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ABSTRACT

Serving LLMs requires substantial memory due to the storage requirements of
Key-Value (KV) embeddings in the KV cache, which grows with sequence length.
An effective approach to compress KV cache is quantization. However, traditional
quantization methods face significant memory overhead due to the need to store
quantization constants (at least a zero point and a scale) in full precision per
data block. Depending on the block size, this overhead can add 1 or 2 bits per
quantized number. We introduce QJL, a new quantization approach that consists
of a Johnson-Lindenstrauss (JL) transform followed by sign-bit quantization. In
contrast to existing methods, QJL eliminates memory overheads by removing the
need for storing quantization constants. We propose an asymmetric estimator for
the inner product of two vectors and demonstrate that applying QJL to one vector
and a standard JL transform without quantization to the other provides an unbiased
estimator with minimal distortion. We have developed an efficient implementation
of the QJL sketch and its corresponding inner product estimator, incorporating a
lightweight CUDA kernel for optimized computation. When applied across various
LLMs and NLP tasks to quantize the KV cache to only 3 bits, QJL demonstrates a
more than fivefold reduction in KV cache memory usage without compromising
accuracy, all while achieving faster runtime.

1 INTRODUCTION

Large language models (LLMs) have garnered significant attention and demonstrated remarkable
success in recent years. Their applications span various domains, including chatbot systems Achiam
et al. (2023); Antropic (2024) to text-to-image Ramesh et al. (2022); FireFly (2023); Midjourney
(2022), text-to-video synthesis OpenAI (2024b), coding assistant Copilot (2023) and even multimodal
domain across text, audio, image, and video OpenAI (2024a). The Transformer architecture with
self-attention mechanism Vaswani et al. (2017) is at the heart of these LLMs as it enables capturing
intrinsic pairwise correlations across tokens in the input sequence. The ability of LLMs grows along
with their model size Kaplan et al. (2020), which leads to computational challenges in terms of huge
memory consumption.

Deploying auto-regressive transformers during the generation phase is costly because commercial AI
models must simultaneously serve millions of end users while meeting strict latency requirements.
One significant challenge is the substantial memory needed to store all previously generated key-
value (KV) embeddings in cache to avoid recomputations. This has become a major memory and
speed bottleneck, especially for long context lengths. Additionally, the GPU must load the entire
KV cache from its main memory to shared memory for each token generated, resulting in low
arithmetic intensity and leaving most GPU threads idle. Therefore, reducing the KV cache size while
maintaining accuracy is crucial.

There are several approaches to address this challenge. One method involves reducing the number of
heads in the KV cache using multi-query attention Shazeer (2019) and multi-group attention Ainslie
et al. (2023), but these require fine-tuning the pre-trained models or training from scratch. Another
line of work tries to reduce the KV cache size by pruning or evicting unimportant tokens Zhang et al.
(2024b); Liu et al. (2024a); Xiao et al. (2023); Zandieh et al. (2024). Additionally, some recent works
tackle the issue from a system perspective, such as offloading Sheng et al. (2023) or using virtual
memory and paging techniques in the attention mechanism Kwon et al. (2023).
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Figure 1: Overview of the KV cache quantization via Quantized JL (QJL) transform

A simple yet effective approach is to quantize the floating-point numbers (FPN) in the KV cache using
fewer bits. Several quantization methods have been proposed specifically for the KV cache Yue et al.
(2024); Yang et al. (2024); Dong et al. (2024); Kang et al. (2024); Zhang et al. (2024a). Most recently,
KIVI Liu et al. (2024b) and KVQuant Hooper et al. (2024) proposed per-channel quantization for
the key cache to achieve better performance. However, all existing quantization methods for the
KV cache face significant “memory overhead” issues. Specifically, all these methods group the data
into blocks, either channel-wise or token-wise, and calculate and store quantization constants (at
least a zero point and a scale) for each group. Depending on the group size, this overhead can add
approximately 1 or 2 additional bits per quantized number, which results in significant computational
overhead. In this work, our goal is to develop an efficient, data-oblivious quantization method,
referred to as a sketching technique. This method, which we call QJL, does not need to be tuned by
or adapted to the input data with significantly less overhead than prior works, without any loss in
performance.

