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Abstract

Modern embedding-based machine learning (ML)
models can contain hundreds of gigabytes of pa-
rameters, often exceeding the capacity of GPU
hardware accelerators critical for training. One
solution is to use a mixed CPU-GPU setup, where
embedding parameters are stored in CPU mem-
ory and subsets are repeatedly transferred to the
GPU for computation. In this setup two training
paradigms exist: synchronous training and asyn-
chronous training. In the former, batches are trans-
ferred one by one, leading to low throughput but
fast model convergence. In contrast, during asyn-
chronous training batches are transferred in paral-
lel, allowing for more batches to be processed per
unit time. Asynchronous training, however, can
effect model quality due to concurrent batches
which access the same model parameters leading
to stale updates. In this work, we present Opti-
mistic Asynchrony Control, a method for allow-
ing asynchronous batch processing while ensuring
model equivalence to a synchronous training ex-
ecution. Our method is inspired by Optimistic
Concurrency Control used in database systems.
The main idea is to allow parallel processing and
transfer of batches from the CPU to the GPU,
but to validate each batch on the GPU before the
model is updated to ensure that it has the correct
values—the values it would have had if batches
were processed and transferred one by one. We
show that OAC achieves the best of both worlds,
retaining the convergence of synchronous training
while matching the throughput of asynchronous
ML. This allows OAC to achieve the best time-
to-accuracy of the three methods for mixed CPU-
GPU embedding model training.
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1. Introduction

Machine learning (ML) models have shown great success
across many disciplines, including computer vision (He
et al., 2016; Huang et al., 2017; Dosovitskiy et al., 2020),
natural language processing (Devlin et al., 2018; Brown
et al., 2020; Radford et al., 2019; OpenAl, 2023), and graph
learning (Mohoney et al., 2021; Chami et al., 2021; Kipf &
Welling, 2016; Shang & Chen, 2021; Derrow-Pinion et al.,
2021; Jumper et al., 2021). As these models have become
more prevalent, two trends have emerged with respect to
ML training: First, practitioners wish to train models with
an increasingly large number of parameters, whether for
increased accuracy (Sevilla et al., 2022), or because they
wish to train on more data (e.g. larger graphs) (Mohoney
et al., 2021). Second, hardware accelerators (GPUs) have
become (nearly) mandatory for computation. Interestingly,
these two trends conflict with each other. Modern ML mod-
els can contain many hundreds of gigabytes of data, far
exceeding the memory capacity of accelerators (max mem-
ory 10s of gigabytes). Thus, it has become common to use
multiple layers of the memory hierarchy for ML training.
One such approach, commonly used for embedding-based
ML models (Mohoney et al., 2021; Zheng et al., 2020; Lerer
et al., 2019), and the focus of this work, is mixed CPU-GPU
training (Dong et al., 2021).

In mixed CPU-GPU training, (some) ML model parameters
are stored in CPU memory. Batches (subsets) of these pa-
rameters are then read and transferred to a GPU for compu-
tation where they are updated as part of the learning process.
The updated values are then transferred back to the CPU
and written to the CPU memory. Continuous repetition of
this procedure eventually converts the initial parameters into
the final learned ML model. Conventional ML algorithms
proceed according to a synchronous manner: One batch
is transferred and updated at a time. A subsequent batch
does not begin until the previous batch has completed. Syn-
chronous ML is the default in many training frameworks
but it suffers from low throughput because the accelera-
tor is idle during batch preparation and transfer (Mohoney
et al., 2021). Thus, systems are increasingly supporting
asynchronous training. In this case, batches are allowed to
run in parallel to increase throughput. Multiple batches are
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prepared and transferred at once so that the GPU continually
has batches to process.

