (affine) transformations towards the Special Euclidean
group, denoted by SE(2). The implied assumptions in both these cases are limiting.
Likewise, penalizing the size of the transformations (e.g., by penalizing some norm
of θn) is problematic when the accumulative motion of the camera is large, while
regularization favoring temporal smoothness is not always compatible with real camera
motions. Another issue is the need of hyperparameter tuning for the weight of the
regularization term. Moreover, finding a combination of a regularization type and a
weight that will work well for a sufficiently-large variety of videos is difficult.

JA is usually a difficult non-convex problem. Thus, a good initialization can be
useful; e.g., in JA-POLS [10] an STN-based JA module had to rely on an initializa-
tion based on SE-Sync [37]. The latter provides a useful globally-optimal solution
to a different-but-related problem: the estimation of absolute transformations that are
consistent as possible with noisy measurements of pairwise relative transformations
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between pairs of frames, where both the latent absolute transformations and the observed
relative ones are in SE(2). With that initialization, the STN needs to solve an easier
problem and does so over the more expressive Affine group. There are, however, several
problems with the JA approach in [10] (we will later also discuss problems related to
the background-modeling approach in [10]). First, pre-processing and heuristics are
needed for extracting the relative transformations. Second, in cases where some of the
true latent absolute transformations are far from SE(2) (e.g.: when the video contains
a significant accumulative variation in the distance between the camera and the scene;
when the camera zoom is changing; when there is a strong perspective effect; etc.),
the initialization breaks and this leads in turn to JA-POLS’ failure. Moreover, SE-Sync
is neither robust nor differentiable w.r.t. the input frames. As there is no easy way to
differentiate SE-Sync w.r.t. the input frames, the STN-based JA module in JA-POLS
cannot be used in an end-to-end DL pipeline.

4.1 An Additional Challenge with Joint Alignment When Using Batches

Typically, due to the data size and as it is almost always the case in DL, the optimization
is done batch by batch where each batch consists of a subset (selected at random) of
the frames from the entire video. A single epoch then represents a full pass over the
entire data, and the frames are reshuffled between epochs. This typically-necessary
batch-by-batch processing creates an optimization difficulty which might appear to be
minor but is, in fact, far more critical than it may seem (we will revisit this point in § 5.1).
The issue is that the mean image µ (from Eq. (5)) is a function of the entire video, not
just the frames in the current batch. A seemingly-obvious solution is to hold µ fixed
during each epoch – so it does not affect the computation of the loss’ gradient – and
then, at the end of each epoch, recompute µ. However, a problem that arises with that
approach is that the difference between the alignment targets (that is, the previous µ
and the recomputed one) in each pair of consecutive epochs might be large, making the
optimization difficult since the optimal transformations for one target might be quite
far from those that are optimal for the next target. For an illustration, see Figure 2b. A
different approach, used in [10], picks the target µ to be the mean of only the (warped)
frames in the current batch. Besides the fact that this is somewhat inconsistent with the
cost-function formulation, that approach too can cause significant changes in the targets
between consecutive batches. The jumping-target problem complicates the optimization
more than one may expect. This is especially an issue at the beginning of the process
when the frames are completely misaligned. For example, in retrospect, this is partly why
JA-POLS [10] had to rely on the SE-Sync-based initialization scheme: as shown in [10],
except in the simple case where the accumulative camera motion is small, without that
initialization JA-POLS usually fails.

5 The Proposed Method: DeepMCBM

The proposed modules of joint alignment (using an STN) and background modeling
(using a CAE) are presented in § 5.1 and § 5.2, respectively. Together, they form the
proposed method, DeepMCBM. The goal of the STN straining is 1) to jointly align the
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Algorithm 1: Training an STN for Joint Alignment
Input: Nepochs, Nbatches, ρ(·), data loader
Data: (fn)Nn=1

Output: A trained STN for Joint Alignment
1 Initialize accumulators G ∈ RH×W×C andM∈ RH×W // see text
2 for e ∈ {1, . . . , Nepochs} do
3 for i ∈ {1, . . . , Nbatches} do
4 (fb)b∈B ← data loader // Load batch: B ⊂ {1, . . . , N}
5 (θb, gb)b∈B ← STN((fb)b∈B) // Note that gb = fb ◦ T θb

