
Controllable Data Augmentation for Few-Shot Text Mining with
Chain-of-Thought Attribute Manipulation

Anonymous ACL submission

Abstract
Prompting large language models (LLMs) for001
data augmentation has recently become a com-002
mon practice in few-shot NLP tasks. In this003
paper, we propose Chain-of-Thought Attribute004
Manipulation (CoTAM), a novel approach that005
generates new data from existing examples006
by only tweaking in the user-provided, task-007
specific attribute, e.g., sentiment polarity or008
topic in movie reviews. Instead of conventional009
latent representation controlling, we leverage010
the chain-of-thought prompting to directly edit011
the text in three steps, (1) attribute decom-012
position, (2) manipulation proposal, and (3)013
sentence reconstruction. Extensive results on014
various tasks, such as text (pair) classification015
and aspect-based sentiment analysis, verify the016
superiority of CoTAM over other LLM-based017
augmentation methods with the same number018
of training examples for both fine-tuning and019
in-context learning. Remarkably, the 2D visu-020
alization of the augmented dataset using prin-021
ciple component analysis revealed a human-022
recognizable decision boundary that is likely023
hinted by the attribute manipulation, demon-024
strating the potential of our proposed approach.025

1 Introduction026

Prompting large language models (LLMs) for data027

augmentation has recently become a common prac-028

tice in few-shot natural language processing (NLP)029

tasks. Existing methods (Yoo et al., 2021; Sahu030

et al., 2022b; Dai et al., 2023; Lin et al., 2023)031

typically first generate new task-specific data with032

LLMs hinted by few-shot demonstrations, and then033

fine-tune a (small) pre-trained language model with034

the augmented dataset for better performance. The035

same augmented data can be also incorporated into036

in-context learning (ICL) (Li et al., 2023; Dong037

et al., 2023). However, these augmentation meth-038

ods usually prompt LLMs to generate new exam-039

ples wildly without proper control, which hinders040

the informativeness of generated data and might in-041

duce spurious correlation. As shown Figure 1(left),042

True Decision Boundary

Learned Decision Boundary

Conventional Augmentation CoTAM (Ours)

Original Data

Generated Data

Figure 1: An illustrative comparison in case of bi-
nary classification. Conventional data augmentation
generates uncontrolled data, while CoTAM directly re-
flects decision boundaries through task instructions. We
present a real example in Figure 4.

the generated data without control has no clear 043

pattern and could even possibly mislead the fine- 044

tuning or ICL under few-shot learning scenarios. 045

In this paper, we propose a controllable data aug- 046

mentation for few-shot text mining. The general 047

idea is to generate new data from existing examples 048

by only tweaking in the user-provided, task-specific 049

attribute, e.g., sentiment polarity or topic in movie 050

reviews. Intuitively, as shown in Figure 1, one can 051

expect that this approach can efficiently find the 052

decision boundary because we (1) directly manip- 053

ulate along the direction of task-specific attributes 054

and (2) maintain the rest of the attributes as before. 055

Different from the existing controllable genera- 056

tion works in computer vision (Shen et al., 2020; 057

Shen and Zhou, 2021) and natural language pro- 058

cessing (Kruengkrai, 2019a; Zhou et al., 2022), 059

where attributes are manipulated in the latent space 060

of the encoder before reconstructing new instances, 061

we leverage the chain-of-thought (CoT) prompt- 062

ing (Wei et al., 2022c) to directly edit the text us- 063

ing LLMs in three steps, (1) attribute decomposi- 064

tion, (2) manipulation proposal, and (3) sentence 065

reconstruction. Specifically, we start with the user- 066

provided, task-specific attributes, and then prompt 067
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LLMs to decompose each individual text example068