While asynchronous ML training can improve throughput
in the mixed CPU-GPU setting, it can suffer from subop-
timal convergence—requiring a greater number of batches
(updates) to achieve a given model accuracy than the syn-
chronous alternative, or failing to reach the given accuracy
altogether. The issue with asynchronous training is that
multiple concurrent batches may read and update the same
parameters (we say these batches overlap). Only the last
write to the CPU memory will persist, leading to lost up-
dates for some batches. The overall effect this has on model
training can vary substantially. It’s often best to compare
synchronous and asynchronous training in terms of time-to-
accuracy, i.e. how long (wall clock training time) does it
take for a model to reach a given quality. For example, if
asynchronous training increases throughput by a factor of
two, it can process twice as many batches as synchronous
training per unit time. However, if it also requires twice as
many batches to converge to the desired accuracy, then the
overall training time of the two methods will be the same. In
general, the optimal method for time-to-accuracy depends
on the application. Asynchronous training can perform well
when the overlap between concurrent batches is low (Niu
et al., 2011), but can also result in significantly degraded
convergence, potentially rendering it unusable.

The question we ask in this work is whether we can ensure
synchronous convergence while maintaining asynchronous
throughput. Such a method would result in the best time-
to-accuracy for mixed CPU-GPU ML training. The main
difficulty is how to handle concurrent batches which overlap.

The solution we propose is motivated by database concur-
rency control which solves an analogous challenge. To
increase throughput, databases allow multiple transactions
to run in parallel, but they ensure that the final result is
equivalent to a serial execution of each transaction. Initial
(pessimistic) approaches relied on locking of data objects
to prevent two simultaneous threads from modifying the
same records. Newer approaches, however, utilize a differ-
ent technique. Optimistic methods for concurrency control,
termed OCC, hope that conflicts between two concurrent
transactions will not occur (Kung & Robinson, 1981; Tu
et al., 2013). Each transaction is allowed to proceed at the
same time, but each must track its reads and write its modi-
fications to thread local storage. Before committing its local
writes to the database, a transaction must validate that no
concurrent transaction’s writes overlapped with its read set.
If validation fails, two transactions accessed the same data
concurrently and one transaction must abort to prevent an
inconsistent database state.

Here we propose Optimistic Asynchrony Control (OAC)
to ensure that asynchronous, parallel processing of batches

in mixed CPU-GPU ML training is equivalent to a syn-
chronous, one-by-one execution. Rather than adopting a
pessimistic approach and preventing batches which overlap
from running in parallel, we take an optimistic approach and
allow all batches to run concurrently but validate parallel
batches against each other for overlap. Unlike in conven-
tional OCC where overlapping transactions require aborts,
in OAC we show how batches which access the same param-
eters can be updated at validation time to have the correct
(according to a synchronous order) values.

The key contributions of OAC are as follows. First, we high-
light that the order in which batches pass through the GPU
computation step defines a one by one order over batches.
In OAC, we ensure that asynchronous training results in the
same updates to model parameters as synchronous training
would have produced according to this order. Second, we
introduce timestamps to each parameter to track its most
recent update and allow us to easily decide which value to
accept for a parameter in the presence of multiple options.
Finally, we add an on GPU parameter cache which tracks
the parameter sets of concurrent batches. This allows us to
validate that a batch has the correct parameter values just
before it enters computation to produce model updates.

We implement OAC in the graph learning system Mar-
ius (Mohoney et al., 2021; Waleffe et al., 2023) and evaluate
our method on the link prediction ML task. Link prediction
is a natural first application of OAC, as it requires learning
a vector (embedding) with hundreds of parameters for every
node in a graph. Modern graphs have hundreds of millions
of nodes resulting in total model sizes exceeding GPU mem-
ory capacities. We show that OAC results in identical con-
vergence to synchronous training and identical throughput
to asynchronous training. This allows OAC to achieve the
best of both worlds, resulting in the fastest time-to-accuracy.
OAC reaches the same accuracy as synchronous training up
to 3x faster, and consistently achieves higher accuracy that
asynchronous training without sacrificing throughput.

