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Abstract

Text-to-speech (TTS) systems have seen sig-001
nificant advancements in recent years, driven002
by improvements in deep learning and network003
architectures. Viewing the output speech as004
a data distribution, previous approaches often005
employ traditional speech representations, such006
as waveforms or spectrograms, within the Flow007
Matching framework. However, these methods008
have limitations, including overlooking vari-009
ous speech attributes and incurring high com-010
putational costs due to additional constraints011
introduced during training. To address these012
challenges, we introduce OZSpeech, the first013
TTS method to explore optimal transport con-014
ditional flow matching with one-step sampling015
and a learned prior as the condition, effectively016
disregarding preceding states and reducing the017
number of sampling steps. Our approach oper-018
ates on disentangled, factorized components of019
speech in token format, enabling accurate mod-020
eling of each speech attribute, which enhances021
the TTS system’s ability to precisely clone the022
prompt speech. Experimental results show that023
our method achieves promising performance024
over existing methods in content accuracy, nat-025
uralness, prosody generation, and speaker style026
preservation. Code and audio samples are avail-027
able at our demo page 1.028

1 Introduction029

Text-to-speech (TTS) has numerous real-world ap-030

plications, such as voice-based virtual assistants,031

assistive screen readers for the visually impaired,032

and reading aids for people with dyslexia, to name033

a few. Most TTS systems focus on synthesizing034

speech that matches a speaker in a set of speakers035

seen during training. Recent studies tackle a more036

challenging problem of converting text into speech037

that follows the acoustic characteristics of a prompt038

spoken by a speaker not seen during training. This039

problem is called zero-shot TTS.040

1https://ozspeech.github.io/OZSpeech_Web/

In recent years, remarkable progress has been 041

achieved in the research of Zero-shot TTS models. 042

These advancements have demonstrated the impres- 043

sive capabilities of such models, with their synthe- 044

sized outputs often approaching a quality level that 045

is virtually indistinguishable from human speech. 046

The body of research on Zero-Shot TTS can be 047

broadly divided into two primary categories, each 048

aligned with a dominant methodological paradigm 049

in the field: autoregressive models and diffusion- 050

based models. 051

Prominent examples of the autoregressive ap- 052

proach are VALL-E (Chen et al., 2025) and its vari- 053

ants (Chen et al., 2024a; Zhang et al., 2023; Han 054

et al., 2024; Meng et al., 2024; Song et al., 2024; 055

Peng et al., 2024; Ji et al., 2024a), which have 056

significantly advanced Zero-Shot TTS by integrat- 057

ing language modeling techniques and employing 058

disentangled speech units as input and output to- 059

kens. This innovative framework has paved the 060

way for the potential convergence of Zero-Shot 061

TTS with large language models (LLMs), enabling 062

the creation of efficient, multimodal systems which 063

are capable of generating text, speech, and other 064

modalities in a flexible and scalable manner. How- 065

ever, as with other LLM-based systems, autoregres- 066

sive models are susceptible to the issue of the non- 067

deterministic sampling process, potentially lead- 068

ing to infinite repetition, which remains a critical 069

challenge in applications requiring high levels of 070

precision and reliability. 071

In contrast, diffusion-based models, as demon- 072

strated by state-of-the-art (SOTA) TTS systems 073

such as E2 TTS (Eskimez et al., 2024) and other 074

related approaches (Le et al., 2023; Vyas et al., 075

2023; Shen et al., 2024; Ju et al., 2024b), have 076

emerged as powerful generative frameworks ca- 077

pable of producing high-quality, natural-sounding 078

audio. This approach has proven particularly ef- 079

fective in specialized tasks such as in-filling and 080

speech editing. Nevertheless, diffusion-based mod- 081
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els face limitations in real-time applications due082

to the computational inefficiency of their multi-083

step sampling processes. These constraints under-084

score the trade-offs inherent in the diffusion-based085

paradigm, particularly in scenarios that demand086

low-latency performance.087

Distillation methods for diffusion-based models088

have been explored to address the multi-step sam-089

pling challenge, with Consistency Models (Song090

et al., 2023) introducing one-to-one mapping func-091

tions that transform intermediate states along the092

Ordinary Differential Equation (ODE) trajectory093

directly to their origin. This approach reduces sam-094

pling steps to one while maintaining output quality095

but requires access to a full range of t ∈ [0, 1]096

to approximate trajectories, demanding extensive097

training steps. As an alternative, Shortcut Models098

(Frans et al., 2024) condition the network on noise099

level and step size, enabling faster generation with100

fewer training steps by using only a subset of t val-101

ues. However, this method is computationally in-102

tensive due to additional constraints introduced dur-103

ing training, making it more resource-demanding104

than Consistency Models.105

To capitalize on the strengths and mitigate the106

limitations of the aforementioned approaches, we107

propose OZSpeech (One-step Zero-shot Speech108

Synthesis with Learned-Prior-Conditioned Flow109

Matching), a novel Zero-Shot TTS system. Our110

model leverages optimal transport conditional flow111

matching (Lipman et al., 2023) (OT-CFM), a class112

of diffusion-based models. We reformulate the113

original OT-CFM to enable single-step sampling,114

where the vector field estimator regresses the trajec-115

tories of all pairs of initial points from the learned116

prior distribution, rather than conventional Gaus-117

sian noise, to their respective target distributions.118

By minimizing the distance between the initial119

points and their origins while implicitly learning120

the optimal t for each prior, this approach elimi-121

nates the need to access a comprehensive range of122

t values or compute additional constraints, thereby123

ensuring high-fidelity synthesized speech.124

The key contributions of this paper are as fol-125

lows:126

• We propose a reformulated OT-CFM frame-127

work that effectively initializes the starting128

points of the flow matching process using sam-129

ples from a learned prior distribution. This130

prior is optimized to closely approximate the131

target distribution, enabling one-step sam-132

pling with minimal errors. Our framework133

requires only a single training run without the 134

need for an extensive distillation stage. 135

• We propose a simple yet effective network 136

architecture to learn prior-distributed codes. 137

• Compared to previous methods, our model 138

yields multi-fold improvement in WER and 139

latency, achieving significant reduction in 140

model size while striking a balance with 141

acoustical quality. In addition, while previ- 142

ous models suffer from increasing noise level 143

in the audio prompts, OZSpeech’s WER re- 144

mains stable, highlighting the excellent noise- 145

tolerant intelligibility of our method. Our 146

model requires significantly less computation, 147

with inference speed being 2.7 − 6.5 times 148

faster than the other methods. Our model is 149

only 29%-71% the size of the other models. 150

2 Related Work 151

Zero-Shot TTS enables the generation of speech in 152

an unseen speaker’s voice using only a few seconds 153

of audio as a prompt; this process is often termed 154

voice mimicking. Advances in large-scale gener- 155

ative models have driven significant progress in 156

this field. One prominent development is the adop- 157

tion of diffusion models (Ho et al., 2020; Song 158

et al., 2021), which have demonstrated remarkable 159

performance (Kang et al., 2023; Tran et al., 2023; 160

Shen et al., 2024; Ju et al., 2024b). Another ap- 161

proach, flow matching (Lipman et al., 2023; Liu 162

et al., 2023), has further advanced the state-of-the- 163

art by delivering strong results with reduced infer- 164

ence times (Kim et al., 2023; Mehta et al., 2024; 165

Eskimez et al., 2024; Chen et al., 2024c). Addition- 166

ally, a key innovation in Zero-Shot TTS is the use 167

of discrete tokens, often derived from neural codecs 168

(Wang et al., 2023; Kharitonov et al., 2023; Chen 169

et al., 2024b; Ju et al., 2024a; Du et al., 2024a). 170

Neural codecs are designed to learn discrete 171

speech and audio tokens, often referred to as acous- 172

tic tokens, while preserving reconstruction quality 173

and maintaining a low bitrate. SoundStream (Zeghi- 174

dour et al., 2022) is a well-known example that em- 175

ploys a vector-quantized variational autoencoder 176

(VQ-VAE), which was first introduced by (van den 177

Oord et al., 2017) in the field of computer vision, 178

and later adapted to TTS, to disentangle continu- 179

ous data into discrete tokens. It comprises multiple 180

residual vector quantizers to compress speech into 181

multiple tokens, which serve as intermediate rep- 182

resentations for speech generation. A significant 183
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breakthrough in this area, inspired by the success184

