
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TRACEABLE BLACK-BOX WATERMARKS FOR FEDER-
ATED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the distributed nature of Federated Learning (FL) systems, each local client
has access to the global model, posing a critical risk of model leakage. Existing
works have explored injecting watermarks into local models to enable intellec-
tual property protection. However, these methods either focus on non-traceable
watermarks or traceable but white-box watermarks. We identify a gap in the lit-
erature regarding the formal definition of traceable black-box watermarking and
the formulation of the problem of injecting such watermarks into FL systems. In
this work, we first formalize the problem of injecting traceable black-box water-
marks into FL. Based on the problem, we propose a novel server-side watermark-
ing method, TraMark, which creates a traceable watermarked model for each
client, enabling verification of model leakage in black-box settings. To achieve
this, TraMark partitions the model parameter space into two distinct regions:
the main task region and the watermarking region. Subsequently, a personal-
ized global model is constructed for each client by aggregating only the main
task region while preserving the watermarking region. Each model then learns
a unique watermark exclusively within the watermarking region using a distinct
watermark dataset before being sent back to the local client. Extensive results
across various FL systems demonstrate that TraMark ensures the traceability of
all watermarked models while preserving their main task performance. The code
is available at https://anonymous.4open.science/r/TraMark.

1 INTRODUCTION

Federated Learning (FL) is a promising training paradigm that enables collaborative model training
across distributed local clients while ensuring that private data remains on local devices McMahan
et al. (2017). Instead of sharing raw data, clients train local models independently and periodically
send updates to a central server, which aggregates them into a global model. This privacy-preserving
benefit has led to FL’s widespread adoption in various fields, including healthcare Nguyen et al.
(2022), finance Long et al. (2020), and remote sensing Liu et al. (2020), where local data privacy
is a critical concern. However, sharing the global model with all participants introduces risks of
model leakage. Specifically, malicious clients may exploit their access by duplicating and illegally
distributing the model Li et al. (2022a). Such misconduct undermines the integrity of the FL system
and compromises the collective interests of all participants. Consequently, protecting intellectual
property (IP) rights of FL-trained models and detecting copyright infringement have become critical
challenges in FL Xue et al. (2022).

Protecting the IP of FL-trained models requires mechanisms to verify rightful ownership if a model
is unlawfully distributed Shao et al. (2024) (i.e., proving that the model originated from the FL sys-
tem). To address this, researchers have proposed embedding watermarks into the global model to
enable ownership verification. Existing approaches primarily fall into two categories: parameter-
based Uchida et al. (2017) and backdoor-based Tekgul et al. (2021); Adi et al. (2018) watermarking
techniques. Parameter-based methods embed signatures (e.g., bit strings) within the model’s param-
eters as a secret key. During verification, the verifier extracts this key from the suspect model and ap-
plies a cryptographic function with the corresponding public key to validate the model’s ownership.
However, this process requires white-box access to the model parameters, which is often infeasible
in practice, particularly when the suspect model is only accessible in a black-box setting (e.g., via
an API). To overcome this limitation, backdoor-based watermarking leverages backdoor injection

1

https://anonymous.4open.science/r/TraMark

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

techniques to ensure that the model learns a specific trigger. A watermarked model outputs prede-
fined responses when presented with inputs containing the trigger. Unlike parameter-based methods,
this verification process does not require access to the model parameters, making backdoor-based
watermarking a more practical solution.

Beyond ownership verification, the verifier also needs to trace the source of model leakage, identi-
fying which client was responsible for the unauthorized distribution. Recent studies have explored
methods for ensuring the traceability of watermarked models in FL Shao et al. (2024); Yu et al.
(2023); Xu et al. (2024); Nie & Lu (2024a). For instance, FedTracker Shao et al. (2024) embeds
unique bit strings into each client’s model and identifies the leaker by measuring bit string simi-
larities. However, this approach requires white-box access to the suspect model, which limits its
practicality. Another approach, FedCRMW Nie & Lu (2024a), introduces a black-box watermark-
ing mechanism that injects unique watermarks into each model shared with the client by mixing
clients’ local datasets with multiple types of triggers. The model leaker is then identified based on
the models’ predictions on these watermarked datasets. However, this method modifies the local
training protocol and requires access to clients’ local data, making it vulnerable to tampering by
malicious clients. A recent method, MFL-Owner Gai et al. (2025), targets multi-modal FL by lever-
aging each client’s visual and language encoders to construct an orthogonal transformation on the
client’s trigger set, which serves as a watermark. However, this approach suffers from poor gener-
alizability and fails to scale effectively to broader FL systems. Despite notable empirical progress,
existing literature still lacks a formal problem definition and formulation of black-box watermarking
for ownership verification and traceability in FL.

In this work, we first formalize the problem of traceable black-box watermarking injection in FL
systems. Building on this, we propose TraMark , which creates a personalized, traceable water-
marked model for each client, enabling verification of model leakage in black-box settings. Specif-
ically, to ensure traceability, the server partitions the model’s parameter space into two regions:
the main task region, responsible for learning the primary FL task, and the watermarking region,
designated for embedding a watermark. The server then generates personalized global models for
each client via masked aggregation. Each model is subsequently injected with a distinct watermark
exclusively in the watermarking region using a dedicated watermark dataset. This process ensures
that every client receives a personalized global model that integrates aggregated knowledge from
other clients while embedding a unique watermark for model leakage verification. We summarize
the contribution of our paper as follows.

• To the best of our knowledge, this is the first work to formally formulate the problem of traceable
black-box watermarking in FL systems. Based on this, we propose TraMark, a novel water-
marking method that can be seamlessly integrated into existing FL systems.

• TraMark is designed to inject unique watermarks into models shared with clients while prevent-
ing watermark collisions in FL, enabling the identification of model leakers in black-box settings.

• We demonstrate the effectiveness of TraMark through extensive experiments across various FL
settings. Results show that TraMark ensures clients receive traceable models while maintaining
main task performance, with only a slight average drop of 0.54%. Additionally, we conduct a
detailed hyperparameter analysis of TraMark to evaluate the impact of each configuration on
both main task performance and leakage verification.

2 BACKGROUND AND SYSTEM SETTINGS

Federated Learning. A typical FL system consists of a central server and a set of n local clients,
which collaboratively train a shared model θ ∈ Rd. The FL problem is generally formulated as:
minθ(1/n)

∑n
i=1 Fi(θ;Dl

i), where Fi(·) represents the local learning objective of client i, and Dl
i

is its local dataset. For instance, for a classification task, client i’s local objective can be expressed
as: Fi(θ;Dl

i) := E(z,y)∈Dl
i
L(θ; z, y), where L(·) is the loss function, and (z, y) represents a dat-

apoint sampled from Dl
i. A classic method to solve the FL problem is Federated Averaging (Fe-

dAvg) McMahan et al. (2017). Specifically, in each training round t, the server broadcasts the
current global model θt to each client i ∈ [n]. Upon receiving θt, client i performs τl iterations of
local training on it using Dl

i, resulting in an updated local model θt,τi . The client then computes and
sends the model update ∆t

i = θt,τi − θt back to the server. The server aggregates updates from all

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

clients and refines the global model as: θt+1 = θt + (1/n)
∑n

i=1 ∆
t
i. This process repeats until the

global model converges.

Related Work. We provide a detailed related work and the comparison of our proposed method
TraMark with existing methods in Appendix A.2.

Attack Model. In this work, we consider a widely used attack model where all clients in an FL
system are potential model leakers Shao et al. (2024); Tekgul et al. (2021). Specifically, we assume
these clients will follow a predefined local training protocol to complete the FL task. However, they
may illegally distribute their local models for personal profit.

Defense Model. We assume that the server acts as the defender, responsible for injecting traceable
watermarks to the FL system. The server is considered always reliable and equipped with sufficient
computational resources. It is also assumed to have full access to all local models but no access to
local data. Moreover, the server aims to keep the watermark injection process confidential from all
local clients. Additionally, the server also acts as the verifier: if a model is deemed suspicious, it
initiates a verification process to determine whether the model originates from the FL system and to
identify the responsible model leaker.