The rest of this paper is organized as follows. In Section 2
we discuss synchronous and asynchronous ML training in
more detail, providing an example to highlight the differ-
ence. We also discus Marius and the graph learning task
we use for evaluation. In Section 3 we describe OAC for
an abstract mixed CPU-GPU ML training task in detail. In
Section 4 we present our evaluation of OAC versus stan-
dard asynchronous and synchronous training on the graph
link prediction task. Final we conclude and present future
directions in Section 5.

2. Preliminaries

In this section, we begin by discussing in more detail back-
ground information which is useful for understanding later
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parts of the paper. In particular, we highlight the differ-
ence between synchronous and asynchronous training by
introducing a running example.

2.1. Synchronous vs. Asynchronous Training

As discussed above, in mixed CPU-GPU training model
parameters are stored in CPU memory (Figure 1). There are
two main learning paradigms for updating these parameters
to their final state. In synchronous training (Figure 1a)
a subset of these parameters, called a batch, is first read
from CPU memory and then transferred to the GPU. Once
on the GPU, the ML model can perform its training task
on these parameters to compute updated values. These
updated values are then transferred back to the CPU and
subsequently written to CPU memory. Each step in this
process happens sequentially, waiting for the previous step
to finish. Repeating this process eventually leads to the final
learned ML model. Note that each parameter may need
to be updated many times during training. In the example
in Figure 1a, a batch reads three parameters {a, ¢, f} and
updates them to {a’, ¢/, f'}. A second batch will wait to start
until the first batch is completed. This second batch may
read, for example, parameters {a’, b, h} and update them
to {a”, V', h'}. Notice that the second batch is guaranteed
to see the update from a to @’ from the first batch. This
is the strength of synchronous training—all updates from
one batch are seen by all subsequent batches—and leads to
fast convergence (the model requires fewer batches to learn).
However, the drawback of this paradigm is low throughput
(fewer batches are processed per unit time), as the GPU is
idle while it waits for a batch to be read, transferred, and
written (steps 1, 2, 4, and 5 in Figure 1a).

The second learning paradigm is asynchronous training
which seeks to address the low throughput problem of syn-
chronous training. Instead of reading and transferring one
batch at a time, here multiple batches are prepared and sent
to the GPU in parallel. The goal is to keep the GPU busy: as
soon as it finishes computation on one batch, another batch
is waiting in GPU memory for processing. This increases
throughput, allowing more batches to be processed per unit
time. Asynchronous training is generally implemented us-
ing multiple threads and queues (Mohoney et al., 2021).
CPU reader threads continually prepare and transfer batches
concurrently and push them to an on GPU input queue. The
GPU can then repeatedly read off batches from this data
structure. After updating a batch, the GPU puts the new
values in an on GPU output queue. Multiple CPU writer
threads continually grab batches from this output queue to
transfer and write the results back to CPU memory.

While asynchronous training increase throughput, it can neg-
atively affect convergence. This is because the synchronous
property described above no longer holds—it is no longer

the case that all updates from one batch are seen by all
subsequent batches. Consider the example in Figure 1b.
Two batches are prepared in parallel. One reads {a,c, [}
and another reads {a, b, h}. Notice that these batches over-
lap, i.e. they both read the same parameter, a in this case.
The updates from the first batch ({a, ¢, f} — {a’,c, f'})
have not made it back to CPU memory before the second
batch ({a, b, h}) is started. This is in contrast with the syn-
chronous setting. When both batches reach the GPU, one
will be pulled of the input queue and processed first, fol-
lowed by the second batch. In this example, both batches
will update a to their own version of a’ (we differentiate
each version of @’ by a a’(1) or a a’(2) when needed).
When these batches subsequently write their updates back
to CPU memory, only the last write will persist, for ex-
ample a’(1). The processing of these two batches in the
asynchronous setting has resulted in a different model pa-
rameter state {a’(1),¥,c,d, e, f', g, h'} than the result of
processing these batches one at a time in the synchronous
setting {a”, b, ,d,e, f', g, h'}. The consequence is that
asynchronous training may not be able to achieve the same
final model accuracy as synchronous training, or it may con-
verge more slowly, requiring more batches to be processed
to reach a given model quality.