of LLMs in natural language processing, is VALL-185

E (Chen et al., 2025), a pioneering work in this186

domain. VALL-E represents speech as discrete187

codec codes using an off-the-shelf neural codec188

and redefines TTS as a conditional codec language189

modeling task. This approach has sparked further190

research and development in the field (Kharitonov191

et al., 2023; Zhang et al., 2023; Chen et al., 2024a;192

Han et al., 2024; Du et al., 2024b).193

3 Method194

3.1 Problem Statement195

In this paper, we consider the problem of gener-196

ating speech from given text and acoustic prompt197

such that conditions for the outputs are met. View-198

ing the synthesized speech as a data distribution,199

denoted as x1 ∼ p1(x), previous methods often200

construct the output data distribution from a noise201

distribution x0 ∼ p0(x). However, we propose202

constructing the output data distribution from a fea-203

sible intermediate state candidate xpr ∼ pprior(x)204

instead of x0, thereby disregarding preceding states205

and reducing the number of sampling steps. To206

achieve this, we undertake the following steps:207

• Prior Code Generation: We design an ef-208

fective method for generating prior codes to209

produce xpr (see Section 3.2).210

• Vector Field Estimation: We develop a vec-211

tor field estimator to approximate vθ , facilitat-212

ing the transition from xpr to x1 (see Section213

3.3).214

• Waveform Decomposition via FACodec:215

We employ FACodec (Ju et al., 2024b), a neu-216

ral codec disentangler framework, to decom-217

pose the waveform into distinct components,218

including speaker identity and sequences of219

codes encoding prosody, content, and acoustic220

details. This decomposition enables precise221

control over the aspects of speech to be pre-222

served or modified.223

3.2 Prior Codes Generation Modeling224

Our key contribution to prior code generation is225

that the process follows a hierarchical structure:226

each code sequence generation depends on the pre-227

ceding code sequences, while the condition for the228

first code sequence is initialized based on phoneme229

embeddings. To achieve this, we implement a cas-230

caded neural network where specific decoder layers231

generate the respective code sequences in the hi-232

erarchy (shown in Fig. 1b). Formally, the Prior 233

Codes Generator fψ(·) is modeled as: 234

p(q1:6 | p;ψ) = p(q1 | p; f1ψ)
6∏
j=2

p(qj | qj−1; f
j
ψ),

(1) 235

where qj is the j-th code sequence from the Feed- 236

Forward Transformer (FFT) decoder layer f jψ and 237

p represents phoneme embeddings as the initial 238

condition. The Prior Loss Lprior minimizes the neg- 239

ative logarithm of the joint probability in Eq. (1), 240

ensuring content code sequences are learned ef- 241

fectively by conditioning on phonemes, while the 242

others, including prosody and acoustic details, con- 243

verge towards the mean representations. The Prior 244

Codes Generator produces semantically meaning- 245

ful codes, reducing the distance between xpr and 246

x1, allowing the Vector Field Estimator vθ(·, ·) 247

to approximate vectors from a mean distribution 248

rather than generating them from pure noise. 249

To align the input phonemes with their corre- 250

sponding output code sequences, we employ a neu- 251

ral network functioning as a Duration Predictor, 252

as introduced in (Ren et al., 2019a). Briefly, the 253

Duration Predictor estimates the duration (i.e., the 254

number of acoustic tokens) for each input phoneme. 255

The phoneme embeddings are duplicated accord- 256

ingly before being passed through the decoder of 257

the Prior Codes Generator. We define the loss func- 258

tion used to train the Duration Predictor as Ldur, 259

which aims to minimize the mean squared error 260

between the predicted and ground truth durations 261

on a logarithmic scale. 262

3.3 One-Step Optimal Transport Flow 263

Matching for Zero-Shot TTS 264

One-Step Optimal Transport Flow Matching 265

Formulation. We rectify the OT-CFM paradigm, 266

simultaneously introduced by (Lipman et al., 2023) 267

and (Liu et al., 2023) and first adapted to text gen- 268

eration by (Hu et al., 2024). Our approach involves 269

constructing a vector field that regresses the veloc- 270

ity of non-Gaussian distribution and data distribu- 271

tion pairs, where the initial distribution closely ap- 272

proximates the target distribution. To this end, we 273

reformulate the original flow matching loss equa- 274

tion (details provided in A.2) to explicitly account 275

for the discrepancies between the non-Gaussian 276

initial distribution and the target distribution. Let 277

xt denote a linear probability path, starting from 278

a purely noisy initial point x0 ∼ N (0, I) and pro- 279

gressing towards a data point x1 ∼ D. It is defined 280
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Figure 1: Overview of OZSpeech: (a) The overall architecture: The text prompt is converted to phonemes and
then into prior codes via the Prior Codes Generator. Simultaneously, the audio prompt is encoded into codes using
the FACodec Encoder. These codes are concatenated along the sequence dimension and fed into the OT-CFM
Vector Field Estimator, which generates codes preserving the text content and acoustic attributes. Finally, the
FACodec Decoder converts them into output speech. (b) The Prior Codes Generator fψ(·) produces sequences of
phoneme-aligned codes. (c) The Vector Field Estimator refines these codes with the prosody and acoustic details
from the acoustic prompt. Before being fed through vθ(·, ·), six sequences of codes are first enhanced via Quantizer
Embedding, which serves as an identifier for each sequence within the hidden space. These embeddings are then
folded along the hidden dimension and processed by the network to estimate the velocity of the prior codes.

as xt = tx1+(1−t)x0, where t ∼ U(0, 1) denotes281

the interpolation parameter. Based on this, the ini-282

tial point x0 can be derived as x0 =
tx1−xt
1−t . Thus,283

the OT-CFM objective, as presented in Eq. (12),284

can be reformulated as follows:285

LCFM (θ) = Et,x0,x1

∥∥∥∥vθ(xt, t)− x1 − xt
1− t

∥∥∥∥2 .
(2)286

We assume that xt can be estimated via fψ(·). Un-287

der this assumption, xt is treated as a learnable288

state, which we denote as xpr, while t is regarded289

as an unknown interpolation parameter, represented290

as a prior-dependent time variable τ . Consequently,291

Eq. (2) can be reformulated as follows:292

LCFM(θ) = Expr,x1

∥∥∥∥vθ(xpr, τ)−
x1 − xpr

1− τ

∥∥∥∥2 .
(3)

