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ABSTRACT

Influence functions approximate the effect of training samples in test-time predic-
tions and have a wide variety of applications in machine learning interpretabil-
ity and uncertainty estimation. A commonly-used (first-order) influence function
can be implemented efficiently as a post-hoc method requiring access only to the
gradients and Hessian of the model. For linear models, influence functions are
well-defined due to the convexity of the underlying loss function and are gener-
ally accurate even across difficult settings where model changes are fairly large
such as estimating group influences. Influence functions, however, are not well-
understood in the context of deep learning with non-convex loss functions. In this
paper, we provide a comprehensive and large-scale empirical study of successes
and failures of influence functions in neural network models trained on datasets
such as Iris, MNIST, CIFAR-10 and ImageNet. Through our extensive experi-
ments, we show that the network architecture, its depth and width, as well as the
extent of model parameterization and regularization techniques have strong ef-
fects in the accuracy of influence functions. In particular, we find that (i) influence
estimates are fairly accurate for shallow networks, while for deeper networks the
estimates are often erroneous; (ii) for certain network architectures and datasets,
training with weight-decay regularization is important to get high-quality influ-
ence estimates; and (iii) the accuracy of influence estimates can vary significantly
depending on the examined test points. These results suggest that in general in-
fluence functions in deep learning are fragile and call for developing improved
influence estimation methods to mitigate these issues in non-convex setups.

1 INTRODUCTION

In machine learning, influence functions (Cook & Weisberg, 1980) can be used to estimate the
change in model parameters when the empirical weight distribution of the training samples is per-
turbed infinitesimally. This approximation is cheaper to compute compared to the expensive process
of repeatedly re-training the model to retrieve the exact parameter changes. Influence functions
could thus be used to understand the effect of removing an individual training point (or, groups of
training samples) on the model predictions at the test-time. Leveraging a first-order Taylor’s approx-
imation of the loss function, (Koh & Liang, 2017) has shown that a (first-order) influence function,
computed using the gradient and the Hessian of the loss function, can be useful to interpret machine
learning models, fix mislabelled training samples and create data poisoning attacks.

Influence functions are in general well-defined and studied for models such as logistic regression
(Koh & Liang, 2017), where the underlying loss-function is convex. For convex loss functions, in-
fluence functions are also accurate even when the model perturbations are fairly large (e.g. in the
group influence case (Koh et al., 2019b; Basu et al., 2020)). However, when the convexity assump-
tion of the underlying loss function is violated, which is the case in deep learning, the behaviour of
influence functions is not well understood and is still an open area of research. With recent advances
in computer vision (Szeliski, 2010), natural language processing (Sebastiani, 2002), high-stakes ap-
plications such as medicine (Lundervold & Lundervold, 2018), it has become particularly important
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to interpret deep model predictions. This makes it critical to understand influence functions in the
context of deep learning, which is the main focus of our paper.

Despite their non-convexity, it is sometimes believed that influence functions would work for deep
networks. The excellent work of (Koh & Liang, 2017) successfully demonstrated one example of
influence estimation for a deep network, a small (2600 parameters), "all-convolutional" network
(Springenberg et al., 2015). To the best of our knowledge, this is the one of the few cases for deep
networks where influence estimation has been shown to work. A question of key importance to
practitioners then arises: for what other classes of deep networks does influence estimation work?
In this work, we provide a comprehensive study of this question and find a pessimistic answer:
influence estimation is quite fragile for a variety of deep networks.

In the case of deep networks, several factors might have an impact on influence estimates: (i) due
to non-convexity of the loss function, different initializations of the perturbed model can lead to
significantly different model parameters (with approximately similar loss values); (ii) even if the
initialization of the model is fixed, the curvature values of the network (i.e. eigenvalues of the Hes-
sian matrix) at optimal model parameters might be very large in very deep networks, leading to a
substantial Taylor’s approximation error of the loss function and thus resulting in poor influence esti-
mates; (iii) for large neural networks, computing the exact inverse-Hessian Vector product, required
in computation of influence estimates, can be computationally very expensive. Thus, one needs to
use approximate inverse-Hessian Vector product techniques which might be erroneous; resulting
in low quality influence estimates; and finally (iv) different architectures can have different loss
landscape geometries near the optimal model parameters, leading to varying influence estimates.

In this paper, we study aforementioned issues of using influence functions in deep learning through
an extensive experimental study on progressively-growing complex models and datasets. We first
start our analysis with a case study of a small neural network for the Iris dataset where the exact
Hessian matrix can be computed. We then progressively increase the complexity of the network and
analyse a CNN architecture (depth of 6) trained on 10% of MNIST dataset, similar to (Koh & Liang,
2017). Next, we evaluate the accuracy of influence estimates for more complex deep architectures
(e.g. ResNets) trained on MNIST and CIFAR-10. Finally, we compute influence estimates on the
ImageNet dataset using ResNet-50.

We make the following observations through our analysis:

• We find that the network depth and width have a strong impact on influence estimates. In
particular, we show that influence estimates are fairly accurate when the network is shallow,
while for deeper models, influence estimates are often erroneous. We attribute this partially
to the increasing curvature values of the network as the depth increases.

• We observe that the weight decay regularization is important to obtain high quality influ-
ence estimates in certain architectures and datasets.

• We show that the inverse-Hessian Vector product approximation techniques such as
stochastic estimation (Agarwal et al., 2016) are erroneous, especially when the network
is deep. This can contribute to the low quality of influence estimates in deep models.

• We observe that the choice of test-point has a substantial impact on the quality of influence
estimates, across different datasets and architectures.

• In very large-scale datasets such as ImageNet, we have found that even ground-truth influ-
ence estimates (obtained by leave-one-out re-training) can be inaccurate and noisy partially
due to the model’s training and convergence.

These results highlight sensitivity of current influence functions in deep learning and call for devel-
oping robust influence estimators to be used in large-scale machine learning applications.