3 PROBLEM FORMULATION

Black-box Watermarking. A black-box watermark is a practical watermarking solution that a
verification process that does not require access to model parameters, making it more suitable for
real-world deployment. A common black-box watermarking approach leverages backdoor injec-
tion Adi et al. (2018), where a watermark dataset Dw (as defined in Definition 1) containing triggers
is used to train the model to produce a predefined output when presented with the triggers.
Definition 1 (Watermark Dataset). A watermark dataset Dw is a designated set of trigger-output
pairs used to embed a watermark into a model. Formally,

Dw = {(x, ϕ(x)) | x ∈ Xw},
where ϕ(x) is the unique predefined output distribution assigned to each trigger x in trigger set Xw.

With the watermark dataset, we define the black-box watermark as follows.
Definition 2 (Black-box Watermark). A valid black-box watermark δ is a carefully crafted pertur-
bation learned from the watermark dataset Dw. It is applied to a model θ to obtain the watermarked
model θ′ = θ+δ, which produces outputs following the predefined distribution ϕ(x) when evaluated
on Dw. Formally, the model θ′ is considered watermarked with δ if:

y(θ′;x) ∼ ϕ(x), ∀(x, ϕ(x)) ∈ Dw,

where y(θ′;x) is the output probability distribution of the watermarked model given a trigger x.

If a black-box watermark is successfully embedded, one can verify whether a suspicious model
originates from the system by testing its outputs on triggers from Dw. For example, in classification
tasks, verification is typically performed by evaluating the prediction accuracy of the suspicious
model θ′ on Dw. Specifically, if the model’s prediction accuracy

∑
x∈Dw 1[argmaxy(θ′;x) =

argmaxϕ(x)]/|Dw| exceeds a predefined threshold ν, this indicates that the suspicious model con-
tains the watermark δ, thereby verifying its ownership Tekgul et al. (2021); Shao et al. (2024); Liu
et al. (2021); Nie & Lu (2024b).

Traceability. However, ownership verification alone is insufficient for detecting model leaking of
an FL system. While ownership verification confirms whether a model originates from the system,
it does not identify which client leaked it. The ability to pinpoint the source of leakage is known
as traceability. To achieve traceability, each watermarked model should carry a distinct watermark,
ensuring that every client receives a unique identifier embedded in their model. More formally,
for any two watermarked models θ′i and θ′j , their outputs should be as different as possible when
evaluated on the same watermark dataset. If their outputs are too similar, a watermark collision (as
defined in Definition 3) occurs, which can compromise traceability.
Definition 3 (Watermark Collision). A watermark δi learned from a watermark dataset Dw

i is said
to collide with another watermark δj learned from Dw

j if their corresponding watermarked models,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

θ′i = θ + δi and θ′j = θ + δj , produce highly similar outputs on watermark dataset Dw
i or Dw

j .
Formally, a collision occurs if:

Ex

[
Div

(
y(θ′i;x),y(θ

′
j ;x)

)]
≤ σ,

for x ∈ Dw
i or x ∈ Dw

j , where Div(·) is a divergence measurement function (e.g., KL divergence),
and σ is a predefined collision threshold.

Remark 1. Watermark collision poses a significant challenge in ensuring the traceability of water-
marked models. Since δi and δj are learned from Dw

i and Dw
j , respectively, the distinctiveness of

these watermark datasets plays a crucial role in preventing collisions. Specifically, if Dw
i and Dw

j
are too similar, the resulting δi and δj will also be similar, increasing the risk of collision. There-
fore, it is essential to ensure an intrinsic difference between Dw

i and Dw
j . We discuss strategies for

constructing distinct watermark datasets to mitigate collisions in Section 4.3.

With Definition 1–3, we formally define the traceability of watermarked models as follows.

Definition 4 (Traceability of Watermarked Models). Given n watermarked models {θ′1, θ′2, . . . , θ′n},
where each model is derived as θ′i = θ + δi, with a successfully embedded watermark δi, such that
y(θ′i;x) ∼ ϕ(x), ∀(x, ϕ(x)) ∈ Dw

i . The traceability property ensures that different watermarked
models produce distinguishable outputs on their respective watermark datasets. Formally, if for any
watermarked model θ′i, i ∈ [n], the following holds:

Ex∈Dw
i

[
Div

(
y(θ′i;x),y(θ

′
j ;x)

)]
> σ, ∀j ∈ [n], j ̸= i.

then the traceability of these models is ensured.

Intuitively, if each watermark in the system remains distinct and does not collide with any other
watermark, then all watermarked models in the system are considered traceable.

Problem Formulation. We define the problem of injecting traceable black-box watermarks in FL
as in Problem 1.

Problem 1 (Traceable Black-box Watermarking). Consider an FL system with n clients collabo-
ratively training a global model θ under the coordination of the server. For watermark injection,
the server prepares n distinct watermark datasets {Dw

i }ni=1 to be used to inject watermarks into the
global models for every client. The overall goal is to optimize both the main task learning objective
and the watermarking objective while ensuring that the watermarked models remain traceable. This
is formulated as follows:

min
θ,{δi}n

i=1

1

n

n∑
i=1

Fi(θ;Dl
i)︸ ︷︷ ︸

Main Task

+
1

n

n∑
i=1

Li(θ + δi;Dw
i)︸ ︷︷ ︸

Watermarking Task

,

s.t. Ex∈Dw
i
[Div(y(θ + δi;x),y(θ + δj ;x))] > σ, ∀i, j ∈ [n], i ̸= j,

where δi denotes the traceable black-box watermark for the model θi shared with client i. The
function Li(·) represents the watermarking objective for δi, defined as: Li(θ + δi;Dw

i) :=
E(x,ϕ(x))∈Dw

i
L(θ + δi;x, ϕ(x)).

Remark 2. We derive the following key insights, which motivate the design of our method:

1) A straightforward solution for Problem 1 is to offload each watermark dataset Dw
i to client i,

allowing clients to mix Dw
i with their main task dataset Dl

i during local training to solve both
objectives simultaneously, as proposed in Nie & Lu (2024a;b); Liu et al. (2021); Xu et al. (2024);
Wu et al. (2022); Li et al. (2022a). However, this method is highly vulnerable to malicious clients
who may simply discard Dw

i , leading to the absence of watermarks in their models. Furthermore,
if malicious clients are aware of the watermarking process, they could intentionally tamper with
it, undermining its effectiveness. To mitigate these risks, it is preferable to decompose Problem 1,
leaving the main task to local clients while performing watermark injection solely on the server.

2) A critical challenge in watermark injection is the risk of watermark collisions due to model av-
eraging during aggregation. Specifically, even if the server successfully injects distinct watermarks
into the models before sending them to clients for local training, these watermarks will be fused

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

during model aggregation in the next training round if parameters from all clients are simply aver-
aged, as in FedAvg. To address this issue, a specialized mechanism is required to prevent watermark
entanglement during aggregation.

3) The constraint in Problem 1 suggests that to avoid collisions, the server should maximize
∥δi − δj∥22. However, if δi and δj become too divergent, this may impair the main task perfor-
mance of the watermarked models. Additionally, since the server lacks access to clients’ local
datasets, directly solving the watermarking objective L(·) could also lead to significant degradation
in the performance of the main task. Thus, a specialized learning strategy is required to ensure that
watermark injection does not compromise the model’s main task performance.

4 INJECTING TRACEABLE BLACK-BOX WATERMARKS

Based on the insights in Remark 2, we propose a novel method called TraMark detailed in Algo-
rithm 1, which can be easily integrated into existing FedAvg frameworks to solve Problem 1. We
give the complete process of FedAvg with TraMark in Algorithm 2 in the Appendix A.3.

4.1 CONSTRAINING WATERMARKING REGION

Algorithm 1: TraMark

Input : The global models {θi}ni=1, a set of
model updates {∆i}ni=1, watermark
datasets {Dw

i }ni=1, main task mask
Mm, watermarking mask Mw,
watermarking learning rate ηw, and
watermarking iteration τw.