293

This paradigm is similar to the original OT-CFM294

in its objective of regressing the velocity between295

the initial prior x0 and data x1 pairs. However,296

unlike the original approach, it does not access the297

distribution of x0 during training. Therefore, it298

also does not enforce x0 to follow a normal distri-299

bution. Furthermore, as the prior distribution xpr300

approaches the target distribution x1, both the num-301

ber of sampling steps and the magnitude of each302

step are substantially reduced. This convergence303

enables the sampling process to be efficiently per-304

formed in as few as a single step.305

Vector Field Estimator Modeling. To model 306

vθ(·, ·), we define the latent representations of the 307

prior, target, and estimated target distributions as 308

xpr, x1, and x̃1, respectively, where xpr,x1, x̃1 ∈ 309

R6×N×D. These terms represent six quantizer cat- 310

egories with sequence length N and feature dimen- 311

sionality D. Inspired by diffusion-based text gener- 312

ation models like Diffuseq (Gong et al., 2023), Dif- 313

former (Gao et al., 2024), and FlowSeq (Hu et al., 314

2024), we condition xpr on an acoustic prompt to 315

guide vθ(·, ·) in transferring speech attributes other 316

than content. Specifically, only prosody and acous- 317

tic detail codes serve as prompts, while the con- 318

tent codes are masked to prevent undesired content 319

transfer. The input to vθ(·, ·) is then formulated as 320

the concatenated representation: 321

zpr = Concat(ymask,xpr + ϵ), ϵ ∼ N (0, I), 322

where zpr ∈ R6×L×D, with L =M +N represent- 323

ing the total sequence length of the concatenated 324

input. ymask denotes the content-masking represen- 325

tation of the acoustic prompt. Random Gaussian 326

noise ϵ is added to the latent representation of xpr 327

to ensure the robustness and diversity of the model. 328

The diagram of the Vector Field Estimator is shown 329

in Fig. 1c. 330

Folding Mechanism and Quantizer Encoding. 331

Our data representation consists of six sequences 332

of quantizer embeddings, making direct sequence 333

modeling with Transformers challenging. Previ- 334
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ous works using Neural Codec for audio discretiza-335

tion, such as VALL-E (Chen et al., 2025), VALL-E336

2 (Chen et al., 2024a), and NaturalSpeech3 (Ju337

et al., 2024b), model each quantizer sequence in-338

dependently. While effective, this approach in-339

curs high computational costs and long genera-340

tion times due to sequential processing. To mit-341

igate these inefficiencies, we propose modeling342

all six quantizers simultaneously by folding them343

along the hidden dimension. Let F(·) be the fold-344

ing function, defined as a composition of two345

transformations: G : R6×L×D → RL×6D and346

H : RL×6D → R6D×D′
. Thus, F is expressed347

as: F ≜ H ◦ G : R6×L×D → R6D×D′
. Within348

this framework, the function F(·) permutes and349

reshapes the input tensor to sequentially align the350

component quantizers in the hidden space, follow-351

ing the prescribed order of prosody, content, and352

acoustic details. Subsequently, it adjusts the ten-353

sor’s dimensionality accordingly. In addition, we354

propose a quantizer encoding mechanism designed355

to identify specific quantizers within the hidden356

space. This mechanism operates in conjunction357

with the F(·) function. The quantizer encoding is358

formally defined as follows:359

Q(x) = x+ Dup(ω,L), x ∈ R6×L×D.360

Here, the quantizer encoding function Q(·) inte-361

grates the input tensor R6×L×D with the embed-362

ding Dup(ω,L). In this context, ω ∈ R6×1×D363

plays a role as the identifier for the latent rep-364

resentation of the quantizers, while the function365

Dup(·, ·) duplicates the identifier along the se-366

quence length L. With Q(·), we aim to prevent367

the model from confusing the quantizers with each368

other, even when they are simultaneously mod-369

eled within a single sequence. Consequently, the370

latent representation zpr is transformed into z̆pr,371

which subsequently serves as the direct input to the372

function vθ(·, ·). The transformation is defined as373

z̆pr = (F ◦ Q)(zpr).374

Anchor Loss. To optimize generative model perfor-375

mance on discrete token data and stabilize training,376

we use Anchor Loss Lanchor as a regularization377

term for embeddings. Initially introduced in dif-378

fusion models for discrete data (Gao et al., 2024)379

and later adapted for flow matching models (Hu380

et al., 2024), Lanchor measures the difference be-381

tween an intermediate state xt and the ground truth382

x1. It prevents embedding collapse, reduces dis-383

tances between states, and enables efficient sam-384

pling. In this study, Lanchor minimizes the negative 385

log-likelihood of the joint probability (Eq. (4)). 386

Let eϕ(·) = [e1, e2, . . . , eV ] ∈ RV×D denotes 387

the embedding lookup function with the vocab- 388

ulary size of V . Given A6×L = {αi,j | i = 389

1 . . . 6; j = 1 . . . L}, where αi,j ∈ {1 . . . V }, rep- 390

resents a quantizer element of an x1 with the se- 391

quence length of L, the embedding of A6×L can be 392

expressed as eϕ(A6×L) = {εi,j | i = 1 . . . 6; j = 393

1 . . . L}, where εi,j ∈ RD. Thus, the joint proba- 394

bility approximating the target distribution z1, con- 395

ditioned on the estimated sequences z̃1, can be 396

expressed as follows: 397

p(z1 | z̃1;ϕ) =
6∏
i=1

L∏
j=1

p(εi,j | ε̃i,j ; eϕ), (4) 398

where z̃1 is the approximation of z1, deduced us- 399

ing the triplet consisting of the estimated vector 400

vθ(z̆pr, τ), the prior state zpr, and the correspond- 401

ing interpolate parameter τ . The function F−1 de- 402

notes the reverse function of F . This relationship 403

is expressed as z̃1 = zpr+(1−τ)F−1(vθ(z̆pr, τ)). 404

Total loss. We define the total loss function used 405

in our joint training method as Ltotal = Lprior + 406

Ldur+LCFM+Lanchor. The loss functions Lprior 407

and Ldur set the training objective for the Prior 408

Codes Generator, whereas LCFM and Lanchor are 409

designed to construct the vector field and distill the 410

sampling steps, respectively. 411

4 Experiments 412

4.1 Experiment Setup 413

Dataset. We employ the LibriTTS dataset (Zen 414

et al., 2019), which comprises multi-speaker En- 415

glish audio recordings of training data. For bench- 416

marking purposes, we use the LibriSpeech test- 417

clean (Panayotov et al., 2015) dataset. More de- 418

tailed information is provided in Appendix D.1. 419

Evaluation Metrics. To assess model performance, 420

we employ the following objective evaluation met- 421

rics for each criterion: speech quality, quantified by 422

UTMOS; speaker similarity, measured using SIM- 423

O and SIM-R; robustness, indicated by WER; and 424

prosody accuracy and error, analyzed through pitch 425

and energy. Additionally, we employ NFE and RTF 426

metrics to measure the latency of the sampling pro- 427

cess. More details on the evaluation metrics can be 428

found in Appendix D.2. 429
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Table 1: Performance evaluation on the LibriSpeech test-clean across different audio prompt lengths. Bold indicates
the best result, and underline indicates the second-best result. (↑) indicates that higher values are better, while (↓)
indicates that lower values are better. [♠] means reproduced results. [⋆] and [♣] mean results inferred from official
and ufficial checkpoints, respectively. Abbreviation: LT (LibriTTS), E (Emilia), GS (GigaSpeech).