6 (Mb)b∈B ← (MΩ ◦ T θb)b∈B // Warp masks

7 G,M, Lbatch ← Algorithm 2( G,M, (gb)b∈B , (Mb)b∈B) // Update G
and M; measure Lbatch (i.e., the batch loss)

8 Perform an optimization step to minimize the Lbatch loss.
9 (G,M)← (λG, λM) // Keep the history, but downweight it

video frames, implicitly forming a panoramic image, and 2) to learn how to warp an
input frame towards that panoramic image. The goal of the CAE training is to learn the
variability in the differences between the panoramic image and the input frames, while
taking the warping into account but ignoring the foreground objects. The conditioning is
done using the robust version of the panoramic pixelwise mean and variance.

5.1 A Regularization-free Strategy for Joint Alignment

Having identified, in § 4.1, that the jumps in the values of µ cause a major difficulty in the
STN-based optimization of LJA (Eq. (5)), we design a simple but surprisingly-effective
optimization strategy, summarized in Algorithm 1 (which, in turn, uses Algorithm 2
as its subroutine). During the training epochs, instead of computing µ using only the
current batch (as was done in [10]), or instead of recomputing µ from scratch each
epoch, we construct our µ from the warped frames in the current batch while also
taking into account, albeit with a lower weight, all the warped frames from the previous
epochs as well as the previous batches in the current epoch. The proposed algorithm
uses accumulators, denoted by G and M. The former is used to accumulate weighted
sums of the values of the pixels in the warped frames while the latter serves a similar
purpose with the values of the pixels in the warped masks. Concretely, let e denote the
index of the current epoch and let e′ denote the index of some previous epoch. When
evaluating the loss in a batch during epoch e, the contribution of the results from epoch
e′ becomes smaller and smaller as the “time” difference, e − e′, grows. This is done
in line 9 in Algorithm 1 by multiplying the accumulators of the warped frames and the
warped masks by a positive factor λ where λ < 1 (we use λ = 0.9).

As shown in Figure 3, the resulting targets (i.e., the µ sequence formed during
the optimization) change smoothly between epochs. Importantly, this behaviour has a
profound and fourfold positive effect: 1. No complicated initialization is needed. As
the optimization becomes much easier, the initial transformations are simply taken to
be the identity. 2. Regularization-free JA. No form of regularization on (θn)

N
n=1 is
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Algorithm 2: Update (µ,G,M) and measure the loss on the batch

Input: G,M, (gb)b∈B , (Mb)b∈B

Output: G,M, Lbatch

1 G ← G +
∑B

b=1 g
b // update warped-image accumulator

2 M←M+
∑B

b=1 M
b // update warped-mask accumulator

3 µ← 0H×W×C

4 for x ∈ {x : x ∈ Ωscene andMx ≥ 0} do in parallel
5 for c ∈ {1, . . . , C} do in parallel
6 µx,c ← Gx,c

Mx

7 Lbatch ← 1
B

∑B
b=1

1
C

∑C
c=1

[(∑
x∈Ωscene

Mb
xρ(g

b
x,c − µx,c)

)
/
(∑

x∈Ωscene
Mb

x

)]

(a) Compared with Figure 2a, the process is more stable and successful. Also, even when µ nears
the border of Ωscene, it never goes outside it.

(b) Compared with Figure 2b, the drastic jumps are eliminated. Also, with the proposed term the
results are less affected by the specified size of Ωscene.

Fig. 3: Results analogous to those in Figure 2 except they were obtained with the
proposed memory-based approach. Rightmost images are post-convergence results.

