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ABSTRACT

Rotary Position Embeddings (RoPE) have demonstrated efficacy and gained
widespread adoption in natural language processing. However, their application
to other modalities has been less prevalent. This study introduces Lie group Rela-
tive position Encodings (LieRE), which extend beyond RoPE by accommodating
n-dimensional inputs. LieRE encodes positions of tokens by replacing the RoPE
rotation matrix with a dense, high-dimensional, rotation matrix generated via a
learned map. We conducted empirical evaluations of LieRE on 2D and 3D image
classification tasks, comparing its performance against established baselines in-
cluding DeiT III, RoPE-Mixed, and Vision-Llama. Our findings reveal significant
advancements across multiple metrics as compared to the DEIT III basline: LieRE
leads to marked relative improvements in accuracy (10.0% for 2D and 15.1% for
3D compared to DeiT). A 3.9-fold reduction in training time for the same accuracy
was observed. LieRE required 30% less training data to achieve comparable re-
sults. These substantial improvements suggest that LieRE represents a meaningful
advancement in positional encoding techniques for multi-dimensional data. The
implementation details and reproducibility materials will be made openly available.

1 INTRODUCTION

While the attention mechanism has achieved widespread use, especially as part of the transformer
architecture, attention is invariant to the order of its inputs and requires another mechanism to
capture positional information of input tokens Vaswani et al. (2017). This has spurred a line of work
in the subarea of positional encodings—methods of encoding positional information in attention
mechanisms.

In particular, Rotary Position Encoding (RoPE) has emerged as a technique for encoding relative
positional information of text tokens in transformer-based models Su et al. (2024). RoPE’s ability
to capture relative position information has made it a popular choice for open-source language
foundation models such as LLaMA. In particular, RoPE implicitly captures relative positions. When
the token in position p1 attends to a token in position p2, the effect of RoPE depends on p1 − p2.

Despite the success of RoPE in sequence tasks Touvron et al. (2023); Chowdhery et al. (2023), it is
designed for one-dimensional sequence data. This has resulted in slow adoption for modalities with
higher dimensional data, such or data that includes a temporal dimension like videos.

Our work aims to answer whether a single position encoding scheme can work well across both 2D
and 3D modalities. If possible, this would enable the use of a simpler common model backbone
across a variety of tasks.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

x

y

z

N -dimensional
Input i.e.N=3

LieRE Position
Encoding Matrices

A = (N, d, d), R = (N, d, d)

exp


Axx
+
Ayy
+
Azz

 = Ri

LieRE Scaled Dot Product Attention
qj = (d, 1), ki = (d, 1)

Rotate Rotate

Attention

qj ki viRiRj

Figure 1: LieRE sketch, where A is a learnable skew symmetric matrix and Ri = exp(A[x y z]) ∈
Rd×d is the rotation matrix for the first patch in the top left corner of the input with the position
Pi = (x, y, z) ∈ RN . d is the head dimension. The upper triangle contains learnable LieREθ

parameter, while the lower triangle contains their negatives, -LieREθ, reflecting the skew-symmetric
nature of the matrix.
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1.1 CONTRIBUTIONS

We introduce Lie Relative Encodings (LieRE), a mechanism that allows the attention mechanism
to learn how to utilize relative spatial information of its inputs. We show that LieRE is effective on
both 2D and 3D inputs of various modalities. Beyond improving classification accuracy, LieRE also
reduces the amount of compute and data required during training to achieve a fixed accuracy. On
the CIFAR100 task, this translates to 3.9x fewer training steps to achieve the same accuracy as the
DeiT baseline and outperforming the DeiT baseline trained on the full set with only a 70% subset of
the data. Furthermore, LieRE is simple to implement and adaptable to modalities, requiring only a
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tokenizer that also outputs a position in Rd in addition to a standard embedding. In order to aid the
reproducibility of our results we will post our code on github.

1.2 RELATED WORK

1.2.1 POSITION ENCODINGS

The fact that the original attention mechanism is invariant to the order of tokens has motivated
the ongoing development of methods to incorporate positional information into the transformer
architecture. We split our literature review into three broad classes of positional encodings: 1)
absolute, 2) relative, and 3) contextual.