2 RELATED WORKS

Influence functions are primarily used to identify important training samples for test-time predic-
tions and debug machine learning models (Koh & Liang, 2017). Similar to influence functions,
(Chaudhuri & Mykland, 1993) tackles the problem of approximating a dataset using a subset of
the dataset. In recent times, there is an increase in the applications of influence functions for tasks
other than interpretability. For e.g.(Schulam & Saria, 2019) has used influence functions to audit
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the reliability of test-predictions. In NLP, influence functions have been used to detect biases in
word-embeddings (Brunet et al., 2018) whereas in the domain of ML security, influence functions
have been shown to be effective in crafting stronger data-poisoning attacks (Koh et al., 2019a). In-
fluence functions are also effective in the identification of important training groups (rather than an
individual sample) (Basu et al., 2019; Koh et al., 2019b). Prior theoretical work (Giordano et al.,
2018; 2019) have focused on quantifying finite sample error-bounds for influence estimates when
compared to the ground-truth re-training procedures. Recently, alternative methods to find influ-
ential samples in deep networks have been proposed. In (Yeh et al., 2018), test-time predictions
are explained by a kernel function evaluated at the training samples. Influential training examples
can also be obtained by tracking the change in loss for a test-prediction through model-checkpoints,
which are stored during the training time (Pruthi et al., 2020). While these alternative methods (Yeh
et al., 2018; Pruthi et al., 2020) work well for deep networks in interpreting model predictions, they
lack the “jackknife" like ability of influence functions which makes it useful in multiple applications
other than interpretability (e.g. uncertainty estimation).

3 BASICS OF INFLUENCE FUNCTION

Consider h to be a function parameterized by θ which maps from an input feature space X to an
output space denoted by Y . The training samples are denoted by the set S = {zi : (xi, yi)}ni=1,
while the loss function is represented by `(hθ(z)) for a particular training example z. The standard
empirical risk minimization solves the following optimization problem:

θ∗ = arg min
θ

1

n

n∑
i=1

`(hθ(zi)). (1)

Up-weighting a training example z by an infinitesimal amount ε leads to a new set of model param-
eters denoted by θε{z}. This set of new model parameters θε{z} is obtained by solving:

θε{z} = arg min
θ

1

n

n∑
i=1

`(hθ(zi)) + ε`(hθ(z)). (2)

Removing a training point z is similar to up-weighting its corresponding weight by ε = −1/n in
Equation(2). The main idea used by (Koh & Liang, 2017) is to approximate θε{z} by the first-order
Taylor series expansion around the optimal model parameters represented by θ∗, which leads to:

θε{z} ≈ θ
∗ − εH−1θ∗ ∇θ`(hθ∗(z)), (3)

where Hθ∗ represents the Hessian with respect to model parameters θ∗. Following the classical
result of (Cook & Weisberg, 1980), the change in the model parameters (∆θ = θε{z} − θ

∗) on up-
weighting the training example z can be approximated by the influence function (I(z)) as follows:

I(z) =
dθε{z}

dε
|ε=0 = −H−1θ∗ ∇θ` (hθ∗(z)) . (4)

The change in the loss value for a particular test point zt when a training point z is up-weighted can
be approximated as a closed form expression by the chain rule (Koh & Liang, 2017):

I(z, zt) = −∇`(hθ∗(zt))
TH−1θ∗ ∇`(hθ∗(z)). (5)

I(z, zt)/n is approximately the change in the loss for the test-sample zt when a training sample z is
removed from the training set. This result is, however, based on the assumption that the underlying
loss function is strictly convex in the model parameters θ and the Hessian Hθ∗ is a positive-definite
matrix (Koh & Liang, 2017). For large models, inverting the exact Hessian Hθ∗ is expensive. In
such cases, the inverse-Hessian Vector product can be computed efficiently with a combination of
Hessian-vector product (Pearlmutter, 1994) and optimization techniques (see Appendix for details).

4 WHAT CAN GO WRONG FOR INFLUENCE FUNCTIONS IN DEEP
LEARNING?

First-order influence functions (Koh & Liang, 2017) assume that the underlying loss function is
convex and the change in model parameters is small when the empirical weight distribution of the
training data is infinitesimally perturbed. In essence, this denotes the Taylor’s gap in Equation (3)
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Figure 1: Iris dataset experimental results - (a,b) Comparison of norm of parameter changes com-
puted with influence function vs re-training; (a) trained with weight-decay; (b) trained without
weight-decay. (c) Spearman correlation vs. network depth. (d) Spearman correlation vs. network
width.

to be small for an accurate influence estimate. However in the case of non-convex loss functions,
this assumption is not generally true. Empirically, we find that the Taylor’s gap is strongly affected
by common hyper-parameters for deep networks. For example, in Fig. (1)-(a,b), we find that for
networks trained without a weight-decay regularization on Iris, the Taylor’s gap is large resulting in
low quality influence estimates. In a similar vein, when the network depth and width is considerably
large (i.e. the over-parameterized regime), the Taylor’s gap increases and substantially degrades the
quality of influence estimates (Fig. (2)). Empirically this increase in Taylor’s gap strongly correlates
with the curvature values of the loss function evaluated at the optimal model parameters as observed
in Fig. (2-(b)).

Further complications may arise for larger models, where influence estimations in such settings
require an additional approximation to compute the inverse-Hessian vector product. Nonetheless,
we observe in Fig. (2)-(a), that on Iris this approximation has only a marginal impact on the influence
estimation. These results show that that network architecture, hyper-parameters, and loss curvatures
are important factors for proper influence estimations. In the next section, we discuss these issues in
details through controlled experiments on datasets and models of increasing complexity.

