
Towards Better Dynamic Graph Learning:
New Architecture and Unified Library

Le Yu, Leilei Sun∗, Bowen Du, Weifeng Lv
State Key Laboratory of Software Development Environment

School of Computer Science and Engineering
Beihang University

{yule,leileisun,dubowen,lwf}@buaa.edu.cn

Abstract

We propose DyGFormer, a new Transformer-based architecture for dynamic graph
learning. DyGFormer is conceptually simple and only needs to learn from nodes’
historical first-hop interactions by: (i) a neighbor co-occurrence encoding scheme
that explores the correlations of the source node and destination node based on
their historical sequences; (ii) a patching technique that divides each sequence
into multiple patches and feeds them to Transformer, allowing the model to ef-
fectively and efficiently benefit from longer histories. We also introduce DyGLib,
a unified library with standard training pipelines, extensible coding interfaces,
and comprehensive evaluating protocols to promote reproducible, scalable, and
credible dynamic graph learning research. By performing exhaustive experiments
on thirteen datasets for dynamic link prediction and dynamic node classification
tasks, we find that DyGFormer achieves state-of-the-art performance on most of
the datasets, demonstrating its effectiveness in capturing nodes’ correlations and
long-term temporal dependencies. Moreover, some results of baselines are inconsis-
tent with previous reports, which may be caused by their diverse but less rigorous
implementations, showing the importance of DyGLib. All the used resources are
publicly available at https://github.com/yule-BUAA/DyGLib.

1 Introduction

Dynamic graphs denote entities as nodes and represent their interactions as links with timestamps [26],
which can model many real-world scenarios such as social networks [28, 50, 2], user-item interaction
systems [31, 15, 71, 72, 70], traffic networks [67, 63, 19, 4, 69], and physical systems [24, 47, 43].
In recent years, representation learning on dynamic graphs has become a trending research topic
[26, 49, 65]. There are two main categories of existing methods: discrete-time [39, 17, 48, 11, 66]
and continuous-time [64, 45, 60, 51, 12]. In this paper, we focus on the latter approaches because
they are more flexible and effective than the formers and are being increasingly investigated.

Despite the rapid development of dynamic graph learning methods, they still suffer from two lim-
itations. Firstly, most of them independently compute the temporal representations of nodes in an
interaction without exploiting nodes’ correlations, which are often indicative of future interactions.
Moreover, existing methods learn at the interaction level and thus only work for nodes with fewer
interactions. When nodes have longer histories, they require sampling strategies to truncate the inter-
actions for feasible calculations of the computationally expensive modules like graph convolutions
[55, 64, 45, 36, 9, 59], temporal random walks [60, 25] and sequential models [57, 12]. Though
some approaches use memory networks [61, 53] to sequentially process interactions with affordable
computational costs [28, 55, 45, 36, 59, 35], they are faced with the vanishing/exploding gradients

∗Corresponding Author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/yule-BUAA/DyGLib

due to the usage of recurrent neural networks [40, 57]. Therefore, we conclude that previous methods
lack the ability to capture either nodes’ correlations or long-term temporal dependencies.

Secondly, the training pipelines of different methods are inconsistent and often lead to poor re-
producibility. Also, existing methods are implemented by diverse frameworks (e.g., Pytorch [41],
Tensorflow [1], DGL [58], PyG [16], C++), making it time-consuming and difficult for researchers to
quickly understand the algorithms and further dive into the core of dynamic graph learning. Although
there exist some libraries for dynamic graph learning [18, 46, 74], they mainly focus on dynamic net-
work embedding methods [18], discrete-time graph learning methods [46], or engineering techniques
for training on large-scale dynamic graphs [74] (elaborated in Section 2). Currently, we find that
there are still no standard tools for continuous-time dynamic graph learning.

In this paper, we aim to address the above drawbacks with two key technical contributions.

We propose a new Transformer-based dynamic graph learning architecture (DyGFormer).
DyGFormer is conceptually simple by solely learning from the sequences of nodes’ historical first-
hop interactions. To be specific, DyGFormer is designed with a neighbor co-occurrence encoding
scheme, which encodes the appearing frequencies of each neighbor in the sequences of the source
and destination nodes to explicitly explore their correlations. In order to capture long-term temporal
dependencies, DyGFormer splits each node’s sequence into multiple patches and feeds them to
Transformer [56]. This patching technique not only makes the model effectively benefit from longer
histories via preserving local temporal proximities, but also efficiently reduces the computational
complexity to a constant level that is irrelevant to the input sequence length.

We present a unified continuous-time dynamic graph learning library (DyGLib). DyGLib is an
open-source toolkit with standard training pipelines, extensible coding interfaces, and comprehensive
evaluating strategies, aiming to foster standard, scalable, and reproducible dynamic graph learning
research. DyGLib has integrated a variety of continuous-time dynamic graph learning methods as
well as benchmark datasets from various domains. It trains all the methods via the same pipeline to
eliminate the influence of different implementations and adopts a modularized design for developers to
conveniently incorporate new datasets and algorithms based on their specific requirements. Moreover,
DyGLib supports both dynamic link prediction and dynamic node classification tasks with exhaustive
evaluating strategies to provide comprehensive comparisons of existing methods.

To evaluate the model performance, we conduct extensive experiments based on DyGLib, including
dynamic link prediction under transductive and inductive settings with three negative sampling
strategies as well as dynamic node classification. From the results, we observe that: (i) DyGFormer
outperforms existing methods on most datasets, demonstrating its superiority in capturing nodes’
correlations and long-term temporal dependencies; (ii) some findings of baselines are not in line
with previous reports because of their varied pipelines and problematic implementations, which
illustrates the necessity of introducing DyGLib. We also provide an in-depth analysis of the neighbor
co-occurrence encoding and patching technique for a better understanding of DyGFormer.

2 Related Work

Dynamic Graph Learning. Representation learning on dynamic graphs has been widely studied in
recent years [26, 49, 65]. Discrete-time methods manually divide the dynamic graph into a sequence
of snapshots and apply static graph learning methods on each snapshot, which ignore the temporal
order of nodes in each snapshot [39, 17, 48, 11, 66]. In contrast, continuous-time methods directly
learn on the whole dynamic graph with temporal graph neural networks [55, 64, 45, 36, 9, 59],
memory networks [28, 55, 45, 36, 59, 35], temporal random walks [60, 25] or sequential models
[57, 12]. Although insightful, most existing dynamic graph learning methods neglect the correlations
between two nodes in an interaction. They also fail to handle nodes with longer interactions due
to unaffordable computational costs of complex modules or issues in optimizing models (e.g., the
vanishing/exploding gradients). In this paper, we propose a new Transformer-based architecture to
show the necessity of capturing nodes’ correlations and long-term temporal dependencies, which is
achieved by two designs: a neighbor co-occurrence encoding scheme and a patching technique.

Transformer-based Applications in Various Fields. Transformer [56] is an innovative model that
employs the self-attention mechanism to handle sequential data, which has been successfully applied
in a variety of domains, such as natural language processing [13, 33, 6], computer vision [7, 14, 34]

2

and time series forecasting [30, 73, 62]. The idea of dividing the original data into patches as inputs
of the Transformer has been attempted in some studies. ViT [14] splits an image into multiple patches
and feeds the sequence of patches’ linear embeddings into a Transformer, which achieves surprisingly
good performance on image classification. PatchTST [38] divides a time series into subseries-level
patches and calculates the patches by a channel-independent Transformer for long-term multivariate
time series forecasting. In this work, we propose a patching technique to learn on dynamic graphs,
which can provide our approach with the ability to handle nodes with longer histories.