Absolute encodings generally operate on a per token-level, modifying the embedding of a token
to encode the location of the token in the intput. Methods such as sinusoidal and learned absolute
encodings add vectors to the input token embedding Vaswani et al. (2017); Devlin et al. (2019);
Dosovitskiy et al. (2020). Absolute position measures position with respect to an absolute reference,
such as the start of the text or the top left corner of an image.

Relative position encodings instead encode the relative positions of two tokens. One strategy is to
learn an embedding for position deltas which can be incorporated into the attention mechanism Shaw
et al. (2018); Liu et al. (2021; 2022). However, this incurs quadratic computational cost in terms of
the number of tokens. Rotary Position Encodings (RoPE) avoid this cost by rotating the key and
query vectors before the attention inner product. The algebraic properties of the block-diagonal
rotation matrices used in RoPE ensures only relative positional information is captured in the attention
mechanism Su et al. (2024). RoPE is quite widely used in open source LLMs including the PaLM,
Llama and Mixtral models Touvron et al. (2023); Chowdhery et al. (2023); Jiang et al. (2024).
However, RoPE can perform poorly on inference for larger context sizes than the model was trained
on. This has spurred an active line of work extending RoPE to longer contexts, work which we review
later.

We refer to the last category of positional encodings as contextual position embeddings. This category
is defined by encodings that aim to capture semantic positional information lost in traditional absolute
and relative position encodings, often motivated by reasoning or mathematical tasks. Contextual
Position encodings achieve (CoPE) this by allowing the model to learn how the position is computed
Golovneva et al. (2024). Abacus embeddings enable transformers to learn how to handle arithmetic
by better exposing the digit structure of numbers McLeish et al. (2024).

1.2.2 EXTENSIONS OF ROPE

The efficiency and popularity of RoPE have led to several lines of work building off of it.

One notable one is context extension, which aims to address the fact that RoPE NLP models trained
on short documents tend to perform poorly on long documents. Methods like NTK-aware context
extension, YaRN and LongRoPE focus on enabling already trained models to handle long context,
both with and without finetuning Ding et al. (2024); Peng et al. (2023); Tworkowski et al. (2024);
Chen et al. (2023).

Another line of work has been specifically focused on adapting RoPE to image tasks. Both VisionL-
lama and RoPE-Mixed present relative position encodings inspired by RoPE that are able to encode
2D positional data Chu et al. (2024); Heo et al. (2024). The primary difference is that RoPE-Mixed
has a learnable component, whereas VisionLlama does not.

2 BACKGROUND

2.1 LIE GROUPS IN THE CONTEXT OF ATTENTION

In this section, we aim to provide a minimal introduction to Lie groups so that the reader is able to
understand the mathematical motivations behind LieRE. Lie groups are well studied, especially in
the context of representation theory, and standard texts including Fulton & Harris (2013) are able to
provide a more extensive introduction to the subject.

3
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In this context, Lie groups are smooth sets of matrices that are closed under matrix multiplication and
inversion. For every Lie group, the matrix exponential provides a smooth bijective map from a subset
of Rn×n, also known as the Lie Algebra, to the Lie group. The exponential map is a diffeomorphism
and has the following key property for U, V ∈ Rn×n close together:

exp(U − V ) = exp(−V + U) ≈ exp(V )−1 exp(U) (1)

Both RoPE (in the context of text) and RoPE-Mixed use block-diagonal rotation matrices with 2D
rotations as blocks. These form a special Lie group that is commutative, allowing us to strengthen the
statement in equation 1 to

exp(U − V ) = exp(U) exp(V )−1 === exp(V )−1 exp(U). (2)

Our work examines the tradeoff between using the stronger property in equation 2 or increased
capacity and the weaker property equation 1.

2.2 ATTENTION MECHANISM

LieRE is a modification of the standard attention mechanism to introduce positional information,
which we review below. The modification we propose is independent of whether we use multiple
heads, so we focus on single-headed attention for simplicity.

Let X ∈ Rn×d be the set of input embeddings and WQ,WK ,Wv be learnable matrices. Let
Q = XWQ,K = XWK , V = XWV be the keys, queries and values respectively. The outputs are
computed as scores = QK⊤

√
dk

,W = softmax(scores) and final outputs z =WV . We let Qi and Ki

denote the ith rows of Q and K respectively.