needed; e.g., there is no need to worry about the poor global minima from § 4. Since
the optimization is gradient-based and since each epoch lingers in the “history” of the
process for many epochs before its effective weight decays to zero (due to the repeating
multiplications by λ ∈ (0, 1)), such undesired cases are eliminated altogether. For
instance, as the stack of the original frames overlaid over each other (from the first epoch)
contributes to the computation of µ, either shrinking the frames to a point or moving
them outside Ωscene will incur a loss. Our regularization-free JA is in sharp contrast to
many algorithms including classical works (e.g., [31]) and more recent ones (e.g., [10]).
3. Higher expressiveness. The formulation lets us increase the expressiveness of the
transformation family as needed. For example, JA-POLS is so crucially dependent on
its SE-Sync initialization and SE-based regularization, that the affine transformations it
predicts are nearly in SE(2) themselves. In contrast, our method can not only predict
more general transformations in the Affine group but also use broader transformation
families. In our experiments we demonstrate this using the group of homographies
but one may also try richer STNs such as those based on diffemorphisms [40,1,14]. 4.
Our JA module can be used in end-to-end pipelines. This is unlike not only non-DL
methods but also JA-POLS [10] whose non-differentiable initialization prevents its JA
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Fig. 4: The background-modeling module. After the STN module was trained
using Algorithm 1, the robust panoramic moments, µr and vr, are computed. A CAE is
trained for a robust reconstruction task, using the transformation parameters, (θn)Nn=1,
estimated by the (frozen) STN. The CAE’s output is f̂n, the estimated background
associated with fn and the conditioning is done by (un)warping µr and vr towards each
input training image, fn. During test time the process is similar, except that the
transformation being used is the one predicted by the STN.

module from being used in an end-to-end manner. The technical details of the training
process appear in our Supplemental Material (Supmat).

5.2 Background Modeling in Ω (not Ωscene) via a Conditional Autoencoder

Upon the training of the STN, the frames become jointly aligned. In principle, at this
point all that is left to do is to learn a background model using either non-DL methods
(e.g., based on either pixelwise mixture models or RPCA methods; see § 2) or deep
ones (such as using a robust loss when training an autoencoder for reconstruction).
However, there are several problems with this approach. First, it does not scale well:
if the accumulating motion of the camera throughout the video is large, the panoramic
image (of the entire scene covered throughout the video) can be huge. Moreover, in such
a case even scalable RPCA methods will have to face an additional problem: since the
domain of each warped image captures only a small region inside the domain of the
panoramic image, it means that most of the pixels will represent missing data. Thus,
one would need an RPCA method which can not only scale well but also succeed in
situations where more than, say, 90%-95% of the data is missing. Also important is
the following. Recall that given an input image, our goal is to estimate a background
image, of the same size, that corresponds to that image. Thus, why should we even
bother with trying to learn a panoramic-size background model? In [10], the discussion
above motivated the learning of multiple local RPCA models and then, for estimating the
background of a given image, only a subset of those models whose domains overlapped
with the frame of interest were used. That solution, however, means that the number of
models to be learned grows with the size of the panoramic image. Moreover, its non-DL
formulation was another reason why JA-POLS was not an end-to-end method.

Here we propose a better alternative, whose pipeline is summarized in Figure 4: use
a CAE to learn a background model whose domain is small. This has two advantages:
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1) It does not compromise the end-to-end nature of the method. 2) We need to learn
only a single model (unlike in [10]) and its domain is small, fixed, and does not grow
with the size of panoramic image (unlike in PRPCA). Concretely, rather than learning a
background model (or models) whose domain is Ωscene, we train a CAE on the original
(i.e., non-warped) input frames, using a robust reconstruction error and, for each input
frame fn, conditioning both the encoder and the decoder on (robust versions of) the
mean and variance of the pixel stacks, but not before unwarping those central moments
from Ωscene towards fn. We now provide the details. The first and second central
moments, denoted by µr and vr, respectively, are C-channel H ×W images defined
on Ωscence and computed rubustly using trimmed averaging as follows. Fix x ∈ Ωscene,
let Nx = |{n : Mn

x > 0}|, and let (g(1)x,c, . . . , g
(Nx)
x,c ) be the order statistics of px,c. The

values of µr and vr at x in channel c are computed, respectively, by

µr
x,c =

1
(1−2α)Nx

(1−α)Nx∑
i=αNx

g(i)x,c vrx,c =
1

(1−2α)Nx

(1−α)Nx∑
i=αNx

(g(i)x,c − µr
x,c)

2 . (6)