5 EXPERIMENTS

Datasets: We first study the behaviour of influence functions in a small Iris dataset (Anderson,
1936), where the exact Hessian can be computed. Further, we progressively increase the complexity
of the model and datasets: we use small MNIST (Koh & Liang, 2017) to evaluate the accuracy
of influence functions in a small CNN architecture with a depth of 6. Next, we study influence
functions on modern deep architectures trained on the standard MNIST (LeCun et al., 1998) and
CIFAR-10 (Krizhevsky et al., 2000) datasets. Finally, to understand how influence functions scale
to large datasets, we use ImageNet (Deng et al., 2009) to compute the influence estimates.

Evaluation Metrics: We evaluate the accuracy of influence estimates at a given test point zt us-
ing both Pearson (Kirch, 2008) and Spearman rank-order correlation (Spearman, 1904) with the
ground-truth (obtained by re-training the model) across a set of training points. Most of the ex-
isting interpretability methods desire that influential examples are ranked in the correct order of
their importance (Ghorbani et al., 2017). Therefore, to evaluate the accuracy of influence estimates,
Spearman correlation is often a better choice.

5.1 UNDERSTANDING INFLUENCE FUNCTIONS WHEN THE EXACT HESSIAN CAN BE
COMPUTED

Setup: Computing influence estimates with the exact Hessian has certain advantages in our study: a)
it bypasses inverse-Hessian Vector product approximation techniques which induce errors in com-
puting influence estimates. Thus, we can compare influence estimates computed with exact vs.
approximate inverse-Hessian Vector products to quantify this type of error; b) The deviation of the
parameters computed with the influence function from the exact parameters can be computed ex-
actly. This information can be useful to further quantify the error incurred by (first-order) influence
estimates in the non-convex setup. However, computations of the exact Hessian matrix and its in-
verse are only computationally feasible for models with small number of parameters. Thus, we use
the Iris dataset along with a small feed-forward neural network to analyse the behaviour of influence
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Figure 2: Iris dataset experimental results; (a) Spearman correlation of influence estimates with
the ground-truth estimates computed with stochastic estimation vs. exact inverse-Hessian vector
product. (b) Top eigenvalue of the Hessian vs. the network depth. (c) Spearman correlation between
the norm of parameter changes computed with influence function vs. re-training.

function computed with the exact Hessian in a non-convex setup. We train models to convergence
for 60k iterations with full-batch gradient descent. To obtain the ground-truth estimates, we re-
train the models for 7.5k steps, starting from the optimal model parameters. For our analysis, we
choose the test-point with the maximum loss and evaluate the accuracy of influence estimates with
the ground-truth amongst of the top 16.6% of the training points. Through our experiments with the
exact Hessian, we answer some relevant questions related to how properties of the network such as
depth, width and regularizers (e.g. weight-decay) affect the influence estimates.

The Effect of Weight-Decay: One of the simpler and common regularization techniques used to
train neural networks is weight-decay regularization. In particular, a term λ‖θ‖22, penalizing the
scaled norm of the model parameters is added to the objective function, during training, where λ is a
hyperparameter which needs to be tuned. We train a simple feed-forward network1 with and without
weight-decay regularization. For the network trained with weight-decay, we observe a Spearman
correlation of 0.97 between the influence estimates and the ground-truth estimates. In comparison,
for the network trained without a weight-decay regularization, the Spearman correlation estimates
decrease to 0.508. In this case, we notice that the Hessian matrix is singular, thus a damping factor of
0.001 is added to the Hessian matrix, to make it invertible. To further understand the reason for this
decrease in the quality of influence estimates, we compare the following metric across all training
examples: a) Norm of the model parameter changes computed by re-training; b) Norm of the model
parameter changes computed using the influence function (i.e. ‖H−1θ∗ ∇`(zi)‖2 ∀i ∈ [1, n]) (Fig.
1-(a,b)). We observe that when the network is trained without weight-decay, changes in model
parameters computed with the influence function have a substantially larger deviation from those
computed using re-training. This essentially suggests that the gap in Taylor expansion, using (first-
order) influence estimates is large, when the model is trained without weight-decay. We observe
similar results with smooth activation functions such as tanh (see the Appendix for details).

The Effect Of Network Depth: From Fig. 1-(c), we see that network depth has a dramatic effect on
the quality of influence estimates. For example, when the depth of the network is increased to 8, we
notice a considerable decrease in the Spearman correlation estimates. To further our understanding
about the decrease in the quality of influence estimates when the network is deeper, we compute the
gap in the approximation between the ground-truth parameter changes (computed by re-training) and
the approximate parameter changes (computed using the influence function). To quantify the error
gap, we compute the Spearman correlation estimates between the norm of true and approximate
parameter changes across the top 16.6% of the influential examples. We find that with increasing
depth, the Spearman correlation estimates between the norm of the true and approximate parameter
changes decrease. From Fig. 2-(c), we see that the approximation error gap is particularly large
when the depth of the network is more than 5. We also notice a consistent increase in the curvature
of the loss function (Fig. 2-(b)), as the network becomes deeper. This possibly suggests that the
curvature information of the network can be an upper bound in the approximation error gap between

1With width of 5, depth of 1 and ReLU activations
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Figure 3: Experiments on small MNIST using a CNN architecture. (a) Estimation of influence
function with and without weight decay on (a) the top influential points, (b) training points at 30th

percentile of influence score distribution. (c) Correlation vs the weight decay factor (evaluated on
the top influential points).

the true parameters and the ones computed using the influence function. Even in case of non-smooth
activation functions like ReLU, we have a similar observation. (see the Appendix for more details).

The Effect Of Network Width: To see the effect of the network width on the quality of influence
estimates, we evaluate the influence estimates for a feed-forward network of constant depth, by
progressively increasing its width. From Fig. 1-(d), we observe that with an increase in network
width, the Spearman correlation decreases consistently. For example, we find that the Spearman
correlation decreases from 0.82 to 0.56, when the width of the network is increased from 8 to 50.
This observation suggests that over-parameterizing a network by increasing its width has a strong
impact in the quality of influence estimates.