3 METHOD

LieRE is a simple modification to the attention mechanism that is presented in algorithm 1. Recall
that we assume that positions are n-dimensional vectors, a matrix A is skew-symmetric if AT = −A,
and that the matrix exponential of a skew-symmetric matrix, call it A, is always a high dimensional
rotation matrix.

Algorithm 1 LieRE Attention

1: procedure LIERE_ROTATIONS(p,A)
2: d← dimension(p)

3: return matrix_exp
(

p∑
i=0

Aipi

)
4: end procedure
5: procedure LIEREATTENTION(Q,K, V,A)
6: p← tokenPositions
7: R← LIERE_ROTATIONS(p,A)
8: // Multiply each key and query vector by

the rotation for that token.
9: Krot ← BATCHMATMUL(R,K)

10: Qrot ← BATCHMATMUL(R,Q)

11: Attention← softmax
(

QrotK
T
rot√

dim(K)

)
V

12: return Attention
13: end procedure

Algorithm 2 RoPE Attention

1: procedure ROPE(X, p, d)
2: θ ← 1

100002i/d
∀i ∈ [0, d)

3: for i← 0 to d step 2 do
4: Xi

rot ← Xi cos pθi −Xi+1 sin pθi

5: Xi+1
rot ← Xi sin pθi +Xi+1 cos pθi

6: end for
7: return Xrotated
8: end procedure
9: procedure ROPEATTENTION(Q,K, V )

10: p← tokenPositions
11: d← embeddingDimension
12: Krot ← ROPE(K, p, d)
13: Qrot ← ROPE(Q, p, d)

14: Attention← softmax
(

QrotK
T
rot√

d

)
V

15: return Attention
16: end procedure

When encoding positions p ∈ Rn, LieRE learns a skew-symmetric basis of matrices {Ai} for i ∈ [n].

It encodes a position by writing it in this basis,
n∑

i=0

piAi. We then map the resulting skew-symmetric

4
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matrix to a high-dimensional rotation via the matrix exponential. R(p) = exp

(
n∑

i=0

piAi

)
. Learning

in the space of skew-symmetric matrices allows us to sidestep some of the difficulty that would come
from learning on the manifold of rotation matrices.

LieRE uses the rotation matrix computed above to modify the keys and queries of the standard
attention mechanism. LieRE’s final step is to modify token i’s query and keys as Q′

i = R(pi)Qi

and K ′
i = R(pi)Ki. This modifies the score between tokens i, j to be XT

i W
T
QR(pi)

TR(pj)WKXj .
Recalling that RT = R−1 for any orthogonal matrix R helps illustrate the encoding of relative
positions in equation 1. Note that the only difference between LieRE and RoPE-Mixed is that the
latter constrains the rotations to be block-diagonal with block size two.

We include the psuedocode for LieRE attention in algorithm 1 beside standard RoPE attention
(algorithm 2). As a practical matter, we compute the rotation matrices at the start of the forward pass.
By default, the skew bases are learned separately for every layer and attention head except in the
experimental section focused on sharing parameters across heads and layers.

Adjusting the skew-symmetric basis matrices’ block width allows us to incrementally adjust the
capacity allocated towards position encoding. We specify the basis block width as a subscript, eg.
LieRE8. When not specified, the block size is equal to the head dimension. If we set the block size to
2, we recover RoPE-Mixed Heo et al. (2024).

4 EXPERIMENTS

In order to isolate the effect of changing the position encoding, we use a standard1 transformer
backbone modified to be able to switch between relative position encoding types. We use the
standard backbone sizes of ViT-Tiny, ViT-B and ViT-L Dosovitskiy et al. (2020). All experiments use
RandAugment Cubuk et al. (2020). We avoid using pre-trained weights in order to maximize the
comparability of results between methods. In order to ensure a fair comparison, we explicitly avoid
tuning hyperparameters with LieRE and use the same default hyperparameters for all experiments
(Appendix B). We evaluate two versions of LieRE, distinguished by the basis matrix tile sizes of
64 and 8, referred to as LieRE64 and LieRE8, respectively. Notably, a tile size of 2 corresponds to
RoPE-Mixed.

