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Abstract. Early development of an animal from an egg involves a rapid
increase in cell number and several cell fate specification events which are
accompanied by dynamic morphogenetic changes. In order to correlate
the morphological changes with the underlying genetic events, one typi-
cally needs to monitor the living system with several imaging modalities
offering different spatial and temporal resolution. Live imaging allows
monitoring the embryo at a high temporal resolution and observing the
morphological changes during the early development. Confocal images
of specimens fixed and stained for the expression of certain genes pro-
vide high spatially-resolved static snapshots and enable observing the
transcription states of an embryo at specific time points during develop-
ment. The two modalities cannot, by definition, be applied to the same
specimen and thus, separately obtained images of different specimens
need to be registered. Biologically, the most meaningful way to regis-
ter the images is by identifying cellular correspondences between these
two imaging modalities. In this way, one can bring the two sources of
information into a single domain and combine dynamic information on
morphogenesis with static gene expression data. The problem of estab-
lishing cellular correspondence is non-trivial due to the stochasticity of
developmental processes and the non-linear deformation of the specimen
during staining protocols. Here we propose a new computational pipeline
for identifying cell-to-cell correspondences between images from multi-
ple modalities and for using these correspondences to register 3D images
within and across imaging modalities. We demonstrate this pipeline by
combining four dimensional time-lapse showing embryogenesis of Spi-
ralian ragworm Platyneries dumerilii with three dimensional scans of
fixed Platyneries dumerilii embryos stained for the expression of a va-
riety of important developmental transcription factors. We compare our
approach with methods for aligning point clouds and show that we match
the accuracy of these state-of-the-art registration pipelines on synthetic
data. We show that our approach outperforms these methods on real bi-
ological imaging datasets. In addition, our approach uniquely provides,
in addition to the registration, also the non-redundant matching of corre-
sponding, biologically meaningful entities within the registered specimen
which is the prerequisite for generating biological insights from the com-
bined datasets. The complete pipeline is available for public use through
a Fiji ([20]) plugin.
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Keywords: Cell Correspondence, Image Registration, In-Situ Hybridi-
sation, Platynereis dumerilii, Iterative Closest Point, Shape Context

1 Introduction

Development of an animal embryo is a highly dynamic process spanning sev-
eral temporal and spatial scales, and involves a series of dynamic morphogenetic
events that are driven by gene regulatory networks encoded by the genome.
One of the major challenges in developmental biology is to correlate the mor-
phological changes with the underlying gene activities [17]. Recent advances in
fluorescence microscopy, such as light-sheet microscopy ([11], [23]), allows inves-
tigating the spatio-temporal dynamics of cells in entire developing organisms and
in a time-resolved manner. The three-dimensional time-lapse data produced by
light sheet microscopes contain information about positions, trajectories, divi-
sions and deaths of most cells in the embryo during development. However, such
data sets typically lack information about gene activities in the living system.

The molecular information is provided by complementary approaches, such
as confocal imaging of fixed specimens stained for expression of a certain gene
(following the molecular protocols of whole-mount in-situ hybridization (ISH)).
The three-dimensional images of the fixed and stained embryos contain informa-
tion about the spatial position of all cells or nuclei and in addition some cells
are specifically labelled to indicate the expression of a gene of interest. Images
of many such stained specimens showing expression of different genes at a par-
ticular stage of development can be readily collected. In order to systematically
connect the molecular state of a cell to its fate during embryo morphogenesis,
one needs to detect the cells in both live and fixed imaging modalities and iden-
tify cell-to-cell correspondences. This is typically achieved by aligning the im-
ages. However, the process of chemical fixation during ISH leads to a global and
non-linear shrinking of the specimen. Additionally, the embryos are scanned in
random orientations, and each specimen is a distinct individual showing stochas-
tic differences in numbers and positions of the cells. This makes the problem of
image registration in this context non-trivial.