Output: A set of watermarked models {θ′i}ni=1.
// Watermark injection

1 for i ∈ [n] do
// Masked aggregation

2 θ̃i ← θi+Mm⊙ 1
n

∑n
i=1 ∆i+Mw⊙∆i

// Watermarking

3 θ̃0i ← θ̃i
4 for s = 0 to τw − 1 do
5 gsi ← ∇θ̃si

L(θ̃si ;Dw
i)

6 θ̃s+1
i ← θ̃si − ηwg

s
i ⊙Mw

7 end
8 θ′i ← θ̃τwi
9 end

10 Return {θ′i}ni=1

Existing watermarking approaches either retrain
the global model directly on the watermark
dataset Tekgul et al. (2021); Shao et al. (2024)
or require local clients to collaboratively inject
watermarks Li et al. (2022a); Liu et al. (2021);
Nie & Lu (2024b). However, these methods
cause watermark-related perturbations to spread
across the entire parameter space, leading to two
key issues. First, the dispersed watermark per-
turbations may significantly degrade the main
task performance. Second, even if each client’s
model embeds a unique watermark, model ag-
gregation in the next round fuses these water-
marks, causing collisions that compromise trace-
ability. To mitigate the impact on main task
performance and ensure traceability, TraMark
restricts watermarking to a small subset of the
model’s parameter space. Only this designated
watermarking region carries the watermark, and
its parameters are excluded from model aggre-
gation, preserving distinct watermarks for each
client in the next training round. Specifically, in
TraMark, given a model θ ∈ Rd, it partitions the whole parameter space into watermarking region
and main task region with a partition ratio k ∈ [0, 1), resulting in two complementary binary masks:

• The watermarking mask Mw ∈ {0, 1}d, where [Mw]j = 1 means that the j-th parameter in θ
is used for watermarking task and sum(Mw) = k × d.

• The main task mask Mm ∈ {0, 1}d, where [Mm]p = 1 means that the p-th parameter in θ is
used for main task and sum(Mm) = (1− k)× d.

These two complementary masks (i.e., Mw + Mm = 1d) ensure that all model parameters in
the model θ are fully partitioned into the watermarking and main task regions. Moreover, once
determined, the masks remain unchanged throughout the entire watermarking process. We will
discuss how to get these two masks later in Section 4.4.

4.2 MASKED AGGREGATION & WATERMARK INJECTION

Masked Aggregation. With the constrained watermarking region, TraMark leverages a novel
masked aggregation method to avoid watermark collision. Specifically, instead of applying a naive

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

aggregation approach (e.g., FedAvg), TraMark aggregates the parameters in the main task region
only and prevents the watermarking region from parameter fusion. In detail, in each training round,
given the model updates {∆i}ni=1, the server aggregates them to generate the personalized global
model for each client individually via θ̃i = θi +Mm ⊙ 1

n

∑n
i=1 ∆i +Mw ⊙∆i, ∀i ∈ [n] (Line 2

in Algorithm 1). Here, the second term Mm ⊙ 1
n

∑n
i=1 ∆i averages the model updates in the main

task region, and the third term Mw ⊙ ∆i preserves the parameters in the watermarking region for
the model update of client i. In this case, the server generates a personalized global model for
each client, which always contains a distinct watermark for the client while still benefiting from the
aggregated model updates for the main task.

Watermark Injection. For each personalized global model θ̃i, ∀i ∈ [n], its watermark is injected
by training θ̃i on the corresponding distinct watermark dataset Dw

i for τw iterations. In this process,
only the watermarking region is updated, ensuring that knowledge from the watermark dataset does
not spread to the main task region (Line 4–7). Technically, in each step of local training, the mini-
batch gradient gsi is multiplied by Mw (Line 5–6), zeroing out the gradients for the main task region
to avoid the impact of the watermark on the main task. After watermark injection, the server obtains
the watermarked global models, which will be sent to the clients to perform their main tasks of the
next training round or deployment (Line 10). Since the clients’ local training protocol for the main
task remains unchanged, model updates continue across the entire parameter space. Notably, this
case leads to a potential risk: over time, the embedded watermarks may gradually fade. To this
end, TraMark can be applied at every training round to continuously preserve the watermark, as
advised by prior works Tekgul et al. (2021); Shao et al. (2024); Nie & Lu (2024b); Li et al. (2022a).

4.3 DISTINCT WATERMARK DATASET

As noted in Remark 1, ensuring sufficient differences between watermark datasets is crucial for
learning distinct watermarks and preventing collisions. To achieve this, in the TraMark , the
server assigns each global model a unique watermark dataset. Specifically, the watermark datasets
designed for different models should differ from each other in both their triggers and their output
distribution. Let Dw

i = {(x, ϕi(x)) | x ∈ Xw
i } denote the watermark dataset for personalized

global model θ̃i, where Xw
i ∩ Xw

j = ∅ for any i ̸= j, ∀i, j ∈ [n]. Furthermore, each client is
assigned a unique output distribution ϕi(x), guaranteeing that ϕi(x) ̸= ϕj(x). For trigger selection,
existing methods have explored various approaches, including randomly generated patterns Tekgul
et al. (2021); Shao et al. (2024), adversarially perturbed samples Li et al. (2022a), and samples
embedded with backdoor triggers Liu et al. (2021). In our case, to ensure each client receives a
maximally distinct trigger, we select out-of-distribution samples absent from the main task dataset.
This guarantees that the learned watermark remains independent of the main task. For example, in
a classifier trained for traffic sign recognition, per-label samples from the MNIST dataset serve as
effective triggers for different clients. Assigning a distinct watermark dataset to each personalized
global model ensures that a watermarked model responds only to triggers from its own dataset,
mapping them to the predefined output. When exposed to triggers from other watermark datasets,
it produces random guesses, effectively minimizing the risk of collisions. This distinct watermark
dataset assignment may limit the scalability of TraMark, particularly in learning tasks with only a
few labels. We discuss possible solutions to this limitation in Appendix A.10.

4.4 SELECTION OF WATERMARKING REGION

Recall from Remark 2 that maximizing ∥δi − δj∥22 is crucial for avoiding collisions. However, ex-
cessive divergence between δi and δj may negatively impact main task performance. Given that
∥δi − δj∥22 = ∥Mm ⊙ (δi − δj)∥22 + ∥Mw ⊙ (δi − δj)∥22, where Mm = 1d − Mw and the wa-
termarking process is confined to the watermarking region, the objective simplifies to maximizing
∥Mw ⊙ (δi− δj)∥22. This ensures that watermark injection and collision avoidance should not affect
parameters in the main task region. Consequently, if Mm contains the most important parameters
while Mw is assigned to unimportant ones, the primary accuracy remains largely unaffected. Typi-
cally, parameter importance is measured by magnitude (absolute value), with larger values indicating
greater importance Xu et al. (2025); Hu et al. (2023); Panda et al. (2022). However, since network
parameters are randomly initialized at the start of training, their importance is not yet established. As
a result, assigning parameters to regions too early may lead to suboptimal partitioning, potentially

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

degrading main task performance. To this end, TraMark introduces a warmup training phase,
where the global model undergoes standard federated training (e.g., FedAvg) for α × T rounds be-
fore watermarking. The warmup training ratio α ∈ [0, 1) determines the fraction of total training
rounds allocated to this phase, ensuring the model is robust enough to the main task before starting
the watermark injection. Once warmup training is complete, the server obtains the watermarking
region by selecting k × d least important parameters (i.e., those that have the smallest absolute val-
ues), and the remaining parameters are assigned to the main task region. We present the detailed
technical procedure of selecting the watermarking region in Algorithm 2, included in Appendix A.3.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

General Settings. Following Shao et al. (2024); Zhang et al. (2024); Nie & Lu (2024a;b), we
evaluate our methods on FMNIST Xiao et al. (2017), CIFAR-10 Krizhevsky et al. (2009), and
CIFAR-100 Krizhevsky et al. (2009), using a CNN, AlexNet Krizhevsky et al. (2012), and VGG-
16 Simonyan (2014), respectively. Besides these benchmarks, we test TraMark on large-scale
Tiny-ImageNet using ViT Dosovitskiy (2020). For all datasets, we consider both independent and
identically distributed (IID) data and non-IID data scenarios. To simulate non-IID cases, we use the
Dirichlet distribution Minka (2000) with a default degree γ = 0.5. Following previous works Li
et al. (2022a); Xu et al. (2024); Nie & Lu (2024a;b), we set up a cross-silo FL system with 10
clients. We also test TraMark on larger-scale n = 50 FL with client sampling in Appendix A.8.
Each client performs local training with τl = 5 iterations and a learning rate of ηl = 0.01. The
training rounds for FMNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet are 50, 100, 100, and 50.
All experiments are repeated 3 times with different seeds, and we report the averaged results.