1.1 OVERVIEW OF CONTRIBUTIONS

The decoding phase in the attention mechanism involves the following computations: (1) computing
attention scores by applying the softmax function to the inner product between the current query
embedding and all previously generated keys, and (2) multiplying the attention scores with all
previously generated values. To make the attention score calculations in step (1) more memory
efficient, we quantize the keys in the cache. We introduce a quantization scheme for key embeddings,
named QJL, leveraging randomized sketching techniques. Alongside, we develop a high-accuracy
estimator for the inner product of query/key pairs, crucial for mitigating errors amplified by the
softmax operation in attention score calculations.

Firstly, we revisit a fundamental concept in numerical linear algebra: applying a Johnson-
Lindenstrauss (JL) transform, i.e., a random Gaussian projection, to a pair of vectors and then
computing the inner product of the projected vectors provides an unbiased and low-distortion estima-
tor for their original inner product Dasgupta & Gupta (2003). To address the key cache quantization
problem, our aim is to quantize the result after applying the JL transform to a key embedding, ideally
to just a single bit. Surprisingly, we prove that by applying the JL transform to a key embedding and
then quantizing the result to a single bit (the sign bit), while applying the same JL transform to the
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query embedding without quantization, we still obtain an unbiased estimator of their inner product
(see Lemma 3.2). Moreover, the distortion of this estimator is small and comparable to that of the
standard JL transform (see Lemma 3.5). In Theorem 3.6, we demonstrate that the proposed inner
product estimator based on QJL achieves a relative distortion of 1± ε on the final attention scores.
Notably, the number of required bits for representing quantized keys is independent of the embedding
dimension and scales logarithmically with the context length, using a fixed number of bits per token.

Thus the QJL sketch combines a JL transform—a random Gaussian projection—with quantization to
the sign bit. An overview of this approach is illustrated in Figure 1. Unlike previous methods, the
QJL sketch can quantize vectors with zero overhead because it does not require grouping the data
and storing quantization constants (zeros and scales) per group. Furthermore, this is a data-oblivious
algorithm that does not rely on specific input, requires no tuning, and can be easily parallelized and
applied in real-time.

The value cache quantization used to make step (2) memory efficient is known to be a straightforward
task, and a standard token-wise quantization is very effective and efficient in practice, as observed
in prior work Liu et al. (2024b); Hooper et al. (2024). Hence, we follow the same approach for the
value therein.

Furthermore, we analyzed the distribution of outliers in large language models (LLMs). We observed
that while there are no significant outliers in the initial layers, certain fixed key embedding channels
(coordinates) in the deeper layers exhibit considerably larger magnitudes (see Figure 2). To address
this, we identify these outlier channels during the prompt phase and simply apply two independent
copies of our quantizer to the outliers and inliers separately.

The QJL transform and its accompanying inner product estimator are highly efficient and GPU-
friendly algorithms. In particular, we provide a lightweight CUDA kernel for their efficient compu-
tation. We apply QJL and our inner product estimator to compress the KV cache in several LLMs,
including Llama-2 Touvron et al. (2023) and its fine-tuned models by long sequence Li et al. (2023),
under various NLP tasks. Our results show that quantizing the KV cache to only 3 bits per FPN
results in no accuracy drop compared to the exact model with 16 bits per FPN while reducing cache
memory usage by over fivefold and increasing the generation speed significantly for long contexts.
For example, our proposed quantization shows better F1 scores on long-range question-answering
tasks from LongBench Bai et al. (2023) (a collection of long-context datasets) compared to the recent
KV cache quantization methods, while minimizing memory overheads.

2 PRELIMINARIES: TOKEN GENERATION IN ATTENTION

Deploying auto-regressive language models for inference involves performing attention decoding
in an online setting, where key and value embeddings from each transformer layer are cached in
memory to remove redundant computations. The model sequentially uses and updates the KV cache
to generate the next token, one at a time.