We reasoned that since our primary objective is to transfer information be-
tween the imaging modalities and since cells (or nuclei) are the units of biolog-
ical interest, it is more important to establish precise correspondences between
equivalent cells across the specimen and modalities and that once this is achieved
the registration will be obtained implicitly (Figure 1A). We aimed to solve two
matching and registration problems. Firstly, intramodal registration, where dif-
ferent fixed embryos stained for different gene expression patterns are registered
to one reference specimen (Figure 1B). When successful, the intramodal regis-
tration will transfer information about expression of multiple genes derived from
distinct staining and imaging experiments to a single reference atlas. Secondly,
intermodal registration where individual fixed and stained specimens are regis-
tered to an appropriate matching time-point of a time-lapse series of the same
animal species imaged live (Figure 1C). When successful, the intermodal reg-
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istration will transfer gene expression information from fixed data to the live
imaged specimen where it can be propagated along the developmental trajecto-
ries of the cells. In both cases, the common denominator are the labelled nuclei
and the task is to establish the correspondences between them as precisely as
possible.

A

B C

Fig. 1. (A) 2-D schematic illustrating the idea: two distinct specimens (left: source and
middle: target) are compared in order to estimate pair-wise cell nuclei correspondences
and an optimal transform that registers the source onto the target (right) (B, C) 2-D
schematic illustrating the two use cases: (left, B) images of distinct, independent in-situ
specimens, acquired through confocal microscopy are registered to each other, which
enables formation of an average, virtual atlas. (right, C) images of in-situ specimens,
acquired through confocal microscopy are registered to the appropriate frame (tp:
time point) in a time-lapse movie acquired through SPIM imaging. Nuclei indicated
in darker shades are the ones expressing the transcription factor being investigated.
These transcription factor intensities are transferred from the source nucleus to the
corresponding target nucleus in both use cases.
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To address these challenges, we developed a new computational pipeline to
identify cell-to-cell correspondences between images from the same and multiple
imaging modalities and use them to register the images. We demonstrate the
results of the pipeline on fixed ISH images of the embryos of marine annelid
worm Platynereis dumerillii at 16 hours post fertilization (hpf) and the corre-
sponding long term time-lapse acquired with light sheet microscopy. This worm
is particularly suitable for demonstrating our approach because its embryonic
development is highly stereotypic, meaning that the number, arrangement and
dynamic behaviour of cells is highly similar across individuals. We compare our
algorithm with methods for matching point clouds from computer vision such as
Coherent Point Drift [18] and a variant of ICP (which we refer to as PCA-ICP)
and show that our method outperforms the accuracy of these state-of-the-art
global registration pipelines on real biological data. We also perform a series
of controlled experiments on synthetic data in order to demonstrate that our
method is robust to initial conditions, and noisy nuclei detections. Importantly,
the pipeline is made available to the biology research community through an
easy-to-use plugin distributed on the Fiji platform [20].

2 Related Work

2.1 Registration approaches applied to images of Platynereis
dumerilii embryonic and larval development

Platynereis dumerillii has been a playground for image registration approaches
over the recent years, due to the efforts to infer gene regulatory networks under-
lying neuronal development by registering ISH expression patterns. Most of this
work has emphasized non-linear registration of an in-situ specimen to a virtual
atlas. For instance, a new computational protocol was identified to obtain a vir-
tual, high resolution gene expression atlas for the brain sub-regions in embryos at
48 hpf and onwards [22]. The reference signal used in this protocol was the larval
axonal scaffold and ciliary bands stained with an acetylated-tubulin antibody.
This signal has very distinctive 3D shape within the larva and so this approach
relied on intensity based registration where linear transformations were initially
applied on the source image to obtain a coarse, global registration. This was then
followed by applying a non-linear, deformable transformation which employed
mutual-information as the image similarity metric [26].