The Effect of Stochastic Estimation on inverse-Hessian Vector Product: For large deep net-
works, the inverse-Hessian Vector product is computed using stochastic estimation(Agarwal et al.,
2016), as the exact Hessian matrix cannot be computed and inverted. To understand the effective-
ness of stochastic approximation, we compute the influence estimates with both the exact Hessian
and stochastic estimation. We observe that across different network depths, the influence estimates
computed with stochastic estimation have a marginally lower Spearman correlation when compared
to the ones computed with the exact Hessian. From Fig. 2-(a), we find that the error in the approxi-
mation is more, when the network is deeper.

5.2 UNDERSTANDING INFLUENCE FUNCTIONS IN SHALLOW CNN ARCHITECTURES

Setup: In this section, we perform a case study using a CNN architecture2 on the small MNIST
dataset (i.e. 10% of MNIST); a similar setup used in (Koh & Liang, 2017). To assess the accuracy of
influence estimates, we select a set of test-points with high test-losses computed at the optimal model
parameters. For each of the test points, we select 100 training samples with the highest influence
scores and compute the ground-truth influence by re-training the model. We also select 100 training
points with influence scores at the 30th percentile of the entire influence score distribution. These
training points have low influence scores and a lower variance in their scores when compared to the
top influential points. The model is trained with and without weight-decay regularization.

When trained with a weight-decay and evaluated based on the top influential points, we find that
the correlation estimates are consistently significant (Fig. 3-(a)). This is consistent with the results
reported in (Koh & Liang, 2017). However, when the evaluation is done with the set of training
samples at the 30th percentile of the influence score distribution, the correlation estimates decrease
significantly (Fig. 3-(b)). This shows that influence estimates of only the top influential points
are precise when compared to ground-truth re-trainings. Furthermore, without the weight-decay
regularization, influence estimates in both cases are poor across all the test-points (Fig. 3-(a,b)).

To further understand the impact of weight-decay on influence estimates, we train the network with
different weight-decay regularization factors. From Fig. 3-(c), we see that the selection of weight-

2The model has 2600 parameters and is trained for 500k iterations to reach convergence with the optimal
model parameters θ∗. The ground-truth estimates are obtained by re-training the models from the optimal
parameter set θ∗ for 30k iterations. When trained with a weight-decay, a regularization factor of 0.001 is used.
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Dataset MNIST CIFAR-10
A
(With
Decay)

B
(With
Decay)

A
(Without
Decay)

A
(With
Decay)

B
(With
Decay)

A
(Without
Decay)

Architecture P S P S P S P S P S P S
Small CNN 0.95 0.87 0.92 0.82 0.41 0.35 - - - - - -

LeNet 0.83 0.51 0.28 0.29 0.18 0.12 0.81 0.69 0.45 0.46 0.19 0.09
VGG13 0.34 0.44 0.29 0.18 0.38 0.31 0.67 0.63 0.66 0.63 0.79 0.73
VGG14 0.32 0.26 0.28 0.22 0.21 0.11 0.61 0.59 0.49 0.41 0.75 0.64

ResNet18 0.49 0.26 0.39 0.35 0.14 0.11 0.64 0.42 0.25 0.26 0.72 0.69
ResNet50 0.24 0.22 0.29 0.19 0.08 0.13 0.46 0.36 0.24 0.09 0.32 0.14

Table 1: Correlation estimates on MNIST And CIFAR-10 ; A=Test-point with highest loss; B=Test-
point at the 50th percentile of test-loss spectrum; P=Pearson correlation; S=Spearman correlation

decay factor is important in getting high-quality influence estimates. For this specific CNN archi-
tecture, we notice that the correlations start decreasing when the weight-decay factor is greater than
0.01. Moreover, from Fig. 3-(a,b), we find that the selection of test-point also has a strong impact on
the quality of influence estimates. For example, when the network is trained with weight-decay and
the influence estimates are computed for top influential training points, we notice that the Spearman
correlation estimates range from 0.92 to 0.38 across different test-points and have a high variance.

These results show that despite some successful applications of influence functions in this non-
convex setup, as reported in (Koh & Liang, 2017), their performances are very sensitive to hyper-
parameters of the experiment as well as to the training procedure. In the next two sections, we assess
the quality of influence estimates on more complex architectures and datasets including MNIST,
CIFAR-10 and ImageNet. In particular, we desire to understand, if the insights gained from experi-
ments on smaller networks can be generalized to more complex networks and datasets.

5.3 UNDERSTANDING INFLUENCE FUNCTIONS IN DEEP ARCHITECTURES

Setup: In this section, we evaluate the accuracy of influence estimates using MNIST and CIFAR-10
datasets across different network architectures including small CNN(Koh & Liang, 2017), LeNet
(Lecun et al., 1998), ResNets (He et al., 2015), and VGGNets (Simonyan & Zisserman, 2015)3. To
compute influence estimates, we choose two test points for each architecture: a) the test-point with
the highest loss, and b) the test-point at the 50th percentile of the losses of all test points. For each
of these two test points, we select the top 40 influential training samples and compute the correlation
of their influence estimates with the ground-truth estimates. To compute the ground-truth influence
estimates, we follow the strategy of (Koh & Liang, 2017), where we re-train the models from optimal
parameters for 6% of the steps used for training the optimal model. When the networks are trained
with a weight-decay regularization, we use a constant weight-decay factor of 0.001 across all the
architectures (see Appendix for more details).

Results On MNIST: From Table 1, we observe that for the test-point with the highest loss, the
influence estimates in the small CNN and LeNet architectures (trained with the weight-decay regu-
larization) have high qualities. These networks have 2.6k and 44k parameters, respectively, and are
relatively smaller and less deep than the other networks used in our experimental setup. As the depth
of the network increases, we observe a consistent decrease in quality of influence estimates. For the
test-point with a loss at the 50th percentile of test-point losses, we observe that influence estimates
only in the small CNN architecture have good qualities.