Graph Learning Library. Currently, there exist many libraries for static graphs [5, 58, 16, 22, 8,
29, 32], but few for dynamic graph learning [18, 46, 74]. DynamicGEM [18] focuses on dynamic
graph embedding methods, which just consider the graph topology and cannot leverage node features.
PyTorch Geometric Temporal [46] implements discrete-time algorithms for spatiotemporal signal
processing and is mainly applicable for nodes with aligned historical observations. TGL [74]
trains on large-scale dynamic graphs with some engineering tricks. Though TGL has integrated
some continuous-time methods, they are somewhat out-of-date, resulting in the lack of state-of-
the-art models. Moreover, TGL is implemented by both PyTorch and C++, which needs additional
compilation and increases the usage difficulty. In this paper, we present a unified continuous-time
dynamic graph learning library with thorough baselines, diverse datasets, extensible implementations,
and comprehensive evaluations to facilitate dynamic graph learning research.

3 Preliminaries

Definition 1. Dynamic Graph. We represent a dynamic graph as a sequence of non-decreasing
chronological interactions G = {(u1, v1, t1) , (u2, v2, t2) , · · · } with 0 ≤ t1 ≤ t2 ≤ · · · , where
ui, vi ∈ N denote the source node and destination node of the i-th link at timestamp ti. N is the
set of all the nodes. Each node u ∈ N can be associated with node feature xu ∈ RdN , and each
interaction (u, v, t) has link feature etu,v ∈ RdE . dN and dE denote the dimensions of the node
feature and link feature. If the graph is non-attributed, we simply set the node feature and link feature
to zero vectors, i.e., xu = 0 and etu,v = 0.

Definition 2. Problem Formalization. Given the source node u, destination node v, timestamp t,
and historical interactions before t, i.e., {(u′, v′, t′) |t′ < t}, representation learning on dynamic
graph aims to design a model to learn time-aware representations ht

u ∈ Rd and ht
v ∈ Rd for u and v

with d as the dimension. We validate the effectiveness of the learned representations via two common
tasks in dynamic graph learning: (i) dynamic link prediction, which predicts whether u and v are
connected at t; (ii) dynamic node classification, which infers the state of u or v at t.

4 New Architecture and Unified Library

4.1 DyGFormer: Transformer-based Architecture for Dynamic Graph Learning

The framework of our DyGFormer is shown in Figure 1, which employs Transformer [56] as the
backbone. Given an interaction (u, v, t), we first extract historical first-hop interactions of source
node u and destination node v before timestamp t and obtain two interaction sequences St

u and
St
v. Next, in addition to computing the encodings of neighbors, links, and time intervals for each

sequence, we also encode the frequencies of every neighbor’s appearances in both St
u and St

v to
exploit the correlations between u and v, resulting in four encoding sequences for u/v in total. Then,
we divide each encoding sequence into multiple patches and feed all the patches into a Transformer
for capturing long-term temporal dependencies. Finally, the outputs of the Transformer are averaged
to derive time-aware representations of u and v at timestamp t (i.e., ht

u and ht
v), which can be applied

in various downstream tasks like dynamic link prediction and dynamic node classification.

Learning from Historical First-hop Interactions. Unlike most previous methods that require nodes’
historical interactions from multiple hops (e.g., DyRep [55], TGAT [64], TGN [45], CAWN [60]), we
only learn from the sequences of nodes’ historical first-hop interactions, turning the dynamic graph
learning task into a simpler sequence learning problem. Mathematically, given an interaction (u, v, t),
for source node u and destination node v, we obtain the sequences that involve first-hop interactions
of u and v before timestamp t, which are denoted by St

u = {(u, u′, t′) |t′ < t} ∪ {(u′, u, t′) |t′ < t}
and St

v = {(v, v′, t′) |t′ < t} ∪ {(v′, v, t′) |t′ < t}, respectively.

3

Figure 1: Framework of the proposed model.

Encoding Neighbors, Links, and Time Intervals. For source node u, we retrieve the fea-
tures of involved neighbors and links in sequence St

u based on the given features to represent
their encodings, which are denoted by Xt

u,N ∈ R|St
u|×dN and Xt

u,E ∈ R|St
u|×dE . Following

[64], we learn the periodic temporal patterns by encoding the time interval ∆t′ = t − t′ via√
1
dT

[cos (w1∆t′) , sin (w1∆t′) , · · · , cos (wdT
∆t′) , sin (wdT

∆t′)], where w1, · · · , wdT
are train-

able parameters. dT is the encoding dimension. The time interval encodings of interactions in St
u

is denoted by Xt
u,T ∈ R|St

u|×dT . We use the same process to get the corresponding encodings for
destination node v, i.e., Xt

v,N ∈ R|St
v|×dN , Xt

v,E ∈ R|St
v|×dE , and Xt

v,T ∈ R|St
v|×dT .

Neighbor Co-occurrence Encoding Scheme. Existing methods separately compute representations
of node u and v without modeling their correlations. We present a neighbor co-occurrence encoding
scheme to tackle this issue, which assumes the appearing frequency of a neighbor in a sequence
indicates its importance, and the occurrences of a neighbor in sequences of u and v (i.e., co-
occurrence) could reflect the correlations between u and v. That is to say, if u and v have more
common historical neighbors in their sequences, they are more likely to interact in the future.

Formally, for each neighbor in the interaction sequence St
u and St

v, we count its occurrences in
both St

u and St
v, and derive a two-dimensional vector. By packing the vectors of all the neighbors

together, we can get the neighbor co-occurrence features for u and v, which are represented by
Ct

u ∈ R|St
u|×2 and Ct

v ∈ R|St
v|×2. For example, suppose the historical neighbors of u and v are

{a, b, a} and {b, b, a, c}. The appearing frequencies of a, b, and c in u/v’s historical interactions are
2/1, 1/2, and 0/1, respectively. Therefore, the neighbor co-occurrence features of u and v are denoted
by Ct

u = [[2, 1] , [1, 2] , [2, 1]]
⊤ and Ct

v = [[1, 2] , [1, 2] , [2, 1] , [0, 1]]
⊤. Then, we apply a function

f (·) to encode the neighbor co-occurrence features by

Xt
∗,C = f

(
Ct

∗ [:, 0]
)
+ f

(
Ct

∗ [:, 1]
)
∈ R|St

∗|×dC , (1)

where ∗ could be u or v. The input and output dimensions of f (·) are 1 and dC . In this paper, we
implement f (·) by a two-layer perceptron with ReLU activation [37]. It is important to note that the
neighbor co-occurrence encoding scheme is general and can be easily integrated into some dynamic
graph learning methods for better results. We will demonstrate its generalizability in Section 5.3.

Patching Technique. Instead of focusing on the interaction level, we divide the encoding sequence
into multiple non-overlapping patches to break through the bottleneck of existing methods in capturing
long-term temporal dependencies. Let P denote the patch size. Each patch is composed of P
temporally adjacent interactions with flattened encodings and can preserve local temporal proximities.
Take the patching of Xt

u,N ∈ R|St
u|×dN as an example. Xt

u,N will be divided into ltu = ⌈ |St
u|
P ⌉

patches in total (note that we will pad Xt
u,N if its length |St

u| cannot be divided by P), and the
patched encoding is represented by M t

u,N ∈ Rltu×dN ·P . Similarly, we can also get the patched
encodings M t

u,E ∈ Rltu×dE ·P , M t
u,T ∈ Rltu×dT ·P , M t

u,C ∈ Rltu×dC ·P , M t
v,N ∈ Rltv×dN ·P ,

M t
v,E ∈ Rltv×dE ·P , M t

v,T ∈ Rltv×dT ·P , and M t
v,C ∈ Rltv×dC ·P . Note that when |St

u| becomes

4

longer, we will correspondingly increase P , making the number of patches (i.e., ltu and ltv) at a
constant level to reduce the computational cost.