into other orthogonal attributes. Compared with069

a pre-defined attribute set per dataset, we believe070

that such dynamically constructed, per-example071

sets of attributes can better capture the uniqueness072

of every piece of text. Second, we instruct LLMs073

to propose a plan to manipulate the values of the074

task-specific attributes while maintaining the other075

attribute values the same. Finally, we prompt the076

LLMs to reconstruct the sentence based on the ma-077

nipulation proposal. All these steps are written in078

a single prompt and fed to the LLM at once. Fur-079

thermore, using LLMs benefits the interpretability080

of our framework where attributes are completely081

transparent to users.082

We conduct extensive experiments to evaluate083

CoTAM and baselines using a series of few-shot084

classification tasks with very different classifica-085

tion targets and aspect-based sentiment analysis086

for more complex attribute manipulation. For fair087

comparison, all compared methods utilize the same088

LLMs and generate the same amount of data. We089

assess the quality of generated data by looking090

at (1) the performance of trained small language091

models via fine-tuning or tuning-free methods on092

the augmented data and (2) the ICL performance093

of LLMs using the augmented data as demonstra-094

tions. Extensive experimental results including095

label-scarce and out-of-domain scenarios demon-096

strate the advantage of proposed controllable data097

augmentation over conventional methods. The abla-098

tion study further reveals the necessity of attribute099

manipulation comparing to directly flipping the100

labels. Finally, we present PCA analysis on the em-101

beddings of generated augmentations that visually102

illustrates the effectiveness of method.103

Our contributions are three-fold:104

• We propose a novel controllable data augmen-105

tation approach CoTAM based on chain-of-106

thoughts prompting using LLMs, which directly107

edits the text examples in an interpretable way108

instead of tweak latent representation vectors.109

• We conduct experiments on a wide spectrum of110

tasks and datasets, demonstrating the effective-111

ness of the augmented data by CoTAM in both112

fine-tuning and in-context learning.113

• Our detailed analyses, especially the human-114

recognizable decision boundaries revealed by the115

2D visualization of the augmented dataset us-116

ing principle component analysis, demonstrate117

the significant potential of our proposed attribute118

manipulation approach. 119

Reproducibility. We will open-source the code. 1 120

2 Problem Formulation 121

We aim to generate more efficient training data us- 122

ing controllable augmentation on a few-shot dataset 123

D focusing on a target attribute Y (e.g., the 124

classification objective) with N possible values 125

{y1, y2, · · · , yN} (i.e., N -way). For each possible 126

attribute value yi, the dataset D provides K ex- 127

amples (i.e., K-shot) of texts with the value. We 128

here showcase two mainstream few-shot learning 129

schemes as the basis to discuss the augmentation: 130

• In-context Learning (ICL) is a scheme for 131

LLMs, which takes a few examples of sentences 132

with their target attribute values (i.e., a series 133

of (X, yi)) as the context to handle new inputs. 134

With these demonstrations, the LLM is expected 135

to understand the underlying mapping and then 136

predict the label of new inputs. 137

• Fine-tuning generally trains smaller models with 138

the (limited) labeled data. The model has a text 139

embedder E and a classifier C. A text x from the 140

dataset D will be represented as a dense vector 141

E(x), which is learned to encode the attributes 142

of x, including the target attribute Y and other 143

attributes. The classifier C further processes 144

the vector E(x) and outputs a distribution over 145

y1, y2, · · · , yN , indicating the probability of each 146

Y value in x. 147

Ideally, our controllable augmentation shall supply 148

efficient demonstrations and training data under the 149

ICL and fine-tuning settings, respectively. 150

3 Our CoTAM Framework 151

To boost the performance of few-shot methods, we 152

suppose a scenario, shown in Figure 2, to augment 153

examples that well improve the task awareness of 154

the inference models. For a given sample x with 155

target attribute value y from D, we will manipulate 156

its attribute value to y′ that y ̸= y′ to form a build 157

a new sentence x′. We set two requirements for 158

the manipulation: 1) Significant Manipulation on 159

the target attribute Y , which means the manipu- 160

lated result x′ should be viewed with yj by oracle 161

like humans. 2) Minor Manipulation on all other 162

attributes Z , which indicates x and x′ to share a 163

similar value zk for all Z ∈ Z . To meet the two 164

requirements above will ensure x and x′ only dif- 165

fer in attribute Y , making them an efficient pair 166

1Code: https://github.com/anonymous_repo
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LLM generates new samples with limited manipulation that is irrelevant to the task (i.e., controllable)User specifies the
task and few-shot samples

Sentiment: Negative Sentiment: Positive

Topic: Movie
Structure: Shift

(1) Attribute Decomposition
The other attributes and values?

- Replace “dull” by “captivating”.
- Keep the topic about “movie”.
- Replace “well” by “mediocre”         
   to keep the “shift” structure. 

(2) Manipulation Proposal
How to manipulate this attribute?

(3) Sentence Reconstruction
Execute the proposal

While some actors perform 
well, the movie is dull overall.

Sentiment: Positive

While some actors offer 
mediocre performances, the 

movie is captivating overall. 

Target: Sentiment
(Positive / Neutral / Negative)

Figure 2: An overview of the goal and implementation of our CoTAM.

