
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

QJL: 1-BIT QUANTIZED JL TRANSFORM FOR KV
CACHE QUANTIZATION WITH ZERO OVERHEAD

Anonymous authors
Paper under double-blind review

ABSTRACT

Serving LLMs requires substantial memory due to the storage requirements of
Key-Value (KV) embeddings in the KV cache, which grows with sequence length.
An effective approach to compress KV cache is quantization. However, traditional
quantization methods face significant memory overhead due to the need to store
quantization constants (at least a zero point and a scale) in full precision per
data block. Depending on the block size, this overhead can add 1 or 2 bits per
quantized number. We introduce QJL, a new quantization approach that consists
of a Johnson-Lindenstrauss (JL) transform followed by sign-bit quantization. In
contrast to existing methods, QJL eliminates memory overheads by removing the
need for storing quantization constants. We propose an asymmetric estimator for
the inner product of two vectors and demonstrate that applying QJL to one vector
and a standard JL transform without quantization to the other provides an unbiased
estimator with minimal distortion. We have developed an efficient implementation
of the QJL sketch and its corresponding inner product estimator, incorporating a
lightweight CUDA kernel for optimized computation. When applied across various
LLMs and NLP tasks to quantize the KV cache to only 3 bits, QJL demonstrates a
more than fivefold reduction in KV cache memory usage without compromising
accuracy, all while achieving faster runtime.

1 INTRODUCTION

Large language models (LLMs) have garnered significant attention and demonstrated remarkable
success in recent years. Their applications span various domains, including chatbot systems Achiam
et al. (2023); Antropic (2024) to text-to-image Ramesh et al. (2022); FireFly (2023); Midjourney
(2022), text-to-video synthesis OpenAI (2024b), coding assistant Copilot (2023) and even multimodal
domain across text, audio, image, and video OpenAI (2024a). The Transformer architecture with
self-attention mechanism Vaswani et al. (2017) is at the heart of these LLMs as it enables capturing
intrinsic pairwise correlations across tokens in the input sequence. The ability of LLMs grows along
with their model size Kaplan et al. (2020), which leads to computational challenges in terms of huge
memory consumption.

Deploying auto-regressive transformers during the generation phase is costly because commercial AI
models must simultaneously serve millions of end users while meeting strict latency requirements.
One significant challenge is the substantial memory needed to store all previously generated key-
value (KV) embeddings in cache to avoid recomputations. This has become a major memory and
speed bottleneck, especially for long context lengths. Additionally, the GPU must load the entire
KV cache from its main memory to shared memory for each token generated, resulting in low
arithmetic intensity and leaving most GPU threads idle. Therefore, reducing the KV cache size while
maintaining accuracy is crucial.

There are several approaches to address this challenge. One method involves reducing the number of
heads in the KV cache using multi-query attention Shazeer (2019) and multi-group attention Ainslie
et al. (2023), but these require fine-tuning the pre-trained models or training from scratch. Another
line of work tries to reduce the KV cache size by pruning or evicting unimportant tokens Zhang et al.
(2024b); Liu et al. (2024a); Xiao et al. (2023); Zandieh et al. (2024). Additionally, some recent works
tackle the issue from a system perspective, such as offloading Sheng et al. (2023) or using virtual
memory and paging techniques in the attention mechanism Kwon et al. (2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

LLM

what is 20+24?
Prompt

encoding vector

cache

K V 44
Answer

LLM

(ATTN-MLP-LAYERNORM)x𝐿 (ATTN-MLP-LAYERNORM)x𝐿 Attention

softmax(q⊤K⊤)V

q

cache

Prompt Encoding Decoding (Token Generation)

q ∈ Rd

S ∈ Rm×d

S · q ∈ Rm

Sij ∼ N (0, 1)

k ∈ Rd sign(Sk) ∈ {±1}mS · k ∈ Rm

Query Embed.

JL
transform

Key Embed.

sign(·)
∥k∥2 /m

⟨Sq, QJL(S, k)⟩ ≈ε ⟨q, k⟩
Lemma 3.2 & 3.5

K

Cache

V

KV Cache Quantization

Per-token
Quantization

Per-token
QuantizationQJL(·)

QJL(S, k)

×

Figure 1: Overview of the KV cache quantization via Quantized JL (QJL) transform

A simple yet effective approach is to quantize the floating-point numbers (FPN) in the KV cache using
fewer bits. Several quantization methods have been proposed specifically for the KV cache Yue et al.
(2024); Yang et al. (2024); Dong et al. (2024); Kang et al. (2024); Zhang et al. (2024a). Most recently,
KIVI Liu et al. (2024b) and KVQuant Hooper et al. (2024) proposed per-channel quantization for
the key cache to achieve better performance. However, all existing quantization methods for the
KV cache face significant “memory overhead” issues. Specifically, all these methods group the data
into blocks, either channel-wise or token-wise, and calculate and store quantization constants (at
least a zero point and a scale) for each group. Depending on the group size, this overhead can add
approximately 1 or 2 additional bits per quantized number, which results in significant computational
overhead. In this work, our goal is to develop an efficient, data-oblivious quantization method,
referred to as a sketching technique. This method, which we call QJL, does not need to be tuned by
or adapted to the input data with significantly less overhead than prior works, without any loss in
performance.