Transformer Encoder. We first align the patched encodings to the same dimension d with trainable
weight W∗ ∈ Rd∗·P×d and b∗ ∈ Rd to obtain Zt

u,∗ ∈ Rltu×d and Zt
v,∗ ∈ Rltv×d, where ∗ could be

N , E, T or C. To be specific, the alignments are realized by

Zt
u,∗ = M t

u,∗W∗ + b∗ ∈ Rltu×d,Zt
v,∗ = M t

v,∗W∗ + b∗ ∈ Rltv×d. (2)

Then, we concatenate the aligned encodings of u and v, and get Zt
u = Zt

u,N∥Zt
u,E∥Zt

u,T ∥Zt
u,C ∈

Rltu×4d and Zt
v = Zt

v,N∥Zt
v,E∥Zt

v,T ∥Zt
v,C ∈ Rltv×4d.

Next, we employ a Transformer encoder to capture the temporal dependencies, which is built by
stacking L Multi-head Self-Attention (MSA) and Feed-Forward Network (FFN) blocks. The residual
connection [20] is employed after every block. We follow [14] by using GELU [21] instead of ReLU
[37] between the two-layer perception in each FFN block and applying Layer Normalization (LN) [3]
before each block rather than after. Instead of individually processing Zt

u and Zt
v, our Transformer

encoder takes the stacked Zt = [Zt
u;Z

t
v] ∈ R(ltu+ltv)×4d as inputs, aiming to learn the temporal

dependencies within and across the sequences of u and v. The calculation process is

Attention (Q,K,V) = Softmax
(
QK⊤
√
dk

)
V , (3)

FFN (O,W1, b1,W2, b2) = GELU (OW1 + b1)W2 + b2, (4)

Ot,l
i = Attention

(
LN(Zt,l−1)W l

Q,i,LN(Zt,l−1)W l
K,i,LN(Zt,l−1)W l

V,i

)
, (5)

Ot,l = MSA
(
Zt,l−1

)
+Zt,l−1 =

(
Ot,l

1 ∥ · · · ∥Ot,l
I

)
W l

O +Zt,l−1, (6)

Zt,l = FFN
(
LN

(
Ot,l

)
,W l

1, b
l
1,W

l
2, b

l
2

)
+Ot,l. (7)

W l
Q,i ∈ R4d×dk , W l

K,i ∈ R4d×dk , W l
V,i ∈ R4d×dv , W l

O ∈ RI·dv×4d, W l
1 ∈ R4d×16d, bl1 ∈ R16d,

W l
2 ∈ R16d×4d and bl2 ∈ R4d are trainable parameters at the l-th layer. We set dk = dv = 4d/I with

I as the number of attention heads. The input of the first layer is Zt,0 = Zt ∈ R(ltu+ltv)×4d, and the
output of the L-th layer is denoted by Ht = Zt,L ∈ R(ltu+ltv)×4d.

Time-aware Node Representation. The time-aware representations of node u and v at timestamp t
are derived by averaging their related representations in Ht with an output layer,

ht
u = MEAN

(
Ht[: ltu, :]

)
Wout + bout ∈ Rdout ,

ht
v = MEAN

(
Ht[ltu : ltu + ltv, :]

)
Wout + bout ∈ Rdout ,

(8)

where Wout ∈ R4d×dout and bout ∈ Rdout are trainable weights with dout as the output dimension.

4.2 DyGLib: Unified Library for Continuous-Time Dynamic Graph Learning

We introduce a unified library with standard training pipelines, extensible coding interfaces, and
comprehensive evaluating strategies for reproducible, scalable, and credible continuous-time dynamic
graph learning research. The overall procedure of DyGLib is shown in Figure 3 in Section A.3.

Standard Training Pipelines. To eliminate the influence of different training pipelines in previous
studies, we unify the data format, create a customized data loader, and train all the methods with the
same model trainers. Our standard training pipelines guarantee reproducible performance and enable
users to quickly identify the key components of different models. Researchers only need to focus on
designing the model architecture without considering other irrelevant implementation details.

Extensible Coding Interfaces. We provide extensible coding interfaces for the datasets and algo-
rithms, which are all implemented by PyTorch. These scalable designs enable users to incorporate
new datasets and popular models based on their specific requirements, which can significantly
reduce the usage difficulty for beginners and allow experts to conveniently validate new ideas. Cur-
rently, DyGLib has integrated thirteen datasets from various domains and nine continuous-time
dynamic graph learning methods. It is worth noticing that we also found some issues in previous
implementations and have fixed them in DyGLib (see details in Section B.3).

5

Comprehensive Evaluating Protocols. DyGLib supports both transductive/inductive dynamic link
prediction and dynamic node classification tasks. Most previous works evaluate their methods on the
dynamic link prediction task with the random negative sampling strategy but a few models already
reach saturation performance under such a strategy, making it hard to distinguish more advanced
designs. For more reliable comparisons, we adopt three strategies (i.e., random, historical, and
inductive negative sampling strategies) in [44] to comprehensively evaluate the model performance.

5 Experiments

In this section, we report the results of various approaches by using DyGLib. We show the superiority
of DyGFormer over existing methods and also give an in-depth analysis of DyGFormer.

5.1 Experimental Settings

Datasets and Baselines. We experiment with thirteen datasets (Wikipedia, Reddit, MOOC, LastFM,
Enron, Social Evo., UCI, Flights, Can. Parl., US Legis., UN Trade, UN Vote, and Contact), which are
collected by [44] and cover diverse domains. Details of the datasets are shown in Section B.1. We
compare DyGFormer with eight popular continuous-time dynamic graph learning baselines that are
based on graph convolutions, memory networks, random walks, and sequential models, including
JODIE [28], DyRep [55], TGAT [64], TGN [45], CAWN [60], EdgeBank [44], TCL [57], and
GraphMixer [12]. We give the descriptions of baselines in Section B.2.

Evaluation Tasks and Metrics. We follow [64, 45, 60, 44] to evaluate models for dynamic link
prediction, which predicts the probability of a link occurring between two given nodes at a specific
time. This task has two settings: the transductive setting aims to predict future links between nodes
that are observed during training, and the inductive setting predicts future links between unseen
nodes. We use a multi-layer perceptron to take the concatenated representations of two nodes as
inputs and return the probability of a link as the output. Average Precision (AP) and Area Under the
Receiver Operating Characteristic Curve (AUC-ROC) are adopted as the evaluation metrics. We adopt
random (rnd), historical (hist), and inductive (ind) negative sampling strategies in [44] for evaluation,
where the latter two strategies are more challenging. Please refer to [44] for more details. We also
follow [64, 45] to conduct dynamic node classification, which estimates the state of a node in a given
interaction at a specific time. A multi-layer perceptron is employed to map the node representations
to the labels. We use AUC-ROC as the evaluation metric due to the label imbalance. For both tasks,
we chronologically split each dataset with the ratio of 70%/15%/15% for training/validation/testing.

Model Configurations. For baselines, in addition to following their official settings, we also perform
an exhaustive grid search to find the optimal configurations of some critical hyperparameters for
more reliable comparisons. As DyGFormer can access longer histories, we vary each node’s input
sequence length from 32 to 4096 by a factor of 2. To keep the computational complexity at a constant
level that is irrelevant to the input length, we correspondingly increase the patch size from 1 to 128.
Please see Section B.5 for the detailed configurations of different models.