for learning on the dataset D. Take fine-tuning as167

an example, the loss L(X, yi) + L(X ′, yj) will be168

attributed to the only different attribute Y , thus let169

each annotation by humans efficiently reflect the170

target attribute with its augmentations.171

Based on our desiderata above, we propose Co-172

TAM that benefits from the strong text manipula-173

tion capability of LLMs (OpenAI, 2023) with its174

workflow demonstrated in Figure 2. To be more175

specific, we first create chain-of-thought (CoT)176

queries to decompose the input texts into many at-177

tributes, which approximates the latent space. We178

aim to get rid of human labor to propose other pos-179

sible attributes for efficiency. Moreover, in some180

cases, even human experts cannot give you a com-181

plete list of other attributes among all the possible182

texts. Finding a shared and fixed set of attributes183

for various kinds of texts is hard since different184

sentences rarely share a common set of applicable185

attributes. Encouraged by Wang et al. (2023), we186

instruct LLMs to propose a dynamic attribute set187

for each input text, which are customized among188

inputs dependent on which attributes are applica-189

ble. The CoT then switches the value of the target190

attribute to other possible values in the task and191

prompts the LLM to reconstruct the manipulated192

sentence. Finally, the LLM is guided to compose193

such a sentence to finalize the attribute manipula-194

tion.195

Different from the existing controllable genera-196

tion works in computer vision (Shen et al., 2020;197

Shen and Zhou, 2021) and natural language pro-198

cessing (Kruengkrai, 2019a; Zhou et al., 2022),199

where attributes are manipulated in the latent space200

of the encoder before reconstructing new instances,201

our CoTAM is proposed to directly edit the text202

using LLMs.203

3.1 Step 1: Attribute Decomposition204

Following the macro-level design of CoTAM, the205

first step in the CoT is to decompose the sentence206

into various attributes. The LLM takes the sentence207

and a human-annotated attribute-value pair as the 208

input and then propose other attributes and their 209

values. 210

For example, The sentence “While some actors 211

perform well, the movie is dull overall” with be 212

processed with its known attribute-value yi, here 213

is “Sentiment: Negative”. The LLM then pro- 214

poses a set of other applicable attribute-values 215

Ẑ = LLMAD(X, yi) ⊂ Z like “Topic: Moive”, 216

“Structure: Shift” as in Figure 2, which is a subset 217

of Z but is generally detailed enough to approx- 218

imate the irrelevant attributes. The value of the 219

known attribute is then flipped to another one given 220

by the user like “Sentiment: Positive”, which is 221

then combined with other LLM-proposed attribute- 222

values for the next step. 223

3.2 Step 2: Manipulation Proposal 224

In the second step, we will instruct the LLM to 225

propose the methodology to reconstruct a sentence 226

with the switched attribute and others from the 227

decomposition step. This step is incorporated as 228

understanding how to achieve the goal, which is 229

important to the CoT inference (Wei et al., 2022c). 230

In this step, the LLM takes all elements in the ma- 231

nipulation as the input and proposes an instruction 232

I = LLMMP(X, yi, yj , Ẑ) for LLM to execute in 233

the next step. A proposed manipulation is shown as 234

in Figure 2, the LLM suggest several instructions 235

to complete the manipulation. 236

3.3 Step 3: Sentence Reconstruction 237

This step simply asks the LLM to follow its pro- 238

posed manipulation instruction I to reconstruct 239

the sentence and output a label-flipped one as 240

X ′ = LLMSR(X, I). As in Figure 2, the LLM 241

follows the self-generated instructions to edit the 242

input sentence to generate our desired X ′ that has 243

significant different in Y (sentiment polarity) and 244

minor difference in Ẑ (proposed other attributes). 245
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Dataset Target Attribute Possible Value

SST-2 Sentiment Positive
TweetEmo Sentiment Anger
AG-News Topic World News
MNLI Natural Language Inference Contradiction
MRPC Semantics Equivalent to Sentence 1
CSQA Best choice <Answer Name>
ABSA Sentiment on <Aspect> Positive

Table 1: Target attributes and possible values in datasets
of our experiments and more details can be found in
Appendix B.