1.1 OVERVIEW OF CONTRIBUTIONS

The decoding phase in the attention mechanism involves the following computations: (1) computing
attention scores by applying the softmax function to the inner product between the current query
embedding and all previously generated keys, and (2) multiplying the attention scores with all
previously generated values. To make the attention score calculations in step (1) more memory
efficient, we quantize the keys in the cache. We introduce a quantization scheme for key embeddings,
named QJL, leveraging randomized sketching techniques. Alongside, we develop a high-accuracy
estimator for the inner product of query/key pairs, crucial for mitigating errors amplified by the
softmax operation in attention score calculations.

Firstly, we revisit a fundamental concept in numerical linear algebra: applying a Johnson-
Lindenstrauss (JL) transform, i.e., a random Gaussian projection, to a pair of vectors and then
computing the inner product of the projected vectors provides an unbiased and low-distortion estima-
tor for their original inner product Dasgupta & Gupta (2003). To address the key cache quantization
problem, our aim is to quantize the result after applying the JL transform to a key embedding, ideally
to just a single bit. Surprisingly, we prove that by applying the JL transform to a key embedding and
then quantizing the result to a single bit (the sign bit), while applying the same JL transform to the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

query embedding without quantization, we still obtain an unbiased estimator of their inner product
(see Lemma 3.2). Moreover, the distortion of this estimator is small and comparable to that of the
standard JL transform (see Lemma 3.5). In Theorem 3.6, we demonstrate that the proposed inner
product estimator based on QJL achieves a relative distortion of 1± ε on the final attention scores.
Notably, the number of required bits for representing quantized keys is independent of the embedding
dimension and scales logarithmically with the context length, using a fixed number of bits per token.

Thus the QJL sketch combines a JL transform—a random Gaussian projection—with quantization to
the sign bit. An overview of this approach is illustrated in Figure 1. Unlike previous methods, the
QJL sketch can quantize vectors with zero overhead because it does not require grouping the data
and storing quantization constants (zeros and scales) per group. Furthermore, this is a data-oblivious
algorithm that does not rely on specific input, requires no tuning, and can be easily parallelized and
applied in real-time.

The value cache quantization used to make step (2) memory efficient is known to be a straightforward
task, and a standard token-wise quantization is very effective and efficient in practice, as observed
in prior work Liu et al. (2024b); Hooper et al. (2024). Hence, we follow the same approach for the
value therein.

Furthermore, we analyzed the distribution of outliers in large language models (LLMs). We observed
that while there are no significant outliers in the initial layers, certain fixed key embedding channels
(coordinates) in the deeper layers exhibit considerably larger magnitudes (see Figure 2). To address
this, we identify these outlier channels during the prompt phase and simply apply two independent
copies of our quantizer to the outliers and inliers separately.

The QJL transform and its accompanying inner product estimator are highly efficient and GPU-
friendly algorithms. In particular, we provide a lightweight CUDA kernel for their efficient compu-
tation. We apply QJL and our inner product estimator to compress the KV cache in several LLMs,
including Llama-2 Touvron et al. (2023) and its fine-tuned models by long sequence Li et al. (2023),
under various NLP tasks. Our results show that quantizing the KV cache to only 3 bits per FPN
results in no accuracy drop compared to the exact model with 16 bits per FPN while reducing cache
memory usage by over fivefold and increasing the generation speed significantly for long contexts.
For example, our proposed quantization shows better F1 scores on long-range question-answering
tasks from LongBench Bai et al. (2023) (a collection of long-context datasets) compared to the recent
KV cache quantization methods, while minimizing memory overheads.

2 PRELIMINARIES: TOKEN GENERATION IN ATTENTION

Deploying auto-regressive language models for inference involves performing attention decoding
in an online setting, where key and value embeddings from each transformer layer are cached in
memory to remove redundant computations. The model sequentially uses and updates the KV cache
to generate the next token, one at a time.

More precisely, in every phase of token generation, the stream of tokens is represented by a triplet of
vectors called by the query, key, and value embeddings, respectively. Let qi,ki,vi ∈ Rd be the triplet
at i-th generation phase and n be the total number of tokens in the stream so far either in the prompt
encoding (prefill) or the generation (decoding) phase. Then, the attention output in n-th generation
phase can be written as

on =
∑
i∈[n]

Score(i) · vi, (1)

where Score ∈ Rn is the vector of attention scores defined as:

Score := softmax ([⟨qn,k1⟩, ⟨qn,k2⟩, . . . ⟨qn,kn⟩]) . (2)

The output embedding on will be used for computing the next tokens in the stream qn+1,kn+1,vn+1

unless the generation phase terminates. Observe that to compute output on, one needs to store
all previous key and value embeddings {ki,vi}i∈[n] and keeping them in full precision requires
significant memory for long-context inputs. The time complexity to compete Equation (2) is O(nd)
due to the computation of n inner products. Additionally, the inference speed is also impacted by the
KV cache size, as the KV cache must be loaded from GPU main memory for every token generated,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

resulting in low arithmetic intensity and underutilization of GPU cores Pope et al. (2023). In this
work, we focus on compressing the KV cache by quantizing tokens, thereby reducing the memory
required to store each key or value embedding in the cache.