4.1 DATASETS AND TASKS

Our experiments are designed to evaluate the efficacy of LieRE64 and LieRE8 as a position encoding
across both 2D and 3D data. We evaluate LieRE on the classification of 2D (images) and 3D (videos)
data. For 3D data and ImageNet-1k (2D), we focus on accuracy. For CIFAR-100 (2D), where training
is less resource intensive, we also evaluate LieRE’s data and training compute efficiency.

4.1.1 2D CLASSIFICATION

For 2D data we evaluate performance on the CIFAR-100 and ImageNet-1k image classification task
Krizhevsky et al. (2009); Deng et al. (2009). We partition our evaluation of performance into four
parts. In the first part, we examine accuracy across a range of model architectures on both CIFAR-100
and ImageNet-1k and compare to absolute Dosovitskiy et al. (2020) position encoding and recent
related work, RoPE-Mixed Heo et al. (2024), VisionLlama embeddings Chu et al. (2024).

In the second part, we take advantage of the relatively modest amount of compute resources necessary
to train a model for CIFAR-100 to examine LieREs impact on data efficiency. We also measure
training compute efficiency by comparing the number of training steps necessary to achieve a fixed
level of validation accuracy.

In the third part, we evaluate the impact of LieRE with various scales. We vary the capacity of the
transformer backbone with corresponding to ViT-T, ViT-B and ViT-B, as proposed in Dosovitskiy et al.
(2020), the number of learned LieRE skew-symmetric basis (one, per-attention-head and per-layer)
and the LieRE basis capacity by imposing a block diagonal structure on the Lie algebra that allows
us to vary the added capacity.

1https://github.com/kentaroy47/vision-transformers-cifar10
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Table 1: 2D image and 3D video classification Top-1 Accuracy (95% confidence intervals) results.
All models use 85.1M parameters for 2D tasks and 88.7M parameters for 3D task Krizhevsky et al.
(2009); Deng et al. (2009); Soomro et al. (2012); Stein et al. (2019) ∗ equivalent to DeiT, ∗∗ equivalent
to Vivit (spatio-temporal).

Method CIFAR-100 ImageNet-1k UCF101

Abs. Pos. E.∗,∗∗ 63.9 (62.9-65.8) 66.1 (65.7-66.5) 40.9 (40.5-41.3)
VisionLlama RoPE 65.5 (64.6-66.5) 65.4 (65.0-65.8) 45.0 (44.6-45.4)
RoPE-Mixed 68.8 (67.9-69.7) 68.8 (68.4-69.2) 46.3 (45.9-46.7)

LieRE8 70.3 (69.4-71.2) XXX (XXX-XXX) 47.0 (46.6-47.4)
LieRE64 70.0 (69.1-70.9) 69.3 (68.9-69.7) 44.7 (44.3-45.1)

In the fourth part, we measure how much different models depend on the positional information in
the image/video by shuffling the patches. A higher accuracy drop with randomly shuffled patches
means the model relies more on the positions of the patches during inference.

4.1.2 3D CLASSIFICATION

In this section, we introduce Rotary Position Encodings for 3D data and compare LieRE-based
transformers with transformers with RoPE-Mixed and absolute encoding similar to the previous
section Arnab et al. (2021); Heo et al. (2024). For the 3D experiments, we examine video classifi-
cation performance in the UCF101 dataset Soomro et al. (2012). Again, we did not optimize any
hyperparameters for the LieRE model and used the dataloader from Tong et al. (2022). The full set of
hyperparameters may be found in appendix B.

4.1.3 MULTI-RESOLUTION CLASSIFICATION

In this section we compare the ability of methods to generalize to image resolutions not seen during
training. We evaluate two training recipes inspired by Heo et al. (2024). The first recipe matches the
rest of the paper and consists of training the models on images of size 224× 224 for 200 epochs. The
second adds an additional fine-tuning step at size 256× 256 for 30 epochs. The full details can be
found in appendix B.