SPK-SIM F0 Energy

Model Data (hours) UTMOS (↑) WER (↓) SIM-O (↑) SIM-R (↑) Accuracy (↑) RMSE (↓) Accuracy (↑) RMSE (↓)

Ground Truth 4.09 0.02 - - - - - -

1s Prompt

F5-TTS [⋆] (Chen et al., 2024c) E (95,000) 1.35 0.20 0.11 - 0.51 43.65 0.36 0.42
VoiceCraft [⋆] (Peng et al., 2024) GS (9,000) 3.45 0.16 0.31 0.24 0.61 31.57 0.52 0.01
NaturalSpeech 2 [♣] (Shen et al., 2024) LT (585) 2.12 0.12 0.20 0.21 0.69 26.48 0.39 0.02
VALL-E [♠] (Chen et al., 2025) LT (500) 3.61 0.21 0.24 0.28 0.55 37.87 0.40 0.02

OZSpeech LT (500) 3.17 0.05 0.30 0.33 0.62 27.7 0.49 0.02

3s Prompt

F5-TTS [⋆] (Chen et al., 2024c) E (95,000) 1.25 0.30 0.18 - 0.40 64.06 0.44 0.43
VoiceCraft [⋆] (Peng et al., 2024) GS (9,000) 3.55 0.18 0.51 0.45 0.78 17.22 0.44 0.01
NaturalSpeech 2 [♣] (Shen et al., 2024) LT (585) 2.38 0.09 0.31 0.38 0.80 15.62 0.25 0.02
VALL-E [♠] (Chen et al., 2025) LT (500) 3.68 0.19 0.40 0.48 0.75 21.66 0.36 0.02

OZSpeech LT (500) 3.15 0.05 0.40 0.47 0.81 11.96 0.67 0.01

5s Prompt

F5-TTS [⋆] (Chen et al., 2024c) E (95,000) 1.24 0.34 0.21 - 0.33 66.97 0.40 0.44
VoiceCraft [⋆] (Peng et al., 2024) GS (9,000) 3.58 0.19 0.56 0.51 0.81 14.48 0.46 0.01
NaturalSpeech 2 [♣] (Shen et al., 2024) LT (585) 2.33 0.09 0.35 0.44 0.84 13.13 0.28 0.02
VALL-E [♠] (Chen et al., 2025) LT (500) 3.72 0.19 0.46 0.55 0.79 18.20 0.41 0.01

OZSpeech LT (500) 3.15 0.05 0.39 0.48 0.83 12.05 0.67 0.01

Baselines. We compare our model with previous430

zero-shot TTS baselines. Further details regarding431

baselines are available in Appendix D.3.432

4.2 Main Results433

Table 1 shows the performance of OZSpeech and434

representative baseline methods for 1s, 3s, and 5s435

audio prompt lengths. OZSpeech establishes a new436

SOTA on WER across all audio prompt lengths,437

demonstrating superior content preserving capa-438

bility through a multi-fold reduction in WER. For439

example, OZSpeech reduces WER by a factor of440

1.8 − 6.8 over the other methods for 5s prompt441

length. Some of these models, such as F5-TTS,442

are trained on substantially more training data (F5-443

TTS is trained on 95,000 hours of speech whereas444

OZSpeech is trained on 500 hours). Compared to445

the next-best method, OZSpeech yields a relative446

reduction in WER by 58%, 44%, and 44% for 1s,447

3s, and 5s audio prompt lengths, respectively. Ad-448

ditionally, while the WER scores of all baseline449

methods are sensitive to prompt length, OZSpeech450

maintains a consistent WER regardless of prompt451

length.452

For pitch and energy accuracies and errors,453

which indicate the prosody reconstruction ability454

of TTS systems, OZSpeech consistently ranks as455

the best or second-best performer across different456

prompt lengths. For the remaining metrics (UT-457

MOS, SIM-O, and SIM-R), our method in overall458

does not exhibit an obvious performance advan-459

tage over the baseline models. (We note that these460

models also experience trade-offs between different 461

metrics.) However, our goal is to enhance the bal- 462

ance between intelligibility (i.e. content accuracy) 463

and acoustical/perceptual quality while maintain- 464

ing low latency and small model size. 465

Our UTMOS scores show a rather small degrada- 466

tion compared to some of the baselines, particularly 467

VALL-E and VoiceCraft. This is largely due to dif- 468

ferences in the neural codecs’ trade-offs between 469

acoustic and semantic representations. EnCodec 470

(VoiceCraft’s codec) primarily relies on acoustic 471

codes, while SpeechTokenizer (VALL-E’s codec 472

in this experiment) incorporates one semantic se- 473

quence alongside acoustic codes. In contrast, Fa- 474

Codec (OZSpeech’s codec) strives to balance both 475

representations. However, our focus is on opti- 476

mizing the trade-off between sampling speed and 477

speech synthesis quality. 478

We also retrain F5-TTS with 500 hours of the 479

LibriTTS dataset using the official code for 1 mil- 480

lion steps following its guideline, however the re- 481

sulting WER exceeds 0.95 across all settings, so 482

we exclude this retrained checkpoint from Table 1 483

and instead use the officially released checkpoint, 484

which is trained on 95,000 hours of data. The 485

poor retraining results suggest that this method, 486

which is based on traditional OT-CFM, requires a 487

much larger, more diverse dataset for robustness. 488

In contrast, neural codec-based models remain ef- 489

fective with limited data, likely due to extensive 490

pre-training of the neural codec module on massive 491

datasets. Thus, traditional OT-CFM methods like 492

6



Table 2: Comparison of model size and latency for 3s audio prompt length. Column #Params indicates the total
number of parameters required for end-to-end synthesis, with the first value representing the parameters of the
zero-shot model (trainable) and the second value corresponding to those of the neural codec or vocoder component
(frozen).

Model #Params NFE (↓) RTF (↓) WER (↓) SIM-O (↑)

F5-TTS (Eskimez et al., 2024) 336M + 13.5M Vovos (Siuzdak, 2024) 32 0.70 0.30 0.18
VoiceCraft (Peng et al., 2024) 830M + 14M EnCodec (Défossez et al., 2023) - 1.70 0.18 0.51
NaturalSpeech 2 (Shen et al., 2024) 378M + 14M EnCodec (Défossez et al., 2023) 200 1.66 0.09 0.31
VALL-E (Chen et al., 2025) 594M + 104M SpeechTokenizer (Zhang et al., 2024a) - 0.86 0.19 0.40

OZSpeech 145M + 102M FACodec (Ju et al., 2024b) 1 0.26 0.05 0.40

Table 3: Comparison of two prompting strategies during
training: First Segment and Arbitrary Segment.

SPK-SIM

Prompt Setting UTMOS (↑) WER (↓) SIM-O (↑) SIM-R (↑)