3 QUANTIZED JOHNSON-LINDENSTRAUSS (QJL) TRANSFORM

Our goal is to save memory space for storing the KV cache while the inner product between query and
key remains undistorted. To achieve this, we first transform the embedding vectors using a random
projection that preserves the inner products, acting as a preconditioning step, and then quantize the
result. Specifically, we project the input vectors onto a random subspace by applying the Johnson-
Lindenstrauss (JL) transform Johnson et al., which amounts to multiplying by a random Gaussian
matrix. The inner product of the resulting vectors after applying this projection provides an unbiased
and low-distortion estimator for the inner product of the original vectors Dasgupta & Gupta (2003).
We introduce a 1-bit Johnson-Lindenstrauss transform, comprising a JL transformation followed by
quantization to a single sign bit, and demonstrate its ability to offer an unbiased and low-distortion
inner product estimator. We complement our binary quantizer by developing an unbiased estimator
for the inner product of the quantized vector with any arbitrary vector. This inner product estimator is
asymmetric, as one of the vectors is quantized to a single bit while the other remains unquantized,
making it well-suited for the KV cache mechanism. The Quantized Johnson-Lindenstrauss (QJL)
transformation, acting as a 1-bit quantizer, alongside our proposed estimator, is formally defined in
the following definition:
Definition 3.1 (QJL and inner product estimator). For any positive integers d,m, let S ∈ Rm×d be a
JL transform matrix, i.e., entries of S are i.i.d. samples from the zero mean and unit variance Normal
distribution. The QJL is a mapping functionHS : Rd → {−1,+1}m defined as:

HS(k) := sign(Sk) for any k ∈ Rd. (3)

Furthermore, for any pair of vectors k, q ∈ Rd the estimator for their inner product ⟨q,k⟩ based on
the aforementioned quantizer is defined as:

ProdQJL(q,k) :=

√
π/2

m
· ∥k∥2 · ⟨Sq,HS(k)⟩. (4)

Now, we show that the inner product estimator ProdQJL(q,k), exactly like the inner product of
JL-transformed vectors without quantization to sign bit, is an unbiased estimator. The crucial point to
note is that if we applied QJL to both vectors q and k in Equation (4), we would obtain an unbiased
estimator for the angle between these vectors, as shown in Charikar (2002). However, to estimate
the inner product one needs to apply the cosine function on top of the angle estimator, which results
in a biased estimation. Thus, to achieve an unbiased inner product estimator, it is necessary to
asymmetrically apply quantization to the JL transform of only one of the vectors q and k.
Lemma 3.2 (Inner product estimator ProdQJL is unbiased). For any vectors q,k ∈ Rd the expected
value of the estimator ProdQJL(q,k) defined in Equation (4) is:

E
S
[ProdQJL(q,k)] = ⟨q,k⟩,

where the expectation is over the randomness of the JL matrix S in Definition 3.1.

Proof. Let s1, s2, . . . sm denote the rows of the JL matrix S. Additionally, let us decompose q to its
projection onto the vector k and its orthogonal component, i.e., q⊥k := q − ⟨q,k⟩

∥k∥2
2
· k. We can write,

ProdQJL(q,k) =

√
π/2

m

∑
i∈[m]

∥k∥2 · s⊤i q · sign(s⊤i k)

=

√
π/2

m

∑
i∈[m]

⟨q,k⟩
∥k∥2

· s⊤i k · sign(s⊤i k) + ∥k∥2 · s⊤i q⊥k · sign(s⊤i k)

=

√
π/2

m

∑
i∈[m]

⟨q,k⟩
∥k∥2

· |s⊤i k|+ ∥k∥2 · s⊤i q⊥k · sign(s⊤i k).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Since si’s have identical distributions, we have:

E
S
[ProdQJL(q,k)] =

√
π/2

(⟨q,k⟩
∥k∥2

· E
[
|s⊤1 k|

]
+ ∥k∥2 · E

[
s⊤1 q

⊥k · sign(s⊤1 k)
])

.

To calculate the above expectation let us define variables x := s⊤1 k and y := s⊤1 q
⊥k. Note that x

and y are both zero-mean Gaussian random variables and because ⟨q⊥k,k⟩ = 0. By the following
Fact 3.3, x and y are independent.
Fact 3.3. If x ∈ Rd is a vector of i.i.d. zero-mean normal entries with variance σ2 and A ∈ Rm×d is
a matrix, then A · x is a normal random variable with mean zero and covariance matrix σ2 ·AA⊤.