Such trimmed averaging is a standard technique for computing robust moments [21].
The trimming parameter, α, was empirically set to α = 0.3 as it provided a good balance
between sample size and robustness. That said, the results when using any other value in
the wide range between 20% and almost 50% were similar. Next, when fn is fed into
the CAE, the encoder and the decoder are conditioned by

µn ≜
(
µr|Ωn

)
◦ (T θn)−1 and vn ≜

(
vr|Ωn

)
◦ (T θn)−1 (7)

which are h× w images (with C channels) defined on Ω and are nothing more than the
portion of µr and vr that is relevant for fn. Using a code whose length was only 4, the
CAE was trained with the following loss:

LAE =
∑N

n=1

∑C

c=1

∑
x′∈Ω

ρrecon(f
n
x′,c − f̂n

x′,c) (8)

f̂n = Decoder(Encoder(fn;µn, vn);µn, vn) (9)

where f̂n is the output of the CAE and ρrecon is a differentiable robust error function.
We remark that, by design, the fact that µn and vn are of the same dimensions as the
input, fn, also means it is easy to implement the conditioning via a convolutional layer.
For more details about the CAE (whose architecture is based on the AE from [2]) as well
as other training details, see our Supmat. Finally, ρrecon should usually be more robust
than ρJA. The reason is that while in JA the influence of foreground objects is relatively
small, in the CAE-based reconstruction it is important, in every pixel, to eliminate the
outliers (i.e., the foreground pixels) as much as possible. Thus, we use the smoothed ℓ1
loss (which is closely-related to Huber’s function [5]) for ρJA and the Geman-McClure
error function [17] for ρrecon. See Supmat for details.

6 Results

We experimented with 4 variants of the proposed DeepMCBM: 1. Basic/Aff: This ver-
sion uses only the STN-based JA module, without the CAE. It estimates the background
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by simply unwarping the robust mean towards the input image. The transformations
used in the STN belong to the Affine group (the invertibility of the transformations was
guaranteed via the matrix exponential; see Supmat). 2. CAE/Aff: This version too uses
the Affine STN but also uses the CAE module (for estimating the background). 3. Ba-
sic/Hom and 4. CAE/Hom: Similar to Basic/Aff and CAE/Aff, respectively, except that
homographies are used instead of affine transformations. We compared those 4 variants
with several methods: PRPCA [34]; JA-POLS [10]; PanGAEA [18]; DECOLOR [49];
PCP PTI [9]; PRAC [19]. The 13 videos that we tested on are ones typically used for
evaluation of methods in this area and are taken from well-known datasets [45,36]. Those
movies cover camera motions in a variety of types, sizes, speed, zoom changes, etc. It
should be noted that, due to their scalability limitaitons, PRPCA and PanGAEA could
not run on the ContinuousPan video as the covered scene in the latter was too large.
JA-POLS failed running on zoomInZoomOut (the significant zoom changes broke its
key assumption). Figure 5 contains a visual comparison, on select example videos, of
DeepMCBM (in its CAE/Hom variant), PRPCA, JA-POLS, and PanGAEA. Results of
the other (and less successful) methods (DECOLOR; PCP PTI; PRAC), as well as more
visual results (including videos) are in the Supmat.

Given an estimate of the background, subtracting it from the original frame yields a
difference that can serve to determine foreground/background separation. To quantify
the results in a threshold-independent way, for each method and each video we computed
the Receiver Operating Characteristic (ROC) curve (using the ground truth) and its
Area Under the Curve (AUC). The ROC curves are included in Supmat. We emphasize
that our method is unsupervised and the ground truth information was used only for
evaluation. Table 1, summarizing the AUC results, shows that DeepMCBM, especially
with its CAE variants, is, overall, the leading method. In cases where DeepMCBM is not
the first it is typically the runner-up. Moreover, unlike some competitors, DeepMCBM
was applicable in all cases considered. The visual examples also illustrate how the CAE
helps achieving a better estimate of the background than that one obtained by merely
using the unwarped µr. We remark that our fixed code size, 4, is so small since: 1) the
goal is not a typical reconstruction but to filter out foreground objects; 2) our AE is
conditional so it is unsurprising a small size suffices. We could have made the code size
video-dependent and thus improve results even further, but felt that a fixed size is simpler
and makes a comparison with other methods fairer.