1s Prompt

First segment 3.01 0.08 0.25 0.29
Arbitrary segment 3.17 0.05 0.30 0.33

3s Prompt

First segment 3.04 0.08 0.35 0.42
Arbitrary segment 3.15 0.05 0.40 0.47

5s Prompt

First segment 3.02 0.06 0.37 0.45
Arbitrary segment 3.15 0.05 0.39 0.48

F5-TTS are unsuitable for low-resource languages.493

Table 2 compares the model sizes and latency of494

OZSpeech and baseline models. OZSpeech is the495

smallest model of all, being only 29%-71% the size496

of the other models. When considering only the497

trainable part of the models, the number of train-498

able parameters of OZSpeech is only 17%-43% that499

of the other models. For the NFE metric, our model500

uses only a single sampling step, significantly re-501

ducing computation compared to NaturalSpeech 2502

and F5-TTS, which require 200 and 32 steps, re-503

spectively, to achieve optimal performance. As a504

result, in terms of inference speed represented by505

the RTF metric, OZSpeech is almost 3 times faster506

than the next fastest model, F5-TTS.507

4.3 Ablation Study508

Table 3 compares the performance of two prompt-509

ing strategies: First Segment and Arbitrary Seg-510

ment. The former generates prompts using the ini-511

tial portion of the ground truth, whereas the latter512

selects random audio segments from the ground513

truth to form the prompts. The results clearly show514

that the Arbitrary Segment strategy outperforms515

the First Segment strategy across all metrics. In516

the First Segment setting, the model seems to over-517

fit in that it is forced to transfer the prompt to the518

beginning of the target. In contrast, the Arbitrary519

Segment setting hides the position of the prompt,520

allowing it to smoothly transfer attributes from521

the prompt to the target. Consequently, we adopt 522

the Arbitrary Segment approach for our training. 523

This experiment also shows that the Arbitrary Seg- 524

ment approach improves robustness by exposing 525

the model to a more diverse range of speech con- 526

texts, leading to better generalization in zero-shot 527

speech synthesis. 528

4.4 Noise Tolerance Analysis 529

Unlike previous studies, we propose to investigate 530

the effects of noisy prompts in TTS. Table 4 evalu- 531

ates the tolerance of each model on noisy prompts. 532

We conduct zero-shot testing of all models in this 533

scenario, where zero-shot in this context means that 534

the models trained on their original training dataset, 535

typically with clean prompts, are directly tested on 536

noisy prompts. For this, we generate three sets of 537

noisy prompts at SNRs of 0dB, 6dB, and 12dB, 538

respectively. SNR = ∞ refers to prompts directly 539

sourced from LibriSpeech test-clean dataset, with 540

metric values directly replicated from Table 1. 541

Overall, all baseline methods are highly sensitive 542

to noise in the audio prompts, experiencing signif- 543

icant degradation in all metrics as prompt SNR 544

decreases. OZSpeech also shows similar sensitiv- 545

ity except for WER, which experiences either no 546

or negligible degradation across all prompt SNR 547

levels. VALL-E seems to be the most vulnerable 548

to noise, where the WER increases by almost 2.7 549

times at the least noisy setting, SNR = 12dB. At 550

SNR = 0dB, VALL-E becomes almost unintelligi- 551

ble with a 93% WER. The WER results highlight 552

the robust intelligibility of OZSpeech, even in noisy 553

prompt conditions. 554

Although OZSpeech performs sub-optimally in 555

non-WER metrics with the original clean prompts, 556

it surpasses all baseline models in UTMOS. This 557

improvement is largely attributed to the significant 558

performance drop observed in the baseline models. 559

Mixed results are observed when comparing all 560

models on the remaining metrics. 561

Next, we further fine-tune OZSpeech with both 562
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Table 4: Performance evaluation on noisy audio prompts. The noisy prompts are derived from the LibriSpeech
test-clean dataset with additive noise augmentation. The prompts are 3-second long. The checkpoints of each model
trained on LibriTTS—except for VoiceCraft, which was trained on GigaSpeech—are used without re-training the
models to include noisy samples. [♦] means fine-tuned results on noisy prompts. This table highlights a vulnerable
use case where speech prompts contain noise, assessing the tolerance of these models. SNR= ∞ indicates the
prompts are directly obtained from LibriSpeech test-clean dataset and these results are simply copied from Table 1.

SPK-SIM F0 Energy

SNR (dB) Model UTMOS (↑) WER (↓) SIM-O (↑) SIM-R (↑) Accuracy (↑) RMSE (↓) Accuracy (↑) RMSE (↓)

∞

F5-TTS (Chen et al., 2024c) 1.25 0.30 0.18 - 0.40 64.06 0.44 0.43
VoiceCraft (Peng et al., 2024) 3.55 0.18 0.51 0.45 0.78 17.22 0.44 0.01
NaturalSpeech 2 (Shen et al., 2024) 2.38 0.09 0.31 0.38 0.80 15.62 0.25 0.02
VALL-E (Chen et al., 2025) 3.68 0.19 0.40 0.48 0.75 21.66 0.36 0.02

OZSpeech 3.15 0.05 0.39 0.47 0.81 11.96 0.67 0.01
OZSpeech [♦] 3.19 0.06 0.39 0.46 0.78 13.67 0.65 0.01

12

F5-TTS (Chen et al., 2024c) 1.34 0.22 0.10 - 0.36 52.79 0.44 0.42
VoiceCraft (Peng et al., 2024) 2.42 0.20 0.40 0.40 0.59 32.48 0.60 0.01
NaturalSpeech 2 (Shen et al., 2024) 1.66 0.12 0.22 0.34 0.71 20.0 0.45 0.01
VALL-E (Chen et al., 2025) 2.43 0.51 0.25 0.31 0.54 59.25 0.40 0.02

OZSpeech 2.65 0.05 0.28 0.35 0.70 21.70 0.53 0.03
OZSpeech [♦] 3.04 0.05 0.33 0.39 0.76 15.0 0.73 0.01

6

F5-TTS (Chen et al., 2024c) 1.41 0.31 0.06 - 0.35 60.47 0.44 0.35
VoiceCraft (Peng et al., 2024) 1.80 0.27 0.33 0.36 0.50 45.31 0.68 0.01
NaturalSpeech 2 (Shen et al., 2024) 1.42 0.16 0.17 0.30 0.61 27.41 0.58 0.01
VALL-E (Chen et al., 2025) 1.66 0.77 0.14 0.18 0.40 96.93 0.44 0.02

OZSpeech 2.21 0.06 0.23 0.29 0.61 32.80 0.46 0.05
OZSpeech [♦] 2.90 0.06 0.29 0.34 0.72 17.41 0.74 0.01

0

F5-TTS (Chen et al., 2024c) 1.43 0.49 0.05 - 0.35 64.29 0.44 0.22
VoiceCraft (Peng et al., 2024) 1.58 0.44 0.22 0.29 0.40 57.40 0.55 0.02
NaturalSpeech 2 (Shen et al., 2024) 1.33 0.23 0.12 0.26 0.48 38.27 0.56 0.01
VALL-E (Chen et al., 2025) 1.44 0.93 0.07 0.11 0.36 102,68 0.52 0.07

OZSpeech 1.72 0.06 0.17 0.22 0.45 46.60 0.44 0.08
OZSpeech [♦] 2.58 0.06 0.23 0.28 0.67 21.37 0.54 0.02

original and noisy prompts, where noisy prompts563

occur with a probability of 0.8. The noisy prompts564

are constructed by mixing the original prompts with565

random noise at different SNRs, drawn from a uni-566

form distribution over the [0dB, 15dB] range. We567

leveraged the QUT-NOISE database (Dean et al.,568

2010) as our noise dataset. When tested with clean569

prompts (SNR = ∞), there is either no change570

or minimal changes in OZSpeech’s performance571

across all metrics before and after fine-tuning. In572

noisy prompt conditions, WER remains unaffected573

by fine-tuning while the other metrics are signifi-574

cantly improved across all SNR levels. With de-575

creasing SNR, fine-tuning generally yields increas-576

ingly larger improvements in all non-WER metrics.577

We have empirically demonstrated the feasibil-578

ity of the noise-aware training approach, which579

aims to synthesize noise-free speech conditioned580

by noisy prompts. This approach enables Zero-581

Shot TTS models to implicitly remove noise from582

given codec codes while preserving key attributes583

of speech. Consequently, neural codec-based Zero-584

shot TTS systems, which have traditionally been585

vulnerable and sensitive to noisy prompts, exhibit586

enhanced robustness, particularly against adversar-587

ial attacks.588

5 Conclusion 589

We propose OZSpeech, an effective and efficient 590

zero-shot TTS model that employs flow matching 591

with a single sampling step from a learned prior 592

instead of random noise. The model strikes a bal- 593

ance between synthesized speech intelligibility and 594

acoustical quality. In particular, OZSpeech yields 595

a multi-fold improvement in WER compared to 596

existing baseline methods with some trade-off in 597

the auditory quality. Furthermore, unlike other 598

methods, OZSpeech achieves a consistent WER 599

across different audio prompt’s lengths and noise 600

levels. With a single-step sampling approach and 601

a novel prior learning module that learns an effec- 602

tive starting point for the sampling process, our 603

model requires significantly less computation, with 604

inference speed being 2.7 − 6.5 times faster than 605

the other methods. In addition, our model size is 606

only 29%-71% that of the other models. OZSpeech 607

achieves competitive results even over models that 608

are trained on much larger training sets. 609

In future work, we plan to enhance OZSpeech by 610

integrating adaptive noise filtering techniques and 611

expanding its capability to support multilingual and 612

multimodal zero-shot speech synthesis, enabling 613

more versatile applications in real-world scenarios. 614
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Limitations615