This implies that the second expectation term above is zero because E
[
s⊤1 q

⊥k · sign(s⊤1 k)
]
=

E[y · sign(x)] = E[y] · E[sign(x)] = 0. Furthermore, x is a Gaussian random variable with mean
zero and variance ∥k∥22. Therefore, we have

E
S
[ProdQJL(q,k)] =

√
π/2 · ⟨q,k⟩∥k∥2

· E
x
[|x|] = ⟨q,k⟩.

where the equality comes from the following Fact 3.4:
Fact 3.4 (Moments of Normal Random Variable). If x is a normal random variable with zero mean
and variance σ2, then for any integer ℓ, the ℓ-th moment of x is E

[
|x|ℓ

]
= σℓ ·2ℓ/2Γ((ℓ+1)/2)/

√
π.

This completes the proof of Lemma 3.2.

Now we show that the inner product estimator ProdQJL in Definition 3.1, just like the estimators
based on the standard JL transform, has a bounded distortion with high probability.
Lemma 3.5 (Distortion of inner product estimator ProdQJL). For any vectors q,k ∈ Rd if the
estimator ProdQJL(q,k) is defined as in Equation (4) for QJL with dimension m ≥ 4

3 · 1+ε
ε2 log 2

δ ,
then:

Pr
S
[|ProdQJL(q,k)− ⟨q,k⟩| > ε∥q∥2∥k∥2] ≤ δ,

where the probability is over the randomness of the JL matrix S in Definition 3.1.

Proof. First note that, letting s1, s2, . . . sm denote the rows of the JL transform matrix S, we have:

ProdQJL(q,k) =
1

m

∑
i∈[m]

√
π/2 · ∥k∥2 · s⊤i q · sign(s⊤i k).

Since si’s are i.i.d. the above is indeed the average of m i.i.d. estimators defined as zi :=
√
π/2 ·

∥k∥2 · s⊤i q · sign(s⊤i k) for i ∈ [m]. Let us now calculate the ℓ-th moment of zi using Fact 3.4:

E
[
|zi|ℓ

]
=

(√
π/2 · ∥k∥2

)ℓ

· E
[
|s⊤i q|ℓ

]
=

(√
π · ∥k∥2∥q∥2

)ℓ · Γ((ℓ+ 1)/2)√
π

, (5)

where the second equality above follows because s⊤i q is a Gaussian random variable with mean zero
and variance ∥q∥22 along with Fact 3.4. Now we can prove the result by invoking the unbiasedness of
the estimator, Lemma 3.2, along with an appropriate version of Bernstein inequality and using the
moment bounds in Equation (5). More specifically, our moment calculation in Equation (5) implies:

E
[
|zi|ℓ

]
= E

[
|zi|2

]
·
(√

π∥k∥2∥q∥2
)ℓ−2 · Γ((ℓ+ 1)/2)

Γ(3/2)
≤ E

[
|zi|2

]
·
(
2

3
· ∥k∥2∥q∥2

)ℓ−2

· ℓ!
2

Therefore, by invoking a proper version of the Bernstein inequality, for instance Corollary 2.11 from
Boucheron et al. (2003), we have the following:

Pr
S
[|ProdQJL(q,k)− ⟨q,k⟩| > t] ≤ 2 exp

(
3

4
· mt2

∥k∥22∥q∥22 + ∥k∥2∥q∥2 · t

)
.

If we set t = ε∥q∥2∥k∥2 the above simplifies to:

Pr
S
[|ProdQJL(q,k)− ⟨q,k⟩| > ε∥q∥2∥k∥2] ≤ 2 exp

(
3

4
· mε2

1 + ε

)
.

Therefore if m ≥ 4
3 · 1+ε

ε2 log 2
δ the error bound follows. This completes the proof of Lemma 3.5.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 QJL Key Cache Quantizer

Input: Stream of key tokens k1,k2, . . . ∈ Rd, integer m
1: Draw a random sketch S ∈ Rm×d with i.i.d. entries Si,j ∼ N (0, 1) as per Definition 3.1
2: repeat
3: Compute k̃i ← sign (Ski) and νi ← ∥ki∥2
4: store the quantized vector k̃i and the key norm νi in the cache
5: until token stream ends

Procedure ESTIMATESCORES(qn)

6: Compute inner product estimators q̃K(j)←
√

π/2

m · νi · ⟨Sqn, k̃j⟩ for every j ∈ [n]

7: S̃core← softmax
(
q̃K

)
return S̃core

Note that the distortion bound in Lemma 3.5 has remarkably small constants, even smaller than those
of the original unquintized JL transform. This indicates that quantizing one of the vectors to just a
single sign bit does not result in any loss of accuracy. We use these properties of QJL and our inner
product estimator to prove the final approximation bound on our KV cache quantizer.