Results On CIFAR-10: For CIFAR-10, across all architectures trained with the weight-decay regu-
larization, we observe that the correlation estimates for the test-point with the highest loss are highly
significant. For example, the correlation estimates are above 0.6 for a majority of the network ar-
chitectures. However, for the test-point evaluated at the 50th percentile of the loss, the correlations
decrease marginally across most of the architectures. We find that on CIFAR-10, even architec-
tures trained without weight-decay regularization have highly significant correlation estimates when
evaluated with the test-point which incurs the highest loss.

3For CIFAR-10, evaluations on small CNN have not been performed due to the poor test accuracy.
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In case of MNIST, we have found that in shallow networks, the influence estimates are fairly
accurate while for deeper networks, the quality of influence estimates decrease. For CIFAR-10,
although the influence estimates are significant, we found that the correlations are marginally lower
in deeper networks such as ResNet-50. The improved quality of influence estimates in CIFAR-10
can be attributed to the fact that for a similar depth, architectures trained on CIFAR-10 are less
over-parameterized compared to architectures trained on MNIST. Note that, in Section 5.1, where
the exact Hessian matrix can be computed, we observed that over-parameterization decreases the
quality of influence estimates. From Table(1), we also observed that the selection of test-point has
a sizeable impact on the quality of influence estimates. Furthermore, we noticed large variations in
the quality of influence estimates across different architectures. In general we found that influence
estimates for small CNN and LeNet are reasonably accurate, while for ResNet-50, the quality of
estimates decrease across both MNIST and CIFAR-10. Precise reasons for these variations are
difficult to establish. We hypothesize that it can be due to the following factors: (i) Different
architectures trained on different datasets have contrasting characteristics of loss landscapes at the
optimal parameters which can have an impact on influence estimates. (ii) The weight-decay factor
may need to be set differently in various architectures, to obtain high quality influence estimates.

Figure 4: Influence for CIFAR-100

Results on CIFAR-100: In the case of CIFAR-100,
we train a ResNet-18 model with a weight-decay
regularization factor of 5e−4. The influence esti-
mates are then computed for test-points with the
highest losses (Index: 6017, 2407, 9383) and test-
points around the 50th percentile of the test loss (In-
dex: 783, 7106) over multiple model initialisations.
Unlike in the case of MNIST and CIFAR-10, from
Fig. 4 we observe the correlation estimates to be
of substantially poor quality. We provide additional
visualizations of the influential training examples in
the Appendix section.

5.4 IS SCALING INFLUENCE ESTIMATES TO IMAGENET POSSIBLE?

The application of influence functions to ImageNet scale models provides an appealing yet challeng-
ing opportunity. It is appealing because, if successful, it opens a range of applications to large-scale
image models, including interpretability, robustness, data poisoning, and uncertainty estimation. It
is challenging for a number of reasons. Notable among these is the high computational cost of
training and re-training, which limits the number of ground truth evaluations. In addition, all of the
previously discussed difficulties in influence estimations still remain, including (i) non-convexity of
the loss, (ii) selection of scaling and damping hyperparameters in the stochastic estimation of the
Hessian, and (iii) the lack of convergence of the model parameters. The scale of ImageNet raises
additional questions about the feasibility of leave-one-out retraining as the ground truth estimator.
Given that there are 1.2M images in the training set, is it even possible that the removal of one image
can significantly alter the model? In other words, we question whether or not reliable ground truth
estimates may be obtained through leave-one-out re-training at this scale.

To illustrate this, we conduct an additional influence estimation on ImageNet. After training an
initial model to 92.302% top5 test accuracy, we select two test points at random, calculate influence
over the entire training set, and then select the top 50 points by their influences as candidates for
re-training. We then use the re-training procedure suggested by (Koh & Liang, 2017), which starts
leave-one-out re-training from the parameter set obtained after the initial training. We re-train for an
additional 2 epochs, approximately 5% of the original training time, and calculate the correlations.
We observe that for both test points, both Pearson and Spearman correlations are very low (less than
0.15, see details in the Appendix).

In our experiments, we observe high variability among ground-truth estimates obtained by re-
training the model (see the appendix for details). We conjecture that this may be partially due to
the fact that the original model has not be fully converged. To study this, we train the original model
with all training points for an additional 2 epochs and measure the change in the test loss. We find
that the overall top5 test accuracy has improved slightly to 92.336 % (+0.034) and the loss for one
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Figure 5: (a) Difference in norm of parameters obtained by re-training from scratch vs. re-training
from optimal parameters. (b) Correlation estimates with re-training from scratch vs. re-training
from optimal parameters.

of the considered test points has decreased by relatively a significant amount of 0.679. However, the
loss for the other point has increased slightly by 0.066. Such changes in loss values can therefore
out-power the effect of leave-one-out re-training procedure. Second, we calculate the 2-norm of the
weight gradients, which should be close to zero near an optimal point, and compare it to a standard
pre-trained ImageNet ResNet-50 model as a baseline. We find these norms to be 20.18 and and
15.89, respectively, showing our model has similar weight gradient norm to the baseline. Although
these norms are relatively small given that there are 25.5M parameters, further re-training the model
still changes loss values for some samples considerably, making the ground-truth estimates noisy.
We suggest that one way to obtain reliable ground-truth influence estimates in such large models
can be through assessing the influence of a group of samples, rather than a single one.