Baselines and TraMark Settings. In all experiments, we use the MNIST LeCun et al. (1998)
dataset as the source for watermarking. Each global model is assigned a watermark dataset contain-
ing samples from a distinct MNIST label, ensuring both Xw

i ∩ Xw
j = ∅ and ϕi(x) ̸= ϕj(x) for any

two clients i and j. Furthermore, we demonstrate that TraMark can accommodate various types of
watermark datasets, including randomly generated patterns as proposed in Tekgul et al. (2021), with
results provided in Appendix A.7. Each watermark dataset consists of 100 samples. The watermark-
ing learning rate is set to ηw = 1e−4, and the number of watermarking iterations is τw = 5. The
partition ratio k is set to 1%. The warmup training ratio α is set to 0.5. To ensure a fair comparison,
we evaluate TraMark against two server-side watermarking approaches: WAFFLE Tekgul et al.
(2021), a black-box watermarking method that does not ensure traceability, and FedTracker Shao
et al. (2024), a white-box watermarking method that ensures traceability.

Evaluation Metrics. We evaluate the performance of each method using two key metrics: main
task accuracy (MA) and model leakage verification rate (VR). MA is measured using the main task
test set. Since TraMark and FedTracker introduce slight variations in each local model due to wa-
termark injection, we compute MA as the average accuracy across all local models, following Shao
et al. (2024). VR quantifies the proportion of watermarked models that are successfully attributed
to their respective owners. We evaluate each watermarked model on the full test set, compute the
per-label accuracy, and identify the label with the highest accuracy. If this highest-accuracy label
matches the pre-assigned label of the model’s owner, the model is considered successfully verified
(more details are given in Appendix A.4). For FedTracker, we follow its original definition of VR,
where traceability is determined based on fingerprint similarity in a white-box setting.

5.2 EMPIRICAL RESULTS

Verification Interval. We first demonstrate the verifier’s confidence in identifying the leaker of
suspect models embedded with watermarks injected by TraMark. Specifically, we compute two
key metrics: (1) the test accuracy of each watermarked model on its own watermarking dataset,
referred to as verification confidence; and (2) the average test accuracy of the model on other clients’
watermarking datasets, referred to as verification leakage. The difference between these two metrics,
termed the verification interval, reflects the verifier’s confidence. Figure 1 illustrates the averaged
verification confidence and leakage across training rounds on CIFAR-10 and CIFAR-100 datasets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

50 60 70 80 90 100
Training Rounds

0

20

40

60

80

T
e
st

A
cc

u
ra

cy
(%

) CIFAR-10

50 60 70 80 90 100
Training Rounds

0

20

40

60

80

T
e
st

A
cc

u
ra

cy
(%

) CIFAR-100

Verification confidence

Verification leakage

Verification interval

Figure 1: Verification confidence and verification
leakage on CIFAR-10 and CIFAR-100.

We observe that as training progresses, the veri-
fication interval widens due to a steady increase
in verification confidence. Additionally, since
TraMark injects watermarks only within the
designated watermarking region and employs
masked aggregation, the watermarked model
consistently performs poorly on other clients’
watermarking datasets. These factors collec-
tively contribute to a clear verification interval,
ensuring successful model leakage verification.
Further results on the changes in the divergence
of each watermarked model’s output on its wa-
termark dataset (the constraint in Problem 1) are provided in Appendix A.6.

Table 1: Comprehensive comparison of MA and VR between
different methods under both IID and non-IID settings (high-
lighted with a “N”). MAs are shown in percentages (%). If a
method achieves a satisfactory VR (exceeds 95%), we denote it
with “✓”; otherwise, we use “✗”.

Datasets
FedAvg WAFFLE FedTracker TraMark

MA VR MA VR MA VR MA VR

FM 92.60 - 92.21 - 89.95 ✓ 91.20 ✓
FM (N) 91.52 - 91.41 - 67.50 ✓ 91.31 ✓

C-10 89.15 - 89.16 - 87.56 ✗ 88.58 ✓
C-10 (N) 87.01 - 86.75 - 83.42 ✗ 86.26 ✓

C-100 61.91 - 61.68 - 61.05 ✓ 61.13 ✓
C-100 (N) 60.19 - 60.04 - 60.12 ✓ 58.95 ✓

Tiny 21.05 - 21.24 - 20.40 ✓ 20.91 ✓
Tiny (N) 20.09 - 19.97 - 20.00 ✓ 20.06 ✓

Average 65.44 - 65.31 - 61.25 87.50 64.90 99.17

Main Results. We report the MA
and VR of each method on FM-
NIST (FM), CIFAR-10 (C-10),
CIFAR-100 (C-100), and Tiny-
ImageNet (Tiny) under both IID
and non-IID settings in Table 1.
Overall, TraMark effectively
injects traceable watermarks into
personalized global models while
preserving high model perfor-
mance. It consistently achieves a
high VR across all datasets, main-
taining an average of 99.17%. In
contrast, FedTracker fails to en-
sure satisfactory traceability on
CIFAR-10, resulting in an aver-
age VR of only 87.50%. This in-
stability is due to the injection of
key matrices into model parameters and the absence of explicit mechanisms to prevent watermark
collisions after aggregation. Regarding MA, TraMark exhibits strong model performance, with
only a 0.54% drop compared to FedAvg. While WAFFLE achieves a slightly higher average MA
(0.41% above TraMark), it does not guarantee the traceability of watermarked models. Fed-
Tracker, on the other hand, suffers a significant 4.19% decline in MA due to the unconstrained
watermarking region, which compromises model utility. In conclusion, TraMark successfully
embeds traceable black-box watermarks while incurring minimal performance loss, making it a ro-
bust and practical watermarking solution for FL.

30 50 70 90 95 99

Pruning Ratios (%)

0

20

40

60

80

M
A

(%
)

Pruning Attack

0

20

40

60

80

100

5 10 15 20 25 30
Fine-tuning Epochs

0

20

40

60

80
Fine-tuning Attack

0

20

40

60

80

100

V
R

(%
)

FedAvg MA

TraMark MA

TraMark VR

Figure 2: Averaged MA and VR results of
TraMark under pruning and fine-tuning attacks.

Robustness to Attacks. We evaluate the ro-
bustness of watermarked models trained by
TraMark against pruning and fine-tuning at-
tacks. Specifically, malicious clients may prune
or fine-tune their local models to remove or re-
duce the effectiveness of watermarks. For the
pruning attack, we test pruning ratios ranging
from 30% to an extreme 99%. For fine-tuning
attacks, we assume that malicious clients fine-
tune their models on their local datasets for 30
epochs, using the same learning rate as in the
original training process. The averaged MA and VR results of TraMark across four datasets are
summarized in Figure 2. With moderate pruning ratios (30% to 70%), MA remains largely unaf-
fected, while VR is also preserved. As the pruning ratio increases, MA declines rapidly, accompa-
nied by a decrease in VR. These results demonstrate that the parameters in the watermarking region
are coupled with the main task parameters, making simple magnitude-based pruning ineffective in
removing the watermarks. This coupling also contributes to stable VR across various fine-tuning
epochs. Additionally, we evaluate TraMark against fine-tuning attack with various fine-tuning
learning rates, quantization attack, and stronger adaptive attack, with results given in Appendix A.9.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.1 0.3 0.5 0.7
Vaule of α

59

61

63

65

67

69

M
A

(%
)

IID

75

80

85

90

95

100

0.0 0.1 0.3 0.5 0.7
Vaule of α

59

61

63

65

67

69
non-IID

75

80

85

90

95

100

V
R

(%
)

FedAvg MA

TraMark MA

TraMark VR

Figure 3: Impact of warmup training ratio α on
the MA and VR of TraMark.

