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Abstract

Existing metrics for reinforcement learning (RL) such as regret, PAC bounds, or
uniform-PAC [Dann et al., 2017], typically evaluate the cumulative performance,
while allowing the agent to play an arbitrarily bad policy at any finite time t. Such
a behavior can be highly detrimental in high-stakes applications. This paper in-
troduces a stronger metric, uniform last-iterate (ULI) guarantee, capturing both
cumulative and instantaneous performance of RL algorithms. Specifically, ULI
characterizes the instantaneous performance by ensuring that the per-round subopti-
mality of the played policy is bounded by a function, monotonically decreasing w.r.t.
round t, preventing revisiting bad policies when sufficient samples are available.
We demonstrate that a near-optimal ULI guarantee directly implies near-optimal
cumulative performance across aforementioned metrics, but not the other way
around. To examine the achievability of ULI, we first provide two positive results
for bandit problems with finite arms, showing that elimination-based algorithms
and high-probability adversarial algorithms with stronger analysis or additional
designs, can attain near-optimal ULI guarantees. We also provide a negative result,
indicating that optimistic algorithms cannot achieve near-optimal ULI guarantee.
Furthermore, we propose an efficient algorithm for linear bandits with infinitely
many arms, which achieves the ULI guarantee, given access to an optimization
oracle. Finally, we propose an algorithm that achieves near-optimal ULI guarantee
for the online reinforcement learning setting.

1 Introduction

In online decision-making problems with bandit feedback, a learner sequentially interacts with an
unknown environment: in each round, the learner plays an policy and then observes the corresponding
rewards of the played policy. Typically, the goal of the learner is to achieve good cumulative
performance, commonly measured by regret or probably approximately correct (PAC) bound. For
instance, in the online advertisement scenario, the goal of the website (learner) could be maximizing
the cumulative click numbers [Li et al., 2010]. Hence, the website aims to minimize the regret
that measures the cumulative clicks of the recommended advertisement compared to that of the
unknown optimal advertisement. In addition to regret minimization, the goal could also be quickly
identifying popular advertisements [Chen et al., 2014, Jin et al., 2019]. To this end, a PAC bound
is suitable here to measure the sample complexity (i.e., cumulative time steps) that the algorithm
needs to identify those popular advertisements. To reap the benefits of both measures, Dann et al.
[2017] propose a new performance measure called uniform-PAC, ensuring that for all ϵ > 0, the total
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number of ϵ-suboptimal policies played by the algorithm is bounded by a function polynomial in 1/ϵ.
The uniform-PAC bound can simultaneously imply a high-probability sublinear regret bound and a
polynomial sample complexity for any desired accuracy.

Although uniform-PAC provides a powerful framework to unify regret1 and PAC bound, it still fails
to capture the instantaneous performance of the learning algorithm. In particular, a uniform-PAC
algorithm could play a bad policy in some late but finite round t, even if it enjoys a good cumulative
performance. This drawback impedes the application of uniform-PAC algorithms into high-stakes
fields. Clinical trials, for example, place high demands on instantaneous performance for every
treatment test, since patients need to be assigned with increasingly better treatments when more
experimental data are available [Villar et al., 2015]. Hence, two natural questions arise:

1. Can we find a new metric that characterizes not only the cumulative performance but also
the instantaneous performance?

2. If such a metric exists, is it optimally achievable by some algorithm?

In this paper, we answer both questions affirmatively. Our main contributions are summarized as
follows.

• We introduce a new metric called uniform last-iterate (ULI), which simultaneously characterizes
cumulative and instantaneous performance of sequential decision-making algorithms. On one
hand, ULI can characterize the instantaneous performance: the per-round suboptimality of any
algorithm with ULI guarantee is upper bounded by a function, monotonically decreasing for late
time t. On the other hand, we show that any algorithm with a (near-optimal) ULI guarantee is also
(near-optimally) uniform-PAC, demonstrating that ULI can imply cumulative performance.