5 RESULTS

5.1 ACCURACY

For 2D image classification tasks, we demonstrate that the LieRE-based transformer achieves a
relative performance improvement in accuracy of 10.0% over DeiT Touvron et al. (2022), 7.3% over
RoPE adaptation in VisionLlama Chu et al. (2024), and 2.2% over RoPE-Mixed Heo et al. (2024) on
CIFAR-100, with similar accuracy trends observed on ImageNet Deng et al. (2009) (table 1).

For 3D input classification tasks using the UCF101 dataset Soomro et al. (2012), we observe a relative
accuracy improvement of the LieRE-based transformer of up to 15.1% compared to absolute position
embeddings and at least 1.5% compared to RoPE-inspired position encodings (table 1).

We further evaluate the accuracy of our model on the ImageNet validation set across varying inference
resolutions. Specifically, we scale the input images to resolutions of 196×196, 256×256, 320×320,
384× 384, and 448× 448 pixels per dimension, and present the resulting accuracies in figure 2.

For position assignment, we adopt a sequential approach where token positions are scaled propor-
tionally to the image dimensions. For example, doubling the length of an image in each dimension
doubles the range of positional indices. This method outperforms rescaling positions to a fixed range,
as demonstrated by superior results for both RoPE-Mixed and LieRE across the evaluated training
recipes.
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Figure 2: LieRE and RoPE-Mixed Accuracies at various resolutions on ImageNet.

5.2 DATA EFFICIENCY

We further observe that learnable relative position encodings, such as LieRE and RoPE-Mixed,
exhibit substantially greater data efficiency compared to prior transformer methods for 2D image
classification on the CIFAR-100 dataset (figure 3b).
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Figure 3a: Performance behavior on CIFAR-100 (2D
Image Classification) over ViT-Tiny (22M), ViT-Base
(85M), ViT-Large (302M) for LieRE Rope-Mixed and
Absolute Encoding (Appendix, table 4).
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Figure 3b: Data ablation on for different position em-
beddings on CIFAR-100.

5.3 MODEL SCALING

We investigate three dimensions of capacity scaling: transformer backbone parameters, LieRE basis
parameters, and the use of distinct LieRE bases across heads and layers.

5.3.1 TRANSFORMER BACKBONE CAPACITY

Additionally, we analyze the impact of incorporating LieRE on performance across different model
sizes on the CIFAR-100 dataset, as shown in table 4. Our results demonstrate that LieRE8 consistently
outperforms alternatives across all evaluated model sizes.
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Figure 4b: The LieRE spatial encoding allows the
model to match the performance of absolute position
encodings with substantially less training time. Please
fine the learning curves in the appendix 5.

Table 2: Accuracy with parameter sharing over heads and layers for ViT-B sized models on CIFAR-
100.

FLOP All Shared Shared
Across Layers

Shared
Across Heads

RoPE-Mixed LieRE64 LieRE8

5.684G ✓ ✓ 68.8 70.0 70.3
5.684G ✓ 68.7 69.5 69.8
5.613G ✓ 69.5 69.7 69.7
5.613G ✓ 68.3 69.4 69.5

5.3.2 BASIS PARAMETERS

LieRE adds a small amount of capacity to the model (580k parameters for the ViT-B backbone we
use for most experiments), leading to the natural question of how helpful the marginal capacity is.

We vary capacity by enforcing a block diagonal structure on the skew-symmetric basis. Varying the
block size allows us to approach LieRE64. Recall that using 2×2 blocks recovers exact commutativity
and is referred to as RoPE-Mixed. In figure 4a we evaluate accuracy versus block dimension.

5.3.3 IMPACT OF SHARING LIERE PARAMETERS ACROSS HEADS AND LAYERS

Table 2 presents the impact of sharing LieRE parameters across attention heads and layers on CIFAR-
100 classification performance for RoPE-Mixed, LieRE64 and LieRE8 . We evaluate whether learning
separate positional encodings for each attention head and layer provides performance benefits. We
observe that learning across heads and layers yields superior performance followed by learning across
layers.