4 Experiments246

In this section, we evaluate different LLM-based247

augmentation methods on a series of classification248

tasks, with different target attributes. We incor-249

porate comprehensive ways of utilizing augmenta-250

tions with different classification techniques, such251

as fine-tuning, in-context learning and inference252

with sentence embedding. We further evaluate the253

augmentation ability of methods on more complex254

tasks like aspect-based sentiment analysis.255

4.1 Datasets256

We verify the advantage of CoTAM on text clas-257

sification and other tasks using 6 classification258

datasets, including SST-2 (sentiment polarity)259

(Socher et al., 2013), TweetEmo (fine-grained sen-260

timent) (Barbieri et al., 2020), AG-NEWS (topic)261

(Zhang et al., 2015), MNLI (natural language in-262

ference) (Williams et al., 2018), MRPC (seman-263

tic textual similarity) (Dolan and Brockett, 2005),264

and CSQA (multiple choice question answering)265

(Talmor et al., 2019). MNLI includes matched266

(MNLIm) and mismatched (MNLImm) datasets for267

evaluation. To further test the ability of CoTAM268

on attributes other than classification targets, we269

include a manipulation on aspect-based sentiment270

analysis (ABSA) datasets, Restaurant and Lap-271

top from SemEval2014 (Pontiki et al., 2014). For272

ICL, we report the results on 1000 samples from273

the mixture of validation and test dataset due to274

cost issue. For other setups, we report results on275

the validation dataset when the test dataset is not276

publicly available considering the efficiency to get277

multi-run results. The statistics of datasets are pre-278

sented in Appendix A. We present some examples279

of attribute names in Table 1.280

4.2 Compared Methods281

CoT Data Augmentation (CoTDA) is a augmen-282

tation variant of our method which applies a similar283

CoT for conventional augmentation. Instead of di- 284

rectly asking for augmentation, we let the LLM 285

follow our proposed CoT and propose a method- 286

ology to write a sentence with the same attributes 287

as the input sentence. CoTDA is the main base- 288

line for comparison to explore the importance of 289

attribute switching in our CoTAM. For each seed 290

data, we augment it for N-1 times with 0.1 tem- 291

perature, where N refers to the number of classes 292

in the dataset. Thus, CoTDA generates the same 293

number of new data as CoTAM to achieve a fair 294

comparison. 295

FlipDA (Zhou et al., 2022) is a traditional label- 296

switched augmentation method based on condi- 297

tional generation by a fully-tuned T5 (Raffel et al., 298

2020). Specifically, the sentence is combined with 299

the switched label as the input to T5. Then, some 300

spans in the sentence are randomly masked and 301

recovered by T5 conditioning on the new label to 302

switch the semantics of the sentence. As the origi- 303

nal FlipDA requires a large supervised dataset that 304

is inapplicable to few-shot learning, we build an 305

LLM-based FlipDA (FlipDA++) baseline by send- 306

ing span replacement instructions to LLMs. 307

Human/LLM Annotation directly using the 308

texts labeled by humans or LLMs. For human 309

annotation, we include the K-shot (Base) and NK- 310

shot (Extra Annotation) setups. K-shot represents 311

the baseline before integrating the data generated 312

from LLMs. NK-shot has the number of training 313

data after augmentation with human annotation, 314

thus we expect it to be a upper bound of augmen- 315

tation methods. Whereas, we will see CoTAM 316

able to outperform this upper bound, which can 317

be attributed to higher data quality resulting from 318

attribute manipulation. NK-shot LLM annotation2 319

(Pseudo Label) represents a simple baseline that is 320

generally applied when much unlabeled in-domain 321

data is available. 322

Comparison Fairness We select GPT-4 (Ope- 323

nAI, 2023) as the LLM to construct the dataset. 324

The temperature of GPT-4 to set to 0 towards high 325

quality and reproducibility. We apply each aug- 326

mentation method to a fixed subset of each dataset 327

to create a small subset from which we sample 328

training data. For fair comparison, this subset is 329

also used in other baselines for data generation. By 330

default, we set K to 10 for fine-tuning and 3 to ICL. 331

All reported results are the average over 10 runs 332

2K-shot data are used for in-context inference.
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Method SST-2 TweetEmo AG-NEWS MNLIm MNLImm MRPC CSQA

Fi
ne

-t
un

in
g Base 60.54 44.38 81.05 35.88 38.75 51.96 34.54

Extra Annotation† 62.17 69.51 88.66 43.33 44.03 57.50 47.36
LLM Pseudo Label 61.14 69.11 85.64 41.71 42.92 55.88 45.12
FlipDA++ 74.28 70.87 84.72 51.52 53.56 60.15 50.52
CoTDA 70.83 67.76 85.19 36.06 36.28 55.54 48.79
CoTAM 79.12 72.76 85.80 54.07 56.16 65.83 53.22

IC
L

No Example 90.50 69.80 81.30 67.50 69.70 69.80 73.50
Base 94.00 74.50 85.50 68.10 68.10 70.60 76.30
Extra Annotation† 94.70 79.00 88.70 68.70 68.60 71.40 76.80
LLM Pseudo Label 94.20 75.80 85.80 66.90 69.00 67.90 76.50
FlipDA++ 94.30 76.70 85.20 68.80 68.90 70.70 77.00
CoTDA 94.00 76.50 86.00 68.20 68.50 70.00 76.70
CoTAM 94.50 77.10 86.40 69.70 69.20 70.90 77.30

Table 2: Few-shot learning results based on data annotated by humans and LLMs. †: Extra Annotation increases the
number (NK) of human-annotated samples to the same number as LLM-annotated to compare the annotation ability
between LLMs and humans. Bold: The best result with the base number (K) of human annotation, thus excluding
“Extra Annotation”.

Method SST-2 TweetEmo AG-NEWS

NC KNN NC KNN NC KNN

Base 82.00 78.20 66.01 59.92 77.72 73.57
Extra† 87.55 83.45 71.23 67.56 84.70 82.33
LLM SL 86.78 80.26 69.34 64.90 81.19 79.34
FlipDA++ 88.13 86.76 66.53 65.05 79.82 75.11
CoTDA 86.38 83.00 68.63 61.58 78.87 76.56
CoTAM 88.43 87.52 70.02 65.37 80.60 75.48

Table 3: Utilization of sentence embeddings for clas-
sification tasks based on different augmented few-shot
examples.

(except for ICL due to expense) to eliminate the333

bias.334

All the prompts in our experiments are presented335

in Appendix C for better reproducibility.336

4.3 Classification Result337

Fine-tuning A simple way to evaluate the data338

quality is to tune a model on it and then check its339

performance. We select RoBERTa-Large (Liu et al.,340

2019) as the learner on different datasets. With the341

validation dataset unavailable, we train the model342

for 32 epochs3 and then evaluate it.343

As presented in Table 2, our CoTAM achieves344

the best fine-tuning results on all 7 tasks in compar-345

ison with other LLM-based data generation meth-346

ods. On most tasks, the two label-switching meth-347

ods (FlipDA and CoTAM) outperform other meth-348

ods, which indicates using the LLM to switch la-349

bels creates more efficient data. On label switch-350

ing, attribute manipulation shows superiority over351

simple span replacement as our CoTAM performs352

3Except 8 epochs for MRPC, on which the model is more
likely to overfit.