Despite achieving remarkable results, our Zero-616

shot TTS model still encounters challenges in nat-617

uralness. We have observed that the synthesized618

speech often exhibits slight distortions, which ap-619

pear to contribute to a degradation in overall quality.620

In this study, we employed the Duration Predic-621

tor, originally proposed in FastSpeech (Ren et al.,622

2019b), to align input phonemes with codec codes.623

This module requires ground-truth phoneme dura-624

tions for training; however, since phoneme dura-625

tions are inherently real numbers rather than inte-626

gers, inaccuracies arise in the ground-truth data.627

To align with codec codes, these durations must628

be rounded to integer values, which subsequently629

degrades the quality of the synthesized speech in630

the temporal domain. To address this issue in fu-631

ture work, we plan to explore alternative alignment632

methods, such as Monotonic Alignment Search633

(Kim et al., 2020) or Encoder-Decoder architec-634

tures. Nevertheless, the approach employed in635

this study remains the de facto approach in many636

real-world TTS systems, where latency is a criti-637

cal factor. Thus, this presents a trade-off between638

synthesis quality and computational efficiency.639

Potential Risks640

Zero-shot Text-to-Speech (TTS) models offer sev-641

eral advantages, such as the ability to rapidly and642

effortlessly synthesize speech without requiring643

repeated recordings, making them particularly ben-644

eficial for content creators and for restoring dam-645

aged audio. However, despite these benefits, they646

also pose significant risks. Zero-shot TTS models,647

which can generate speech in novel voices with648

little to no training data, present several potential649

threats, including:650

• Deepfake Fraud: Malicious entities may ex-651

ploit these models to impersonate individuals,652

facilitating scams, misinformation, or fraudu-653

lent activities.654

• Fabricated Media: Synthesized audio can be655

used to create misleading or defamatory con-656

tent, influencing public perception and spread-657

ing misinformation.658

• Privacy Violations: The unauthorized repli-659

cation of voices without explicit consent raises660

ethical and legal concerns regarding individ-661

ual privacy.662

• Legal and Copyright Challenges: Certain663

voices may be subject to copyright, trade-664

mark, or publicity rights protections, poten- 665

tially leading to legal disputes over their unau- 666

thorized use. 667
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A Background970

A.1 FACodec971

Factorized neural speech codec, named FACodec,972

(Ju et al., 2024b) was proposed as a codec disentan-973

gler and timbre extractor. It separates the original974

speech waveform into distinct aspects: content,975

prosody, acoustic details, and timbre. Specifically,976

the speech input x ∈ RC is processed through a977

speech encoder, fenc, comprising several convolu-978

tional blocks to produce a pre-quantization latent979

representation:980

h = fenc(x) ∈ RT×D, (5)981

where T and D denote the downsampled time-982

frames and the latent dimension, respectively.983

Subsequently, three factorized vector quantizers984

(FVQs) are employed to tokenize h into distinct985

discrete sequences, capturing detailed representa-986

tions of speech attributes such as content, prosody,987

and acoustic details. Let Qp, Qc, and Qa denote988

the FVQs for prosody, content, and acoustic de-989

tails, respectively. Each FVQ comprises a cer-990

tain number of quantizers, defined Qi = {qji }
Ni
j=1991

where i ∈ {p, c, a}, qji ∈ Rd represents the j-th992

quantizer corresponding to the i-th attribute, with993

a hidden dimension d, and its codebook size of 994

1024. The number of quantizers for each attribute 995

is Np = 1, Nc = 2, Na = 3. Thus, the output con- 996

sists of a total of six sequences of discrete codes: 997

z = Concat(fp(h), fc(h), fa(h)) ∈ RT×6, (6) 998

where fp(h) ∈ RT×1, fc(h) ∈ RT×2, and fa(h) ∈ 999

RT×3 are functions that map the latent representa- 1000

tion h into discrete codes representing the speech 1001

attributes, which are then concatenated into a uni- 1002

fied representation z. 1003

The timbre attribute is extracted by passing h 1004

through several Conformer blocks (Gulati et al., 1005

2020) combined with a temporal pooling layer, 1006

which converts h into a timbre-specific representa- 1007

tion: 1008

zt = TemporalPooling(Conformer(h)) ∈ RD.
(7) 1009

After obtaining z and zt, the neural codec decoder 1010

fdec combines them to reconstruct the waveform: 1011

y = fdec(z, zt). (8) 1012

Inspired by Eq. (8), which takes z and zt as inputs 1013

and is pre-trained on a large-scale, multi-speaker 1014

dataset, ensuring robust zero-shot TTS capabilities, 1015

our approach aims to build a system that generates 1016

a six-sequence representation z̃ ∈ RT×6, which is 1017

forced to lie within the subspaces of the pre-trained 1018

FACodec. This representation captures prosody, 1019

content, and acoustic details in a manner consistent 1020

with z. Subsequently, z̃ is fed into fdec, alongside 1021

zt, obtained using Eq. (7), to synthesize the speech 1022

output ỹ. 1023

A.2 Flow Matching 1024

We present the fundamental principles of Flow 1025

Matching (FM) upon which our model is built. FM 1026

aims to construct a probability path xt ∼ pt(x), 1027

from a known source distribution x0 ∼ p0(x) (typi- 1028

cally a Gaussian distribution) to a target distribution 1029

x1 ∼ p1(x). Specifically, FM is formulated as a re- 1030

gression objective for training a velocity field (also 1031

called a vector field), which models the instanta- 1032

neous velocities of samples at time t (also known 1033

as the flow). This velocity field is then used to 1034

transform the source distribution p0 into the target 1035

distribution p1 along the probability path pt. For- 1036

mally, the flow of x along the trajectory is defined 1037

by an ordinary differential equation (ODE): 1038

d

dt
dψt(x) = vt(ψt(x); θ), ψ0(x) = x, (9) 1039
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where t ∼ U [0, 1], ψt : [0, 1] × Rd → Rd repre-1040

sents a time-dependent flow describing the position1041

of the point x at time t, and vt : [0, 1]×Rd → Rd is1042

the time-dependent velocity field modeled by a neu-1043

ral network with parameters θ. Given xt := ψt(x0),1044

the velocity field vt creates a probability path pt1045

such that xt ∼ pt for x0 ∼ p0. Under this formu-1046

lation, the objective is to regress velocity field vt1047

predicted by the neural network parameterized by1048

θ to a target velocity field ut in order to generate1049

the desired probability path pt. This is achieved by1050

minimizing the Flow Matching (FM) loss:1051

LFM (θ) = Et,xt
∥∥∥vt(xt; θ)− ut(xt)

∥∥∥2, (10)1052

where t ∼ U [0, 1], xt ∼ pt.1053

In practice, LFM (θ) is rarely implemented due1054

to the complexity of ut and the lack of prior knowl-1055

edge of pt, ut, and the target distribution p1, which1056

makes it an obstacle to directly calculate ut(xt).1057

A feasible approach to address this issue is to sim-1058

plify the loss by constructing the probability path1059

pt conditioned on real data x1 from the training1060

dataset. This path is also known as conditional1061

optimal transport path. Following (Lipman et al.,1062

2023), a random variable xt ∼ pt can be expressed1063

as a linear combination of x0 ∼ N (x|0, I) and1064

x1 ∼ p1:1065

xt = tx1 + (1− t)x0 ∼ pt, (11)1066

Thus, the probability path pt(x|x1) =1067

N (x|tx1, (1 − t)2I). Given xt represents1068

conditional random variables, the conditional ve-1069

locity field can be derived from d
dtxt = ut(xt|x1)1070

as ut(xt|x1) = x1 − x0. Using this, we can1071

formulate a tractable and simplified version of1072

the Flow Matching loss (10), referred to as the1073

Conditional Flow Matching (CFM) loss. This1074

formulation encourages straighter trajectories1075

between the source and target distributions and is1076

expressed as follows:1077

LCFM (θ) = Et,x0,x1
∥∥∥vt(xt; θ)− ut(xt|x1)