Another approach, more related to the path we took, leveraged the DAPI
image channel (which localises the cell nuclei) to obtain registration of high-
quality whole-body scans to a virtual atlas for embryos at stages 48 and 72
hpf [2] and for a larva at 144 hpf [25]. Also these approaches relied on voxel
intensities of the DAPI channel rather than on the matching of segmented nuclei
as in our approach. Most similar to our work is the approach of [27] where the
early lineages of developing embryos were linked to gene expression ISH data
by manually identifying corresponding nuclei between embryos imaged in two
modalities based on their shape, staining intensity, and relative position.
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The embryo specimens targeted in our study are spherical and highly sym-
metrical, lack distinctive features such as a prominent ciliary band and the nu-
clei are densely packed. Therefore, intensity based registration approaches using
DAPI or neuronal marker channel either fail or perform poorly on such data.
Contrary to these approaches and driven by the objective to, first and foremost,
transfer gene expression information with cellular resolution between modalities,
we adopt a matching-by-detection workflow, where we first detect nuclei in the
source and target DAPI image channels and use the detections to estimate an
initial transform. We then refine this transform and estimate optimal pair-wise
nuclear correspondences. Therefore, after the nuclei detection step, the problem
is cast into the realm of point cloud geometric registration methods that has
received substantial attention in both biological and computer vision research
communities. We discuss the existing approaches in the following two sections.

2.2 Matching of cells or nuclei in biological specimens

The work on matching nuclei between biological specimens has focused mainly
on Caenorhabditis elegans model system that exhibits perfectly stereotypic mode
of development, and in fact, every single cell in the animal has its own name.
Using this information, a digital atlas was constructed, which labels each nucleus
segmentation in a three-dimensional image with an appropriate name. This was
initially achieved using a relatively simple RANSAC based matching scheme [15]
and was later extended by an active graph matching approach to jointly segment
and annotate nuclei of the larva [13]. The C. elegans pipelines work well partly
due to the highly distinctive overall shape of the larvae and non-homogenous
distribution of the nuclei. Another example of matching nuclei between bio-
logical specimens is [16] where cell pairings were identified between multiple,
independent time-lapse movies showing ascidian development, by identifying a
symmetry plane. These publications emphasized nuclei detection and matching
between images arising from the same modality. We are not aware of any au-
tomated strategy that identified nuclear correspondences between images from
different modalities, as we attempt to do (see Figure 1C).

2.3 Approaches to Point Cloud Matching in biomedical imaging

In computer vision, a typical workflow for matching point-clouds estimates a
rigid or affine transform in order to perform an initial global alignment, which
is followed by a local refinement of the initial transform through the Iterative
Closest Point (ICP) algorithm. Many global alignment methods identify point-
to-point matches based on geometric descriptors [8]. Once candidate correspon-
dences are collected, alignment is estimated from a sparse subset of correspon-
dences and then validated on the entire cloud. This iterative process typically
employs variants of RANSAC [6].

One example of geometric descriptors is Shape Contexts, which were in-
troduced by [3] for measuring similarity between two dimensional point clouds
and were employed for registering surfaces in biomedical applications ([1], [24]).
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These were further extended for use with three dimensional point clouds by [7]
and employed for the recognition of three dimensional objects. One characteris-
tic of 3D Shape Context as presented in [7] is that it requires the computation
of multiple descriptors for each feature point in the source image. Computing
multiple descriptors at a given feature point was deemed excessive and avoided
in [21] by identifying a unique local 3D reference frame for each source and target
point.

A prominent example of geometric descriptor matching in biological image
analysis is the bead-based registration of multiview light sheet (Selective Plane
Illumination Microscopy (SPIM)) data [19]. Here, fluorescent beads embedded
around a specimen are used as fiduciary markers to achieve registration of 3D
scans of the same embryo from multiple imaging angles (referred to as views).
This is achieved by building rotation, translation and scale invariant bead de-
scriptors in local bead neighbourhoods, which enables identification of corre-
sponding beads in multiple views and thus allows image registration and fusion
of the various views. The approach was extended to multiview registration us-
ing nuclei segmented within the specimen instead of beads [12], however the
approach is not robust enough to enable registration across different specimen
and/or imaging modalities.

A second body of approaches estimate the optimal transform between the
source and target point clouds in a single step. One such example is Coherent
Point Drift (CPD) algorithm [18] where the alignment of two point clouds is
considered as a probability density estimation problem : gaussian mixture model
centroids (representing the first point cloud) are fitted to the data (the second
point cloud) by maximizing the likelihood. CPD has also been used to perform
non-rigid registration of features extracted from biomedical images ([10], [5]). In
this paper, we use CPD as one of the baselines to benchmark the performance
of our approach.