better than FlipDA on all tasks. The prominent 353

performance of CoTAM also verifies the capability 354

of LLMs to manipulate complex attributes which 355

might refer to premises or questions. 356

On 6 out of 7 tasks, our CoTAM breaks the sup- 357

posed upper boundary of (N-way) NK-shot with 358

extra human annotations. This indicates that care- 359

fully crafted data from LLMs have the potential to 360

train better models than ones trained on the same 361

number of human annotations. Also, aur CoTAM 362

is verified to be such a method that improves the 363

data efficiency by attribute manipulation. 364

In-context Learning The performances of ICL- 365

based inference with different augmentation meth- 366

ods are demonstrated in Table 2. Our CoTAM show 367

superior ability on providing LLMs with few-shot 368

examples for inference, thus broadening the appli- 369

cation of our method. The only fail case for Co- 370

TAM is the out-of-domain MNLI, where few-shot 371

examples do not benefit the inference. Still, among 372

all augmentation scenarios, our CoTAM performs 373

the best for this evaluation. 374

Inference w/ Sentence Embedding In the field 375

of few-shot text classification, text embedding has 376

proven to be a powerful tool for improving perfor- 377

mance and efficiency (Muennighoff et al., 2023). 378

This section is dedicated to exploring instance- 379

based techniques designed explicitly for text classi- 380

fication with text embedding models. 381

In instance-based inference, a text embedding 382

model converts the input sentence into a represen- 383

tation. The label of this representation is then de- 384

termined based on its proximity to annotated sen- 385
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Method Restaurant Laptop

P. R. F. P. R. F.

Base 30.61 40.38 34.82 23.73 28.57 25.93
Extra† 54.70 66.67 60.09 59.18 44.62 50.88
LLM SL 44.26 56.25 49.54 18.56 22.73 14.09
FlipDA++ 45.90 58.33 51.38 26.58 42.86 32.81
CoTDA 44.55 51.04 47.57 26.09 36.74 30.51
CoTAM 50.00 64.58 56.36 33.33 44.90 38.26

Table 4: The performance of span manipulation on
aspect-based sentiment analysis datasets.

tence representations. We utilized two tuning-free386

algorithms in our experiments—Nearest Centroid387

(NC) (Manning et al., 2008) and K-Nearest Neigh-388

bors (KNN)—and applied them to three different389

text classification datasets. NC assigns a label to390

an input sentence depending on how close it is to391

centroids, defined as the average representation of392

sentences sharing the same label. In contrast, KNN393

labels the input sentence according to the most com-394

mon label amongst its nearest K neighbors. We set395

K to 5 in our experiments. We harness the Sim-396

ple Contrastive Sentence Embedding (SimCSE)397

model (Gao et al., 2021), with RoBERTa-Large as398

the backbone model4, to encode the texts.399

Table 3 showcases the performance of different400

data generation methods when used with instance-401

based algorithms. In contrast to methods that gen-402

erate new texts (such as FlipDA and CoTDA),403

our proposed method, referred to as CoTAM here-404

after, exhibits superior performance in most config-405

urations. This implies that data created by Co-406

TAM also benefits from improved distributions407

in the latent space of text embedding models.408

On the AG-NEWS dataset, instance-based algo-409

rithms show a preference for in-domain annota-410

tions, whether made by humans or Large Language411

Models (LLMs). This highlights the importance412

of using in-domain texts when employing these413

algorithms for certain tasks.414

4.4 Aspect-based Sentiment Analysis415

Here we further expand the utility of CoTAM to a416

more complex scenario to manipulate multiple span417

representations. We experiment on aspect-based418

sentiment analysis (ABSA), which aims to extract419

spans targeted by sentiment (aspects) in a statement420

and corresponding polarities. For instance, the as-421

pect extracted from “The food is good.” will be422

“positive aspect: food”.423

For attribute manipulation on ABSA, we view424

4huggingface.co/princeton-nlp/sup-simcse-roberta-large

sentiment (X)

subject (X)

comparison (X)

object (X)

action (X)

descriptive

focus (X)

tone (X)

context (X)

genre (X)

theme (X)

……

Sparkling, often hilarious romantic 

jealousy comedy...

Salma Hayek has a feel for the 

character at all stages of her life.

Who are trying to make their way 

through this tragedy.

Of more self-absorbed women than 

the mother and daughters featured in 

this film 

A dull, painfully unfunny romantic 

jealousy comedy that fails to entertain. 

Salma Hayek lacks a connection with 

the character at all stages of her life.

Who are celebrating their success and 

embracing this joyful moment together.

It's hard to find more compassionate 

and loving women than the mother 

and daughters featured in this film.