Warmup Training Ratio α. TraMark lever-
ages warmup training to achieve better parti-
tioning between the main task region and the
watermarking region. Figure 3 presents the
averaged MA and VR of TraMark on four
datasets under both IID and non-IID settings
with varying warmup training ratios α. No-
tably, TraMark consistently achieves satisfac-
tory VR with α ≤ 0.5. When α = 0.7,
TraMark fails to inject effective watermarks
into each personalized global model on time,
leading to degraded VR. For both settings, a larger α generally results in a higher MA. Specifically,
under the non-IID setting, TraMark with the default α = 0.5 achieves an average MA of 64.15%,
which is only 0.55% lower than FedAvg but 4.65% higher than TraMark without warmup training.
These results highlight the importance of warmup training, as it enables TraMark to accurately
assign unimportant parameters to the watermarking region, thereby minimizing the negative impact
of watermarking on main task performance in watermarked models.

0.1 0.5 1.0 2.0 5.0

Partition Ratios k (%)

59

61

63

65

67

69

M
A

(%
)

75

80

85

90

95

100

50 75 100 150 200
Watermark Datset Sizes

59

61

63

65

67

69

75

80

85

90

95

100

V
R

(%
)

FedAvg MA

TraMark MA

TraMark VR

Figure 4: Impact of partition ratio k and water-
mark dataset size.

Partition Ratio k. The partition ratio k con-
trols the size of the watermarking region. In-
tuitively, a small k may hinder the watermark
injection process as the watermarking region
is unable to learn watermark-related informa-
tion completely. We vary the partition ratio k
from 0.1% to 5% to examine its impact on the
performance of TraMark. The averaged MA
and VR results across all datasets are shown in
the left sub-figure of Figure 4. As expected,
a smaller k leads to a significant drop in VR,
while MA remains nearly unchanged. For example, compared to TraMark with the default setting
(k = 1.0%), reducing k to 0.5% causes VR to drop from 99.17% to 84.17%, whereas MA shows
only a slight increase from 65.66% to 65.70%. Moreover, with an extreme value of k = 5.0%,
MA only drops to 65.16%, resulting in a gap of less than 1%, while achieving full VR. Therefore,
selecting an appropriate k requires balancing MA and VR, with k = 1.0% serving as a practical
choice that ensures both reliable watermark injection and minimal performance degradation.

Size of Watermark Dataset. A larger watermark dataset may enhance the effectiveness of water-
mark injection, enabling the model to learn a more robust mapping between the watermark trigger
and its intended response. To validate this, we vary the size of the watermark dataset from 50 to
200 samples. The averaged MA and VR results across all datasets are summarized in the right sub-
figure of Figure 4. Similar to the effect of the partition ratio k, the size of the watermark dataset
significantly impacts the traceability of watermarked models, while having minimal effect on MA.
Specifically, when the watermark dataset contains only 50 triggers, TraMark achieves a subop-
timal VR of 54.17%, despite obtaining the highest MA of 65.85%. However, with 100 or more
samples, TraMark ensures successful watermark injection, with only a limited MA drop (at most
0.34%), striking a better balance between MA and VR. Therefore, choosing a sufficiently large wa-
termark dataset, such as 100 samples or more, is essential to ensure the effectiveness of TraMark.

6 CONCLUSION

We formalize the problem of injecting traceable black-box watermarks in FL. Based on the problem,
we propose TraMark, which creates a personalized, traceable watermarked model for each client.
TraMark first constructs a personalized global model for each client via masked aggregation.
Subsequently, the watermarking process is exclusively performed in the watermarking region of
each model using a distinct watermark dataset. The personalized watermarked models are then
sent back to each client for local training or deployment. Extensive experiments demonstrate the
effectiveness of TraMark across diverse FL settings. We further show that the parameters in the
watermarking region are highly coupled with those in the main task region, making the watermarks
robust against attacks. We also conduct a comprehensive hyperparameter study of TraMark.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work strictly adheres to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. The implementation of
our method is available in an anonymous GitHub repository (https://anonymous.4open.
science/r/TraMark). After acceptance, we will publicly release the full source code and de-
tailed instructions to reproduce all experiments.

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet. Turning your weak-
ness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX secu-
rity symposium (USENIX Security 18), pp. 1615–1631, 2018.

Jinyin Chen, Mingjun Li, Yao Cheng, and Haibin Zheng. Fedright: An effective model copyright
protection for federated learning. Computers & Security, 135:103504, 2023.

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end water-
marking framework for ownership protection of deep neural networks. In Proceedings of the
twenty-fourth international conference on architectural support for programming languages and
operating systems, pp. 485–497, 2019.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Keke Gai, Dongjue Wang, Jing Yu, Mohan Wang, Liehuang Zhu, and Qi Wu. Mfl-owner: ownership
protection for multi-modal federated learning via orthogonal transform watermark. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 3049–3058, 2025.

Rui Hu, Yuanxiong Guo, and Yanmin Gong. Federated learning with sparsified model perturba-
tion: Improving accuracy under client-level differential privacy. IEEE Transactions on Mobile
Computing, 2023.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Advances in neural information processing systems, 25, 2012.

Alex Krizhevsky et al. Learning multiple layers of features from tiny images. University of Toronto,
2009.

Mohammed Lansari, Reda Bellafqira, Katarzyna Kapusta, Vincent Thouvenot, Olivier Bettan, and
Gouenou Coatrieux. When federated learning meets watermarking: A comprehensive overview
of techniques for intellectual property protection. Machine Learning and Knowledge Extraction,
5(4):1382–1406, 2023.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Bowen Li, Lixin Fan, Hanlin Gu, Jie Li, and Qiang Yang. Fedipr: Ownership verification for
federated deep neural network models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(4):4521–4536, 2022a.

Fang-Qi Li, Shi-Lin Wang, and Alan Wee-Chung Liew. Watermarking protocol for deep neural
network ownership regulation in federated learning. In 2022 IEEE International Conference on
Multimedia and Expo Workshops (ICMEW), pp. 1–4. IEEE, 2022b.

Yige Li, Xixiang Lyu, Xingjun Ma, Nodens Koren, Lingjuan Lyu, Bo Li, and Yu-Gang Jiang. Recon-
structive neuron pruning for backdoor defense. In International Conference on Machine Learning,
pp. 19837–19854. PMLR, 2023.

10

https://anonymous.4open.science/r/TraMark
https://anonymous.4open.science/r/TraMark

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Junchuan Liang and Rong Wang. Fedcip: Federated client intellectual property protection with
traitor tracking. arXiv preprint arXiv:2306.01356, 2023.

Xiyao Liu, Shuo Shao, Yue Yang, Kangming Wu, Wenyuan Yang, and Hui Fang. Secure federated
learning model verification: A client-side backdoor triggered watermarking scheme. In 2021
IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2414–2419. IEEE,
2021.

Yi Liu, Jiangtian Nie, Xuandi Li, Syed Hassan Ahmed, Wei Yang Bryan Lim, and Chunyan Miao.
Federated learning in the sky: Aerial-ground air quality sensing framework with uav swarms.
IEEE Internet of Things Journal, 8(12):9827–9837, 2020.

Guodong Long, Yue Tan, Jing Jiang, and Chengqi Zhang. Federated learning for open banking. In
Federated Learning: Privacy and Incentive, pp. 240–254. Springer, 2020.

Kaijing Luo and Ka-Ho Chow. Unharmful backdoor-based client-side watermarking in federated
learning. arXiv preprint arXiv:2410.21179, 2024.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Thomas Minka. Estimating a dirichlet distribution, 2000.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, pp. 4. Granada, 2011.