Implementation Details. For both tasks, we optimize all models (i.e., excluding EdgeBank which has
no trainable parameters) by Adam [27] and use supervised binary cross-entropy loss as the objective
function. We train the models for 100 epochs and use the early stopping strategy with a patience of
20. We select the model that achieves the best performance on the validation set for testing. We set
the learning rate and batch size to 0.0001 and 200 for all the methods on all the datasets. We run the
methods five times with seeds from 0 to 4 and report the average performance to eliminate deviations.
Experiments are conducted on an Ubuntu machine equipped with one Intel(R) Xeon(R) Gold 6130
CPU @ 2.10GHz with 16 physical cores. The GPU device is NVIDIA Tesla T4 with 15 GB memory.

5.2 Performance Comparisons and Discussions

We report the performance of different methods on the AP metric for transductive dynamic link
prediction with three negative sampling strategies in Table 1. The best and second-best results are
emphasized by bold and underlined fonts. Note that the results are multiplied by 100 for a better
display layout. Please refer to Section C.1 and Section C.2 for the results of AP for inductive dynamic
link prediction as well as AUC-ROC for transductive and inductive dynamic link prediction tasks.

6

Table 1: AP for transductive dynamic link prediction with random, historical, and inductive negative
sampling strategies. NSS is the abbreviation of Negative Sampling Strategies.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer

rnd

Wikipedia 96.50 ± 0.14 94.86 ± 0.06 96.94 ± 0.06 98.45 ± 0.06 98.76 ± 0.03 90.37 ± 0.00 96.47 ± 0.16 97.25 ± 0.03 99.03 ± 0.02
Reddit 98.31 ± 0.14 98.22 ± 0.04 98.52 ± 0.02 98.63 ± 0.06 99.11 ± 0.01 94.86 ± 0.00 97.53 ± 0.02 97.31 ± 0.01 99.22 ± 0.01
MOOC 80.23 ± 2.44 81.97 ± 0.49 85.84 ± 0.15 89.15 ± 1.60 80.15 ± 0.25 57.97 ± 0.00 82.38 ± 0.24 82.78 ± 0.15 87.52 ± 0.49
LastFM 70.85 ± 2.13 71.92 ± 2.21 73.42 ± 0.21 77.07 ± 3.97 86.99 ± 0.06 79.29 ± 0.00 67.27 ± 2.16 75.61 ± 0.24 93.00 ± 0.12
Enron 84.77 ± 0.30 82.38 ± 3.36 71.12 ± 0.97 86.53 ± 1.11 89.56 ± 0.09 83.53 ± 0.00 79.70 ± 0.71 82.25 ± 0.16 92.47 ± 0.12

Social Evo. 89.89 ± 0.55 88.87 ± 0.30 93.16 ± 0.17 93.57 ± 0.17 84.96 ± 0.09 74.95 ± 0.00 93.13 ± 0.16 93.37 ± 0.07 94.73 ± 0.01
UCI 89.43 ± 1.09 65.14 ± 2.30 79.63 ± 0.70 92.34 ± 1.04 95.18 ± 0.06 76.20 ± 0.00 89.57 ± 1.63 93.25 ± 0.57 95.79 ± 0.17

Flights 95.60 ± 1.73 95.29 ± 0.72 94.03 ± 0.18 97.95 ± 0.14 98.51 ± 0.01 89.35 ± 0.00 91.23 ± 0.02 90.99 ± 0.05 98.91 ± 0.01
Can. Parl. 69.26 ± 0.31 66.54 ± 2.76 70.73 ± 0.72 70.88 ± 2.34 69.82 ± 2.34 64.55 ± 0.00 68.67 ± 2.67 77.04 ± 0.46 97.36 ± 0.45
US Legis. 75.05 ± 1.52 75.34 ± 0.39 68.52 ± 3.16 75.99 ± 0.58 70.58 ± 0.48 58.39 ± 0.00 69.59 ± 0.48 70.74 ± 1.02 71.11 ± 0.59
UN Trade 64.94 ± 0.31 63.21 ± 0.93 61.47 ± 0.18 65.03 ± 1.37 65.39 ± 0.12 60.41 ± 0.00 62.21 ± 0.03 62.61 ± 0.27 66.46 ± 1.29
UN Vote 63.91 ± 0.81 62.81 ± 0.80 52.21 ± 0.98 65.72 ± 2.17 52.84 ± 0.10 58.49 ± 0.00 51.90 ± 0.30 52.11 ± 0.16 55.55 ± 0.42
Contact 95.31 ± 1.33 95.98 ± 0.15 96.28 ± 0.09 96.89 ± 0.56 90.26 ± 0.28 92.58 ± 0.00 92.44 ± 0.12 91.92 ± 0.03 98.29 ± 0.01

Avg. Rank 5.08 5.85 5.69 2.54 4.31 7.54 6.92 5.46 1.62

hist

Wikipedia 83.01 ± 0.66 79.93 ± 0.56 87.38 ± 0.22 86.86 ± 0.33 71.21 ± 1.67 73.35 ± 0.00 89.05 ± 0.39 90.90 ± 0.10 82.23 ± 2.54
Reddit 80.03 ± 0.36 79.83 ± 0.31 79.55 ± 0.20 81.22 ± 0.61 80.82 ± 0.45 73.59 ± 0.00 77.14 ± 0.16 78.44 ± 0.18 81.57 ± 0.67
MOOC 78.94 ± 1.25 75.60 ± 1.12 82.19 ± 0.62 87.06 ± 1.93 74.05 ± 0.95 60.71 ± 0.00 77.06 ± 0.41 77.77 ± 0.92 85.85 ± 0.66
LastFM 74.35 ± 3.81 74.92 ± 2.46 71.59 ± 0.24 76.87 ± 4.64 69.86 ± 0.43 73.03 ± 0.00 59.30 ± 2.31 72.47 ± 0.49 81.57 ± 0.48
Enron 69.85 ± 2.70 71.19 ± 2.76 64.07 ± 1.05 73.91 ± 1.76 64.73 ± 0.36 76.53 ± 0.00 70.66 ± 0.39 77.98 ± 0.92 75.63 ± 0.73

Social Evo. 87.44 ± 6.78 93.29 ± 0.43 95.01 ± 0.44 94.45 ± 0.56 85.53 ± 0.38 80.57 ± 0.00 94.74 ± 0.31 94.93 ± 0.31 97.38 ± 0.14
UCI 75.24 ± 5.80 55.10 ± 3.14 68.27 ± 1.37 80.43 ± 2.12 65.30 ± 0.43 65.50 ± 0.00 80.25 ± 2.74 84.11 ± 1.35 82.17 ± 0.82

Flights 66.48 ± 2.59 67.61 ± 0.99 72.38 ± 0.18 66.70 ± 1.64 64.72 ± 0.97 70.53 ± 0.00 70.68 ± 0.24 71.47 ± 0.26 66.59 ± 0.49
Can. Parl. 51.79 ± 0.63 63.31 ± 1.23 67.13 ± 0.84 68.42 ± 3.07 66.53 ± 2.77 63.84 ± 0.00 65.93 ± 3.00 74.34 ± 0.87 97.00 ± 0.31
US Legis. 51.71 ± 5.76 86.88 ± 2.25 62.14 ± 6.60 74.00 ± 7.57 68.82 ± 8.23 63.22 ± 0.00 80.53 ± 3.95 81.65 ± 1.02 85.30 ± 3.88
UN Trade 61.39 ± 1.83 59.19 ± 1.07 55.74 ± 0.91 58.44 ± 5.51 55.71 ± 0.38 81.32 ± 0.00 55.90 ± 1.17 57.05 ± 1.22 64.41 ± 1.40
UN Vote 70.02 ± 0.81 69.30 ± 1.12 52.96 ± 2.14 69.37 ± 3.93 51.26 ± 0.04 84.89 ± 0.00 52.30 ± 2.35 51.20 ± 1.60 60.84 ± 1.58
Contact 95.31 ± 2.13 96.39 ± 0.20 96.05 ± 0.52 93.05 ± 2.35 84.16 ± 0.49 88.81 ± 0.00 93.86 ± 0.21 93.36 ± 0.41 97.57 ± 0.06