3.1 KEY CACHE QUANTIZATION VIA QJL

The key cache is used in the computation of attention scores as shown in Equation (2). To calculate
these scores, we need to compute the inner products of the current query embedding with all key
embeddings in the cache. We design a quantization scheme that allows for a low-distortion estimate
of the inner products between an arbitrary query and all keys in the cache. In this section, we develop
a practical algorithm with provable guarantees based on QJL and the inner product estimator defined
in Definition 3.1.

The quantization scheme presented in Algorithm 1 applies QJL, defined in Definition 3.1, to each key
embedding, mapping them to binary vectors and storing the results in the key cache. We show in
the following theorem that the attention scores calculated by Algorithm 1 have very small (1± ε)
relative distortion with high probability:
Theorem 3.6 (Distortion bound on QJL key cache quantizer). For any sequence of key tokens
k1, . . .kn ∈ Rd and any integer m, Algorithm 1 stores binary vectors k̃1, . . . k̃n ∈ {−1,+1}m
along with scalar values ν1, . . . νn in the cache. If the key embeddings have bounded norm
maxi∈[n] ∥ki∥2 ≤ r and m ≥ 2r2ε−2 log n, then for any query embedding qn ∈ Rd with bounded
norm ∥qn∥2 ≤ r the output of the procedure ESTIMATESCORES(qn) satisfies the following with
probability 1− 1

poly(n) sinultaneously for all i ∈ [n]:∣∣∣S̃core(i)− Score(i)
∣∣∣ ≤ 3ε · Score(i),

where Score is the vector of attention scores defined in Equation (2).

Proof. The proof is by invoking Lemma 3.5 and a union bound. For every j ∈ [n] the estimator
q̃K(j) computed in line 6 of Algorithm 1 is in fact equal to the inner product estimator q̃K(j) =
ProdQJL(qn,kj) as defined in Equation (4). Thus by Lemma 3.5 we have the following with
probability at least 1− 1

n3/(2+2ε) :∣∣∣q̃K(j)− ⟨qn,kj⟩
∣∣∣ ≤ ε

r2
· ∥qn∥2∥kj∥2 ≤ ε,

where the second inequality follows from the preconditions of the theorem regarding the boundedness
of the norms of the query and key embeddings. By union bound, the above inequality holds
simultaneously for all j ∈ [n] with high probability in n. Thus after applying the softmax function in
line 7 of Algorithm 1 we get that with high probability in n:

S̃core(i) ∈ e±2ε · Score(i) ∈ (1± 3ε) · Score(i).
This completes the proof of Theorem 3.6.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0
20

40
60

80
100

120

Channels (Sorted) 0
200

400
600

800
1000

1200
1400

Tok
en

s

0.0

0.5

1.0

1.5

2.0

2.5

M
ag

ni
tu

de

0.2

0.4

0.6

0.8

1.0

(a) Layer 0, Head 0

0
20

40
60

80
100

120

Channels (Sorted) 0
200

400
600

800
1000

1200
1400

Tok
en

s

0

2

4

6

8

10

12

14

M
ag

ni
tu

de

1

2

3

4

5

6

7

(b) Layer 15, Head 0

0
20

40
60

80
100

120

Channels (Sorted) 0
200

400
600

800
1000

1200
1400

Tok
en

s

0
2
4
6
8

10

12

14

M
ag

ni
tu

de

1

2

3

4

5

6

7

8

(c) Layer 31, Head 0

Figure 2: The magnitude of key cache entries for different layers of the Llama-2 model, based on
an example prompt, reveals notable patterns. The coordinates of embeddings (channels) are sorted
by their average magnitude over tokens. In the initial layers, no significant outlier patterns are
observed. However, in the deeper layers, a few channels (approximately four) exhibit visibly larger
magnitudes, indicating the presence of significant outliers. This observation highlights the importance
of addressing these outliers to improve quantization accuracy and reduce distortion in the key cache.

This theorem shows that if the query and key embeddings have constant norms, as is common in
practical scenarios, we can quantize each key embedding such that only m ≈ ε−2 log n bits are
needed to store each key token. This is independent of the embedding dimension of the tokens and
scales only logarithmically with the sequence length.

3.2 VALUE CACHE QUANTIZATION

We quantize the value cache using a standard quantization method, i.e., normalizing each token’s
entries and then rounding each entry to a few-bit integer representation. This approach aligns with
prior work, which has shown that standard token-wise quantization is highly effective for the value
cache and results in a minimal accuracy drop Liu et al. (2024b); Hooper et al. (2024).

4 EXPERIMENTS

In this section, we validate the empirical performance of our algorithm. All experiments are conducted
under a single A100 GPU with 80GB memory. We implement two main CUDA kernels for our core
primitives: one for quantizing embedding vectors using various floating point data types such as
bfloat16, FP16, and FP32, and the other for computing the inner product of an arbitrary embedding
vector with all quantized vectors in the cache. The algorithm’s wrapper is implemented in PyTorch,
handling all the housekeeping tasks. We plan to complete implementation in the CUDA for future
work, which will further accelerate our algorithm.