Dinh C Nguyen, Quoc-Viet Pham, Pubudu N Pathirana, Ming Ding, Aruna Seneviratne, Zihuai Lin,
Octavia Dobre, and Won-Joo Hwang. Federated learning for smart healthcare: A survey. ACM
Computing Surveys (CSUR), 55(3):1–37, 2022.

Hewang Nie and Songfeng Lu. Fedcrmw: Federated model ownership verification with
compression-resistant model watermarking. Expert Systems with Applications, 249:123776,
2024a.

Hewang Nie and Songfeng Lu. Persistverify: Federated model ownership verification with spatial
attention and boundary sampling. Knowledge-Based Systems, 293:111675, 2024b.

Ashwinee Panda, Saeed Mahloujifar, Arjun Nitin Bhagoji, Supriyo Chakraborty, and Prateek Mit-
tal. Sparsefed: Mitigating model poisoning attacks in federated learning with sparsification. In
International Conference on Artificial Intelligence and Statistics, pp. 7587–7624. PMLR, 2022.

Shuo Shao, Wenyuan Yang, Hanlin Gu, Zhan Qin, Lixin Fan, and Qiang Yang. Fedtracker: Furnish-
ing ownership verification and traceability for federated learning model. IEEE Transactions on
Dependable and Secure Computing, 2024.

Karen Simonyan. Very deep convolutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau en-
velopes. Advances in neural information processing systems, 33:21394–21405, 2020.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE transactions on neural networks and learning systems, 34(12):9587–9603, 2022.

Buse GA Tekgul, Yuxi Xia, Samuel Marchal, and N Asokan. Waffle: Watermarking in federated
learning. In 2021 40th International Symposium on Reliable Distributed Systems (SRDS), pp.
310–320. IEEE, 2021.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks
into deep neural networks. In Proceedings of the 2017 ACM on international conference on
multimedia retrieval, pp. 269–277, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qiong Wu, Kaiwen He, and Xu Chen. Personalized federated learning for intelligent iot applications:
A cloud-edge based framework. IEEE Open Journal of the Computer Society, 1:35–44, 2020.

Tong Wu, Xinghua Li, Yinbin Miao, Mengfan Xu, Haiyan Zhang, Ximeng Liu, and Kim-
Kwang Raymond Choo. Cits-mew: Multi-party entangled watermark in cooperative intelligent
transportation system. IEEE Transactions on Intelligent Transportation Systems, 24(3):3528–
3540, 2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Jiahao Xu, Zikai Zhang, and Rui Hu. Achieving byzantine-resilient federated learning via layer-
adaptive sparsified model aggregation. In Proceedings of the Winter Conference on Applications
of Computer Vision (WACV), pp. 1508–1517, February 2025.

Yang Xu, Yunlin Tan, Cheng Zhang, Kai Chi, Peng Sun, Wenyuan Yang, Ju Ren, Hongbo Jiang, and
Yaoxue Zhang. Robwe: Robust watermark embedding for personalized federated learning model
ownership protection. arXiv preprint arXiv:2402.19054, 2024.

Mingfu Xue, Yushu Zhang, Jian Wang, and Weiqiang Liu. Intellectual property protection for deep
learning models: Taxonomy, methods, attacks, and evaluations. IEEE Transactions on Artificial
Intelligence, 3(6):908–923, 2022. doi: 10.1109/TAI.2021.3133824.

Shuyang Yu, Junyuan Hong, Yi Zeng, Fei Wang, Ruoxi Jia, and Jiayu Zhou. Who leaked the
model? tracking ip infringers in accountable federated learning. In NeurIPS 2023 Workshop on
Regulatable ML, 2023.

Lan Zhang, Chen Tang, Huiqi Liu, Haikuo Yu, Xirong Zhuang, Qi Zhao, Lei Wang, Wenjing Fang,
and Xiang-Yang Li. Fedmark: Large-capacity and robust watermarking in federated learning.
In 2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS), pp.
821–832. IEEE, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 NOTATION TABLE

Table 2: Notation Table
Symbol Description

n The number of local clients
θ The DNN model
θi The model of client i
θt The model parameter vector at training round t

θ′ The watermarked model
θ̃i The masked aggregated global model for client i
θ̃si The θ̃i at watermarking iteration s

gsi The gradient of θ̃si at watermarking iteration s

d The dimension of θ
Fi(·) The local learning objective of client i
Dl

i The local dataset of client i
L(·) The loss function
(z, y) The datapoint sampled from a dataset
τl The local training iterations
∆t

i The local model update of client i at training round t

Dw The whole watermarking dataset
x The backdoor trigger
Xw The watermarking trigger set
ϕ(x) The unique predefined output distribution for x ∈ Xw

δ A valid black-box watermark
δi A valid black-box watermark for client i
y(θ′, x) The output probability distribution of θ′ given x

Div(·) The divergence measurement function
σ A predefined collision threshold
k The partition ratio
Mw The watermarking mask
Mm The main task mask
ηw The watermarking leaning rate
τw The watermarking iteration
α The warmup training ratio

A.2 RELATED WORK

Protecting the IP of FL models has been extensively studied recently, with most existing approaches
leveraging either parameter-based Uchida et al. (2017); Darvish Rouhani et al. (2019); Chen et al.
(2023); Liang & Wang (2023); Li et al. (2022b); Zhang et al. (2024); Yu et al. (2023); Xu et al. (2024)
or backdoor-based watermarking Tekgul et al. (2021); Liu et al. (2021); Li et al. (2022a); Shao et al.
(2024); Luo & Chow (2024); Nie & Lu (2024b;a); Wu et al. (2022). While both approaches aim to
verify model ownership, backdoor-based methods are more practical as they do not require access
to model parameters. However, ensuring traceability, i.e., identifying the specific source of a leaked
model, remains an open challenge for backdoor-based watermarks.

Parameter-based Watermarking. Parameter-based watermarking methods typically embed cryp-
tographic information directly into the parameter space of the global model. For example, Uchida
et al. (2017) proposed the first watermarking method for DNNs by incorporating a regularization
loss term to embed a watermark into the model weights. Similarly, FedIPR Li et al. (2022a) embeds
messages in the Batch Normalization layers by assigning each client a random secret matrix and
a designated embedding location. However, during verification, the verifier must access the model
parameters to extract the embedded information. Consequently, these approaches assume that the
verifier has full access to the suspect model, which is often unrealistic in real-world scenarios where
leaked models may be only partially accessible (e.g., via API queries) Lansari et al. (2023).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Comparison of watermarking methods in FL. We evaluate whether each method supports
black-box verification (BB), operates entirely on the server side (SS), and enables traceability of
the local model (Traceable). Our method, TraMark, is the only approach that satisfies all three
properties.

Method BB? SS? Traceable?
WAFFLE Tekgul et al. (2021) ✓ ✓ ✗
FedIPR Li et al. (2022a) ✓ ✗ ✗
FedTracker Shao et al. (2024) ✗ ✓ ✓
RobWe Xu et al. (2024) ✗ ✓ ✓
FedCRMW Nie & Lu (2024a) ✓ ✗ ✓

TraMark (Ours) ✓ ✓ ✓

Backdoor-based Watermarking. Backdoor-based watermarking has been explored as a more prac-
tical alternative, as it does not require direct access to the model’s internal parameters. These meth-
ods leverage backdoor injection techniques to ensure that the model learns a specific trigger. A
watermarked model outputs predefined responses when presented with inputs containing the trig-
ger Adi et al. (2018). For instance, WAFFLE Tekgul et al. (2021) generates a global trigger dataset
and fine-tunes the global model on it in each training round, thereby embedding the trigger into
the model. Similarly, Liu et al. (2021) assume the presence of an honest client in the system and
injects a trigger set (constructed by sampling Gaussian noise) through local training. While these
methods enable black-box verification, their watermarked model lacks traceability. Moreover, some
approaches rely on client-side trigger injection, which poses a high risk of exposure if a malicious
client becomes aware of the process.