Predicting background for previously-unseen misaligned frames. In the com-
parison above, we focused on background/foreground estimation in the input videos
on which the competing models (ours included) were learned. However, like JA-POLS,
but unlike all the other methods, our method can predict the background in frames that
were not included in the learning (more accurately, some of the competing methods can
predict the background in the next constitutive frame, but they are unable to do so for
misaligned frames in general such as those that are not consecutive). Due to space limits,
we demonstrate that capability of DeepMCBM in the Supmat.
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(a) Input (b) Ours

N/A:
large zoom
changes
failed
JA-POLS
completely

(c) JA-POLS

N/A:
out-of-
memory
on a 256GB
RAM
machine

(d) PRPCA

N/A:
failed to
run: Matlab
process was
killed

(e) PanGAEA

Fig. 5: Visual Comparison: Select Results. Note the ghosting artifacts and/or distortion
in the other methods’ results. Please zoom in to better appreciate the results.

Ablation Study. As Table 1 shows, the AE usually improves performance. In par-
ticular, its role is especially important when a foreground object spends a long portion
of time in a static position (e.g., the dog in the dog-gooses or the flamingo). In such
cases, the robust mean alone still tends to capture some “ghosting” artifacts (as usually
do all the competing methods) while the CAE helps correctly identifying that object
as belonging to the foreground. The importance of the memory-based approach was
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DeepMCBM (Ours)
Sequence Basic/Aff CAE/Aff Basic/Hom CAE/Hom [34] [18] [9] [10] [19] [49]
bmx-trees .898 .896 .916 .908 .894 .786 .837 .930 .664 .737
boxing-fisheye .924 .893 .927 .898 .935 .932 .728 .892 .627 .763
breakdance-flare .931 .933 .953 .963 .960 .972 .740 .897 .806 .667
continuousPan .897 .940 .895 .938 N/A N/A .846 .449 .656 .760
dog-gooses .954 .984 .955 .984 .942 .917 .721 .947 .747 .886
flamingo .962 .980 .961 .980 .891 .957 .638 .947 .560 .656
horsejump-high .932 .942 .932 .943 .958 .908 .783 .914 .713 .892
sidewalk .886 .908 .889 .932 .812 .702 .635 .851 .780 .935
stroller .877 .885 .740 .756 .762 .904 .594 .807 .613 .721
stunt .963 .979 .961 .978 .959 .954 .899 .930 .711 .781
swing .880 .877 .887 .897 .942 .879 .805 .874 .722 .812
tennis .960 .961 .959 .963 .943 .929 .831 .932 .787 .852
zoomInZoomOut .981 .994 .981 .994 .979 .958 .720 N/A .885 .957

Table 1: AUC scores for each method on each sequence.

also demonstrated in Figure 2 and Figure 3. In particular, the JA failures in Figure 2
imply that no subsequent background model could be built there, making a quantitative
comparison (between using the memory term and not using it) a moot point. Finally,
note that a basic (i.e., unconditional AE) that knows nothing about the alignment has
no chance here as it can only either simply reconstruct the entire frames (i.e., with the
undesired foreground objects) or fail in the reconstruction. Thus, when simply dropping
the conditioning from our CAE, the resulting AE fails badly in background modeling;
e.g., its AUC for the Tennis video is 0.701 while DeepMCBM’s AUC score is 0.963.

7 Conclusion

The proposed DeepMCBM is an end-to-end DL solution for modeling background in
a video from a moving camera. It supports a wide range of camera-motion types and
sizes, scales gracefully, and achieves SOTA results. While we experimented with either
affine transformations or homographies, DeepMCBM also supports more expressive
transformations. The proposed regularization-free STN-based JA strategy may find usage
in other applications, thereby the potential impact of this work may be broader than
MCBMs. One limitation of our work is that, since DL involved, the training is slower in
comparison to some competitors (JA-POLS excluded). However, we believe the SOTA
results together with the other benefits DeepMCBM brings (end-to-end; scalability; the
ability to predict background for previously-unseen misaligned frames; etc.) justifies
it. The main failure case of the method is when foreground objects are large and much
closer to the camera than the background is.
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