Note that the problem with asynchronous training occurs
due to batches which concurrently access the same parame-
ters. The frequency and number of these conflicts depends
on many factors including: the batch size, the total number
of parameters, the parameter access pattern across batches,
the number of reader and writer threads, the queue sizes, etc.
It is possible to tune some of these parameters to reduce con-
flicts and improve the convergence of asynchronous training,
but changing these parameters could also affect model accu-
racy and throughput. For example, reducing the number of
reader threads will reduce the number of concurrent batches
and reduce conflicts, but may also reduce throughput. Other
factors are hard to change. The parameter access pattern can
generally be assumed to be random as it is nearly always
preferred to shuffle training examples during ML training
for improved accuracy (a group of training examples define
the parameters required for a given batch).

To summarize synchronous versus asynchronous training
we draw an analogy to database systems. A batch in our
setting is roughly equivalent to a transaction in a database.
Both read and write values to a shared state. Synchronous
training can be viewed as a serial schedule of transactions.
Each transaction (batch) performs its reads and writes one
at a time. Asynchronous training on the other hand is analo-
gous to an interleaving schedule of transactions where reads
and writes from different batches happen in parallel. They
key difference, however; is that database systems include
concurrency control mechanisms to ensure that parallel exe-
cution is equivalent to a serial execution. No such analogous
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Figure 1. Graphical comparison of synchronous versus asynchronous mixed CPU-GPU training.

mechanism exists for asynchronous training.

2.2. Marius and Graph Learning

In Section 3 we present our method for ensuring asyn-
chronous training is equivalent to synchronous training for
a general mixed CPU-GPU ML training setup. In Section 4
we evaluate an initial implementation of this algorithm in the
graph learning system Marius. Here we provide additional
information about this system and ML learning problem.
Marius is a system for learning large scale graph embed-
dings on a single machine. It supports both synchronous
and asynchronous mixed CPU-GPU training. The primary
learning task is link prediction. Given a graph with a set of
nodes V" and a set of edges F, the task is to learn an embed-
ding (vector) of parameters for each node n € V, such that
these node embeddings can recover the edges of the graph
(through mathematical operations). Trained embeddings
can then be used to predict the existence of new edges or
to filter erroneous edges already present in the graph. More
details can be found here (Mohoney et al., 2021).

3. Optimistic Asynchrony Control

In this section, we present Optimistic Asynchrony Control
(OAC), a method for allowing asynchronous parallel pro-
cessing and transfer of batches in mixed CPU-GPU training
while guaranteeing that the final model state is equivalent
to one which would have been generated by synchronous
training. The key idea is to validate each batch against other
concurrent batches to detect parameter overlap and then to
ensure that each batch uses the correct parameter values
for computation. Here, the correct parameters refer to the
values a batch would have read if it had been processed in
some synchronous order.

3.1. The Synchronous Order

In OAC, we would like to ensure asynchronous training
produces updates to the model state equivalent to some syn-
chronous training execution. The first question is then: what
synchronous order should we validate against? Recall from
Section 2.1 that in asynchronous training, batches are read

and transferred in parallel from the CPU to an on GPU in-
put queue. The GPU then reads batches one by one from
this queue for computation (the GPU computation can be
viewed as a critical section). We will call this sequential
order over batches the computation order. For example, in
Figure 1b, first {a, ¢, f} is updated to {a’(1),, f'}, and
then {a, b, h} is updated to {a’(2),¥’, h'}. This is the criti-
cal observation for OAC. We will ensure that asynchronous
training produces the same updates as synchronous train-
ing would have produced had it processed batches in this
computation order. Note that even though batches are pro-
cessed by the GPU sequentially in asynchronous training, it
is not equivalent to synchronous training by default. Since
batches {a, ¢, f} and {a, b, h} were read and transferred to
the GPU concurrently, they share the same value for param-
eter a. Sequential training with the given computation order
would have processed batch {a, ¢, f} — {da’,, f'}, then
waited for these updates to reach the CPU, and only then
started processing the second batch. Thus, the second batch
would have seen the update from ¢ — o’ and computed
{a’,b,h} — {a”, b/, W'} as described in Section 2.1.