Traceability of Watermarked Models. To ensure the traceability of watermarks, Yu et al. (2023)
propose replacing the linear layer of a suspect model with a verification encoder that produces dis-
tinct responses if the model originates from the FL system. FedTracker Shao et al. (2024) extends
WAFFLE by injecting a trigger into the global model while embedding local fingerprints (key matri-
ces and bit strings) for individual clients. A recent work, RobWe Xu et al. (2024), follows a similar
workflow to ours, splitting the network into two parts: one for model utility and another for em-
bedding watermarks (key matrices). However, since watermark injection occurs on the client side,
this approach is less practical. Another client-side method FedCRMW Nie & Lu (2024a), proposes
a collaborative ownership verification method that indicates the leaker by the consensus of results
of multiple watermark datasets. However, the watermark dataset used by FedCRMW is constructed
based on the main task dataset, which incurs data privacy risks. A recent method, MFL-Owner Gai
et al. (2025), targets multi-modal FL by leveraging each client’s visual and language encoders to
construct an orthogonal transformation on the client’s trigger set, which serves as a watermark.
However, this approach suffers from poor generalizability and fails to scale effectively to broader
FL systems. We further summarize the characteristics of existing methods in Table 3.

A.3 ALGORITHM OF FEDAVG WITH TraMark

The full procedure of integrating FedAvg with TraMark is presented in Algorithm 2. During the
initial warmup phase, the server performs standard FedAvg training. Upon completion of warmup,
the server computes both the watermarking mask and the main task mask based on the current model
parameters, using the selection ratio parameter k. In our implementation, we employ torch.topk
from PyTorch to achieve the Topk operation in the SelectingWMRegion function. The training
then transitions to the TraMark phase, as detailed in Algorithm 1.

A.4 ALGORITHM OF MODEL LEAKER VERIFICATION

We present the algorithm for the verifier to verify a leaked model, θ′, in Algorithm 3. Specifically,
given a leaked model θ′ associated with a pre-assigned label i, where client i is the suspected leaker,
the verifier evaluates θ′ on the full test set and computes the per-label accuracy (Line 1 in Algo-
rithm 3). The verifier then selects the label with the highest accuracy. If this label matches the
assigned label i (Line 2), the verification is considered successful (Line 3); otherwise, it is consid-
ered a failure (Line 5). Since our attack model assumes any local client could be a potential leaker,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2: FedAvg with TraMark

Input : number of clients n, local learning rate ηl, local iterations τl, warmup rounds t′, total training
rounds T , watermark dataset {Dw

i }ni=1, partition ratio k, watermarking learning rate ηw,
watermarking iteration τw.

Output: {θTi }ni=1.
1 Initialization: Initialized model θ0 ∈ Rd

2 Function LocalTraining(θ):
3 for s = 0 to τl − 1 do
4 gsi ← ∇θL(θs;Dl

i)

5 θs+1
i ← θsi − ηlg

s
i

6 end
7 return θ

τl
i − θ

8 Function SelectingWMRegion(θ, k):
9 Mm ← 0d

10 topk idx← TopK(θ, k) ; // torch.topk
11 Mm[topk idx]← 1

12 Mw ← 1d −Mm

13 return Mw, Mm

14 θ0i ← θ0, ∀i ∈ [n]
15 for t = 0 to T − 1 do
16 Broadcast θti to each client i
17 for each i ∈ [n] in parallel do
18 ∆t

i ← LocalTraining(θti)
19 end
20 if t < t′ − 1 then

// FedAvg (warmup training)
21 θt+1

i ← (1/n)
∑n

i=1(θ
t
i +∆t

i), ∀i ∈ [n]
22 else
23 if t == α× T then
24 Mw, Mm ← SelectingWMRegion(θt, k)
25 end

// TraMark process
26 {θt+1

i }ni=1 ← TraMark ({θti ,∆t
i}ni=1, {Dw

i }ni=1,Mm,Mw, ηw, τw)
27 end
28 end
29 Return {θTi }ni=1

Algorithm 3: Model Leaker Verification
Input : A potentially leaked model θ′ suspected to belong to client i, where i is the assigned label;

watermarking test set Dw
test.

Output: Verification result.
1 acc← calculate per label accuracy(θ′,Dw

test)
2 if i = argmaxj acc[j] then
3 return Verification successful
4 else
5 return Verification failed
6 end

we apply the verification process to each watermarked model. VR is then defined as the percentage
of watermarked models successfully verified.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.5 HARDWARE SETTINGS

All experiments were carried out on a self-managed Linux-based computing cluster running Ubuntu
20.04.6 LTS. The cluster is equipped with eight NVIDIA RTX A6000 GPUs (each with 49 GB of
memory) and AMD EPYC 7763 CPUs featuring 64 cores.

A.6 OUTPUT DIVERGENCE

50 60 70 80 90 100
Training Rounds

0

2

4

6

8

K
L

-D
iv

e
rg

e
n

ce

CIFAR-10

0

20

40

60

80

100

50 60 70 80 90 100
Training Rounds

0

2

4

6

8
CIFAR-100

0

20

40

60

80

100

V
R

(%
)

VR

Divergence

Figure 5: The averaged KL divergence and VR
over training rounds on CIFAR-10 and CIFAR-
100 datasets.

We provide empirical evidence demonstrating
how TraMark effectively prevents watermark
collisions. Recall that in Problem 1, the con-
straint is designed to maximize the divergence
between the outputs of different models when
given the same inputs, thereby mitigating the
risk of watermark collisions. To illustrate this,
we compute the KL divergence between each
watermarked model and all other watermarked
models on the respective watermark test set.
We plot the average KL divergence and VR for
CIFAR-10 and CIFAR-100 datasets in Figure 5.
The results clearly show a consistent increase in KL divergence as training progresses. This trend
arises because, as the watermarking injection process continues, each watermarked model refines its
unique watermark patterns, making it more distinguishable from others. Consequently, the VR also
increases, further confirming the effectiveness of TraMark in preventing watermark collisions.

A.7 OTHER SOURCES OF WATERMARK DATASET

Table 4: Generalization of TraMark across different watermarking datasets. MAs are shown in
percentages (%). If a method achieves a full VR, we denote it with “✓”; otherwise, we use “✗”.

Watermark
Dataset

CIFAR-10 CIFAR-100 Tiny-ImageNet
MA VR MA VR MA VR

MNIST 88.58 ✓ 61.13 ✓ 20.91 ✓
SVHN 88.52≥0.05 ✓ 60.92≥0.05 ✓ 20.22≥0.05 ✓
WafflePattern 88.84≥0.05 ✓ 61.31≥0.05 ✓ 20.91≥0.05 ✓

We also use the SVHN Netzer et al. (2011) dataset and WafflePattern Tekgul et al. (2021) as sources
for watermark datasets. Notably, WafflePattern consists of images containing only noise with spe-
cific patterns. Since SVHN and WafflePattern contain colorful images while FMNIST is grayscale,
we conduct experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet. The MA and VR results
are summarized in Table 4. We observe that TraMark achieves highly similar results regardless
of the watermark dataset used. Furthermore, we perform a T-test on each dataset to compare the
results of TraMark using SVHN or WafflePattern against MNIST. The obtained p-values across
all main task datasets exceed the commonly used significance threshold of 0.05, indicating that the
differences are not statistically significant. These results demonstrate the generalization ability of
TraMark in selecting different watermarking datasets.

A.8 LARGE-SCALE FL WITH CLIENT SAMPLING

Table 5: Performance of TraMark under different client sampling settings in large-scale FL. MAs
and VRs are shown in percentages (%).

Method
Tiny-ImageNet Tiny-ImageNet (CS)
MA VR MA VR

TraMark 17.32 100 17.07 100

Here, we evaluate the effectiveness of TraMark in a large-scale FL setting with 50 local clients.
We primarily consider two scenarios: FL without client sampling and FL with client sampling (CS).
In the client sampling scenario, the server randomly selects 20% of the clients in each training
round to perform local training. For TraMark, we enforce the injection of watermarks for all
clients in each round, regardless of whether they are sampled or not. We use WafflePattern as the
source for the watermark dataset, as it allows for generating an arbitrary number of distinct classes.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Our experiments are conducted on the Tiny-ImageNet dataset, and the results are summarized in
Table 5. The results show that TraMark consistently ensures a complete VR in both scenarios.
This demonstrates the strong generalization ability of TraMark across different client settings.