5.4 COMPUTE EFFICIENCY

Training transformers can necessitate substantial computational resources, which can hinder equitable
access to research and development of machine learning methods. We demonstrate that the LieRE-
based transformer requires 3.9 times less training epochs on CIFAR-100 to achieve comparable

8
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Table 3: Relative accuracy drop for 2D image classification (CIFAR-100) and Video recognition
(UCF101) after patch shuffling

CIFAR-100 (2D) UCF101 (3D)

Method Before After Drop(%) Before After Drop(%)
Shuffling↑ Shuffling↓ ↑ Shuffling↑ Shuffling↓ ↑

Abs. Pos. E. 63.9 19.6 69.3 40.9 39.5 0.0
VisionLlama RoPE 65.5 29.7 54.8 45.0 37.0 17.7
RoPE-Mixed 68.8 17.1 75.1 46.3 28.2 39.1

LieRE8 70.3 12.3 82.5 47.0 27.8 40.9
LieRE64 70.0 10.8 84.6 44.7 28.0 37.4

performance to the Absolute Position Embedding baseline (as used in DeiT III Touvron et al. (2022)).
This represents the largest reduction in training time compared to recent works such as VisionLlama
and RoPE-Mixed Chu et al. (2024); Heo et al. (2024). We note that this is the first training efficiency
comparison of these recent methods. figure 4b shows the amount of allowable compute reduction to
achieve the same accuracy achieved by absolute position encodings (DeiT baseline) after 200 epochs.
LieRE demonstrates the largest win, allowing a 3.9X reduction in training compute to achieve the
same accuracy.

5.5 PATCH SHUFFLING

Shuffling patches and frames allows us to see how much the model is able to use the positional
information in its inputs. A model whose architecture does not allow/encourage the use of positional
information will converge to a representation similar in spirit to a bag-of-words, where the relative
locations of pixels/voxels do not matter. A greater dropoff in accuracy during shuffling is indicative
that the model more heavily utilizes positional information.

We evaluate models using the decline in accuracy when evaluating on shuffled patches. We observe
the most significant decline LieRE-based transformers, leading to the conclusion that LieRE models
are most capable at using positional information. The complete results are displayed for CIFAR-100
and table for UCF101 (table 3) .

6 LIMITATIONS

While LieRE shows promising results across multiple modalities and input dimensionalities, there
are a few limitations worth noting. Our method is specifically designed to modify the inner product,
making it compatible with most attention schemes, including original attention and linear attention.
However, this specificity may limit its applicability to other architectures, like convolutional neural
networks, that do not rely on inner product-based attention mechanisms. Future work could explore
adaptations of our method to a wider range of architectures.Furthermore, the current formulation of
our method is designed to encode vector positions in Rd. While this is sufficient for many applica-
tions, it may not be directly applicable to tasks that require encoding poses in SE(3) like robotics.
Further research may be necessary to adapt our method to effectively handle such representational
requirements.

Despite these limitations, we believe that our work provides much-needed insight into how to improve
model performance and reduce training costs by encoding relative position information across various
modalities and input dimensionalities.

7 BROADER IMPACTS

LieRE, our proposed method for encoding positional information in attention mechanisms, has
demonstrated improvements in 2D image and video classification tasks. We are particularly excited
about how LieRE can expand the applicability transformers to n dimensional inputs. This may

9
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lay down the tracks to apply that same relative position encoding within and across modalities and
settings.

8 CONCLUSION

In this paper, we introduced Lie group Relative position Encodings (LieRE), a position encoding that
can effectively encode relative position information for attention mechanisms across modalities and
input dimensionalities. Through experiments on 2D image classification (CIFAR-100, ImageNet-1k)
and 3D video classification (UCF101), we demonstrated that LieRE achieves better performance
compared to existing positional encoding methods. Beyond improving accuracy, LieRE also exhibits
data and compute efficiency. On CIFAR-100, LieRE requires 3.5 times less training computed
to match the performance of the baseline model with absolute position encodings. Furthermore,
LieRE can outperform the baseline trained on the full dataset while using only 70% of the training
data, highlighting its data efficiency. The key advantages of LieRE include its simplicity, flexibility,
and ease of adaptation to new modalities. By requiring no changes to the tokenizer other than
outputting positions and no other code changes, LieRE may provide a unified and efficient approach
for transformers to process and learn from various data modalities within a single architecture.
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Piotr Miłoś. Focused transformer: Contrastive training for context scaling. Advances in Neural
Information Processing Systems, 36, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