3.2. Equivalence to The Synchronous Order

Given the computation order defined in Section 3.1, we now
seek to ensure that asynchronous training is equivalent to
synchronous training under this sequence of batches. We
continue with the running example of two batches {a, ¢, f}
and {a, b, h}, the synchronous and asynchronous processing
of which has previously been described in Section 2.1.

Parameter Timestamps To achieve equivalence to syn-
chronous execution, we first introduce timestamps associ-
ated with each CPU parameter as highlighted with shaded
red in Figure 4a in the Appendix. Parameter timestamps are
used to determine the correct parameter value in the pres-
ence of multiple versions. As shown in Figure 4a, reading
batches now requires reading the parameter timestamps as
well. Critically, to write a parameter value, a thread must
first ensure that it has a larger timestamp for that parameter
than the value it is trying to overwrite. Smaller timestamps
are not allowed to overwrite larger timestamps. The impor-
tance of this point will be highlighted in the example below.
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Timestamps are initialized to minus one.

Parameter Locks We also introduce per parameter
locks which must be acquired before reading or writing
a parameter and its corresponding timestamp (shown
graphically with the red outlined rectangle of parameter a in
Figure 4a). This ensures each read and write of a parameter
value plus its timestamp is atomic, and is needed in the
presence of concurrent reader/writer threads (a parameter
may be more than just a single float for example, thus
reading or writing it may be more than just one operation).

Given parameter timestamps and locks, training proceeds
as depicted in Figure 4a. As was the case in asynchronous
training, batches can be read and transferred to the GPU in
parallel. The key difference between OAC and and asyn-
chronous training comes during GPU batch processing.

Validation When a batch is removed from the GPU input
queue for computation, OAC requires that it first check a
new on GPU cache of parameter values. This cache serves
to track the parameters accessed by concurrent batches and
allows each batch to ensure it has the correct values accord-
ing to synchronous training with the computation order.

In our running example, batch {a, ¢, f} is first to be pro-
cessed by the GPU. As shown in Figure 4a, it checks the
cache but finds no information as it is the first batch in the
computation order. The batch then proceeds with model
training and updates its values {a, ¢, f} — {da’,c, f'}. Af-
ter updating the values in a batch, the GPU also assigns these
updates a new timestamp according to a global GPU times-
tamp counter. The global timestamp is then incremented.
In Figure 4a the updates {a’, ¢/, f'} are assigned timestamp
zero. Assigning timestamps to parameters immediately after
they are update by the GPU means timestamps capture the
computation order. Finally, before entering the GPU output
queue to be transferred back to the CPU, updated parameter
values and their timestamps are written to the GPU cache.
Batches which were read and transferred in parallel can then
subsequently validate against these updates.

The other batch in our running example, {a,b, h}, will
subsequently be processed by the GPU. Thus, it is second
in the computation order. We must ensure that our
processing of this batch is equivalent to the computation
that would have occurred had we waited for the updates
{a,¢,f} — {a’,c, f'} to make it back to the CPU.
Processing of this batch is depicted in Figure 4b. As above,
it must validate against concurrent batches by checking the
GPU cache. In this case, it detects a conflict for parameter
a versus a’. A concurrent batch has already modified this
value. The timestamp of a’ in the cache is zero while the
batch has timestamp minus one for its version of a. Thus,

it knows the value of @’ is the more recent version for this
parameter according to the computation order. It must
replace a with o’ before it proceeds with computation. As
such, the batch {a, b, h} is first updated in the validation
phase to {a’,b,h}, and then updated in model training
to {a”,b’,h'}. After computation this batch is assigned
timestamp one, and its updates are added to the cache. The
value for a’ with timestamp zero is replaced by the newer
timestamp version of this parameter a’’. The resulting cache
state is shown in Figure 4c.