• To answer the question whether ULI is achievable, we examine three common types of bandit
algorithms in the finite arm setting. First, we provide a stronger analysis to show that many existing
elimination-based algorithms indeed enjoy a near-optimal ULI guarantee. Then, we propose a meta-
algorithm that enables any high-probability adversarial bandit algorithms, with a mild condition,
to achieve a near-optimal ULI guarantee, and we show that such condition naturally holds for
many adversarial bandit algorithms. Finally, we provide a hardness result showing that optimistic
algorithms (e.g., lil’UCB [Jamieson et al., 2014]) cannot achieve near-optimal ULI guarantee.
As lil’UCB is near-optimally uniform-PAC, our hardness result also implies that ULI is strictly
stronger than uniform-PAC.

• For linear bandits with infinitely-many arms, we propose an oracle-efficient2 linear bandit algorithm
with the ULI guarantee (with access to an optimization oracle). In particular, we propose an adaptive
barycentric spanner technique, selecting finitely many base arms that can linearly represent all
(possibly infinitely many) well-behaved arms. This technique generalizes the one in [Awerbuch
and Kleinberg, 2008] for elimination-based algorithms by adaptively identifying spaces that active
arms span. Leveraging the phased elimination algorithm [Lattimore et al., 2020], our algorithm
can conduct the elimination over all arms by only playing a finite subset of arms and querying a
linearly-constrained optimization oracle for only a polynomial number of times.

• Finally, we propose a new algorithm for tabular episodic Markov decision processes (MDPs),
which achieves a near-optimal ULI guarantee. In particular, our algorithm adapts uncertainty-
driven reward functions to encourage exploration of the transition model, which ensures accurate
estimations of value functions across all policies. The final ULI guarantee is achieved by conducting
policy elimination.

Related work. In online decision-making problems, regret and PAC bounds are widely adopted to
evaluate the cumulative performance of algorithms. More concretely, one line of research [Auer et al.,
2002a,b, Abbasi-Yadkori et al., 2011, Li et al., 2010, Jin et al., 2018] aims to minimize the regret
which measures the difference between the cumulative rewards of the selected policies and that of the
best policy in hindsight. The PAC guarantees are more common than the regret when studying the
pure-exploration/best policy identification problems [Even-Dar et al., 2006, Kalyanakrishnan et al.,
2012, Wagenmaker et al., 2022]. One of the popular PAC measures is (δ, ϵ)-PAC which suggests that

1Throughout the paper, we focus on high-probability regret, and therefore, when we mention regret, it always
refer to high-probability regret. We refer readers to Remark 2.8 for a discussion on expected regret.

2A linear bandit algorithm is oracle-efficient if it calls an optimization oracle per-round for at most polynomial
number of times.
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with probability at least 1− δ, the algorithm can output a near-optimal policy at most ϵ away from the
optimal one by using a sample complexity polynomial in 1/ϵ. Later, Dann et al. [2017] introduce a
new framework called uniform-PAC to unify both metrics and develop a uniform-PAC algorithm for
episodic Markov decision processes (MDPs). Subsequent works design uniform-PAC algorithms for
MDPs with linear function approximation [He et al., 2021] and bounded Eluder dimension [Wu et al.,
2023]. Though uniform-PAC strengthens regret and (δ, ϵ)-PAC bound, it still fails to characterize the
instantaneous performance of online algorithms, i.e., a uniform-PAC algorithm, even with a good
cumulative performance, can play bad policies for some late rounds.

A seemingly related performance measure is last-iterate convergence (LIC) which has been studied
for optimizing MDPs [Moskovitz et al., 2023, Ding et al., 2023] and they use the primal-dual approach
to formulate the problem of identifying an optimal policy in the constrained MDPs from a game-
theoretic perspective. These works often require additional knowledge of the value functions and the
LIC does not characterize the unknown dynamics of the environment. However, in our problem, the
dynamics need to be learned as the algorithm sequentially interacts with the environment.

2 Preliminaries

2.1 Framework

We consider a general online sequential decision-making framework where a learner interacts with
an environment with a fixed decision set. At each round t ∈ N, the learner makes a decision from
the set and observes the corresponding reward(s). In what follows, we instantiate this framework to
multi-armed bandits, linear bandits, and tabular episodic Markov decision processes (MDPs).