Avg. Rank 5.46 5.08 5.08 3.85 7.54 5.92 5.46 4.00 2.62

ind

Wikipedia 75.65 ± 0.79 70.21 ± 1.58 87.00 ± 0.16 85.62 ± 0.44 74.06 ± 2.62 80.63 ± 0.00 86.76 ± 0.72 88.59 ± 0.17 78.29 ± 5.38
Reddit 86.98 ± 0.16 86.30 ± 0.26 89.59 ± 0.24 88.10 ± 0.24 91.67 ± 0.24 85.48 ± 0.00 87.45 ± 0.29 85.26 ± 0.11 91.11 ± 0.40
MOOC 65.23 ± 2.19 61.66 ± 0.95 75.95 ± 0.64 77.50 ± 2.91 73.51 ± 0.94 49.43 ± 0.00 74.65 ± 0.54 74.27 ± 0.92 81.24 ± 0.69
LastFM 62.67 ± 4.49 64.41 ± 2.70 71.13 ± 0.17 65.95 ± 5.98 67.48 ± 0.77 75.49 ± 0.00 58.21 ± 0.89 68.12 ± 0.33 73.97 ± 0.50
Enron 68.96 ± 0.98 67.79 ± 1.53 63.94 ± 1.36 70.89 ± 2.72 75.15 ± 0.58 73.89 ± 0.00 71.29 ± 0.32 75.01 ± 0.79 77.41 ± 0.89

Social Evo. 89.82 ± 4.11 93.28 ± 0.48 94.84 ± 0.44 95.13 ± 0.56 88.32 ± 0.27 83.69 ± 0.00 94.90 ± 0.36 94.72 ± 0.33 97.68 ± 0.10
UCI 65.99 ± 1.40 54.79 ± 1.76 68.67 ± 0.84 70.94 ± 0.71 64.61 ± 0.48 57.43 ± 0.00 76.01 ± 1.11 80.10 ± 0.51 72.25 ± 1.71

Flights 69.07 ± 4.02 70.57 ± 1.82 75.48 ± 0.26 71.09 ± 2.72 69.18 ± 1.52 81.08 ± 0.00 74.62 ± 0.18 74.87 ± 0.21 70.92 ± 1.78
Can. Parl. 48.42 ± 0.66 58.61 ± 0.86 68.82 ± 1.21 65.34 ± 2.87 67.75 ± 1.00 62.16 ± 0.00 65.85 ± 1.75 69.48 ± 0.63 95.44 ± 0.57
US Legis. 50.27 ± 5.13 83.44 ± 1.16 61.91 ± 5.82 67.57 ± 6.47 65.81 ± 8.52 64.74 ± 0.00 78.15 ± 3.34 79.63 ± 0.84 81.25 ± 3.62
UN Trade 60.42 ± 1.48 60.19 ± 1.24 60.61 ± 1.24 61.04 ± 6.01 62.54 ± 0.67 72.97 ± 0.00 61.06 ± 1.74 60.15 ± 1.29 55.79 ± 1.02
UN Vote 67.79 ± 1.46 67.53 ± 1.98 52.89 ± 1.61 67.63 ± 2.67 52.19 ± 0.34 66.30 ± 0.00 50.62 ± 0.82 51.60 ± 0.73 51.91 ± 0.84
Contact 93.43 ± 1.78 94.18 ± 0.10 94.35 ± 0.48 90.18 ± 3.28 89.31 ± 0.27 85.20 ± 0.00 91.35 ± 0.21 90.87 ± 0.35 94.75 ± 0.28

Avg. Rank 6.62 6.38 4.15 4.38 5.46 5.62 4.69 4.46 3.23

Since EdgeBank can be only evaluated for transductive dynamic link prediction, we do not show its
performance under the inductive setting. From the results, we have two main observations.

Firstly, DyGFormer usually outperforms baselines and achieves an average rank of 2.49/2.69 on
AP/AUC-ROC for transductive and 2.69/2.56 for inductive dynamic link prediction across three
negative sampling strategies. This is because: (i) The neighbor co-occurrence encoding scheme
helps DyGFormer exploit correlations between the source node and destination node, which are often
predictive for future links (see Section 5.5). (ii) The patching technique allows DyGFormer to access
longer histories and capture long-term temporal dependencies (see Section 5.4). In Table 9 in Section
B.5, the input sequence lengths of DyGFormer are much longer than those of baselines on several
datasets, indicating that it can utilize longer sequences better. We also observe the varying results of
DyGFormer across different negative sampling strategies and give an analysis in Section 5.7.

Secondly, some of our findings of baselines differ from previous reports. For instance, the perfor-
mance of some baselines can be significantly improved by properly setting some hyperparameters.
Additionally, some methods would obtain worse results after we fix the problems or make adaptions in
their implementations. More explanations can be found in Section B.4. These observations highlight
the importance of rigorously evaluating different methods by a unified library and verify the necessity
of introducing DyGLib to facilitate the development of dynamic graph learning.

We also report the results of dynamic node classification in Table 15 in Section C.3. We observe that
DyGFormer obtains better performance than most baselines and achieves an impressive average rank
of 2.50 among them, demonstrating the superiority of DyGFormer once again.

5.3 Generalizability of Neighbor Co-occurrence Encoding Scheme

Our Neighbor Co-occurrence Encoding scheme (NCoE) is versatile and can be easily integrated with
dynamic graph learning methods based on sequential models. Hence, we incorporate NCoE with

7

Table 2: AP for TCL with NCoE.

Datasets TCL w/ NCoE Improv.
Wikipedia 96.47 99.09 2.72%

Reddit 97.53 99.04 1.55%
MOOC 82.38 86.92 5.51%
LastFM 67.27 84.02 24.90%
Enron 79.70 90.18 13.15%

Social Evo. 93.13 94.06 1.00%
UCI 89.57 94.69 5.72%

Flights 91.23 97.71 7.10%
Can. Parl. 68.67 69.34 0.98%
US Legis. 69.59 69.47 -0.17%
UN Trade 62.21 63.46 2.01%
UN Vote 51.90 51.52 -0.73%
Contact 92.44 97.98 5.99%

Figure 2: Performance of different methods on LastFM and
Can. Parl. with varying input lengths.

TCL and GraphMixer and show their performance in Table 2 and Table 16 in Section C.4. We find
TCL and GraphMixer usually yield better results with NCoE, achieving an average improvement
of 5.36% and 1.86% over all datasets. This verifies the effectiveness and versatility of the neighbor
co-occurrence encoding, and highlights the importance of capturing correlations between nodes. Also,
as TCL and DyGFormer are built upon Transformer, TCL w/ NCoE can achieve similar results with
DyGFormer on datasets that enjoy shorter input sequences (in which cases the patching technique in
DyGFormer contributes little). However, when datasets exhibit more obvious long-term temporal
dependencies (e.g., LastFM, Can. Parl.), the performance gaps become more significant.