11

https://kaggle.com/competitions/rsna-intracranial-hemorrhage-detection
https://kaggle.com/competitions/rsna-intracranial-hemorrhage-detection
https://www.sciencedirect.com/science/article/pii/S0925231223011864
https://www.sciencedirect.com/science/article/pii/S0925231223011864


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

B EXPERIMENT HYPERPARAMETERS

The backbone for all experiments is configured as ViT-B, with 12 layers, a hidden dimension of
768, and an intermediate dimension of 3096. We use a dropout of 0.1. We used CLS pooling in our
implementation to facilitate comparability with existing literature in the field. Further experiments
revealed substantial performance improvement with mean pooling and LieRE. We use the pytorch
lightning framework for all experiments Falcon (2019).

B.1 2D IMAGE CLASSIFICATION

The CIFAR experiments where trained on 8xL4 GPUs with 24GB of VRAM each and all took under
30 minutes to complete. The basis capacity scaling experiment was conducted using RTX6000 GPUs.
The ImageNet experiments were trained on 8xL40 GPUs and all took less than 2 days and 5 hours of
runtime including time lost due to preemption and resource sharing. We use a cosine learning rate
schedule with an initial learning rate of 1E − 4 and train for 200 epochs. We use an effective batch
size of 512. We use a patch size of 4× 4 on the original 32× 32 image for CIFAR-100 and a patch
size of 16× 16 on the randomly cropped and resized 224× 224 image. All vision experiments used
RandAugment Cubuk et al. (2020). We use the ADAM optimizer with betas of 0.9 and 0.999 and
ϵ = 1e− 8. The hyperparameters were tuned with RoPE-Mixed and selected before conducting the
LieRE trainers as to ensure a fair comparison.

B.2 3D VIDEO CLASSIFICATIONS

The 3D classification experiments were conducted on either 8 × A100 40GB GPUs or 4 × A100
80GB GPUs with the effective batch size held constant either by using a gradient accumulation or
increasing the batch size. Similar to 2D classification, we use an initial learning rate of 1E − 4 with a
cosine decay, trained for 200 epochs, and had a total batch size of 64 and a patch size of 2× 16× 16
on the randomly cropped and resized 8× 224× 224 video/image. We use the ADAM optimizer with
betas of 0.9 and 0.999 and ϵ = 1e− 8.

B.3 MULTI-RESOLUTION CLASSIFICATION

The second training recipe consists of 30 epochs with an initial learning rate of 1E-5 with a cosine
decay. This mirrors the DEIT III training reciple that first pretrains at a lower resolution and finetunes
at a higher resolution.

B.4 CIFAR-100 PERFORMANCE ACROSS MODEL SCALES

We also evaluate how the inclusion of LieRE affects performance across model sizes on the CIFAR-
100 in table 4. We observe that LieRE retains a statistically significant lead in performance across all
three model sizes.

B.4.1 BASIS PARAMETERS

Table 4: Comparison of Position Encoding Methods for Different ViT Models Sizes on CIFAR-100,
Accuracy (bootstrapped 95%CI)

Position Encoding ViT-Tiny ViT-Base ViT-Large

Abs. Pos. E. 57.2 (56.2-58.1) 63.9 (62.9-65.8) 60.5 (59.5-61.4)
VisionLlaMA RoPE 58.2 (57.2-59.2) 65.5 (64.6 -66.5) 62.3 (60.4-64.2)
RoPE-Mixed 65.4 (64.5-66.4) 68.8 (67.9-69.7) 68.8 (67.9-69.7)

LieRE8 65.6 (64.7-66.6) 70.3 (69.4-71.2) 69.9 (68.9-70.8)
LieRE64 65.3 (64.4-66.3) 70.0 (69.1-69.7) 68.9 (68.0-69.8)
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B.5 PYTHON IMPLEMENTATION OF LIERE ROTATION MATRIX COMPUTATION

1 b a s i s _ r a w _ p a r a m s = nn . P a r a m e t e r (
2 t o r c h . r and (
3 i n p u t _ d i m e n s i o n a l i t y ,
4 head_dim ,
5 head_dim ,
6 ) * 2 * math . p i # o p t i o n a l , i n s p i r e d from RoPE−Mixed p a p e r
7 )
8