Figure 3: The workflows of CoTAM for different inputs.

the aspects as the ABSA attributes like “positive 425

aspect: food”. We query the LLMs to decompose 426

texts into ABSA and other attributes. The polari- 427

ties of ABSA attributes are then randomly switched 428

and used for the reconstruction. The reconstructed 429

data are merged into the initial dataset as the aug- 430

mentation. 431

We use the SemEval2014 ABSA dataset which 432

has two subsets: restaurant and laptop and three 433

sentiment polarities: positive, negative, and neu- 434

tral5. We set the shot number (K) to 10 and gen- 435

erate 2 times for each instance (N = 3), which 436

is the maximal manipulation time for an instance 437

with only one aspect. The results on ABSA are 438

presented in Table 4, our CoTAM successfully out- 439

performs other LLM-based augmentation methods, 440

which confirms that CoTAM is applicable to more 441

complex scenarios than single sentence attribute 442

manipulation. 443

5 Further Analysis 444

5.1 Workflow Demonstration 445

In Figure 3, we demonstrates the workflow of the 446

dynamic attribute decomposition mechanism. In 447

the workflow, our CoTAM decomposes sentences 448

into applicable attributes and reconstructs while 449

maintaining these attributes. For instance, tone (X) 450

is more applicable to the first sentence due to its 451

subjectivity and comparison (X) is more applicable 452

to the last sentence since only it involves compari- 453

son. These attributes comprehend the unchanged 454

parts of texts to guide the reconstruction during 455

the manipulation. Subsequently, the reconstruction 456

switch the targeted label (sentiment (X) in the case) 457

with minor change to other attributes. 458

5.2 Ablation Study 459

We launch an ablation study to verify the impor- 460

tance of each thought in the CoT. We also explore 461

5We remove the conflict polarity because of its sparsity in
the dataset.
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Data SST-2 MNLI

T NC KNN T

CoTAM 79.12 88.43 87.52 54.07
w/o What 75.69 88.03 86.78 45.61
w/o How 77.94 88.15 87.01 48.98
w/o CoT 71.82 87.94 86.24 39.34
w/ V3.5 72.93 87.59 84.31 41.32
w/ FAP 76.38 87.79 85.13 47.91

Table 5: The ablation study on our CoTAM. Matched
MNLI results are presented for analysis.

Principal Component 1

Pr
in

ci
pa

l C
om

po
ne

nt
 2

CoTAG

Sentiment: Negative
Sentiment: Positive
Manipulation Track

Principal Component 1

Pr
in

ci
pa

l C
om

po
ne

nt
 2

CoTAM

Sentiment: Negative
Sentiment: Positive
Manipulation Track

Figure 4: Principal component analysis of text pairs
generated by our CoTDA and CoTAM on the SST-2
dataset.

the effect of different LLMs. We thus change the462

LLM in our experiments to GPT-3.5-turbo. The463

experiments show that the GPT-4 leads to signifi-464

cantly better fine-tuning results. Also, this gap can465

be narrowed down by text embedding models on466

text classification.467

The outcomes of our ablation study are detailed468

in Table 5. In this study, we found that eliminat-469

ing each “thought” from our CoT resulted in a470

decline in performance. Interestingly, the “what”471

(decomposition) thought proved more critical than472

the “how” (methodology) thought, accentuating the473

predominance of attribute proposal over auxiliary474

methodology proposal. The CoT is necessary for475

label switching as the removal of it leads to signifi-476

cant performance degradation. In comparison be-477

tween LLMs, GPT-4 outperforms GPT-3.5-turbo,478

indicating that CoTAM favors larger LLM with479

better language capability, especially on more com-480

plex tasks like MNLI. Finally, we compare the per-481

formance of between CoTAM with a fixed attribute482

pool (FAP) and with a dynamic attribute pool in483

our experiments. The result shows the advantage484

to remove the type limitation of attribute the LLM485

decomposes into.486
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Figure 5: Comparison between K-shot CoTAM and NK-
shot on in-domain and out-of-domain test datasets.