5.4 Advantages of Patching Technique

We validate the advantages of our patching technique in preserving the local temporal proximities
and reducing the computational complexity, which helps DyGFormer effectively and efficiently
utilize longer histories. We conduct experiments on LastFM and Can. Parl. since they can benefit
from longer historical records. For baselines, we sample more neighbors or perform more causal
anonymous walks (starting from 32) to make them access longer histories. The results are depicted
in Figure 2, where the x-axis is represented by a logarithmic scale with base 2. We also plot the
performance of baselines with the optimal length by unconnected points based on Table 9 in Section
B.5. Note that the results of some baselines are incomplete since they raise the out-of-memory error
when the lengths are longer. For example, TGAT is only computationally feasible when extending
the input length to 32, resulting in two discrete points with lengths 20 (the optimal length) and 32.

From Figure 2, we conclude that: (i) most of the baselines perform worse when the input lengths
become longer, indicating they lack the ability to capture long-term temporal dependencies; (ii)
the baselines usually encounter expensive computational costs when computing on longer histories.
Although memory network-based methods (i.e., DyRep and TGN) can handle longer histories with
affordable computational costs, they cannot benefit from longer histories due to the potential issues of
vanishing or exploding gradients; (iii) DyGFormer consistently achieves gains from longer sequences,
demonstrating the advantages of the patching technique in leveraging longer histories.

We also compare the running time and memory usage of DyGFormer with and without the patching
technique during the training process. The results are shown in Table 17 in Section C.5. We could
observe that the patching technique efficiently reduces model training costs in both time and space,
allowing DyGFormer to access longer histories. As the input sequence length increases, the reductions
become more significant. Moreover, with the patching technique, we find that DyGFormer achieves
an average improvement of 0.31% and 0.74% in performance on LastFM and Can. Parl. than
DyGFormer without patching. This observation further demonstrates the advantage of our patching
technique in leveraging the local temporal proximities for better results.

5.5 Verification of the Motivation of Neighbor Co-occurrence Encoding Scheme

To verify the motivation of NCoE (i.e., nodes with more common historical neighbors tend to interact
in the future), we compare the performance of DyGFormer and DyGFormer without NCoE. We
choose 0.5 as the threshold and use TP, TN, FN, and FP to denote True/False Positive/Negative.

8

Common Neighbor Ratio (CNR) is defined as the ratio of common neighbors in source node u’s
sequence Su and destination node v’s sequence Sv, i.e., |Su ∩ Sv|/|Su ∪ Sv|. We focus on links
whose predictions of DyGFormer w/o NCoE are changed by DyGFormer (i.e., FN→TP, FP→TN,
TP→FN, and TN→FP). We define Changed Link Ratio (CLR) as the ratio of the changed links to their
original set, which is respectively computed by |FN→TP|/|FN|, |FP→TN|/|FP|, |TP→FN|/|TP|,
and |TN→FP|/|TN|. If NCoE is helpful, DyGFormer will revise more wrong predictions (more
FN→TP and FP→TN) and make fewer incorrect changes (fewer TP→FN and TN→FP). We report
CLR and average CNR of links in the above sets on five typical datasets in Table 3.

Table 3: CLR and CNR of changes made by DyGFormer.

Datasets CLR (%) CNR (%)
FN→TP FP→TN TP→FN TN→FP FN→TP FP→TN TP→FN TN→FP

Wikipedia 68.36 72.73 1.68 1.69 18.16 0.01 0.10 2.49
UCI 71.45 94.11 7.29 1.82 19.08 2.49 3.35 13.02

Flights 83.66 83.83 1.73 2.11 37.09 2.28 7.06 20.28
US Legis. 31.63 23.67 6.63 1.59 69.92 62.13 61.14 63.80
UN Vote 44.02 36.46 28.95 30.53 78.57 81.39 80.86 77.02

We find NCoE effectively helps DyGFormer rectify wrong predictions of DyGFormer w/o NCoE
on datasets with significantly higher CNR of positive links than negative ones, which happens with
most datasets. Concretely, for Wikipedia, UCI, and Flights, their CNRs of FN→TP are much higher
than FP→TN (e.g., 37.09% vs. 2.28% on Flights) and DyGFormer revises most wrong predictions of
DyGFormer w/o NCoE (e.g., 83.66% for positive links in FN and 83.83% for negative links in FP
on Flights). Corrections made by our encoding scheme are less obvious on datasets whose CNRs
between positive and negative links are similar, which occurs in only 2 of 13 datasets. For US Legis.
and UN Vote, their CNRs between FN and FP are analogous (e.g., 69.92% vs. 62.13% on US Legis.),
weakening the advantage of our neighbor co-occurrence encoding scheme (e.g., only 31.63%/23.67%
of positive/negative links are corrected in FN/FP on US Legis.). Therefore, we conclude that the
neighbor co-occurrence encoding scheme helps DyGFormer capture common historical neighbors in
Su and Sv , and bring better results in most cases.

5.6 When Will DyGFormer Be a Good Choice?

Note that DyGFormer is superior to baselines by 1) exploring the source and destination nodes’
correlations from their historical sequences by neighbor co-occurrence encoding scheme; 2) using the
patching technique to attend longer histories. Thus, DyGFormer tends to perform better on datasets
that favor these two designs. We define Link Ratio (LR) as the ratio of links in their corresponding
positive or negative set, which can be computed by TP/(TP+FN), TN/(TN+FP), FN/(TP+FN), and
FP/(TN+FP). As a method with more TP and TN (i.e., fewer FN and FP) is better, we report the
results of LR and average CNR of links in TP and TN on five typical datasets in Table 4.

Table 4: LR and CNR of TP and TN with
random negative sampling strategy.

Datasets LR (%) CNR (%)
TP TN TP TN

Wikipedia 92.74 97.19 59.09 0.01
UCI 82.70 96.77 28.03 1.45

Flights 96.13 95.33 47.58 1.40
US Legis. 78.95 56.83 75.18 53.98
UN Vote 65.18 45.43 56.24 76.02

Table 5: LR and CNR of FP under random, historical,
and inductive negative sampling strategy.

Datasets LR(%) CNR(%)
rnd hist ind rnd hist ind

Wikipedia 2.81 89.28 94.53 0.02 14.00 11.66
UCI 3.23 64.93 76.42 9.98 12.22 13.81

Flights 4.67 94.52 92.94 0.01 35.62 30.29
US Legis. 43.17 17.31 21.21 79.40 87.51 75.51
UN Vote 54.57 39.90 52.92 79.60 75.53 79.15

We observe when CNR of TP is significantly higher than CNR of TN in the datasets, DyGFormer
often outperforms baselines (most datasets satisfy this property). For Wikipedia, UCI, and Flights,
their CNRs of TP are much higher than those of TN (e.g., 59.09% vs. 0.01% on Wikipedia). Such
a characteristic matches the motivation of our neighbor co-occurrence encoding scheme, enabling
DyGFormer to correctly predict most links (e.g., 92.74% of positive links and 97.19% of negative
links are properly predicted on Wikipedia). Moreover, as LastFM and Can. Parl. can gain from

9

longer histories (see Figure 2 and Table 9 in Section B.5), DyGFormer is significantly better than
baselines on these two datasets. When CNRs of TP and TN are less distinguishable in the datasets,
DyGFormer may perform worse (only 2 out of 13 datasets show this property). For US Legis., the
CNRs between TP and TN are close (i.e., 75.18% vs. 53.98%), making DyGFormer worse than
memory-based baselines (i.e., JODIE, DyRep, and TGN). For UN Vote, its CNR of TP is even lower
than that of TN (i.e., 56.24% vs. 76.02%), which is opposite to our motivation, leading to poor results
of DyGFormer than a few baselines. Since these two datasets cannot obviously gain from longer
sequences either (see Table 9 in Section B.5), DyGFormer obtains worse results on them. Thus, we
conclude that for datasets with much higher CNR of TP than CNR of TN or datasets that can benefit
from longer histories, DyGFormer is a good choice. Otherwise, we may need to try other methods.