Multi-armed bandits. In the stochastic MAB setting, the arm (decision) set follows that A = [K] ≜
{1, . . . ,K}. Each arm a ∈ [K] is associated with a fixed and unknown [0, 1]-bounded distribution3

such that ∀t, reward Xt,a is an i.i.d. sample from this distribution with mean µa = E[Xt,a]. Let At

be the arm played at round t and ∆a = µ⋆ − µa be the suboptimality gap where µ⋆ = maxa∈[K] µa.

Linear bandits. In the stochastic linear bandits setup, we assume that the arm setA ⊆ Rd is compact.
The reward of played arm At at round t follows that Xt,At = ⟨θ,At⟩+ ηt where θ ∈ Rd is a fixed
but unknown parameter, and ηt is conditionally 1-subgaussian. Let ∆a = supb∈A ⟨θ, b− a⟩. We
follow standard assumptions that ∥θ∥2 ≤ 1, ∥a∥2 ≤ 1 for all a ∈ A, and ∆a ≤ 1 for all a ∈ A.

Tabular episodic MDPs. A tabular episodic MDP is formalized asM = (S,A, H, r, P, µ) where
S,A are finite state and action spaces with |S| = S, |A| = A, H is the horizon length, r = {rh}Hh=1
where rh : S ×A → [0, 1] is a known reward function, {Ph}h∈[H] where Ph : S ×A → ∆(S) is an
unknown transition function, and µ is the initial state distribution. At the beginning of each episode
t, the learner executes a policy πt = {πt,h : S → ∆(A)}Hh=1. Then, starting from the initial state
st,1 ∼ µ, for each stage h ∈ [H], the learner repeatedly takes an action at,h ∼ πt,h(st,h), observes
reward rh(st,h, at,h), and transits to the next state st+1,h ∼ Ph(·|st,h, at,h).
For any policy π and stage h, we define action value function Qπ

h(s, a) and value function V π
h (s) as

Qπ
h(s, a) = E

[
H∑

h′=h

rh′(sh′ , ah′) | sh = s, ah = a, π

]
, V π

h (s) = E

[
H∑

h′=h

rh′(sh′ , ah′) | sh = s, π

]
.

The optimal action value function and value function at each stage h are denoted by V ⋆
h (s) =

maxπ V
π
h (s), and Q⋆

h(s, a) = maxπ Q
π
h(s, a) respectively. Let ∆π = Es1∼µ[V

⋆
1 (s1)− V π

1 (s1)].

Suboptimality notations. For MAB and linear bandits settings, the instantaneous suboptimality is
∆t = ∆At

, and for episodic MDP, ∆t = ∆πt
. We use ∆ = infa∈Π:∆a>0 ∆a to denote the minimum

suboptimality gap. Notice that it is possible that ∆ = 0 when, for example, arm set A is a ball.

2.2 Limitations of Existing Metrics

Regret and (δ, ϵ)-PAC are widely adopted to measure the performance. The regret is defined as:

3Note that all MAB and linear stochastic bandit algorithms in this paper also work for R-subgaussian noise
with minor adjustments. Only adversarial bandits algorithms in Section 3.1 require the boundedness assumption.
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Definition 2.1 (Regret). For each fixed T ∈ N, the regret RT is defined as RT =
∑T

t=1 ∆t.

Let Nϵ =
∑∞

t=1 I{∆t > ϵ} be the number of plays of policies whose suboptimality gap is greater
than ϵ. The definition of (δ, ϵ)-PAC is given as:
Definition 2.2 ((δ, ϵ)-PAC). For any fixed δ, ϵ ∈ (0, 1), an algorithm is (δ, ϵ)-PAC (w.r.t. function
FPAC) if there exists a function FPAC (δ, ϵ) polynomial in log(δ−1) and ϵ−1 such that

P (Nϵ ≤ FPAC (δ, ϵ)) ≥ 1− δ.

As shown by Dann et al. [2017], both regret and (δ, ϵ)-PAC have limitations. Specifically, an algorithm
with sublinear regret bound may play suboptimal policies infinitely often. For the algorithm with
(δ, ϵ)-PAC guarantee, it may not converge to the optimal policy when feeding the algorithm with more
samples. Therefore, such an algorithm would play those policies with suboptimality gap, e.g., ϵ/2
infinitely often. Motivated by these limitations, Dann et al. [2017] introduce uniform-PAC as follows.
Definition 2.3 (Uniform-PAC). An algorithm is uniform-PAC for some fixed δ ∈ (0, 1) if there exists
a function FUPAC (δ, ϵ) polynomial in log(1/δ) and ϵ−1, such that

P (∀ϵ > 0 : Nϵ ≤ FUPAC (δ, ϵ)) ≥ 1− δ.