It is important to note, that in computer vision, matching of interest points
represented by geometric descriptors is not the goal but rather the means to
register underlying objects or shapes in the images and volumes. Therefore,
using a subset of descriptors to achieve the registration is perfectly acceptable
and in fact many of the schemes rely on pruning correspondence candidates in
the descriptor space to a highly reliable optimal subset. By contrast, in biology,
the nuclei that form the basis of the descriptors are at the same time the entities
of interest and the goal is to match most, if not all of them ,accurately.

3 Our Method

The core of our method is to match the nuclei in the various imaged specimens
by means of building the shape context descriptors in a coordinate frame of
reference that is unique to each nucleus, this makes the problem of matching
rotationally invariant (Figure 2 (II)). The descriptors are then matched in the
descriptor space by finding the corresponding closest descriptor in the two speci-
mens and these initial set of correspondences are pruned by RANSAC to achieve
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an initial guess of the registration. This alignment is next refined by ICP (Figure
2 (III)). The performance of this part of the pipeline is compared to two base-
lines, PCA-ICP and CPD (run in affine mode), which are also able to estimate
an optimal alignment. At this point, we diverge from the classical approach and
evaluate the correspondences through a maximum bipartite matching to achieve
the goal of matching every single nucleus from one specimen to a corresponding
nucleus in the other (Figure 2 (IV)). The pipeline relies on an efficient nucleus
detection method. We present one based on scale-space theory (Figure 2 (I))
but in principle any detection approach can be used as input, to identify feature
points to which the Shape Context descriptors would be attached. Also option-
ally, after the maximum bipartite matching, the estimated correspondence can
be used to non-linearly deform the actual images to achieve a registration (Fig-
ure 2 (V)). The steps of the pipeline are schematically represented in Figure 2
and are described in detail in the following subsections.

3.1 Detecting Nuclei

Following the scale-space theory [14], we assume that the fluorescent cell nuclei
visible in the DAPI image channel inherently possess a range of scales or sizes,
and that each distinct cell nucleus achieves an extremal response at a scale σ
proportional to the size of that cell nucleus (Figure 2 (I)). We compute the
trace of of the scale-normalized Hessian matrix H of the gaussian-smoothened
image L (x, y, z, σ), which is equivalent to the convolution (~) response resulting
from the scale-normalized Laplacian of Gaussian kernel and the image I (x, y, z).
The cell nuclei centroid locations (and additional scale information) are then
estimated as the local minima of the 4 - D (x, y, z, σ) space.

traceHnormL (x, y, z, σ) = σ2 (Lxx + Lyy + Lzz)

Lxx =
∂2Gσ
∂x2

~ I (x, y, z)

Lyy =
∂2Gσ
∂y2

~ I (x, y, z)

Lzz =
∂2Gσ
∂z2

~ I (x, y, z)

Gσ (x, y, z) =
1

(2πσ2)
3
2

e−
x2+y2+z2

2σ2

(1)

At this stage, some of the detections might overlap especially in dense, clus-
tered regions. To address this, firstly we employ the assumption that the es-
timated spherical radius r̂ of a cell nucleus is related to its estimated scale σ̂
through the following relation r̂ =