4.1 PRACTICAL CONSIDERATION

Outliers. As reported in recent works e.g., KIVI Liu et al. (2024b), KVQuant Hooper et al.
(2024), key embeddings typically contain outliers exhibiting a distinct pattern. Specifically, certain
coordinates of key embeddings display relatively large magnitudes. To further investigate these
observations, we analyze the distribution of the magnitudes of key embedding coordinates across
different layers. Firstly, we observe that there are no significant outliers in the initial attention layers.
However, in the deeper layers, certain fixed coordinates of key embeddings consistently exhibit large
magnitudes, and this pattern persists within these channels across all tokens. The distribution of
outliers across different layers for the Llama-2 model is plotted in Figure 2. It is evident that in
the initial layers, outliers are rare, but as we approach the final layers, their frequency and impact
increase significantly. Secondly, the outliers show a persistent pattern in specific fixed coordinates
of the key embeddings. This observation aligns with previous findings that certain fixed embedding
coordinates exhibit larger outliers Dettmers et al. (2022); Lin et al. (2023); Liu et al. (2024b); Hooper
et al. (2024).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

2 4 6 8

Bits per Channel (md)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
is

to
rt

io
n

(ε
)

Layer 0
Layer 1
Layer 2
Layer 4
Layer 8
Layer 16
Layer 31

Figure 3: The relative distortion on the attention scores ε versus the number of bits of QJL per token
and embedding channels, i.e., m/d, for layers at different depths of Llama 2 model.

As demonstrated in Theorem 3.6, the distortion on the attention scores is directly proportional to the
norms of the embeddings. Therefore, capturing these outlier coordinates is essential, as their large
magnitudes contribute significantly to the norms of key embeddings. By identifying and isolating
these outlier channels, we can reduce the norm of the key embeddings and, consequently, significantly
decrease the final distortion. Next, we quantize the outliers using an independent instance of our QJL
quantizer but with a lower compression rate, utilizing more bits to accurately represent each outlier
coordinate.

Orthogonalized JL transform. We observed that orthogonalizing the rows of the JL matrix S in
Definition 3.1 almost always improves the performance of our QJL quantizer. This finding aligns
with previous work on various applications of the JL transform, such as random Fourier features
Yu et al. (2016) and locality sensitive hashing Ji et al. (2012). Consequently, in our implementation
and all experiments, we first generate a random JL matrix S with i.i.d. Gaussian entries and then
orthogonalize its rows using QR decomposition. We then use this orthogonalized matrix in our QJL
quantizer, as described in Algorithm 1.

4.2 ABLATION STUDY

Here, we perform an ablation study on the relative distortion of the attention scores in one attention
layer after applying QJL on key embeddings. The distortion for various layers of the Llama2-7B
model is plotted against the number of bits per token and embedding channel m/d, where d = 128 is
the embedding dimension, as shown in Figure 3. Our theoretical result from Theorem 3.6 suggests
that m ∼ 1/ε2 which aligns with our observations in Figure 3. An interesting observation is that
the first layer has a much higher distortion compared to all other layers, suggesting that the first
layer is more challenging to quantize and requires a higher number of bits per FPN. This finding is
noteworthy and indicates the need for tailored quantization strategies for different layers. This is
consistent with the outlier distribution depicted in Figure 2, where the first layer appears distinct from
the others.

4.3 END-TO-END TEXT GENERATION

Next we benchmark our method on LongBench Bai et al. (2023), a benchmark of long-range context
on various tasks. We choose the base model as longchat-7b-v1.5-32k Li et al. (2023) (fine-tuned
Llama-2 with 7B parameter with 16,384 context length) and apply following quantization methods to
this model; KIVI Liu et al. (2024b), KVQuant Yue et al. (2024) and our proposed quantization via
QJL. Each floating-point number (FPN) in the base model is represented by 16 bits, and we choose
proper hyper-parameters of KIVI and QJL so that their bits per FPN become 3. For KVQuant, we
follow the default setting which holds its bits per FPN as 4.3.

QJL evaluation on Llama2 model and LongBench dataset. We benchmarked QJL on Long-
Bench Bai et al. (2023), a suite of tasks designed to evaluate performance with long-range contexts.
We choose the base model as longchat-7b-v1.5-32k Li et al. (2023) (fine-tuned Llama-2 with 7B

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Methods Bits
Datasets from LongBench Bai et al. (2023)

NarrativeQA Qasper MultiQA-en MultifQA-zh HotpotQA 2WikiMultiQA

FP16 (baseline) 16 20.79 29.42 42.83 34.33 33.05 24.14

KIVI Liu et al. (2024b) 3 20.96 29.01 40.93 34.75 32.79 23.01
QJL (ours) 3 20.67 28.48 40.94 29.71 35.62 23.60

KVQuant Hooper et al. (2024) 4.3 20.14 28.77 44.22 34.44 34.06 23.05
QJL (ours) 4.3 20.72 30.02 41.18 31.73 34.22 22.63

KIVI Liu et al. (2024b) 5 20.49 28.90 43.24 34.66 33.07 24.86
QJL (ours) 5 21.09 29.11 41.58 31.86 35.65 24.61