To complete our running example, batches can be trans-
ferred back to the CPU in parallel. They can also write
their updates to CPU memory in parallel, but must grab
per parameter locks and obey the timestamp rules described
above. If the batch with timestamp one acquires the lock
to parameter ¢ first, it will update a — o’ and update the
timestamp to one. When the batch with timestamp zero sub-
sequently acquires the lock to parameter a (now a’’), it will
notice that the CPU timestamp is larger than its timestamp.
Thus it must not overwrite this value. It is required to do
nothing and release the lock. This ensures that older updates
according to the computation order do not overwrite newer
updates. Notice that the final state of our CPU parameters
is {a”,V',c,d,e, f', g, k' }—this is equivalent to the final
state achieved with synchronous training using this order of
batches (as described in Section 2.1).

3.3. Implementation

The main algorithmic details behind OAC have been pre-
sented in the previous section. Here we discuss several
considerations required to implement OAC in practice.

Cache Eviction While we have discussed adding param-
eter values and their timestamps to the on GPU validation
cache, we have not yet discussed when we can evict values.
Eviction is required to prevent the cache size from growing
indefinitely, as it is assumed in the problem setting that the
full set of parameters is too large to fit in GPU memory.

A parameter can be evicted when we can ensure that all
subsequent batches to be processed by the GPU will have
already had the chance to see this parameter value when
they were prepared on the CPU. In other words, a parameter
with timestamp z on the GPU can be evicted when we can
guarantee that future batches seen by the GPU which contain
this parameter will have read a timestamp greater than or
equal to z for this value from the CPU memory.

In OAC, we utilize additional metadata to help implement
cache eviction. First, the CPU tracks the maximum finished
sequential batch timestamp (MFT) received from the GPU.
This value is updated atomically after each batch finishes
writing. It corresponds to the largest continuous batch times-
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tamp which has finished. For example, if batches with
timestamp {0, 1,2, 5, 6} have completed, regardless of the
order in which they finished, the maximum finished sequen-
tial batch timestamp is 2. If batches 3 and 4 later arrive,
the MFT will then be 6. Just before a batch is read, this
value is read atomically and added to the batch metadata.
In this way, each batch knows the maximum timestamp for
which it can guarantee that all updates equal or prior to
this value in the computation order were present in the CPU
memory when it began reading parameter values. Thus, a
batch with MFT equal to y will not need to read parame-
ter values with timestamp less than or equal to y from the
GPU validation cache. Note that this does not mean that all
individual parameters in the batch have timestamp greater
than or equal to y, as not all parameters are updated for
every batch. It does mean, however, that if a parameter a in
this batch has timestamp y — 1, for example, then the batch
with timestamp y did not update parameter a (otherwise
the value read from CPU memory for a would have had
timestamp at least y). Therefore it is still correct that no
parameter values with timestamp less than or equal to y will
be read from the GPU validation cache for this batch, as it is
impossible for parameter « to find an update with timestamp
value y > y — 1 on the GPU.

The final metadata required for cache eviction is a dictio-
nary of outstanding batches and their MFT values. Upon
creation, each batch is assigned an ID (not necessarily
the same as its computation order timestamp). The pair
{BatchID : BatchM FT} is atomically added to an out-
standing batches dictionary. When batches finish writing,
their key-value pair is atomically removed from this data
structure. For cache eviction, when a batch reads its MFT
value and adds its key-value pair to the outstanding batches
dictionary, it also atomically calculates the minimum MFT
value across all entries in the dictionary. This value is stored
in the batche’s safe to evict (STE) metadata field. When
batches are read by the GPU, all parameter values with
timestamp less than or equal to the STE metadata can be
evicted. The GPU performs this eviction for each batch.