∥∥∥2
= Et,x0,x1

∥∥∥vt(xt; θ)− (x1 − x0)
∥∥∥2,
(12)

1078

where t ∼ U [0, 1], x0 ∼ N (x|0, I), x1 ∼ p1.1079

Once the training of the vector field vt is complete,1080

solving the ODE (9) at discretized time steps until1081

t = 1 allows us to generate novel samples x1 that1082

approximate the target distribution p1.1083

B Method Details 1084

Prompting Trick during Training. As outlined 1085

in Section 3.3, incorporating an acoustic prompt is 1086

essential for generating x1. This process involves 1087

transferring prosody and acoustic detail attributes 1088

from the prompt to the output quantizers. A signif- 1089

icant challenge arises in preparing prompt-target 1090

pairs that exhibit similar attributes, as mismatches 1091

can lead to degraded performance. To address this 1092

issue, we leverage ground truth quantizers, utilizing 1093

them as both the prompt and the target during train- 1094

ing. Specifically, we randomly select and clone a 1095

segment of 1 ∼ 3 seconds from the ground truth 1096

data to serve as the prompt at each training step. 1097

This approach ensures a high degree of similarity 1098

between the prompt and target, facilitating more ef- 1099

fective attribute transfer and enhancing the quality 1100

of the generated output. 1101

Losses Computing Strategy. Let the velocity of 1102

z̆pr along the path progressing toward the corre- 1103

sponding z1 be represented as v1:L
θ (z̆pr, τ), where 1104

L denotes the length of the entire output sequence 1105

of vθ(·, ·). Our goal is to compute the drift of 1106

xpr for generating x1 only; it is unnecessary to 1107

backpropagate gradients over the entire output se- 1108

quence, which includes the concatenation of acous- 1109

tic prompt y and xprior velocities. To address this, 1110

v1:L
θ (z̆pr, τ) is truncated by excluding the velocity 1111

components associated with the acoustic prompt 1112

y, where M denotes its length. The resulting trun- 1113

cated velocity, vM :L
θ (z̆pr, τ), is then used in sub- 1114

sequent operations, including loss computation, to 1115

ensure computational efficiency while maintaining 1116

the focus on the target velocity for xpr. As a result, 1117

Eq. ((3)) is rewritten as: 1118

LCFM (θ) = Ex1,xpr

∥∥∥∥vM :L
θ (z̆pr, τ)−

x1 − xpr

1− τ

∥∥∥∥2 .
(13) 1119

Consequently, the Anchor Loss Lanchor approxi- 1120

mating the target distribution x1, conditioned on 1121

the x̃1 is formulated: 1122

Lanchor(ϕ) = Ex1,x̃1 [−logp(x1 | x̃1;ϕ)] , (14) 1123

where, x̃1 is computed as follows: 1124

x̃1 = xpr + (1− τ)F−1(vθ,M :L(z̆pr, τ)). 1125

C Training Details 1126

We integrate the Prior Codes Generator and the 1127

Vector Field Estimator, exploring various config- 1128

urations to optimize overall system performance. 1129
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For the Prior Codes Generator, we employ a com-1130

pact neural network architecture with the following1131

specifications: a hidden dimension of dmodel = 256,1132

a multi-head attention mechanism with nheads = 4,1133

and a feed forward network filter size of dffn =1134

1024. These parameters are consistently applied1135

across both the encoder and decoder layers. The1136

architecture includes 2 FFT blocks in both the en-1137

coder and the shared decoder, while an additional1138

6 blocks are utilized as specific layers to estimate1139

the corresponding quantizers. The output dimen-1140

sionality of the Prior Codes Generator is set to1141

xpr = 1024, ensuring alignment with subsequent1142

processing stages. For the Vector Field Estimator,1143

we adopt a Transformer architecture comprising1144

four layers, each characterized by a hidden dimen-1145

sion of dmodlel = 1024, a number of attention heads1146

nheads = 32, and a feedforward network inner di-1147

mension of dffn = 4096 for the base-size model.1148

The Prior Codes Generator and the Vector Field1149

Estimator are jointly trained on a cluster of four1150

80GB A100 GPUs, using a batch size of 16. The1151

training process employs the AdamW optimizer1152

with a learning rate of 10−4, β1 = 0.9, β2 = 0.98,1153

and a weight decay parameter of 10−4.1154

D Evaluation Details1155

D.1 Dataset Details1156

Training dataset. We use a subset of 500 hours1157

from the LibriTTS dataset, where the duration of1158

individual audio ranges from 1.0 to 16.6 seconds.1159

From this dataset, we construct metadata for each1160

training sample, which includes the following ele-1161

ments: input phonemes, target durations, and target1162

code sequences. To derive the input phonemes1163

and their corresponding target durations, we use1164

the Montreal Forced Alignment (MFA) (McAuliffe1165

et al., 2017) tool. This tool aligns each audio sam-1166

ple with its transcription and extracts the duration1167

of each phoneme. Furthermore, we produce target1168

codes using FACodec, which processes input wave-1169

forms sampled at 16 kHz. The FACodec applies a1170

folding operation at a compression factor of 200.1171

As a result, each second of audio is decomposed1172

into a set of six quantizers, with each quantizer1173

comprising 80 discrete speech units. These units1174

have a value range spanning from 0 to 1023.1175

Evaluation dataset. We follow the VALL-E eval-1176

uation protocol (Chen et al., 2025). Particularly,1177

the LibriSpeech test-clean dataset is filtered to in-1178

clude samples between 4 and 10 seconds in length, 1179

totaling 2.2 hours of audio. For each sample, the 1180

prompt speech is randomly selected from another 1181

sample by extracting a 1-second, 3-second, or 5- 1182

second clip, depending on the prompt setting used 1183

in our experiment, from the same speaker. 1184

D.2 Metrics Details 1185

We evaluate each system using the following objec- 1186

tive evaluation metrics: 1187

• RTF (Real-Time Factor) is an essential metric 1188

for assessing a system’s efficiency, particu- 1189

larly in scenarios demanding real-time pro- 1190

cessing. It represents the time required to 1191

produce one second of speech. We assess the 1192

RTF of all models in a fully end-to-end setup 1193

using an NVIDIA 80GB A100 GPU. 1194

• NFE (Number of Function Evaluations) de- 1195

notes the total number of times the model’s 1196

guiding function—often a score or drift func- 1197

tion—is computed during the sampling pro- 1198

cess. This metric is especially important in 1199

settings where the generative process is formu- 1200

lated as solving an ordinary differential equa- 1201

tion (ODE), such as in the probability flow 1202

ODE method used in score-based generative 1203

models. 1204

• UTMOS (Saeki et al., 2022) is a deep 1205

learning-based system used to evaluate speech 1206

quality by predicting the mean opinion scores 1207

(MOS). It eliminates the need for costly, time- 1208

consuming subjective evaluations by using 1209

advanced deep learning techniques to pro- 1210

vide predictions that closely align with human 1211

judgments. 1212

• SIM-O and SIM-R are metrics used to eval- 1213

uate speaker similarity. SIM-O measures the 1214

similarity between the synthesized speech and 1215

the original prompt, while SIM-R evaluates 1216

the similarity between the synthesized speech 1217

and the reconstructed prompt generated by 1218

FACodec (Ju et al., 2024b). These metrics are 1219

computed by calculating the cosine similarity 1220

of speaker embeddings extracted by applying 1221

WavLM-TDCNN 2 on the audio waveforms. 1222

Both SIM-O and SIM-R range from -1 to 1, 1223

with higher values indicating greater speaker 1224

similarity. 1225

2https://github.com/microsoft/UniSpeech/tree/
main/downstreams/speaker_verification
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Table 5: Comparison of two OZSpeech model sizes: Base (145M parameters) and Small (100M parameters),
evaluated on the LibriSpeech test-clean dataset. Both models were trained on the 500-hour LibriTTS training dataset.