6 DISCUSSION ON GROUND-TRUTH INFLUENCE

In our experimental setup, to obtain the ground-truth influence, we follow the strategy of re-training
from optimal model parameters as shown in (Koh & Liang, 2017; Koh et al., 2019b). Even for mod-
erately sized datasets and architectures, re-training from scratch (instead of re-training from optimal
model parameters) is computationally expensive. Although re-training from optimal model param-
eters is an approximation compared to re-training from scratch, we notice that the approximation
works quite well in practice. To validate the effectiveness of this strategy, we first compute the norm
of the difference in parameters obtained by re-training from scratch vs. re-training from optimal pa-
rameters. Next we compute the correlation between the influence estimates and ground-truth using
both the re-training strategies. From Fig. 5, we observe the norm of parameter differences using the
two re-training strategies to be small. Similarly using both the re-training strategies as ground-truth
yield similar correlation estimates. These results highlight that re-training from optimal parameters
(although an approximation) is close to re-training from scratch.

7 CONCLUSION

In this paper, we present a comprehensive analysis of the successes and failures of influence func-
tions in deep learning. Through our experiments on datasets including Iris, MNIST, CIFAR-10,
CIFAR-100, ImageNet and architectures including LeNet, VGGNets, ResNets, we have demon-
strated that influence functions in deep learning are fragile in general. We have shown that several
factors such as the weight-decay, depth and width of the network, the network architecture, stochas-
tic approximation and the selection of test points, all have strong effects in the quality of influ-
ence estimates. In general, we have observed that influence estimates are fairly accurate in shallow
architectures such as small CNN(Koh & Liang, 2017) and LeNet, while in very deep and wide
architectures such as ResNet-50, the estimates are often erroneous. Additionally, we have scaled
up influence computations to the ImageNet scale, where we have observed influence estimates are
highly imprecise. These results call for developing robust influence estimators in the non-convex
setups of deep learning.
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Figure 6: Additional Iris experimental results for ReLU networks: (a) Spearman correlation vs. net-
work depth; (b) Top eigenvalue of the Hessian vs.network depth; (c) Spearman correlation between
the norm of parameter changes computed with influence function vs. re-training.

9 APPENDIX

9.1 ADDITIONAL EXPERIMENTAL RESULTS ON IRIS DATASET

In this section, we provide additional experimental results to understand the effect of network depth
on the correlation estimates for ReLU networks. From Fig. 6, we observe that even in case of
architectures trained with non-smooth activation functions such as ReLU, the correlation estimates
consistently decrease with depth. Similar to our findings in case of networks trained with tanh acti-
vation (as shown in the main text), we observe that the top eigenvalue of the Hessian matrix and the
Taylor’s approximation gap increases with depth. In the main text, we reported that when a network
with ReLU activation is trained with a weight-decay regularization, the correlation estimates are
significant and the Taylor’s approximation gap is less. We find a similar result even with smoother
activation functions such as tanh. From Fig. 7, we observe that when a network with tanh activation
is trained with a weight-decay regularization, the Taylor’s approximation gap is less. However when
the network is trained without a weight-decay regularization, the Taylor’s expansion gap is large
resulting in poor quality of influence estimates.

Figure 7: Additional Iris experimental results for tanh networks; (a) When trained with weight-
decay, the Taylor’s approximation gap is small; (b) When trained without weight-decay, the Taylor’s
expansion gap is large. These results are similar to our findings for ReLU networks which are
reported in the main text.
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9.2 WHAT DOES WEIGHT-DECAY DO?

In our experiments, we observe that with increasing network depth, the correlation
between the influence estimates and the ground-truth estimates decrease considerably.

Figure 8: Correlations with different
training samples

Additionally with increasing depth, the loss curvature
values increase. We notice that with a high-value of
weight-decay, the loss curvature for deeper networks
decrease, which also leads to improvement in corre-
lation values between the influence estimates and the
ground-truth. For e.g. in Fig. 8, with a weight-decay
value of 0.03, the Spearman correlation estimates are
0.47. With a relatively higher weight-decay factor of
0.075, the correlation values improve to 0.72. Increas-
ing the weight-decay factor from 0.03 to 0.075, also de-
creases the loss curvature values substantially. These
results highlight that the selection of weight-decay fac-
tor is crucial to obtain high-quality influence estimates,
especially for deeper overparameterized networks.

9.3 VISUALISATION OF TOP INFLUENTIAL POINTS

In this section, we visualise the top influential training samples corresponding to a given test-point.
In the main text, we noted that the selection of test-points has a strong impact on the quality of
influence estimates. Additionally, we also observe that the selection of test-points has an impact on
the semantic-level similarities between inferred influential training points and the test-points being
evaluated. For example, in Fig. 9, we observe that 2 out of the top 5 influential points are not
from the same class as the test-point with index 1479. However in Fig. 10, we observe that all the
top 5 influential training samples are semantically similar and from the same class as the evaluated
test-point with index 7196.

Figure 9: Top 5 influential points for the test point: 1479 (CIFAR-10). The model is a ResNet-18
trained with a weight-decay regularization; Only 3 out of the 5 points are semantically similar to the
test-point with class "Bird".

Figure 10: Top 5 influential points for the test point: 7196 (CIFAR-10). The model is a ResNet-18
trained with a weight-decay regularization; All the 5 training points are semantically similar to the
test-point from the class "Airplane".
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Architecture Influence Computation Time
(MNIST)

Influence Computation Time
(CIFAR-10)

Small CNN 141.13± 0.51 N/A
LeNet 162.6± 2.20 136.39± 3.16

VGG13 3886.23± 3.45 4416.54± 2.01
VGG14 4619.11± 5.08 4620.69± 6.11

ResNet-18 960.08± 4.67 910.58± 8.49
ResNet-50 4323.13± 8.26 3857.66± 21.6

Table 2: Computational running times for influence function across different architectures

9.4 RUNNING TIMES

In this section, we provide computational running times for (first-order) influence function estima-
tions. We note that in models with a large number of parameters, the influence computation is
relatively slow. However, even in large deep models, it is still faster than re-training the model
for every training example. In our implementation, for a given test-point ztest, we first compute
c = H−1θ∗ ∇`(hθ∗(ztest)) once which is the most computationally expensive step. We then com-
pute a vector dot product i.e. cT∇`(hθ∗(zi)) ∀i ∈ [1, n]. In Table 2, we provide the computational
running times for estimating influence functions in different network architectures.