More precisely, in every phase of token generation, the stream of tokens is represented by a triplet of
vectors called by the query, key, and value embeddings, respectively. Let qi,ki,vi ∈ Rd be the triplet
at i-th generation phase and n be the total number of tokens in the stream so far either in the prompt
encoding (prefill) or the generation (decoding) phase. Then, the attention output in n-th generation
phase can be written as

on =
∑
i∈[n]

Score(i) · vi, (1)

where Score ∈ Rn is the vector of attention scores defined as:

Score := softmax ([⟨qn,k1⟩, ⟨qn,k2⟩, . . . ⟨qn,kn⟩]) . (2)

The output embedding on will be used for computing the next tokens in the stream qn+1,kn+1,vn+1

unless the generation phase terminates. Observe that to compute output on, one needs to store
all previous key and value embeddings {ki,vi}i∈[n] and keeping them in full precision requires
significant memory for long-context inputs. The time complexity to compete Equation (2) is O(nd)
due to the computation of n inner products. Additionally, the inference speed is also impacted by the
KV cache size, as the KV cache must be loaded from GPU main memory for every token generated,
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resulting in low arithmetic intensity and underutilization of GPU cores Pope et al. (2023). In this
work, we focus on compressing the KV cache by quantizing tokens, thereby reducing the memory
required to store each key or value embedding in the cache.

3 QUANTIZED JOHNSON-LINDENSTRAUSS (QJL) TRANSFORM

Our goal is to save memory space for storing the KV cache while the inner product between query and
key remains undistorted. To achieve this, we first transform the embedding vectors using a random
projection that preserves the inner products, acting as a preconditioning step, and then quantize the
result. Specifically, we project the input vectors onto a random subspace by applying the Johnson-
Lindenstrauss (JL) transform Johnson et al., which amounts to multiplying by a random Gaussian
matrix. The inner product of the resulting vectors after applying this projection provides an unbiased
and low-distortion estimator for the inner product of the original vectors Dasgupta & Gupta (2003).
We introduce a 1-bit Johnson-Lindenstrauss transform, comprising a JL transformation followed by
quantization to a single sign bit, and demonstrate its ability to offer an unbiased and low-distortion
inner product estimator. We complement our binary quantizer by developing an unbiased estimator
for the inner product of the quantized vector with any arbitrary vector. This inner product estimator is
asymmetric, as one of the vectors is quantized to a single bit while the other remains unquantized,
making it well-suited for the KV cache mechanism. The Quantized Johnson-Lindenstrauss (QJL)
transformation, acting as a 1-bit quantizer, alongside our proposed estimator, is formally defined in
the following definition:
Definition 3.1 (QJL and inner product estimator). For any positive integers d,m, let S ∈ Rm×d be a
JL transform matrix, i.e., entries of S are i.i.d. samples from the zero mean and unit variance Normal
distribution. The QJL is a mapping functionHS : Rd → {−1,+1}m defined as:

HS(k) := sign(Sk) for any k ∈ Rd. (3)

Furthermore, for any pair of vectors k, q ∈ Rd the estimator for their inner product ⟨q,k⟩ based on
the aforementioned quantizer is defined as:

ProdQJL(q,k) :=

√
π/2

m
· ∥k∥2 · ⟨Sq,HS(k)⟩. (4)

Now, we show that the inner product estimator ProdQJL(q,k), exactly like the inner product of
JL-transformed vectors without quantization to sign bit, is an unbiased estimator. The crucial point to
note is that if we applied QJL to both vectors q and k in Equation (4), we would obtain an unbiased
estimator for the angle between these vectors, as shown in Charikar (2002). However, to estimate
the inner product one needs to apply the cosine function on top of the angle estimator, which results
in a biased estimation. Thus, to achieve an unbiased inner product estimator, it is necessary to
asymmetrically apply quantization to the JL transform of only one of the vectors q and k.
Lemma 3.2 (Inner product estimator ProdQJL is unbiased). For any vectors q,k ∈ Rd the expected
value of the estimator ProdQJL(q,k) defined in Equation (4) is:

E
S
[ProdQJL(q,k)] = ⟨q,k⟩,

where the expectation is over the randomness of the JL matrix S in Definition 3.1.