SPK-SIM F0 Energy

Model Size UTMOS (↑) WER (↓) SIM-O (↑) SIM-R (↑) Accuracy (↑) RMSE (↓) Accuracy (↑) RMSE (↓)

1s Prompt

Base 3.17 0.05 0.30 0.33 0.62 27.70 0.49 0.02
Small 3.15 0.05 0.29 0.33 0.69 23.94 0.51 0.02

3s Prompt

Base 3.15 0.05 0.40 0.47 0.81 11.96 0.67 0.01
Small 3.14 0.06 0.37 0.44 0.78 13.54 0.65 0.01

5s Prompt

Base 3.15 0.05 0.39 0.48 0.83 12.05 0.67 0.01
Small 3.17 0.05 0.38 0.46 0.79 12.58 0.66 0.01

• WER (Word Error Rate) is used to evaluate1226

the robustness of speech synthesis systems,1227

specifically how accurately they pronounce1228

each word. We employ an ASR model 3 to1229

transcribe the generated speech and compare1230

the transcription with the text prompt. The1231

ASR model used is a CTC-based HuBERT,1232

pre-trained on LibriLight and fine-tuned on1233

the 960-hour training set of LibriSpeech.1234

• Prosody Accuracy & Error are used to as-1235

sess the alignment between the synthesized1236

speech and audio prompt, with a specific fo-1237

cus on pitch (F0) and energy. For accuracy1238

assessment, we adopt the methodology pro-1239

posed in PromptTTS (Guo et al., 2022) and1240

TextrolSpeech (Ji et al., 2024b), categorizing1241

the F0 and energy levels of speech into three1242

categories—high, normal, and low—based on1243

their mean values 4. Additionally, we employ1244

the Root Mean Square Error (RMSE) to quan-1245

tify the differences in F0 and energy between1246

the synthesized speech and the corresponding1247

prompts.1248

D.3 Baselines Details1249

We compare our model with previous zero-shot1250

TTS baselines, including:1251

• VoiceCraft (Peng et al., 2024). We use the1252

official code and pre-trained checkpoint 5,1253

which is trained on the GigaSpeech dataset1254

(Chen et al., 2021).1255

3https://huggingface.co/facebook/
hubert-large-ls960-ft

4https://github.com/jishengpeng/TextrolSpeech
5https://huggingface.co/pyp1/VoiceCraft/blob/

main/830M_TTSEnhanced.pth

• NaturalSpeech 2 (Shen et al., 2024). We use 1256

the Amphion toolkit (Zhang et al., 2024b) and 1257

pre-trained checkpoint 6, which is trained on 1258

the LibriTTS dataset (Zen et al., 2019). 1259

• F5-TTS (Chen et al., 2024c). We use the offi- 1260

cial code and pre-trained checkpoint 7, which 1261

is trained on the Emilia dataset (He et al., 1262

2024). 1263

• VALL-E (Chen et al., 2025). We reproduce 1264

VALL-E using the Amphion toolkit (Zhang 1265

et al., 2024b) and train it under identical set- 1266

tings to our training dataset configuration. 1267

E Extra Experiments 1268

Table 5 shows the performance of OZSpeech-Base 1269

(145M parameters) and OZSpeech-Small (100M 1270

parameters). Although at over 31% reduction in 1271

size, the Small model shows comparable perfor- 1272

mance with the Base model across all metrics, ex- 1273

cept for pitch (F0). Interestingly, the Small model 1274

outperforms the Base model by 13.6% in F0 RMSE 1275

for 1s prompt length (23.94 for Small vs. 27.70 for 1276

Base). However, for 3s prompt length, it experi- 1277

ences a 13.2% relative decline in the same metric 1278

(13.54 for Small vs. 11.96 for Base). 1279

F Analysis 1280

As shown in Figure 2, the distributions of perfor- 1281

mance metrics across different prompt lengths are 1282

as follows: 1283

6https://huggingface.co/amphion/
naturalspeech2_libritts/tree/main/checkpoint

7https://huggingface.co/SWivid/F5-TTS/blob/
main/F5TTS_Base_bigvgan/model_1250000.pt
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• WER: For the 1s prompt, OZSpeech exhibits1284

a distribution that is very close to zero with a1285

narrow box, indicating superior performance.1286

The second best is NaturalSpeech 2, which1287

shows a slightly right-shifted box compared1288

to OZSpeech, followed by VoiceCraft. This1289

pattern is consistent across the 3s and 5s1290

prompts. In contrast, VALL-E and F5-TTS1291

display higher distributions. Notably, F5-TTS1292

shows slightly better performance than VALL-1293

E for the 1s prompt. However, as the prompt1294

length increases, F5-TTS significantly lags be-1295

hind the other baselines, with its distribution1296

approaching 0.5.1297

• UTMOS: The best performance for this met-1298

ric is achieved by VALL-E for the 1s prompt.1299

Its distribution shifts slightly to the right1300

for the 3s prompt and stabilizes for the 5s1301

prompt. VoiceCraft and OZSpeech show the1302

next best performances, maintaining stable1303

distributions across different prompt lengths,1304

with VoiceCraft consistently outperforming1305

OZSpeech. NaturalSpeech 2 scores mostly be-1306

low 3.0 for the 1s prompt and shows improve-1307

ment as the prompt length increases. Notably,1308

F5-TTS consistently scores below 1.5, signifi-1309

cantly lagging behind the other baselines.1310

• SIM-O: For the 1s prompt, the distribu-1311

tions of VoiceCraft and OZSpeech are al-1312

most equivalent, followed by VALL-E, F5-1313

TTS, and NaturalSpeech 2, respectively. As1314

the prompt length increases, the differences1315

among the models become more noticeable.1316

Specifically, VoiceCraft shows the best perfor-1317

mance in retaining the speaker’s identity in1318

the synthesized output. VALL-E follows with1319

the second-best performance, followed by1320

OZSpeech and NaturalSpeech 2, respectively.1321

In contrast, F5-TTS consistently demonstrates1322

poor performance regardless of the prompt1323

length.1324

All in all, OZSpeech achieved competitive per-1325

formance compared to other baselines. Although1326

our method does not show a clear performance1327

advantage over baseline models, our primary objec-1328

tive is to balance sampling speed and speech synthe-1329

sis capability. This trade-off enables our method to1330

maintain a small model size with low WER while1331

preserving the naturalness of the speech and the1332

speaker’s identity style from the prompt in the syn-1333

thesized output. In contrast to the baselines, which 1334

have larger models and require longer inference 1335

times (see Table 2), our method demonstrates a 1336

significant advantage. With just one sampling step, 1337

we can achieve promising performance. 1338
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Figure 2: Boxplots showing the distributions of performance metrics (WER, UTMOS, and SIM-O) on the Lib-
riSpeech test-clean dataset for each model, evaluated across different audio prompt lengths.
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