When a batch calculates its safe to evict timestamp, even
if this batch somehow beats all other outstanding batches
to the GPU, it is still okay to perform eviction as described
above. This is because all subsequent outstanding batches
have an MFT greater or equal to the STE value. That means
that they were prepared on the CPU after the entries we wish
to evict had already been persisted in CPU memory. Any
future batches that will be prepared on the CPU will also
have an MFT greater than or equal to this value. Thus no
batch will ever again reach the GPU and find a timestamp
for a parameter less than the STE value but greater than
than the timestamp it read from CPU memory. Therefore,
no batch will ever again need to read these values from the
cache and they can be safely evicted.

Deadlock Prevention When implementing OAC, one
also needs to consider whether the per parameter locks in-
troduced for ensuring atomic reads and writes to parameter
values and their timestamps can introduce deadlocks. In
principle the answer is yes, however we have not observed
this phenomena in practice. One possible reason is that
these locks are extremely lightweight. They are held only
for the time it takes to read or write a few bytes from CPU
memory. For this reason, currently we do nothing to prevent
deadlocks in our OAC implementation. One can simply
detect deadlocks by monitoring the GPU utilization (which
would drop to zero if no batches are making progress), and
if a deadlock is detected, simply revert the parameters to the
last checkpoint and begin training again.

If deadlocks were prevalent, a simple solution would be
to require that all batches read and write the parameters
in a global order. For example, this could be achieved by
assigning the parameter values IDs and then reading and
writing in sorted ID order.

4. Evaluation

In this section, we evaluated our proposed method OAC by
comparing its throughput and convergence with standard
synchronous and asynchronous training. We find that OAC
achieves its desired goal: synchronous convergence while
maintaining asynchronous throughput, leading to the best
time-to-accuracy of the three methods.

4.1. Experimental Setup

As described in Section 2.2, we implement our OAC pro-
totype in the graph learning system Marius, and test on the
graph learning task of link prediction. We use the Free-
base86m knowledge graph (Google, 2018). This graph has
roughly 86 million nodes, and we learn 50-200 parameters
(called the embedding dimension) for each node, depending
on the model. This leads to 17-68GB of model parame-
ters (each parameter is four bytes). We store these in CPU
memory. We measure our link prediction model quality
using the metric Mean Reciprocal Rank (MRR) (Mohoney
et al., 2021). This quantity tries to capture how well learned
parameters can recover the edges of the graph and takes
values between zero and one—the higher the better. We run
experiments on two machines. One with 80 CPU cores and
one with 20 CPU cores. Both machines have one NVIDIA
Tesla V100 GPU with 32GB RAM. Note that even when the
model is only 17GB, we can not store all of it in the GPU,
as we must also store the edges (3.6GB), and leave enough
GPU memory for the model to perform the computation
required for training.
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(b) Setup 2: We train a DistMult model with embedding dimen-
sion 50 using a batch size of 500k. Training was performed on
a machine with 20 CPU cores and one NVIDIA Tesla V100.
Each batch access roughly 50 million parameters.

Figure 2. Time-to-accuracy for OAC versus asynchronous and synchronous training.

4.2. Time-To-Accuracy

As described in the introduction, the primary practical met-
ric of interest for comparing OAC with synchronous and
asynchronous training is time-to-accuracy. In Figure 2 we
plot the MRR versus wall clock training time for the three
methods using two different setups. Each method is trained
for ten epochs and we measure the MRR after each one.
Here, an epoch refers to one full pass over the training ex-
amples and results in a fixed number of batches. Thus all
methods see the same total number of batches pass through
the GPU.

In Figure 2a, asynchronous training is shown by the orange
line (labeled Async) barely visible in the bottom middle of
the plot. For this setting, we maximize the number of reader
and writer threads and queue size parameters to maximize
throughput (these parameters were discussed in Section 2.1).
In this case, blindly running asynchronous training causes a
severe degradation in model quality. We also plot a tuned
version of asynchronous training (Async (T)), where we
have manual fiddled with the number of threads and queue
sizes to find the best configuration. This allows us to regain
much of the lost accuracy of asynchronous training with
very little throughput loss. Both Async and Async (T) fin-
ish the allotted number of batches roughly twice as fast as
synchronous training (roughly 6500s versus 12500s), but
synchronous training ends with a higher MRR. OAC out-
performs all other methods and does not require the manual
tuning of Async (T). We simple maximize the reader/writer
threads and queue sizes but use our method described in
Section 3. OAC achieves the fastest time-to-accuracy. This

is because it maintains the throughput of asynchronous train-
ing, also finishing the 10 epochs in 6500s, while guaran-
teeing the convergence of synchronous training (which we
highlight in the following section).