√
3σ̂. Next we state a relation drawn from

algebra that if d is the distance between two spheres with radii r1 and r2 (and
corresponding volumes V1 and V2 respectively), and provided that d < r1 + r2,
the volume of intersection Vi of two spheres is calculated as [4]:
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Fig. 2. Figure illustrating the key elements of our pipeline: (I) Normalized Laplacian
of Gaussian operator is evaluated at multiple σ. Here, a two dimensional slice of a
volumetric image is shown. The operators which provide the strongest local response
are shown for three exemplary cell nuclei (II) In order to ensure that the shape context
geometric descriptor is rotationally covariant, we modify the original coordinate sys-
tem (shown in gray, top left) to obtain a unique coordinate system (show in black) for
each nucleus detection. The Z-axis is defined by the vector joining the center of mass
of the point cloud to the point of interest, the X-axis is defined along the projection of
the first principal component of the complete point cloud evaluated orthogonal to the
Z-axis. The Y-axis is evaluated as a cross product of the first two vectors. Since the sign
of the first principal component vector is a numerical accident and thus not repeat-
able, we use both the possibilities and evaluate two shape context descriptors for each
feature point in the source point cloud, in practice. Next, the neighbourhood around
each nucleus detection is binned in order to compute the shape context signature for
each detection. By comparing shape contexts resulting from the two clouds of cell nu-
clei detections and following up by RANSAC filtering to prune faulty correspondences,
allows us to estimate a global 4 × 4-sized affine transform which coarsely registers
the source (moving) point cloud to the target (fixed) point cloud (III) In order to
obtain a tighter fit between the two clouds of cell nuclei detections, the iterative closest
point algorithm is run. The procedure involves the iterative identification of the nearest
neighbours (indicated by black arrows), followed by the estimation of the transform
parameters (IV ) At this stage, a Maximum Bipartite Matching is performed between
the transformed moving cloud of cell nuclei detections and the static target cloud of cell
nuclei detections, by employing the Hungarian Algorithm for optimization (V ) Since
the two specimens are distinct individuals, non-linear differences would persist despite
the preceding, linear registration. We improve the quality of the registration at this
stage by employing a thin-plate spline transform and using the correspondences evalu-
ated from the previous step as ground truth control points to estimate the parameters
of the thin-plate spline transform
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Vi =
π

12d
(r1 + r2 − d)

2 (
d2 + 2d (r1 + r2)− 3 (r1 − r2)

)2
(2)

Spheres for which Vi < t×min (V1, V2) are suppressed greedily, by employing
a non-maximum suppression step. In our experiments, we use the threshold
t = 0.05. An optional, additional manual curation of the nuclei detections is
made possible through our Fiji plugin.

3.2 Finding Corresponding Nuclei between Two Point Clouds

Estimating a Global Affine Transform In this section, we will provide the
details of our implementation of the 3D shape context geometric descriptor,
which is a signature obtained uniquely for all feature points in the source and
target point clouds. This descriptor takes as input a point cloud P (which repre-
sents the nuclei detections described in the previous section) and a basis point p,
and captures the regional shape of the scene at p using the distribution of points
in a support region surrounding p. The support region is discretized into bins,
and a histogram is formed by counting the number of point neighbours falling
within each bin. As in [3], in order to be more sensitive to nearby points, we use
a log-polar coordinate system (Figure 2 (II) bottom). In our experiments, we
build a 3D histogram with 5 equally spaced log-radius bins and 6 and 12 equally
spaced elevation (θ) and azimuth (φ) bins respectively.

For each basis point p, we define a unique right-handed coordinate system:
the Z-axis is defined by the vector joining the center of mass of the point cloud
to the point of interest, the X-axis is defined along the projection of the first
principal component of all point locations in P, evaluated orthogonal to the Z-
axis. The Y-axis is evaluated as a cross product of the first two vectors (Figure
2 (II) top). Since the sign of the first principal component vector is a numeri-
cal accident and thus not repeatable, we use both possibilities and evaluate two
shape context descriptors for each feature point in the source cloud. Building
such a unique coordinate system for each feature point ensures that the shape
context descriptor is rotationally invariant. Additionally since the chemical fixa-
tion introduces shrinking of the embryo volume (the intermodal registration use
case, see Figure 1C) and since the embryo volume may considerably differ across
a population (intramodal use case, see Figure 1B), an additional normalization
of the shape context descriptor is performed to achieve scale invariance. This
is done by normalizing all the radial distances between p and its neighbours by
the mean distance between all point pairs arising in the point cloud. Similar to
[3], we use the χ2 metric to identify the cost of matching two points pi and qj
arising from two different point clouds (here hi (k) and hj (k) denote the K-bin
normalized histogram at pi and qj respectively).