5.7 Why do DyGFormer’s Performance Vary across Different Negative Sampling Strategies?

Compared with the random (rnd) strategy, historical (hist) and inductive (ind) strategies will sample
previous links as negative ones. This makes previous positive links negative, which may hurt the
performance DyGFormer since the motivation of our neighbor co-occurrence encoding scheme is
violated. As positive links are identical among rnd, hist, and ind, we compute LR and the average
CNR of links in FP and show results in Table 5.

We find when hist or ind causes several magnitudes higher CNR of FP than rnd in the datasets,
DyGFormer drops sharply. For Wikipedia, UCI, and Flights, the CNRs of FP with hist/ind are much
higher than rnd (e.g., 14.00%/11.66% vs. 0.02% on Wikipedia). This misleads DyGFormer to predict
negative links as positive and causes drops (e.g., 89.28%/94.53% of negative links are incorrectly
predicted with hist/ind on Wikipedia, while only 2.81% are wrong with rnd). We also note the
drops in UCI are milder since the changes in CNR caused by hist or ind vs. rnd are less obvious
than changes in Wikipedia and Flights. When changes in CNR of FP caused by hist or ind are not
obvious in the datasets, DyGFormer is less affected. Since hist/ind makes little changes in CNRs
of FP on US Legis., we find it ranks second with hist/ind, which may indicate DyGFormer is less
influenced by the neighbor co-occurrence encoding scheme and generalizes well to various negative
sampling strategies. For UN Vote, although its CNRs of FP are not affected by hist and ind either,
DyGFormer still performs worse due to its inferior performance with rnd. Hence, we deduce that our
neighbor co-occurrence encoding may be sometimes fragile to various negative sampling strategies if
its motivation is violated, leading to the varying performance of DyGFormer.

5.8 Ablation Study

Finally, we validate the effectiveness of the neighbor co-occurrence encoding, time encoding, and
mixing of the sequence of source node and destination node in DyGFormer. From Figure 4 in Section
C.6, we observe that DyGFormer obtains the best performance when using all the components, and
the results would be worse when any component is removed. This illustrates the necessity of each
design in DyGFormer. Please refer to Section C.6 for detailed implementations and discussions.

6 Conclusion

In this paper, we proposed a new Transformer-based architecture (DyGFormer) and a unified library
(DyGLib) to foster the development of dynamic graph learning. DyGFormer differs from previous
methods in (i) a neighbor co-occurrence encoding scheme to exploit the correlations of nodes in each
interaction; and (ii) a patching technique to help the model capture long-term temporal dependencies.
DyGLib served as a toolkit for reproducible, scalable, and credible continuous-time dynamic graph
learning with standard training pipelines, extensible coding interfaces, and comprehensive evaluating
protocols. We hope our work can provide new perspectives on designing new dynamic graph learning
frameworks and encourage more researchers to dive into this field. In the future, we will continue to
enrich DyGLib by incorporating the recently released datasets and state-of-the-art models.

Acknowledgments and Disclosure of Funding

This work was supported by the National Natural Science Foundation of China (No. 62272023 and
51991395) and the Fundamental Research Funds for the Central Universities (No. YWF-23-L-1203).

10

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A system
for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design
and Implementation, pages 265–283. USENIX Association, 2016.

[2] Unai Alvarez-Rodriguez, Federico Battiston, Guilherme Ferraz de Arruda, Yamir Moreno,
Matjaž Perc, and Vito Latora. Evolutionary dynamics of higher-order interactions in social
networks. Nature Human Behaviour, 5(5):586–595, 2021.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[4] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional
recurrent network for traffic forecasting. In Advances in Neural Information Processing Systems
33, 2020.

[5] Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinícius Flo-
res Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Çaglar Gülçehre, H. Francis Song, Andrew J. Ballard, Justin Gilmer, George E. Dahl,
Ashish Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess,
Daan Wierstra, Pushmeet Kohli, Matthew M. Botvinick, Oriol Vinyals, Yujia Li, and Razvan
Pascanu. Relational inductive biases, deep learning, and graph networks. CoRR, abs/1806.01261,
2018.

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
Advances in Neural Information Processing Systems 33, 2020.

[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In Computer Vision - ECCV
2020 - 16th European Conference, volume 12346 of Lecture Notes in Computer Science, pages
213–229. Springer, 2020.

[8] Yukuo Cen, Zhenyu Hou, Yan Wang, Qibin Chen, Yizhen Luo, Xingcheng Yao, Aohan Zeng,
Shiguang Guo, Peng Zhang, Guohao Dai, Yu Wang, Chang Zhou, Hongxia Yang, and Jie Tang.
Cogdl: An extensive toolkit for deep learning on graphs. CoRR, abs/2103.00959, 2021.

[9] Xiaofu Chang, Xuqin Liu, Jianfeng Wen, Shuang Li, Yanming Fang, Le Song, and Yuan Qi.
Continuous-time dynamic graph learning via neural interaction processes. In The 29th ACM
International Conference on Information and Knowledge Management, pages 145–154. ACM,
2020.

[10] Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. In Proceedings of
SSST@EMNLP 2014, pages 103–111. Association for Computational Linguistics, 2014.

[11] Weilin Cong, Yanhong Wu, Yuandong Tian, Mengting Gu, Yinglong Xia, Mehrdad Mahdavi,
and Chun-cheng Jason Chen. Dynamic graph representation learning via graph transformer
networks. CoRR, abs/2111.10447, 2021.

[12] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hanghang Tong, and
Mehrdad Mahdavi. Do we really need complicated model architectures for temporal networks?
In International Conference on Learning Representations, 2023.

11

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 4171–4186. Association for Computational Linguistics,
2019.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In 9th International Conference on Learning Representations.
OpenReview.net, 2021.

[15] Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, and Philip S. Yu. Continuous-time
sequential recommendation with temporal graph collaborative transformer. In The 30th ACM
International Conference on Information and Knowledge Management, pages 433–442. ACM,
2021.

[16] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric.
CoRR, abs/1903.02428, 2019.

[17] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowl. Based Syst., 187, 2020.

[18] Palash Goyal, Sujit Rokka Chhetri, Ninareh Mehrabi, Emilio Ferrara, and Arquimedes Canedo.
Dynamicgem: A library for dynamic graph embedding methods. CoRR, abs/1811.10734, 2018.

[19] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. In The Thirty-Third AAAI
Conference on Artificial Intelligence, pages 922–929. AAAI Press, 2019.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, pages
770–778. IEEE Computer Society, 2016.

[21] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In Advances in Neural Information Processing Systems 33, 2020.

[23] Shenyang Huang, Farimah Poursafaei, Jacob Danovitch, Matthias Fey, Weihua Hu, Emanuele
Rossi, Jure Leskovec, Michael Bronstein, Guillaume Rabusseau, and Reihaneh Rabbany. Tempo-
ral graph benchmark for machine learning on temporal graphs. arXiv preprint arXiv:2307.01026,
2023.

[24] Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics from
irregularly-sampled partial observations. In Advances in Neural Information Processing Systems
33, 2020.

[25] Ming Jin, Yuan-Fang Li, and Shirui Pan. Neural temporal walks: Motif-aware representation
learning on continuous-time dynamic graphs. In NeurIPS, 2022.

[26] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth,
and Pascal Poupart. Representation learning for dynamic graphs: A survey. J. Mach. Learn.
Res., 21:70:1–70:73, 2020.

[27] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, 2015.