Proof. Let s1, s2, . . . sm denote the rows of the JL matrix S. Additionally, let us decompose q to its
projection onto the vector k and its orthogonal component, i.e., q⊥k := q − ⟨q,k⟩

∥k∥2
2
· k. We can write,

ProdQJL(q,k) =

√
π/2

m

∑
i∈[m]

∥k∥2 · s⊤i q · sign(s⊤i k)

=

√
π/2

m

∑
i∈[m]

⟨q,k⟩
∥k∥2

· s⊤i k · sign(s⊤i k) + ∥k∥2 · s⊤i q⊥k · sign(s⊤i k)

=

√
π/2

m

∑
i∈[m]

⟨q,k⟩
∥k∥2

· |s⊤i k|+ ∥k∥2 · s⊤i q⊥k · sign(s⊤i k).
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Since si’s have identical distributions, we have:

E
S
[ProdQJL(q,k)] =

√
π/2

( ⟨q,k⟩
∥k∥2

· E
[
|s⊤1 k|

]
+ ∥k∥2 · E

[
s⊤1 q

⊥k · sign(s⊤1 k)
])

.

To calculate the above expectation let us define variables x := s⊤1 k and y := s⊤1 q
⊥k. Note that x

and y are both zero-mean Gaussian random variables and because ⟨q⊥k,k⟩ = 0. By the following
Fact 3.3, x and y are independent.
Fact 3.3. If x ∈ Rd is a vector of i.i.d. zero-mean normal entries with variance σ2 and A ∈ Rm×d is
a matrix, then A · x is a normal random variable with mean zero and covariance matrix σ2 ·AA⊤.

This implies that the second expectation term above is zero because E
[
s⊤1 q

⊥k · sign(s⊤1 k)
]
=

E[y · sign(x)] = E[y] · E[sign(x)] = 0. Furthermore, x is a Gaussian random variable with mean
zero and variance ∥k∥22. Therefore, we have

E
S
[ProdQJL(q,k)] =

√
π/2 · ⟨q,k⟩∥k∥2

· E
x
[|x|] = ⟨q,k⟩.

where the equality comes from the following Fact 3.4:
Fact 3.4 (Moments of Normal Random Variable). If x is a normal random variable with zero mean
and variance σ2, then for any integer ℓ, the ℓ-th moment of x is E

[
|x|ℓ

]
= σℓ ·2ℓ/2Γ((ℓ+1)/2)/

√
π.

This completes the proof of Lemma 3.2.

Now we show that the inner product estimator ProdQJL in Definition 3.1, just like the estimators
based on the standard JL transform, has a bounded distortion with high probability.
Lemma 3.5 (Distortion of inner product estimator ProdQJL). For any vectors q,k ∈ Rd if the
estimator ProdQJL(q,k) is defined as in Equation (4) for QJL with dimension m ≥ 4

3 · 1+ε
ε2 log 2

δ ,
then:

Pr
S
[|ProdQJL(q,k)− ⟨q,k⟩| > ε∥q∥2∥k∥2] ≤ δ,

where the probability is over the randomness of the JL matrix S in Definition 3.1.

Proof. First note that, letting s1, s2, . . . sm denote the rows of the JL transform matrix S, we have:

ProdQJL(q,k) =
1

m

∑
i∈[m]

√
π/2 · ∥k∥2 · s⊤i q · sign(s⊤i k).

Since si’s are i.i.d. the above is indeed the average of m i.i.d. estimators defined as zi :=
√
π/2 ·

∥k∥2 · s⊤i q · sign(s⊤i k) for i ∈ [m]. Let us now calculate the ℓ-th moment of zi using Fact 3.4:

E
[
|zi|ℓ

]
=

(√
π/2 · ∥k∥2

)ℓ

· E
[
|s⊤i q|ℓ

]
=

(√
π · ∥k∥2∥q∥2

)ℓ · Γ((ℓ+ 1)/2)√
π

, (5)

where the second equality above follows because s⊤i q is a Gaussian random variable with mean zero
and variance ∥q∥22 along with Fact 3.4. Now we can prove the result by invoking the unbiasedness of
the estimator, Lemma 3.2, along with an appropriate version of Bernstein inequality and using the
moment bounds in Equation (5). More specifically, our moment calculation in Equation (5) implies:

E
[
|zi|ℓ

]
= E

[
|zi|2

]
·
(√

π∥k∥2∥q∥2
)ℓ−2 · Γ((ℓ+ 1)/2)

Γ(3/2)
≤ E

[
|zi|2

]
·
(
2

3
· ∥k∥2∥q∥2

)ℓ−2

· ℓ!
2

Therefore, by invoking a proper version of the Bernstein inequality, for instance Corollary 2.11 from
Boucheron et al. (2003), we have the following:

Pr
S
[|ProdQJL(q,k)− ⟨q,k⟩| > t] ≤ 2 exp

(
3

4
· mt2

∥k∥22∥q∥22 + ∥k∥2∥q∥2 · t

)
.

If we set t = ε∥q∥2∥k∥2 the above simplifies to:

Pr
S
[|ProdQJL(q,k)− ⟨q,k⟩| > ε∥q∥2∥k∥2] ≤ 2 exp

(
3

4
· mε2

1 + ε

)
.

Therefore if m ≥ 4
3 · 1+ε

ε2 log 2
δ the error bound follows. This completes the proof of Lemma 3.5.
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Algorithm 1 QJL Key Cache Quantizer

Input: Stream of key tokens k1,k2, . . . ∈ Rd, integer m
1: Draw a random sketch S ∈ Rm×d with i.i.d. entries Si,j ∼ N (0, 1) as per Definition 3.1
2: repeat
3: Compute k̃i ← sign (Ski) and νi ← ∥ki∥2
4: store the quantized vector k̃i and the key norm νi in the cache
5: until token stream ends

Procedure ESTIMATESCORES(qn)

6: Compute inner product estimators q̃K(j)←
√

π/2

m · νi · ⟨Sqn, k̃j⟩ for every j ∈ [n]

7: S̃core← softmax
(
q̃K

)
return S̃core

Note that the distortion bound in Lemma 3.5 has remarkably small constants, even smaller than those
of the original unquintized JL transform. This indicates that quantizing one of the vectors to just a
single sign bit does not result in any loss of accuracy. We use these properties of QJL and our inner
product estimator to prove the final approximation bound on our KV cache quantizer.

3.1 KEY CACHE QUANTIZATION VIA QJL

The key cache is used in the computation of attention scores as shown in Equation (2). To calculate
these scores, we need to compute the inner products of the current query embedding with all key
embeddings in the cache. We design a quantization scheme that allows for a low-distortion estimate
of the inner products between an arbitrary query and all keys in the cache. In this section, we develop
a practical algorithm with provable guarantees based on QJL and the inner product estimator defined
in Definition 3.1.

The quantization scheme presented in Algorithm 1 applies QJL, defined in Definition 3.1, to each key
embedding, mapping them to binary vectors and storing the results in the key cache. We show in
the following theorem that the attention scores calculated by Algorithm 1 have very small (1± ε)
relative distortion with high probability:
Theorem 3.6 (Distortion bound on QJL key cache quantizer). For any sequence of key tokens
k1, . . .kn ∈ Rd and any integer m, Algorithm 1 stores binary vectors k̃1, . . . k̃n ∈ {−1,+1}m
along with scalar values ν1, . . . νn in the cache. If the key embeddings have bounded norm
maxi∈[n] ∥ki∥2 ≤ r and m ≥ 2r2ε−2 log n, then for any query embedding qn ∈ Rd with bounded
norm ∥qn∥2 ≤ r the output of the procedure ESTIMATESCORES(qn) satisfies the following with
probability 1− 1

poly(n) sinultaneously for all i ∈ [n]:∣∣∣S̃core(i)− Score(i)
∣∣∣ ≤ 3ε · Score(i),

where Score is the vector of attention scores defined in Equation (2).