Cij := C (pi, qj) =
1

2

K∑
k=1

(hi (k)− hj (k))
2

hi (k) + hj (k)
(3)

By comparing shape contexts resulting from the two clouds of cell nuclei
detections, we obtain an initial temporary set of correspondences. These are
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filtered to obtain a set of inlier point correspondences using RANSAC [6]. In
our experiments, we specified an affine transform model, sampled 4 pairs of
corresponding points without replacement for 20000 trials with an allowed L2

error margin of 15 pixels. We use the Moore-Penrose Pseudo-Inverse operation to
estimate the affine transform A between the two sets of corresponding locations.

Obtaining a tighter fit with ICP The previous step provides us a good
initial alignment. Next, we employ ICP which alternates between establishing
correspondences via closest-point lookups (see Figure 2 (III)) and recomputing
the optimal transform based on the current set of correspondences. Typically, one
employs Horn’s approach [9] to estimate strictly-rigid transform parameters. We
see equivalently accurate results with iteratively estimating an affine transform,
which we compute by employing the Moore-Penrose Pseudo Inverse operation
between the current set of correspondences.

Estimating the complete set of correspondences We build a M × N -
sized cost matrix C where the entry Cij is the euclidean distance between the
ith transformed source cell nucleus detection and the jth target cell nucleus
detection. Next, we employ the Hungarian Algorithm to perform a maximum
bipartite matching and estimate correspondences X̂ (see Figure 2 (IV)):

X̂ = arg min
X

M∑
i=1

N∑
j=1

CijXij , where Xij ∈ {0, 1}

s.t.

k=M∑
k=1

Xik ≤ 1

k=N∑
k=1

Xkj ≤ 1

(4)

Estimating a Non-Linear Transform Since the two specimens being reg-
istered are distinct individuals, non-linear differences would persist despite the
preceding, linear (affine) registration. We improve the quality of the image regis-
tration at this stage by employing a non-linear transform such as the thin-plate
spline transform and using the correspondences evaluated from the previous step
as ground truth control points to estimate the parameters of the thin-plate spline
transform.

4 Materials

To test our method, we are using two sets of real biological specimen. Firstly, rep-
resenting the fixed biological specimen containing information about gene expres-
sion, we collected whole-mount specimen of Platynereis dumerilii stained with
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ISH probes for several different, developmentally regulated transcription factors
at the specific developmental stage of 16 hpf. These specimens were scanned in
3D by laser scanning confocal microscopy resulting in three-dimensional images
containing the DAPI (nucleus) channel used in our registration as a common ref-
erence and the gene expression channel. Secondly, representing the live imaging
modality, we obtained access to a light sheet movie capturing the embryologi-
cal development of the Platynereis dumerilii at cellular resolution in toto ([23].
The embryos were injected with a fluorescent nuclear tracer prior to imaging
and thus the time-lapse visualizes nuclei throughout development. This movie
includes the 16 hpf stage of Platynereis development providing an appropriate
inter-modal target to register the fixed specimen to on the basis of the common
nuclear signal.

5 Results

We evaluate our proposed strategy on real and simulated data and compare
against two competitive baselines. The first baseline, which we refer to as PCA-
ICP is an extension of ICP and includes a robust initialization prior to perform-
ing ICP. The center of mass of the source point cloud is translated to the location
of the center of mass of the target point cloud. Next, the translated source point
cloud is rotated about its new center of mass such that its three principal compo-
nent vectors align with the three principal component vectors of the target point
cloud. In order to ensure that the orthogonal system forming the three principal
components is not mirrored along any axis, we consider all 8 (+++, ++-, +-+,
+–, -++, -+-, –+, —) possibilities for the obtained principal component vectors
of the source point cloud. We initialize ICP from these 8 setups and iteratively
estimated a similar transform (scale, rotation and translation). Finally, the the
configuration which provides the least L2 euclidean distance between the two
sets of correspondences, upon the termination of ICP, is kept and the rest of the
configurations are discarded.