9 u p p e r _ t r i a n g l e = (
10 t o r c h . t r i u ( bas i s_ raw_pa rams , d i a g o n a l =1)
11 )
12 skew_bases = u p p e r _ t r i a n g l e − t o r c h . t r a n s p o s e ( u p p e r _ t r i a n g l e , −1 , −2)
13 i n _ b a s i s _ p o s i t i o n s = (
14 p o s i t i o n s . r e s h a p e ( l i s t ( p o s i t i o n s . shape ) + [ 1 ] * 2 ) * skew_bases
15 )
16 r o t a t i o n _ l o g = t o r c h . sum ( i n _ b a s i s _ p o s i t i o n s , dim = −3)
17 r o t a t i o n = t o r c h . m a t r i x _ e x p ( r o t a t i o n _ l o g . t o ( d t y p e = t o r c h . f l o a t 3 2 ) ) . t o (

d t y p e = p o s i t i o n s . d t y p e )

B.6 FLOPS COMPARISON OF METHODS

We find that since all methods we examine introduce a computational cost that is at most linear in
the number of tokens, and runtime is dominated by the quadratic attention component, there is no
substantial difference in computational efficiency between the methods. We list inference FLOP of
the various methods in table 5.

Table 5: FLOP analysis with percentage increase compared to absolute position encodings

Position Enc. ViT-Tiny (22M) ViT-Base (85M) ViT-Large (302M)

Abs. Pos. E.∗ 0.963G 5.607G 19.856G
VisionLlaMA RoPE 0.963G (+0.001%) 5.607G (+0.002%) 19.856G (+0.000%)
RoPE-Mixed 0.964G (+0.104%) 5.609G (+0.036%) 19.863G (+0.035%)

LieRE8 0.968G (+0.519%) 5.617G (+0.178%) 19.882G (+0.065%)
LieRE64 0.970G (+0.727%) 5.684G (+1.375%) 20.061G (+1.033%)

B.7 VALIDATION LOSSES

Table 6: 2D image and 3D video classification Top-1 Validation loss (95% confidence intervals)
results. All models use 85.1M parameters for 2D tasks and 88.7M parameters for 3D task Krizhevsky
et al. (2009); Deng et al. (2009); Soomro et al. (2012); Stein et al. (2019) ∗ equivalent to DeiT, ∗∗

equivalent to Vivit (spatio-temporal).

Method CIFAR-100 ImageNet-1k UCF101

Abs. Pos. E.∗,∗∗ 1.56 (1.47-1.56) 1.84 (1.81-1.86) 2.94 (2.92-2.96)
VisionLlama RoPE 1.56 (1.51-1.61) 1.98 (1.94-2.01) 2.66 (2.63-2.69)
RoPE-Mixed 1.38 (1.33-1.43) 1.72 (1.68-1.74) 2.52 (2.49-2.54)

LieRE8 1.36 (1.31-1.41) XXX (XXX-XXX) 2.47 (2.44-2.49)
LieRE64 1.37 (1.33-1.42) 1.73 (1.70-1.76) 2.64 (2.62-2.67)
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B.8 BASIS PARAMETERS

Table 7: Accuracy Results for Different LieREΘ Parameters

Dataset LieREΘ Parameter Tile Size Accuracy (%) CI (95%)

CIFAR100 9216 2 68.84 (67.93–69.75)
CIFAR100 27648 4 69.28 (68.38–70.18)
CIFAR100 64512 8 70.32 (69.42–71.22)
CIFAR100 138240 16 69.85 (68.95–70.75)
CIFAR100 285696 32 69.65 (68.75–70.55)
CIFAR100 580608 64 69.99 (69.09–70.89)

UCF101 9216 2 46.30 (45.89–46.71)
UCF101 27648 4 45.67 (45.26–46.08)
UCF101 64512 8 47.03 (46.62–47.44)
UCF101 138240 16 46.86 (46.45–47.27)
UCF101 285696 32 46.42 (46.01–46.83)
UCF101 580608 64 44.68 (44.27–45.09)

B.9 VALIDATION ACCURACY CURVES
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Figure 5: CIFAR-100
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B.10 TRAINING LOSS CURVES
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Figure 6: CIFAR-100
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