Proof. The proof is by invoking Lemma 3.5 and a union bound. For every j ∈ [n] the estimator
q̃K(j) computed in line 6 of Algorithm 1 is in fact equal to the inner product estimator q̃K(j) =
ProdQJL(qn,kj) as defined in Equation (4). Thus by Lemma 3.5 we have the following with
probability at least 1− 1

n3/(2+2ε) :∣∣∣q̃K(j)− ⟨qn,kj⟩
∣∣∣ ≤ ε

r2
· ∥qn∥2∥kj∥2 ≤ ε,

where the second inequality follows from the preconditions of the theorem regarding the boundedness
of the norms of the query and key embeddings. By union bound, the above inequality holds
simultaneously for all j ∈ [n] with high probability in n. Thus after applying the softmax function in
line 7 of Algorithm 1 we get that with high probability in n:

S̃core(i) ∈ e±2ε · Score(i) ∈ (1± 3ε) · Score(i).
This completes the proof of Theorem 3.6.
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Figure 2: The magnitude of key cache entries for different layers of the Llama-2 model, based on
an example prompt, reveals notable patterns. The coordinates of embeddings (channels) are sorted
by their average magnitude over tokens. In the initial layers, no significant outlier patterns are
observed. However, in the deeper layers, a few channels (approximately four) exhibit visibly larger
magnitudes, indicating the presence of significant outliers. This observation highlights the importance
of addressing these outliers to improve quantization accuracy and reduce distortion in the key cache.

This theorem shows that if the query and key embeddings have constant norms, as is common in
practical scenarios, we can quantize each key embedding such that only m ≈ ε−2 log n bits are
needed to store each key token. This is independent of the embedding dimension of the tokens and
scales only logarithmically with the sequence length.

3.2 VALUE CACHE QUANTIZATION

We quantize the value cache using a standard quantization method, i.e., normalizing each token’s
entries and then rounding each entry to a few-bit integer representation. This approach aligns with
prior work, which has shown that standard token-wise quantization is highly effective for the value
cache and results in a minimal accuracy drop Liu et al. (2024b); Hooper et al. (2024).

4 EXPERIMENTS

In this section, we validate the empirical performance of our algorithm. All experiments are conducted
under a single A100 GPU with 80GB memory. We implement two main CUDA kernels for our core
primitives: one for quantizing embedding vectors using various floating point data types such as
bfloat16, FP16, and FP32, and the other for computing the inner product of an arbitrary embedding
vector with all quantized vectors in the cache. The algorithm’s wrapper is implemented in PyTorch,
handling all the housekeeping tasks. We plan to complete implementation in the CUDA for future
work, which will further accelerate our algorithm.

4.1 PRACTICAL CONSIDERATION

Outliers. As reported in recent works e.g., KIVI Liu et al. (2024b), KVQuant Hooper et al.
(2024), key embeddings typically contain outliers exhibiting a distinct pattern. Specifically, certain
coordinates of key embeddings display relatively large magnitudes. To further investigate these
observations, we analyze the distribution of the magnitudes of key embedding coordinates across
different layers. Firstly, we observe that there are no significant outliers in the initial attention layers.
However, in the deeper layers, certain fixed coordinates of key embeddings consistently exhibit large
magnitudes, and this pattern persists within these channels across all tokens. The distribution of
outliers across different layers for the Llama-2 model is plotted in Figure 2. It is evident that in
the initial layers, outliers are rare, but as we approach the final layers, their frequency and impact
increase significantly. Secondly, the outliers show a persistent pattern in specific fixed coordinates
of the key embeddings. This observation aligns with previous findings that certain fixed embedding
coordinates exhibit larger outliers Dettmers et al. (2022); Lin et al. (2023); Liu et al. (2024b); Hooper
et al. (2024).
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Figure 3: The relative distortion on the attention scores ε versus the number of bits of QJL per token
and embedding channels, i.e., m/d, for layers at different depths of Llama 2 model.

As demonstrated in Theorem 3.6, the distortion on the attention scores is directly proportional to the
norms of the embeddings. Therefore, capturing these outlier coordinates is essential, as their large
magnitudes contribute significantly to the norms of key embeddings. By identifying and isolating
these outlier channels, we can reduce the norm of the key embeddings and, consequently, significantly
decrease the final distortion. Next, we quantize the outliers using an independent instance of our QJL
quantizer but with a lower compression rate, utilizing more bits to accurately represent each outlier
coordinate.