[28] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1269–1278. ACM, 2019.

12

[29] Jintang Li, Kun Xu, Liang Chen, Zibin Zheng, and Xiao Liu. Graphgallery: A platform for fast
benchmarking and easy development of graph neural networks based intelligent software. In
43rd IEEE/ACM International Conference on Software Engineering: Companion Proceedings,
pages 13–16. IEEE, 2021.

[30] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. In Advances in Neural Information Processing Systems 32, pages 5244–5254, 2019.

[31] Xiaohan Li, Mengqi Zhang, Shu Wu, Zheng Liu, Liang Wang, and Philip S. Yu. Dynamic graph
collaborative filtering. In 20th IEEE International Conference on Data Mining, pages 322–331.
IEEE, 2020.

[32] Meng Liu, Youzhi Luo, Limei Wang, Yaochen Xie, Hao Yuan, Shurui Gui, Haiyang Yu, Zhao
Xu, Jingtun Zhang, Yi Liu, Keqiang Yan, Haoran Liu, Cong Fu, Bora Oztekin, Xuan Zhang,
and Shuiwang Ji. DIG: A turnkey library for diving into graph deep learning research. J. Mach.
Learn. Res., 22:240:1–240:9, 2021.

[33] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT
pretraining approach. CoRR, abs/1907.11692, 2019.

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In 2021
IEEE/CVF International Conference on Computer Vision, pages 9992–10002. IEEE, 2021.

[35] Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning.
In The First Learning on Graphs Conference, 2022.

[36] Yao Ma, Ziyi Guo, Zhaochun Ren, Jiliang Tang, and Dawei Yin. Streaming graph neural
networks. In Proceedings of the 43rd International ACM SIGIR conference on research and
development in Information Retrieval, pages 719–728. ACM, 2020.

[37] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th International Conference on Machine Learning, pages
807–814. Omnipress, 2010.

[38] Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. In International Conference on
Learning Representations, 2023.

[39] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kaneza-
shi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. Evolvegcn: Evolving graph con-
volutional networks for dynamic graphs. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, pages 5363–5370. AAAI Press, 2020.

[40] Razvan Pascanu, Tomás Mikolov, and Yoshua Bengio. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th International Conference on Machine Learning,
volume 28 of JMLR Workshop and Conference Proceedings, pages 1310–1318. JMLR.org,
2013.

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems
32, pages 8024–8035, 2019.

[42] James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Associates, 71(2001):2001, 2001.

[43] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning
mesh-based simulation with graph networks. In 9th International Conference on Learning
Representations. OpenReview.net, 2021.

13

[44] Farimah Poursafaei, Andy Huang, Kellin Pelrine, and Reihaneh Rabbany. Towards better
evaluation for dynamic link prediction. In Thirty-sixth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track, 2022.

[45] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and
Michael Bronstein. Temporal graph networks for deep learning on dynamic graphs. In ICML
2020 Workshop on Graph Representation Learning, 2020.

[46] Benedek Rozemberczki, Paul Scherer, Yixuan He, George Panagopoulos, Alexander Riedel,
Maria Sinziana Astefanoaei, Oliver Kiss, Ferenc Béres, Guzmán López, Nicolas Collignon, and
Rik Sarkar. Pytorch geometric temporal: Spatiotemporal signal processing with neural machine
learning models. In The 30th ACM International Conference on Information and Knowledge
Management, pages 4564–4573. ACM, 2021.

[47] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and
Peter W. Battaglia. Learning to simulate complex physics with graph networks. In Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, pages 8459–8468. PMLR, 2020.

[48] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural
representation learning on dynamic graphs via self-attention networks. In The Thirteenth ACM
International Conference on Web Search and Data Mining, pages 519–527. ACM, 2020.

[49] Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and modeling of dynamic
networks using dynamic graph neural networks: A survey. IEEE Access, 9:79143–79168, 2021.

[50] Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian Tang.
Session-based social recommendation via dynamic graph attention networks. In Proceedings of
the Twelfth ACM International Conference on Web Search and Data Mining, pages 555–563.
ACM, 2019.

[51] Amauri H. Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive
temporal graph networks. In NeurIPS, 2022.

[52] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res.,
15(1):1929–1958, 2014.

[53] Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. End-to-end memory
networks. In Advances in Neural Information Processing Systems 28, pages 2440–2448, 2015.

[54] Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas
Unterthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision. In Advances in Neural
Information Processing Systems 34, pages 24261–24272, 2021.

[55] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In 7th International Conference on Learning Representa-
tions. OpenReview.net, 2019.

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 5998–6008, 2017.

[57] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song,
Jingren Zhou, and Hongxia Yang. TCL: transformer-based dynamic graph modelling via
contrastive learning. CoRR, abs/2105.07944, 2021.

[58] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou,
Qi Huang, Chao Ma, Ziyue Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang
Li, Alexander J. Smola, and Zheng Zhang. Deep graph library: Towards efficient and scalable
deep learning on graphs. CoRR, abs/1909.01315, 2019.

14

[59] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang,
Ping Cui, Yupu Yang, Bowen Sun, and Zhenyu Guo. APAN: asynchronous propagation attention
network for real-time temporal graph embedding. In International Conference on Management
of Data, pages 2628–2638. ACM, 2021.

[60] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In 9th International Conference on
Learning Representations. OpenReview.net, 2021.

[61] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In 3rd International
Conference on Learning Representations, 2015.

[62] Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting. In Advances in Neural
Information Processing Systems 34, pages 22419–22430, 2021.

[63] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for
deep spatial-temporal graph modeling. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, pages 1907–1913. ijcai.org, 2019.

[64] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan. Inductive
representation learning on temporal graphs. In 8th International Conference on Learning
Representations. OpenReview.net, 2020.

[65] Guotong Xue, Ming Zhong, Jianxin Li, Jia Chen, Chengshuai Zhai, and Ruochen Kong.
Dynamic network embedding survey. Neurocomputing, 472:212–223, 2022.

[66] Jiaxuan You, Tianyu Du, and Jure Leskovec. ROLAND: graph learning framework for dynamic
graphs. In The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 2358–2366. ACM, 2022.

[67] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks:
A deep learning framework for traffic forecasting. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, pages 3634–3640. ijcai.org, 2018.

[68] Le Yu. An empirical evaluation of temporal graph benchmark. arXiv preprint arXiv:2307.12510,
2023.

[69] Le Yu, Bowen Du, Xiao Hu, Leilei Sun, Liangzhe Han, and Weifeng Lv. Deep spatio-temporal
graph convolutional network for traffic accident prediction. Neurocomputing, 423:135–147,
2021.

[70] Le Yu, Zihang Liu, Leilei Sun, Bowen Du, Chuanren Liu, and Weifeng Lv. Continuous-time
user preference modelling for temporal sets prediction. IEEE Transactions on Knowledge and
Data Engineering, 2023.

[71] Le Yu, Guanghui Wu, Leilei Sun, Bowen Du, and Weifeng Lv. Element-guided temporal graph
representation learning for temporal sets prediction. In The ACM Web Conference 2022, pages
1902–1913. ACM, 2022.

[72] Mengqi Zhang, Shu Wu, Xueli Yu, Qiang Liu, and Liang Wang. Dynamic graph neural networks
for sequential recommendation. IEEE Transactions on Knowledge and Data Engineering, 2022.

[73] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Thirty-Fifth AAAI Conference on Artificial Intelligence, pages 11106–11115. AAAI Press, 2021.

[74] Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis.
Tgl: a general framework for temporal gnn training on billion-scale graphs. Proceedings of the
VLDB Endowment, 15(8):1572–1580, 2022.

15