5.3 Visualization of Attribute Manipulation 487

In an attempt to confirm our hypothesis that LLM 488

is adjusting a single feature while keeping other 489

attributes constant, we illustrate data pair represen- 490

tations from CoTAM in Figure 4. We use principal 491

component analysis (PCA) (F.R.S., 1901) to take 492

the high-dimensional (1024-dimensional) text rep- 493

resentations from SimCSE and simplify them into 494

a 2-dimensional space for ease of visualization. 495

The diagram distinctly demarcates between pos- 496

itive and negative representations, which under- 497

scores the value of our method in fine-tuning and 498

instance-based inference. Additionally, the direc- 499

tion of representation switching is largely consis- 500

tent, providing further evidence that LLMs have 501

the ability to tweak one attribute while keeping oth- 502

ers stable. This consistency in the direction of the 503

switch hints at the predictability and control we 504

have exercised over LLM behavior for targeted fea- 505

ture manipulation. In comparison to CoTDA, our 506

CoTAM depicts a clearer boundary, thus enabling 507

more efficient data learning than traditional data 508

augmentation. 509

5.4 Data Scale Analysis 510

In this section, we analyze how the number of ini- 511

tial data affects the performance of our CoTAM. 512

Thus, we sample 3000 more instances from SST- 513

2 to scale up the sampling pool. As presented in 514

Figure 5, CoTAM is able to break the NK-Shot 515

boundary with few examples (K ≤ 64) for fine- 516

tuning. With text representation models, CoTAM 517

7



shows a significant advantage on very few exam-518

ples (K ≤ 4) and converges to a similar perfor-519

mance with human annotation. Though fine-tuning520

on more human annotation leads to higher perfor-521

mance than CoTAM, the in-domain performance522

improvement might be a result of overfitting to523

the domain. Thus, we further evaluate CoTAM524

and NK-Shot on custom review, an out-of-domain525

dataset with the same labels as SST-2. On custom526

review, CoTAM shows a consistent advantage with527

different data numbers. Thus, we conclude our Co-528

TAM is more robust to domain mismatching than529

direct tuning.530

6 Related Work531

Attribute Manipulation aims to control certain532

attributes of the data. A general application of533

attribute manipulation is to change the visual at-534

tributes in facial images (Shen et al., 2020; Shen535

and Zhou, 2021). Image manipulation generally536

involves the transformation of image representa-537

tions (Perarnau et al., 2016; Xiao et al., 2018; Shen538

et al., 2020) in the latent space. In natural language539

processing, the closest topic to attribute manipu-540

lation is data flipping (Kruengkrai, 2019b; Zhou541

et al., 2022), which replaces key spans in the text542

to switch its label. Obviously, many textual at-543

tributes like topics cannot be manipulated by span544

replacement. Thus, we choose to adapt the LLM to545

manipulate a latent space approximated by a series546

of attributes proposed by the LLM.547

Controllable Generation is another close topic548

to our CoTAM. These methods typically gener-549

ate texts from a continuous latent space discretely550

by controlling certain dimensions (Bowman et al.,551

2016; Hu et al., 2017; Yang and Klein, 2021). The552

controllable generator is trained by maximizing a553

variational lower bound on the data log-likelihood554

under the generative model with a KL divergence555

loss (Hu et al., 2017). The limitation of the cur-556

rent controllable generation is no explicit control557

of other dimensions to maintain them the same.558

Our method addresses this issue by completely de-559

composing the input text into multiple labels with560

LLMs and then reconstructing it with switched at-561

tributes.562

Large Language Models are large-scale mod-563

els trained on a massive number of texts (Brown564

et al., 2020; Chowdhery et al., 2022; Hoffmann565

et al., 2022) that have been shown to have emerg-566

ing capabilities (Wei et al., 2022b). One of these567

capabilities is learning from few-shot demonstra- 568

tions, which is often referred to as in-context learn- 569

ing (Dong et al., 2022). However, these demon- 570

strations must be concatenated into contexts dur- 571

ing inference time, increasing the computational 572

costs and carbon footprints. Another important 573

capability is to follow instructions for zero-shot 574

task transferrability (Wei et al., 2022a). Following 575

this idea, ChatGPT (Ouyang et al., 2022; OpenAI, 576

2023) was trained with human feedback and rein- 577

forcement learning. Our work benefits from these 578

instruction-tuned models to generate attributes and 579

reconstruct sentences. 580

Data Augmentation is widely employed in low- 581

resource scenarios to mitigate model overfitting. 582

It is usually conducted in a label-preserving man- 583

ner where only minor perturbations are added (Wei 584

and Zou, 2019; Fadaee et al., 2017). Recently, a 585

line of research propose to use LLMs for data aug- 586

mentation. Specifically, they use few-shot data as 587

demonstrations and prompt LLMs to generate new 588

data (Yoo et al., 2021; Sahu et al., 2022a). They 589

claim that the LLM is able to mix few-shot data 590

and synthesize similar ones. Lin et al., 2023 further 591

propose to use Pointwise V-information to filter 592

unhelpful data from generations. Most recently 593

Dai et al., 2023; Whitehouse et al., 2023 propose 594

to generate data using ChatGPT and GPT-4 and 595

observe performance improvement. Finally Cheng 596

et al., 2023 use GPT-3 generated data to improve 597

sentence embedding via contrastive learning. Our 598

work aims at improving LLM-based data augmen- 599

tation via attribute manipulation. 600

7 Conclusion 601

The study introduces a novel method, Chain-of- 602

Thought Attribute Manipulation (CoTAM), which 603

uses manipulated data from Large Language Mod- 604

els (LLMs) for few-shot learning. Our CoTAM cre- 605

ates label-switched data by modifying task-specific 606

attributes and reconstructing new sentences. Our 607

testing validated the effectiveness of CoTAM over 608

other LLM-based text generation techniques. The 609

results also showcase the potential for LLM-guided 610

learning with less supervision. 611

Future work will aim to adapt the attribute ma- 612

nipulation technique for smaller language models, 613

increasing its scalability and accessibility. This 614

would reduce reliance on the resource-intensive 615

processes inherent to large language models, im- 616

proving efficiency. 617

8



Limitation618

Despite the significant advancements in few-shot619

learning and attribute manipulation reported in this620

paper, our proposed CoTAM does come with cer-621

tain limitations. Firstly, our approach leverages a622

chain-of-thoughts decomposition and reconstruc-623

tion procedure which, while yielding improved data624

efficiency and model performance, tends to result625

in a decrease in the overall generation efficiency626

compared to traditional methods. This may affect627

the method’s scalability, particularly in scenarios628

requiring rapid data generation. Secondly, the cur-629

rent implementation of CoTAM is primarily con-630

fined to attribute-related tasks, limiting its scope of631

application. While this constraint is a direct result632

of our method’s design focused on manipulating633

task-specific attributes, we acknowledge that ex-634

tending CoTAM’s applicability to a broader set of635

tasks could significantly increase its utility. Our636

future work will thus aim to address this limitation.637

Lastly, it should be noted that the effectiveness of638

CoTAM is fundamentally dependent on the abili-639

ties of the underlying Large Language Models. As640

a consequence, the limitations inherent in these641

LLMs, such as biases in their training data or limi-642

tations in their understanding of nuanced contexts,643

could potentially impact the performance of Co-644

TAM. It is thus crucial to continually improve and645

refine the LLMs used in our method to ensure the646

accuracy and robustness of the generated data.647

Ethical Consideration648

Our work instructs large language models to gen-649

erate efficient training data, which generally does650

not raise ethical concerns.651
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A Dataset Statistics921