Orthogonalized JL transform. We observed that orthogonalizing the rows of the JL matrix S in
Definition 3.1 almost always improves the performance of our QJL quantizer. This finding aligns
with previous work on various applications of the JL transform, such as random Fourier features
Yu et al. (2016) and locality sensitive hashing Ji et al. (2012). Consequently, in our implementation
and all experiments, we first generate a random JL matrix S with i.i.d. Gaussian entries and then
orthogonalize its rows using QR decomposition. We then use this orthogonalized matrix in our QJL
quantizer, as described in Algorithm 1.

4.2 ABLATION STUDY

Here, we perform an ablation study on the relative distortion of the attention scores in one attention
layer after applying QJL on key embeddings. The distortion for various layers of the Llama2-7B
model is plotted against the number of bits per token and embedding channel m/d, where d = 128 is
the embedding dimension, as shown in Figure 3. Our theoretical result from Theorem 3.6 suggests
that m ∼ 1/ε2 which aligns with our observations in Figure 3. An interesting observation is that
the first layer has a much higher distortion compared to all other layers, suggesting that the first
layer is more challenging to quantize and requires a higher number of bits per FPN. This finding is
noteworthy and indicates the need for tailored quantization strategies for different layers. This is
consistent with the outlier distribution depicted in Figure 2, where the first layer appears distinct from
the others.

4.3 END-TO-END TEXT GENERATION

Next we benchmark our method on LongBench Bai et al. (2023), a benchmark of long-range context
on various tasks. We choose the base model as longchat-7b-v1.5-32k Li et al. (2023) (fine-tuned
Llama-2 with 7B parameter with 16,384 context length) and apply following quantization methods to
this model; KIVI Liu et al. (2024b), KVQuant Yue et al. (2024) and our proposed quantization via
QJL. Each floating-point number (FPN) in the base model is represented by 16 bits, and we choose
proper hyper-parameters of KIVI and QJL so that their bits per FPN become 3. For KVQuant, we
follow the default setting which holds its bits per FPN as 4.3.

QJL evaluation on Llama2 model and LongBench dataset. We benchmarked QJL on Long-
Bench Bai et al. (2023), a suite of tasks designed to evaluate performance with long-range contexts.
We choose the base model as longchat-7b-v1.5-32k Li et al. (2023) (fine-tuned Llama-2 with 7B
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Methods Bits
Datasets from LongBench Bai et al. (2023)

NarrativeQA Qasper MultiQA-en MultifQA-zh HotpotQA 2WikiMultiQA

FP16 (baseline) 16 20.79 29.42 42.83 34.33 33.05 24.14

KIVI Liu et al. (2024b) 3 20.96 29.01 40.93 34.75 32.79 23.01
QJL (ours) 3 20.67 28.48 40.94 29.71 35.62 23.60

KVQuant Hooper et al. (2024) 4.3 20.14 28.77 44.22 34.44 34.06 23.05
QJL (ours) 4.3 20.72 30.02 41.18 31.73 34.22 22.63

KIVI Liu et al. (2024b) 5 20.49 28.90 43.24 34.66 33.07 24.86
QJL (ours) 5 21.09 29.11 41.58 31.86 35.65 24.61

Table 1: Evaluation of various quantization methods and different bits per floating-point number
(FPN) on long-context question-answering datasets from LongBench (F1 scores).

parameter with 16,384 context length) and apply following quantization methods to this model;
KIVI Liu et al. (2024b), KVQuant Hooper et al. (2024) and our proposed QJL. Each floating-point
number (FPN) in the base model is represented by 16 bits. We chose several hyperparameters for QJL
to match the bits per FPN of the competing methods KVQuant and KIVI. There are two versions of
KIVI, with bits per FPN of 3 and 5, respectively. For KVQuant, the default setting results in 4.3 bits
per FPN. To validate the quality of those quantized models, we benchmark them on 6 question-answer
datasets from LongBench, and we set the maximum sequence length to 31,500. We follow the same
approach of prompting and evaluating to evaluate the prediction of the model from the original
repository. Table 1 summarizes the results. Our proposed QJL achieves the highest F1 score within
the quantization methods for NarrativeQA, Qasper and 2WikiMultiQA.