Figure 2b shows a second training setup. In this case, tuned
asynchronous training manages to achieve similar accuracy
to synchronous training while learning more than three times
faster. We do not show the default asynchronous training
as it is roughly equivalent to the tuned setup. The reason
asynchronous training is able to performs well in this case
is twofold: First, batches access roughly half the number
of parameters of the setup in Figure 2a. Second, the ma-
chine has one quarter of the CPU resources, limiting the
number of batches it can process concurrently. Both of
these differences result in fewer concurrent batches which
overlap—recall that the fewer conflicts there are, the more
likely asynchronous training is to perform well. That said,
however, in Figure 2b OAC also trains over three times
faster than synchronous training and is always guaranteed
to reach the same model quality.

4.3. Convergence

To highlight that OAC converges at the same rate as syn-
chronous training, we plot the same experiments from Sec-
tion 4.2/Figure 2 again in Figure 3, but this time versus
epoch number rather than versus training time. Recall that
for each epoch, all methods see the same number of batches
pass through the GPU, thus Figure 3 shows the accuracy
with respect to the number of processed batches. We have
already shown in Section 4.2 that asynchronous training
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Figure 3. Convergence of OAC versus asynchronous and synchronous training for the experimental setups described in Figure 4.2. See

Section 4.3 for a discussion.

and OAC have higher throughput than synchronous training
(processing more batches per unit time).

Figure 3 shows that OAC matches the convergence of syn-
chronous training. In Figure 3a, asynchronous training con-
verges so poorly, that it requires its own scaling of the ver-
tical axis. Tuned asynchronous training converges faster,
reaching 0.6925, 0.725, and 0.7275 MRR after 1, 5, and 10
epochs respectively. Synchronous training and OAC both
achieve 0.7175 MRR after one epoch and 0.73 MRR after
10 epochs. In this case, OAC converges slightly faster than
synchronous training during the middle epochs. This is
because OAC is guaranteed to be equivalent to some syn-
chronous order, not necessarily the exact synchronous order
given by the red line in Figure 3a.

The convergence of each method for the training setup of
Figure 2b is shown in Figure 3b. As described above, in this
case asynchronous training actually performs quite well—it
converges at nearly the same rate as synchronous training.
Again, however, OAC is guaranteed to converge at the rate
of some synchronous order. In Figure 3b, the OAC and
synchronous lines nearly perfectly overlap.

5. Conclusions

In this work, we have introduced Optimistic Asynchrony
Control (OAC), a method for allowing concurrent process-
ing and transfer of batches in a mixed CPU-GPU ML train-
ing setup while ensuring that the final result is equivalent
to a serial, synchronous execution. The key idea was to al-
low all batches to run in parallel, but to validate each batch
against concurrent batches immediately before computa-
tion on the GPU. This allowed us to ensure that the correct
(according to a synchronous order) parameter values were

used for model learning. We have shown that OAC main-
tains the throughput of asynchronous ML training while
converging at the rate of synchronous machine learning. As
a result, OAC can achieve the best time-to-accuracy and
requires no manual tuning. OAC is likely to be most useful
for applications where asynchronous training is rendered un-
usable because it results in unacceptably lower final model
accuracy. Due to the success of this work, we will likely
implement OAC in the public version of Marius, making
it available to all users who wish to train graph learning
models.
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Figure 4. Depiction of OAC parallel processing of batches while ensuring equivalence to a synchronous execution. Details are discussed
in the text of Section 3.2.
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