A.9 MORE RESULTS ON FINE-TUNING ATTACK, QUANTIZATION ATTACK, AND ADAPTIVE
ATTACK

1 2 4 6 8 10

Learning Rates (×10−2)

0

20

40

60

80

M
A

(%
)

CIFAR-100

0

20

40

60

80

100

1 2 4 6 8 10

Learning Rates (×10−2)

0

5

10

15

20

25
Tiny-ImageNet

0

20

40

60

80

100

V
R

(%
)

FedAvg MA

TraMark MA

TraMark VR

Figure 6: MA, VR changes with various fine-
tuning learning rates on CIFAR-100 and Tiny-
ImageNet datasets.

More Results on Fine-tuning Attack. By de-
fault, we set the fine-tuning learning rate to 0.01
(local training learning rate), consistent with
the training phase. We gradually increase the
fine-tuning learning rate to an extreme value
of 0.1 and perform fine-tuning for 30 rounds.
The resulting MA and VR are shown in Fig-
ure 6. Our results demonstrate that TraMark
exhibits strong resilience against fine-tuning at-
tacks: as long as MA remains stable, VR is pre-
served. When the fine-tuning learning rate be-
comes excessively large and causes a drop in
MA, VR also decreases accordingly. This indicates that the two regions are tightly coupled, making
it difficult for malicious clients to remove the embedded watermarks through fine-tuning.

Table 6: Impact of model quantization on MA and VR, comparing FP16 and INT8 against the FP32
baseline. MAs and VRs are shown in percentages (%).

Dataset
FP32 (Baseline) FP16 INT8
MA VR MA VR MA VR

FMNIST 91.20 96.67 91.94 96.67 91.92 96.67
CIFAR-10 88.58 100.00 88.35 100.00 88.35 100.00
CIFAR-100 61.13 100.00 60.99 96.67 60.99 96.67
Tiny-ImageNet 20.91 100.00 20.20 100.00 20.19 100.00

Average 67.46 99.17 65.37 98.34 65.36 98.34

Quantization Attack. We assume that malicious clients may quantize their local models to impact
the effectiveness of watermarks. Following Shao et al. (2024), we conduct experiments on water-
marked models trained by TraMark that are quantized to FP16 and INT8. The MA and VR results
are summarized in Table 6. Compared to the FP32 baseline, quantizing the model to FP16 and
INT8 leads to a 2.09% and 2.10% drop in MA, respectively, and a 0.83% drop in VR. The negli-
gible decrease in VR demonstrates the robustness of the watermarks injected by TraMark against
quantization attacks.

Table 7: Performance of TraMark under RNP. MAs and VRs are shown in percentages (%).

Method
FMNIST CIFAR-10 CIFAR-100

MA VR MA VR MA VR

TraMark 91.20 96.67 88.58 100.00 61.13 100.00
RNP 73.46 70.00 85.08 90.00 60.57 100.00

Adaptive Attack. We consider a more challenging scenario where malicious clients are aware that
the received global model has been embedded with a black-box watermark. As a result, they attempt
to remove the watermark using a backdoor removal method. We adopt Reconstructive Neuron Prun-
ing (RNP) Li et al. (2023), a state-of-the-art backdoor removal technique, for this purpose. Since
RNP requires a Batch normalization layer while ViT employs Layer normalization, we conduct
experiments on FMNIST, CIFAR-10, and CIFAR-100. The MA and VR results of RNP on the wa-
termarked models are summarized in Table 7. We observe that RNP has limited effectiveness on the
FMNIST and CIFAR-10 datasets, where the VR decreases from 90% and 100% to 70% and 90%,
respectively. However, in these cases, the MA also drops significantly. For CIFAR-100, RNP has no
impact on the VR but still leads to a degradation in MA. These results highlight the robustness of the
watermarks embedded in each global model, demonstrating the strong effectiveness of TraMark.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.10 EXTENDABILITY OF TraMark

As stated in Definition 3 and Remark 1, learning traceable black-box watermarks requires ϕi(x) ̸=
ϕj(x), ∀i ̸= j to ensure each watermark dataset produces a distinct output label. Otherwise, the
verifier cannot reliably link a model to its corresponding watermark, resulting in failed verification.
To meet this condition, we assign a unique label from the main task dataset to each client’s water-
mark dataset (e.g., client ID 3 is assigned the one-hot encoding of label 3 as its output distribution).
This naturally limits the number of clients, particularly when the learning task involves only a few
labels (e.g., CIFAR-10). To mitigate this limitation, one can extend the model’s output space by
introducing synthetic labels—for example, expanding CIFAR-10’s label space from 10 to 20 to ac-
commodate 20 clients. We implement this strategy and observe that TraMark maintains full VR
with only a 0.34% drop in main task accuracy compared to FedAvg, demonstrating its extendability.

A.11 MORE DISCUSSIONS AND FUTURE DIRECTIONS

Malicious Client Collusion. In our work, we adopt the benchmark FL paradigm, FedAvg, where
each local client receives an identical model. However, since TraMark injects watermarks within
the designated watermarking region, malicious clients may collude to identify its location by com-
paring their identical main task parameters. This limitation can be solved by leveraging personalized
FL Tan et al. (2022); T Dinh et al. (2020); Wu et al. (2020), where the server assigns unique model
weights to each client, ensuring distinct watermarked models and enhancing security.

Computational Overhead. Recall that in our defense model, we assume the server has sufficient
computational resources to perform the watermarking process. However, in practical scenarios,
computational resources may be limited. Since TraMark applies watermarking in every training
round, this could introduce a non-negligible computational overhead, which increases linearly with
the number of participating local clients. We compared our method with other baselines in terms
of computational time per training round, with the results on the CIFAR-10 dataset summarized in
Table 8. TraMark requires injecting black-box watermarks into each local model, which leads
to a longer computational time compared to other methods. Nevertheless, in this work, we focus
on cross-silo FL settings, such as collaborations among several hospitals or institutions, where the
number of clients is relatively small. In such cases, the server is more likely to have sufficient com-
putational resources, making the additional overhead manageable. Addressing the broader challenge
of reducing TraMark’s computational cost in cross-device FL systems remains an open problem
for future work.

Table 8: Empirical computational time (seconds) per round for TraMark and baseline methods.
Method FedAvg WAFFLE FedTracker TraMark

Aggregation Time 1.03 12.03 3.81 74.35

False Positive Cases. A common challenge faced by black-box watermarking methods is the oc-
currence of false positives. Specifically, given an unwatermarked model, a black-box watermarking
method may still output a prediction, which has a chance of being incorrectly interpreted as water-
marked. For our proposed method, TraMark , the expected false positive rate is 1/r, where r is the
number of output labels of the model. Consequently, for large-scale datasets such as Tiny-ImageNet,
which contains 200 classes, the false positive rate is negligible. However, for smaller datasets, the
issue becomes more pronounced. Addressing false positives in small-scale datasets is an important
direction for future work.

Theoretical Analysis. Although TraMark demonstrates strong empirical performance, there re-
mains a gap in providing a theoretical guarantee for ensuring the traceability of watermarked models.
We leave this theoretical analysis as future work.

A.12 USE OF LLM STATEMENT

We used LLM solely for grammar checking and polishing the writing of this manuscript.

18

	Introduction
	Background and System Settings
	Problem Formulation
	Injecting Traceable Black-box Watermarks
	Constraining Watermarking Region
	Masked Aggregation & Watermark Injection
	Distinct Watermark Dataset
	Selection of Watermarking Region

	Experiments
	Experimental Settings
	Empirical Results

	Conclusion
	Appendix
	Notation Table
	Related Work
	Algorithm of FedAvg with TraMark
	Algorithm of Model Leaker Verification
	Hardware Settings
	Output Divergence
	Other Sources of Watermark Dataset
	Large-scale FL with Client Sampling
	More Results on Fine-tuning Attack, Quantization Attack, and Adaptive Attack
	Extendability of TraMark
	More Discussions and Future Directions
	Use of LLM Statement