Experiments with Llama3 and Llama2 models. We additionally test our method on datasets
Lambada-OpenAI, HellaSwag, PIQA, MathQA, and MMLU, which have shorter sequence
lengths. We benchmark our method using LM-eval Gao et al. (2023) framework to ensure a thorough
evaluation across various metrics. We evaluate quantization methods with accuracy across Llama-2-
7B Touvron et al. (2023) and Llama-3-8B Llama3 (2024) models. Note that KIVI only supports a
half-precision floating point, whereas our method can be used for any precision format type. This
makes it unable to run KIVI on the Llama-3 model.

As we observe, QJL can significantly reduce memory usage by utilizing only 3 bits per FPN, compared
to the 16 bits per FPN in the baseline, achieving around an 81% reduction in memory. We observe
that this efficiency does not compromise performance significantly. Across all datasets, our method’s
accuracy is generally comparable to the baseline, with slight variations. In Table 2, our QJL on the
Llama-3-8B performs on average about slightly better than the baseline across all datasets.

Models Methods Bits
Datasets from LM-eval Gao et al. (2023)

Lambada-OpenAI HellaSwag PIQA MathQA MMLU

Llama-2-7B
FP16 (baseline) 16 73.90 57.18 78.07 28.11 41.85
KIVI Liu et al. (2024b) 3 73.88 57.13 78.07 28.11 41.81
QJL (ours) 3 73.88 57.14 78.07 28.17 41.78

Llama-3-8B
BF16 (baseline) 16 75.59 60.17 79.65 40.64 62.09
QJL (ours) 3 75.61 60.13 79.87 40.60 62.12

Table 2: Evaluation (accuracy) of various quantization methods on regular length datasets from
LM-eval Gao et al. (2023). These comparisons are not typically based on long-context length;
however, even in these cases, our QJL with 3 bits per FPN performs comparably to the baseline with
16 bits per FPN.
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Figure 4: Wall-clock time (ms) to encode a prompt and quantize the KV cache (left), generate 128
tokens for llama2 model (middle), and generate 64 tokens for llama3 model (right) using different
quantization methods in a single attention layer model. The input sequence length varies from 1k
to 64k. Both KIVI and QJL (ours) with 3 bits per FPN show faster decoding time than the baseline.
However, KVQuant is significantly slower during both quantizing and decoding phases. QJL is the
only method that can quantize Llama3, as our kernels support grouped query attention and BF16
data type. We observe the same speed for Llama3 as the exact method for generation. Note that our
memory usage is at least 5-fold less than the exact method and can support all data types.

Runtime and Peak-Memory Evaluations. To evaluate the runtime and memory consumption of
QJL we additionally report runtimes of: (1) prompt encoding, (2) KV cache quantization, and (3)
decoding (token generation) in a single attention layer as well as the (4) peak memory consumption
during prompt encoding and decoding. Figure 4 shows the wall-clock time to encode a prompt and
quantize the KV cache, generate 128 tokens for Llama2 model, and generate 64 tokens for Llama3
model using different quantization methods in a single attention layer of these models. Note that
QJL is the only method that can quantize Llama3, as our kernels support grouped query attention
and BF16 data type. we observe the same speed for Llama3 as the exact method for generation. The
input sequence lengths vary between 1k to 128k. As shown in Figure 4, KVQuant runs slower than
other methods during both prompt encoding and decoding phases, as it requires a huge amount of
preprocessing which leads to slow runtime. On the other hand, both KIVI and our QJL with 3 bits per
FPN show marginal runtime overhead compared to the exact baseline during prompting but reduce
KV cache memory usage by at least a factor of 5.
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Figure 5: Peak memory usage for encoding the prompt and generating 128 tokens with Llama2,
comparing various KV cache quantization methods to the exact model without quantization.

Next, we compare the peak memory consumption of various KV cache quantization methods applied
to the Llama2 model for encoding prompts of different lengths and generating 128 new tokens, as
shown in Figure 5. Both QJL and KIVI quantize the KV cache to 3 or 5 bits per FPN. However,
peak memory consumption also includes the memory required to store model parameters. Even
considering total memory consumption, we observe an over two-fold reduction in peak memory
usage. We did not include KVQuant in the peak memory study as this method was extremely slow
and running it repeatedly for different sequence lengths takes a very long time.
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