Dataset SST-2 TweetEmo AG-News

T
C

Domain Sentiment Sentiment Topic
#Test 1.8K 1.4K 7.6K
#Label 2 4 4

Dataset MNLI MRPC CSQA

O
th

er
s Task NLI STS MCQA

#Test 9.8K 1.7K 1.1K
#Label 3 2 5

Table 6: The statistics of datasets in our experiments.

The statistics of the dataset used in the experi-922

ments are presented in Table 6. The numbers of923

test instances in matched and mismatched are both924

9.8K.925

B Attribute Names926

Dataset Attributes

SST-2 sentiment: positive
sentiment: negative

TweetEmo

sentiment: anger
sentiment: joy
sentiment: optimism
sentiment: sadness

AG-News

topic: world news
topic: sports news
topic: business news
topic: sci/tech news

MNLI
natural language inference: contradiction
natural language inference: neutral
natural language inference: entailment

MRPC semantics: equivalent to sentence 1
semantics: inequivalent to sentence 1

CSQA best choice: <answer name>

Table 7: The attribute names in datasets of our experi-
ments.

The attribute names of the dataset used in the ex-927

periments are presented in Table 7.928

C Prompts 929

Target Prompt

CoTAM “<sentence>”
Please think step by step:
1. What are some other at-
tributes of the above sentence ex-
cept “<attr>”?
2. How to write a similar sen-
tence with these attributes and
“<new attr>”?
3. Write such a sentence without
any other explanation.

CoTDA “<sentence>”
Please think step by step:
1. What are some other at-
tributes of the above sentence ex-
cept “<attr>”?
2. How to write a similar sen-
tence with these attributes and
“<attr>”?
3. Write such a sentence without
any other explanation.

FlipDA “<sentence>”
Please think step by step:
1. How to switch the above sen-
tence to “<new attr>” by chang-
ing some spans?
2. Write the switched sentence
without any other explanation.

Table 8: The prompts used in our experiments.

The prompts used in the experiments are presented 930

in Table 8. 931

D Case Study 932

Figure 6 specifies the real attribute manipulation 933

process in our experiments. For better depiction, 934

we simplify the response by only presenting the 935

attributes proposed by the LLMs. 936

In the SST-2 example, other attributes include 937

labels in a different categorization (Topic: Movie 938

Review), actor entities (Actor: Ford, Neeson), and 939

overall style (Opinion: Overall). These attributes 940

are well preserved in the reconstruction, which 941

contributes to a strong contrast in the task target 942

and consequently improves the data efficiency. 943

Moving on to the MNLI example, the sentence 944

primarily breaks down into different semantic el- 945
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Sentiment: Negative → Positive

Mention: Actors

Topic: Movie Review

though ford and neeson

capably hold our interest, but 

its just not a thrilling movie

Ford and Neeson effortlessly 

captivate us, making it an 

incredibly thrilling movie. 

Actor: Ford, Neeson

Opinion: Overall

Comment: Actor Performance

SST-2

NLI: Entail → Contradict Concern: Music Genre

Content: Parental Approval

Hypothesis: My parents were 

able to see that it was a bit 

classical and I convinced 

them it was fine to listen to.

Hypothesis: Despite my 

efforts to convince them, my 

parents couldn't see the 

classical aspect and refused to 

let me listen to it.
Demonstration: Persuasion

MNLI Premise: I was able to convince my parents that it was OK to listen to them because it was sort of classical.

Figure 6: Case study of the real workflow in CoTAM.
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Figure 7: The statistics the most frequent 10 attributes
in the decomposition step of CoTAM.

ements. When these elements are reconstructed,946

they follow a logical sequence that differs from the947

original sentence. Thus data from CoTAM rein-948

forces the learner’s comprehension of textual logic949

which is crucial for tackling MNLI.950

E Attribute Statistics951

In this section, we further explore the dynamic at-952

tribute decomposition mechanism in CoTAM. For953

1315 instances from SST-2, there are 4513 decom-954

posed attributes (3.43 per instance) and 2409 differ-955

ent ones. The distribution is in a long-tail pattern956

with 2124 attributes only appearing once. We show957

the statistics the most frequent 10 attributes from958

the decomposition in Table 7. We can observe a959

semantic diversity among the attributes, which veri-960

fies the ability of LLMs to comprehend the features961

of different inputs. As the most popular attribute962

subject (X) only appear in about 20%, there is no963

dominant attribute in the decomposition, which964

shows the flexibility of LLM-driven feature anal-965

ysis. We also provide a quantitative comparison966

with a fixed feature pool in the ablation study.967
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