The second baseline is Coherent Point Drift (CPD) [18]. In our experiments,
we executed CPD in the Affine mode with normalization set to 1, maximum
iterations equal to 100 and tolerance equal to 1e-10.

We mainly consider two measurements in order to quantify the performance
of all considered methods: (i) Matching Accuracy which we define as the ratio of
the true positive matches and the total number of inlier matches, and (ii) Av-
erage Registration Error which we define as the average L2 euclidean distance
between a set of ground truth landmarks arising from the two point clouds,
evaluated after the completion of the registration pipeline. A higher Match-
ing Accuracy and a lower Average Registration Error are desirable readouts to
demonstrate better performance.

5.1 Experiments on Real Data

For the intramodal registration use case (see Figure 3A & Figure 3C), nuclei
detections arising from 11 images of in-situ specimens were registered to nuclei
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detections arising from the image of a typical, target in-situ specimen. Since
for real data the true correspondences are not known, we asked expert biolo-
gists to manually identify 12 corresponding landmark nuclei. This set represents
ground truth landmarks against which we evaluated the results of our registra-
tion based on the average L2 euclidean distance of proposed landmark corre-
spondences (Source landmarks are labeled 1 . . . 12 and Target Landmarks are
similarly labeled 1’ . . . 12’ in Figure 3).

For the intermodal registration use case (see Figure 3B & Figure 3D), nuclei
detections arising from 7 confocal images of in-situ specimens are registered to
the corresponding frame from the time lapse movie which contains an equivalent
number of nuclei. They were similarly evaluated on the average L2 euclidean
distance in the positions of landmarks identified in the movies by the expert
annotators.

The results show that after applying our proposed pipeline, the average reg-
istration error of corresponding landmarks is around 25 and 35 pixels for in-
tramodal and intermodal registration use cases respectively (Figure 3E). The
accuracy is significantly better compared to the baseline methods. The exem-
plary intramodal image shows good overlap of the nuclear intensities (Figure
3C). The displacement of the corresponding landmarks (denoted by the yellow
unprimed numbers) is better in the left part of the specimen compared to the
right part. This suggests that significant non-linear deformation occurred during
the staining process and our current pipeline relying on affine models is unable
to undo this deformation. For the intermodal registration, the pipeline clearly
compensated for the mismatch in scale between the fixed and live specimen (Fig-
ure 3D). The remaining error is, similarly to the intramodal case, likely due to
non-linear distortions. In terms of matching accuracy after performing maximum
bipartite matching, our method outperforms the baselines (they are however not
optimised for this task). Since the matching accuracy is estimated on only 12
corresponding landmarks, which represents only 3.6 % of the total matched nu-
clei, it is likely subject to sampling error. This is reflected by the broad spread
of accuracy for both inter- and intramodal use cases (Figure 3F).

Since obtaining a larger sground truth correspondences for a larger sample
is not practical we turn next to evaluating the approach on synthetic data.

5.2 Experiments on Simulated Data

Starting from the nuclei detection on real fixed embryos, we generated simulated
ground truth data by random translation, rotation and scaling operations, fol-
lowed up by (i) adding gaussian noise to the location of individual segments (i.e.
nuclei) and (ii) randomly adding nuclei (Figure 4A). The simulated embryos
are meant to resemble the live-imaged embryos which in real scenarios are also
rotated, translated and scaled compared to the fixed specimens and may have
extraneous or missing nuclei due to biological variability or segmentation errors.

Robustness to Gaussian Noise The synthetic ‘live embryos’ were generated
by manipulating nuclei detections from multiple, independent in-situ specimens.



540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

ECCV

#100
ECCV

#100

ECCV-20 submission ID 100 13

First, the nuclei detections of each in-situ specimen are provided a random
translation offset, next the translated point cloud is rotated by a random angle
between -30 deg and +30 deg about an arbitrary axis passing through the center
of mass of the point cloud, and finally, the translated and rotated point cloud is
scaled by a random factor (See Figure 4A). We add five levels of Gaussian noise
with standard deviations 0, 5, 10, 15 and 20. For a given standard deviation,
gaussian noise is independently added to the x, y, and z-axes of each transformed
nucleus detection (point).