9.5 ADDITIONAL EXPERIMENTAL DETAILS ON IMAGENET INFLUENCE CALCULATIONS

In this section we give further details on the influence estimation on ImageNet. To help address the
high computational cost of training and re-training, we utilize highly optimized ImageNet training
schemes such as those submitted to the DAWNBench competition (Sta, 2017). In particular we
use the scheme published from (Howard et al., 2018)4, for the ResNet-50 architecture which uses
several training tricks including progressive image resizing, weight decay tuning, dynamic batch
sizes (Goyal et al., 2017), learning rates (Smith, 2018), and half-precision floats. Although these
techniques are unorthodox, they are sufficient for our purposes since we need only to compare be-
tween the fully trained and re-trained models. We replicate this scheme and obtain a top-5 validation
accuracy of 92.302%.

We now give further details on the test points selected. The first has a test loss at the 83rd per-
centile (loss=2.634, index = 13,923, class=kit fox), the second has the test loss at the 37th percentile
(loss=0.081, index = 2,257, class =gila monster), where the indices refer to where they appear in
test_loader.loader.dataset . We visualize these test points in Figure 12.

Next, for each of these test points, we compute influence across the entire dataset and select the top
50 training points by influence scores. We visualize 25 of these points in Figures 13 and 14. We
observe that there is qualitative similarity between the test points and some of their respective most
influential training points, but not others. Although there is qualitative similarity is some cases, the
results are still overall weak quantitatively

We plot the obtained correlations in Figure 11.

For computing the weight gradient norm, we take the mean norm in batches of size 128 over the
entire dataset for both our model and a standard PyTorch pretrained model as a baseline, both of
which are ResNet-50 models with around 25.5M parameters.

4https://www.fast.ai/2018/08/10/fastai-diu-imagenet/
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Figure 11: ImageNet influence estimation results for the selected test points 13,923 (left) and 2,257
(right). X-axis is change in test loss after removal of a training point and retraining as described in
the text. Y-axis is the change in test loss estimated with influence function. Pearson and Spearman
correlations are shown in the caption. Correlations are low, showing the weakness of this influence
estimation.

Figure 12: Selected test points for influence estimation.

9.6 COMPUTING INVERSE-HESSIAN VECTOR PRODUCT

In large over-parameterized deep networks, computing and inverting the exact Hessian Hθ∗ is ex-
pensive. In such cases, the Hessian-vector product rule (Pearlmutter, 1994) is used along with
conjugate-gradient (Shewchuk, 1994) or stochastic estimation (Agarwal et al., 2016) to compute the
approximate inverse-Hessian Vector product. More specifically, to compute t = H−1θ∗ v, we solve the
following optimization problem using conjugate-gradient: t∗ = arg mint{ 12 t

THθ∗t− vT t}, where
v = ∇θ`(hθ∗(zt)). This optimization, however, requires the Hessian Hθ∗ to be a positive definite
matrix, which is not true in case of deep networks due to the presence of negative eigenvalues. In
practice, the Hessian can be regularized by adding a damping factor of λ to its eigenvalues (i.e.
Hθ∗ + λI) to make it positive definite.

In deep models, with a large number of parameters and large training set, conjugate-gradient is
often expensive as it requires computing the Hessian-vector product (Pearlmutter, 1994) for every
data sample in the training set. In those cases, stochastic estimation techniques (Agarwal et al.,
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Figure 13: Top 25 ImageNet training points by influence for test point 13,293, kit fox. Many of the
identified classes are furred mammals, e.g. red wolf, basenji, and dingo, which have visual similarity
to the test point. Other examples are questionable, e.g. the common iguana, and African elephant.
Although there is qualitative similarity is some cases, the results are still overall weak quantitatively.

2016) have been used which are fast as they do not require going through all the training samples. In
stochastic estimation, the inverse Hessian is computed using a recursive reformulation of the Taylor
expansion: H−1j = I + (I −H)H−1j−1 where j is the recursion depth hyperparameter . A training
example zi is uniformly sampled and ∇2`(hθ∗(zi)) is used as an estimator for computing H . This
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Figure 14: Top 25 ImageNet training points by influence for test point 2,257, gila monster. Many
of the identified classes are spotted lizards, e.g. banded gecko ad European fire salamander, which
have visual similarity to the test point. Other examples are questionable, e.g. the stingray, coral
fungus, and barrow. Although there is qualitative similarity is some cases, the results are still overall
weak quantitatively.

technique also requires tuning a scaling hyperparameter γ and a damping hyperparameter β 5. In

5It is assumed that ∀i, I − ∇2`(hθ∗(zi)) < 0; (Koh & Liang, 2017) notes that if this is not true, the loss
can be scaled down without affecting the parameters. The scaling factor is a hyperparameter which helps the
convergence of the Taylor series. The damping coefficient is added to the diagonal of the Hessian matrix to
make it invertible.
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our experiments with large deep models, we use the stochastic estimation method to compute the
inverse-Hessian Vector product.

9.7 EFFECT OF INITIALISATION AND OPTIMIZERS ON INFLUENCE ESTIMATES

To understand the effect of network initialisation on the quality of influence estimates, we compute
the influence scores across different random initialisations. The influence estimates are computed
for the small CNN architecture (Koh & Liang, 2017) and LeNet (Lecun et al., 1998), both trained on
the MNIST dataset. Both the architectures are trained with a constant weight-decay factor of 0.001.