Table 1: Evaluation of various quantization methods and different bits per floating-point number
(FPN) on long-context question-answering datasets from LongBench (F1 scores).

parameter with 16,384 context length) and apply following quantization methods to this model;
KIVI Liu et al. (2024b), KVQuant Hooper et al. (2024) and our proposed QJL. Each floating-point
number (FPN) in the base model is represented by 16 bits. We chose several hyperparameters for QJL
to match the bits per FPN of the competing methods KVQuant and KIVI. There are two versions of
KIVI, with bits per FPN of 3 and 5, respectively. For KVQuant, the default setting results in 4.3 bits
per FPN. To validate the quality of those quantized models, we benchmark them on 6 question-answer
datasets from LongBench, and we set the maximum sequence length to 31,500. We follow the same
approach of prompting and evaluating to evaluate the prediction of the model from the original
repository. Table 1 summarizes the results. Our proposed QJL achieves the highest F1 score within
the quantization methods for NarrativeQA, Qasper and 2WikiMultiQA.

Experiments with Llama3 and Llama2 models. We additionally test our method on datasets
Lambada-OpenAI, HellaSwag, PIQA, MathQA, and MMLU, which have shorter sequence
lengths. We benchmark our method using LM-eval Gao et al. (2023) framework to ensure a thorough
evaluation across various metrics. We evaluate quantization methods with accuracy across Llama-2-
7B Touvron et al. (2023) and Llama-3-8B Llama3 (2024) models. Note that KIVI only supports a
half-precision floating point, whereas our method can be used for any precision format type. This
makes it unable to run KIVI on the Llama-3 model.

As we observe, QJL can significantly reduce memory usage by utilizing only 3 bits per FPN, compared
to the 16 bits per FPN in the baseline, achieving around an 81% reduction in memory. We observe
that this efficiency does not compromise performance significantly. Across all datasets, our method’s
accuracy is generally comparable to the baseline, with slight variations. In Table 2, our QJL on the
Llama-3-8B performs on average about slightly better than the baseline across all datasets.

Models Methods Bits
Datasets from LM-eval Gao et al. (2023)

Lambada-OpenAI HellaSwag PIQA MathQA MMLU

Llama-2-7B
FP16 (baseline) 16 73.90 57.18 78.07 28.11 41.85
KIVI Liu et al. (2024b) 3 73.88 57.13 78.07 28.11 41.81
QJL (ours) 3 73.88 57.14 78.07 28.17 41.78

Llama-3-8B
BF16 (baseline) 16 75.59 60.17 79.65 40.64 62.09
QJL (ours) 3 75.61 60.13 79.87 40.60 62.12

Table 2: Evaluation (accuracy) of various quantization methods on regular length datasets from
LM-eval Gao et al. (2023). These comparisons are not typically based on long-context length;
however, even in these cases, our QJL with 3 bits per FPN performs comparably to the baseline with
16 bits per FPN.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2k 8k 32k 64k
Sequence Length

0.0

0.5

1.0

1.5

E
nc

od
e

+
Q

ua
nt

iz
e

(m
s)

Llama-2-7B

FP16
QJL (ours)
KVQuant
KIVI

(a) Prompt encoding (Llama2)

2k 8k 32k 64k
Sequence Length

0

2

4

6

D
ec

od
e

(m
s)

Llama-2-7B

FP16
QJL (ours)
KVQuant
KIVI

(b) Token generation (Llama2)

1k 2k 8k 32k 64k
Sequence Length

0.5

1.0

1.5

2.0

To
ta

lG
en

er
at

io
n

(m
s)

Llama-3-8B

BF16
QJL (ours)

(c) Encode and generate (Llama3)

Figure 4: Wall-clock time (ms) to encode a prompt and quantize the KV cache (left), generate 128
tokens for llama2 model (middle), and generate 64 tokens for llama3 model (right) using different
quantization methods in a single attention layer model. The input sequence length varies from 1k
to 64k. Both KIVI and QJL (ours) with 3 bits per FPN show faster decoding time than the baseline.
However, KVQuant is significantly slower during both quantizing and decoding phases. QJL is the
only method that can quantize Llama3, as our kernels support grouped query attention and BF16
data type. We observe the same speed for Llama3 as the exact method for generation. Note that our
memory usage is at least 5-fold less than the exact method and can support all data types.

Runtime and Peak-Memory Evaluations. To evaluate the runtime and memory consumption of
QJL we additionally report runtimes of: (1) prompt encoding, (2) KV cache quantization, and (3)
decoding (token generation) in a single attention layer as well as the (4) peak memory consumption
during prompt encoding and decoding. Figure 4 shows the wall-clock time to encode a prompt and
quantize the KV cache, generate 128 tokens for Llama2 model, and generate 64 tokens for Llama3
model using different quantization methods in a single attention layer of these models. Note that
QJL is the only method that can quantize Llama3, as our kernels support grouped query attention
and BF16 data type. we observe the same speed for Llama3 as the exact method for generation. The
input sequence lengths vary between 1k to 128k. As shown in Figure 4, KVQuant runs slower than
other methods during both prompt encoding and decoding phases, as it requires a huge amount of
preprocessing which leads to slow runtime. On the other hand, both KIVI and our QJL with 3 bits per
FPN show marginal runtime overhead compared to the exact baseline during prompting but reduce
KV cache memory usage by at least a factor of 5.