The results of evaluation of matching accuracy with respect to different levels
of Gaussian noise show that all methods provide equivalent performance (Fig-
ure 4B). The matching accuracy starts to break down when the magnitude of
gaussian noise > 10 pixels.

Robustness to Outliers In order to test robustness against over or under-
segmentation of nuclei, we add outliers to both the source fixed in-situ volumes
and the corresponding simulated ‘live embryo’. New outlier points are generated
by sampling existing points and adding a new point at a standard deviation of
20 pixels from their locations. The results show that the CPD Affine method
performs the best in the presence of outliers, while our approach is more stable
compared to the PCA-ICP (Figure 4C).

6 Discussion

Our method showed promising results on real biological data in terms of registra-
tion accuracy and provided equivalent performance when compared to state of
the art methods on simulated data. The pipeline offers several avenues for further
improvement towards achieving more precise one-to-one matching of cells within
and across imaging modalities for separate biological specimen. One area open
for future investigations is certainly obtaining accurate segmentations which de-
lineate the shape of the nuclei.

Another improvement may come from the definition of the 3D geometric
descriptor. Our implementation of shape context as a 3D geometric descriptor
draws from [3]. Here, we use a log-polar coordinate system and build 3D his-
tograms by evenly dividing the azimuth and elevation axis. This creates two
issues (i) bins of varying sizes are obtained which need to be compensated for
and (ii) degenerate bins near the pole are obtained, which makes the matching
of feature points non robust to noisy detections. These drawbacks could be ad-
dressed through two approaches: (i) employing the optimal transport distance
between two 3D histograms would provide a more natural way of comparing two
histograms as opposed to the current χ2 squared distance formulation, (ii) opt-
ing for a more uniform binning scheme (see for example, [28]) would eliminate
the issue of noisy detections jumping arbitrarily between bins near the poles.
Finally, the method will benefit from non-linear refinement as the specimens
are often deformed in an unpredictable manner during the staining and imaging
protocols.
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By establishing nuclei correspondences between images of in-situ specimens
and the time lapse movie, biologists will be able transfer the gene expression
information from the fixed specimens to the dynamic a cell lineage tree generated
by performing lineage tracing on the time-lapse movie. This will enable biologists
to study the molecular underpinning of dynamic morphogenetic processes during
embryo development.
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A B

C D

E F

Fig. 3. A: DAPI channels indicating cell nuclei for two distinct in-situ specimens
(source: green and magenta: target image). B: DAPI channels indicating cell nuclei
for an in-situ specimen (source: green) being registered to the corresponding frame
containing equivalent number of cell nuclei, in the time-lapse movie (target: magenta).
Landmarks for source image are indicated as yellow spheres and labeled from 1 . . . 12.
Similarly, landmarks for the target image are labeled from 1’ . . . 12’. C, D: After per-
forming registration with our proposed pipeline, corresponding landmarks from the
source and target image appear to be much closer in Euclidean distance. E: Plot indi-
cating the average Euclidean distance between landmarks after applying different reg-
istration pipelines. F: Plot indicating the percent of correct correspondences between
landmarks, evaluated through Maximum Bipartite Matching, after applying different
registration pipelines.
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A

B C

Fig. 4. Live embryos are simulated by manipulating cell nuclei detections from mul-
tiple in-situ specimens. A: First, the cell nuclei detections of each in-situ specimen
are provided a random uniform translation offset, next the translated point cloud is
randomly rotated by an angle ∈ {−π/6, π/6} about a random axis passing through
the center of mass of the translated point cloud, and finally, the translated and rotated
point cloud is scaled by a random factor. B: We add five levels of Gaussian noise with
standard deviations 0, 5, 10, 15 and 20 to explore robustness to gaussian noise. For
a given standard deviation, Gaussian noise is independently added to the x, y, and
z-axes of each transformed nucleus detection (point). C: We add outliers to both the
in-situ and the corresponding simulated live embryo. New outlier points are generated
by sampling existing points and adding a new point at a standard deviation of 20 pixels
from their locations
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