Figure 15: Correlations with different network
initialisation

In Fig 15, we observe that across different net-
work initialisations, although both the Pearson
and Spearman correlations between the influ-
ence estimates and the ground-truth are incon-
sistent, the variance amongst them is particu-
larly low. Note that for both the network ar-
chitectures, we compute the influence estimates
for the test-point with the highest loss at the
optimal model parameters. The correlation be-
tween the influence estimates and leave-out re-
trainings are computed with the top 40 influen-
tial training examples. Additionally to under-
stand the impact of the selection of optimizer
on the influence estimates, we train the LeNet
architecture on MNIST with different optimiz-
ers namely Adam (Kingma & Ba, 2014), Gradi-
ent Descent (Bottou, 2010), Nesterov and RM-
SProp (Ruder, 2016). We notice that the Pearson correlation (0.72 ± 0.04) has a marginally lower
variance when compared to the Spearman rank-order correlation (0.56± 0.11).

9.8 EFFECT OF TRAINING SAMPLE SELECTION FOR GROUND-TRUTH INFLUENCE

In this section, we understand the effect of selecting different number of training samples on the
correlation estimates. We investigate this with a case study for a CNN architecture trained on
small MNIST. Keeping a test-point with a high loss fixed, we sample different sets of training
examples with the highest and the lowest influence scores over different network initialisations.

Figure 16: Correlations with different training samples

Note that in this setting as shown in the
main paper, the quality of influence es-
timates are relatively good. We observe
that when the influence estimates are eval-
uated with the top influential points, both
the Pearson and Spearman correlations are
relevant. This is true across different num-
ber of training samples. However when
the evaluation carried out with respect to
the lowest influential training samples, the
correlation estimates are of poor quality.
These results highlight the importance of
the selection of the type of training sam-
ples with respect to which the correlation
estimates are computed.

9.9 FAITHFULNESS AND PLAUSIBILITY OF INFLUENCE FUNCTIONS

The authors (Jacovi & Goldberg, 2020) primarily tackle the importance and trade-offs between
plausibility (i.e. if the interpretations are convincing to humans) and faithfulness (i.e. how accurate
an interpretation is to the “true reasoning process of the model”) of existing interpretation methods.
To the best of our knowledge such an analysis has not been done for influence functions. We observe
that explanations from influence functions for deep networks are sometimes plausible and sometimes
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not. For instance, in Appendix Fig. 9, we observe that the selection of test-point with (class = bird)
leads to training examples with (class = deer) amongst the top influential points. On the other hand,
in Appendix Fig. 10, we observe many plausible explanations. Influence functions that work are
faithful because they answer the following question:“what would this model have done if certain data
were excluded?”. This class of questions, while not exhaustive, have special relevance because they
are counterfactuals, which hold both intuitive appeal and for their special status in causal reasoning.
However, we must be cautious because they may not be faithful when they incur approximation
errors, as highlighted in our paper.

9.10 CIFAR-100 INFLUENTIAL EXAMPLES

Figure 17: Top 5 influential points for the test points: 7106 and 2407 (CIFAR-100). The model
is a ResNet-18 trained with a weight-decay regularization. For the test-point with index 7106, the
influential training samples are semantically dissimilar from the test-point. However for the test-
point with index 2407, 4 out of the top 5 samples share semantic similarity with the test-point.

9.11 PRELIMINARY RESULTS ON GROUP INFLUENCE

Figure 18: Group Influence on Iris

Understanding model changes when a
group of training samples are up-weighted
is indeed an important research problem.
Influence functions (Cook & Weisberg,
1980; Koh & Liang, 2017) in general are
accurate when the model perturbation is
small. However when a group of samples
are up-weighted, the model perturbation
is large, which violates the small pertur-
bation assumption of influence functions.
Previously it has been shown (Koh et al.,
2019b; Basu et al., 2019) that group influ-
ence functions are fairly accurate for linear
and convex models, even when the model
perturbation is substantial. In this section,
we present some preliminary results on the
behaviour of group influence functions for non-convex models. Our main observation is that group
influence functions are fairly accurate for small networks. Nonetheless for large and complex net-
works, the influence estimates are of poor quality. For e.g. in Fig. 18, we observe that the correla-
tion estimates for small group sizes are accurate, whereas for larger group sizes, the estimates are of
poor quality. For a ResNet-18 model trained on MNIST (with a weight-decay regularization factor
of 0.001), we observe the correlation estimates across different group sizes to vary from 0.01 to
0.21. Similarly for a ResNet-18 trained on CIFAR-100, we observe the group influence correlation
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Figure 19: Norm of difference in parameters obtained by training from scratch vs. re-training from
optimal parameters

Figure 20: Width vs. Spearman Correlation for a one-layered network

estimates to range from 0.01 to 0.18. We leave the complete investigation of group influence in deep
learning as a direction for future work.

9.12 ADDITIONAL EXPERIMENTS WITH MULTIPLE TEST-POINTS

In our experimental setup, we evaluate the correlation estimates with respect to one test-point at a
time. Although the evaluation of the correlation estimates with multiple test-points is more robust,
it comes at the expense of high computational cost. To illustrate the quality of influence estimates
with multiple test-points, we compute the influence estimates for small MNIST with 8 different
test-points. We sample two test-points each from : (a) 100th percentile of the test-loss; (b) 75th

percentile of the test-loss; (c) 50th percentile of the test-loss; (d) 25th percentile of the test-loss. The
Pearson and Spearman correlations are 0.91 and 0.78 respectively. In a similar setting, for a complex
architecture such as ResNet-18 trained on CIFAR-100, the Pearson and Spearman correlations are
0.15 and 0.11 respectively.
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9.13 IMPACT OF ACTIVATION FUNCTIONS

In our experiments we observe that even with non-smooth activation functions such as ReLU, we
obtain high quality influence estimates for certain networks. Understanding influence estimates
with ReLU has an additional challenge since there measure zero subsets where the function is non-
differentiable. Recently (Serra et al., 2018) has provided improved bounds on the number of linear
regions for shallow ReLU networks. Understanding the impact of the number of linear regions in
ReLU networks on the influence estimates is an interesting research direction, however we defer it
for future work.
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