2k 8k 32k
Sequence Length

20

30

40

50

Pe
ak

M
em

or
y

(G
B

)

Llama-2-7B

FP16
QJL 3-bits
KIVI 3-bits
QJL 5-bits
KIVI 5-bits

Figure 5: Peak memory usage for encoding the prompt and generating 128 tokens with Llama2,
comparing various KV cache quantization methods to the exact model without quantization.

Next, we compare the peak memory consumption of various KV cache quantization methods applied
to the Llama2 model for encoding prompts of different lengths and generating 128 new tokens, as
shown in Figure 5. Both QJL and KIVI quantize the KV cache to 3 or 5 bits per FPN. However,
peak memory consumption also includes the memory required to store model parameters. Even
considering total memory consumption, we observe an over two-fold reduction in peak memory
usage. We did not include KVQuant in the peak memory study as this method was extremely slow
and running it repeatedly for different sequence lengths takes a very long time.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.
In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 4895–4901, 2023.

Antropic. claude, 2024. https://www.anthropic.com/news/claude-3-family.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.

Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities. In Summer
school on machine learning, pp. 208–240. Springer, 2003.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pp. 380–388, 2002.

Microsoft Copilot, 2023. https://github.com/features/copilot.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss.
Random Structures & Algorithms, 22(1):60–65, 2003.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm kv
cache. arXiv preprint arXiv:2403.04643, 2024.

Adobe FireFly, 2023. https://firefly.adobe.com/.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 2023. URL https://zenodo.org/records/
10256836. https://github.com/EleutherAI/lm-evaluation-harness.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. KVQuant: Towards 10 Million Context Length LLM Inference
with KV Cache Quantization. arXiv preprint arXiv:2401.18079, 2024.

Jianqiu Ji, Jianmin Li, Shuicheng Yan, Bo Zhang, and Qi Tian. Super-bit locality-sensitive hashing.
Advances in neural information processing systems, 25, 2012.

William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of Lipschitz maps
into Banach spaces. Israel Journal of Mathematics.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of llm.
arXiv preprint arXiv:2403.05527, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

11

https://www.anthropic.com/news/claude-3-family
https://github.com/features/copilot
https://firefly.adobe.com/
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836
https://github.com/EleutherAI/lm-evaluation-harness
https://arxiv.org/pdf/2401.18079
https://arxiv.org/pdf/2401.18079
https://link.springer.com/content/pdf/10.1007/BF02764938.pdf
https://link.springer.com/content/pdf/10.1007/BF02764938.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pp. 611–626, 2023.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Sto-
ica, Xuezhe Ma, and Hao Zhang. How long can open-source llms truly promise on context
length?, 2023. URL https://lmsys.org/blog/2023-06-29-longchat. https:
//huggingface.co/lmsys/longchat-7b-v1.5-32k.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024a.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024b.

Llama3, 2024. https://github.com/meta-llama/llama3.

Midjourney, 2022. https://www.midjourney.com/home.

OpenAI. Introducing gpt-4o, 2024a. https://openai.com/index/hello-gpt-4o/.

OpenAI. Sora: Creating video from text, 2024b. https://openai.com/index/sora/.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. 2017.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via
importance-aware mixed precision quantization. arXiv preprint arXiv:2402.18096, 2024.

Felix Xinnan X Yu, Ananda Theertha Suresh, Krzysztof M Choromanski, Daniel N Holtmann-Rice,
and Sanjiv Kumar. Orthogonal random features. Advances in neural information processing
systems, 29, 2016.

12

https://lmsys.org/blog/2023-06-29-longchat
https://huggingface.co/lmsys/longchat-7b-v1.5-32k
https://huggingface.co/lmsys/longchat-7b-v1.5-32k
https://github.com/meta-llama/llama3
https://www.midjourney.com/home
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/sora/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant:
Quantizing weight and key/value cache for large language models gains more. arXiv preprint
arXiv:2402.12065, 2024.

Amir Zandieh, Insu Han, Vahab Mirrokni, and Amin Karbasi. Subgen: Token generation in sublinear
time and memory. arXiv preprint arXiv:2402.06082, 2024.

Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per channel: Ef-
ficient large language model inference with coupled quantization. arXiv preprint arXiv:2405.03917,
2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024b.

13

	Introduction
	Overview of Contributions

	Preliminaries: Token Generation in Attention
	Quantized Johnson-Lindenstrauss (QJL) Transform
	Key Cache Quantization via QJL
	Value Cache Quantization

	Experiments
	Practical Consideration
	Ablation Study
	End-to-end text generation