We also call FUPAC(δ, ϵ) the sample complexity function. Uniform-PAC is a stronger metric than
regret and (δ, ϵ)-PAC since it leads to the following implications.
Theorem 2.4 (Theorem 3 in [Dann et al., 2017]). If an algorithm is uniform-PAC for some δ

with function FUPAC(δ, ϵ) = Õ
(
α1/ϵ+ α2/ϵ

2
)

4, where α1, α2 > 0 are constant in ϵ and depend on
log(1/δ) and K for MAB, d for linear bandits, and S,A,H for MDPs then, the algorithm guarantees:

• P (limt→+∞ ∆t = 0) ≥ 1− δ;
• (δ, ϵ)-PAC with FPAC(δ, ϵ) = FUPAC(δ, ϵ) for all ϵ > 0;

• With probability at least 1− δ, for all T ∈ N, RT = Õ
(√

α2T + α1 + α2

)
.

Limitations of Uniform-PAC. According to Theorem 2.4, uniform-PAC can imply a long-term
convergence (the first bullet) and good cumulative performance (the second and the third bullets), but
it does not capture the convergence rate of ∆t for each round t. In other words, even if an algorithm
enjoys uniform-PAC, it could still play a significantly bad policy for some very large but finite t. This
would lead to catastrophic consequences in safety-critical applications.

2.3 New Metric: Uniform Last-Iterate Guarantee

To address the aforementioned issue, we introduce a new metric, formally defined below.
Definition 2.5 (Uniform last-iterate (ULI)). An algorithm is ULI for some δ ∈ (0, 1) if there exists a
positive-valued function FULI(·, ·), such that

P (∀t ∈ N : ∆t ≤ FULI(δ, t)) ≥ 1− δ,

where FULI(δ, t) is polynomial in log(1/δ) and proportional to the product of power functions of
log t and 1/t (e.g., FULI(δ, t) = polylog(1/δ)(log t)κ1t−κ2 for some κ1, κ2 ≥ 0).

According to Definition 2.5, the instantaneous suboptimality of any algorithm with the ULI guarantee
can be bounded by a function FULI(δ, t). Moreover, FULI(δ, t) decreases monotonically for large t if
its power on 1/t is strictly positive, which captures the convergence rate of ∆t.

Note that the convergence rate of ∆t is mainly determined by the power on 1/t in FULI. Moreover,
as we will show shortly, an algorithm with the ULI guarantee automatically has a small regret bound.
We therefore have the following lower bound on FULI.
Theorem 2.6. For any bandit algorithm that achieves ULI guarantee for some δ with function
FULI(δ, t), there exists a MAB instance such that FULI(δ, t) = Ω

(
t−1/2

)
.

We provide the proof in Appendix A. In the rest of the paper, we say an algorithm is near-optimal
ULI if it achieves the ULI guarantee with FULI(δ, t) = Õ(1/

√
t).

Then, we present the following theorem to show that ULI directly leads to uniform-PAC, implying
that ULI also characterizes the cumulative performance of bandit algorithms.

4We use Õ(·) to hide polylog factors.
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Theorem 2.7. Suppose an algorithm achieves the ULI guarantee for some δ with function FULI(δ, t) =
polylog(t/δ) · t−κ where κ ∈ (0, 1). Then, we have,

• the algorithm is uniform-PAC with function FUPAC(δ, ϵ) = O
(
ϵ−

1
κ · polylog(δ−1ϵ−1)

)
.

• with probability at least 1− δ, ∀T ∈ N, the regret RT is bounded by

O
(
min

{
polylog(T/δ) · T 1−κ,∆1−1/κpolylog2

(
(δ∆)−1

)})
,

when the minimum suboptimality gap of the input instance ∆ satisfies ∆ > 0.

According to Theorem 2.7, if an algorithm is with near-optimal ULI guarantee (i.e., κ = 1
2 ), then

it implies the near-optimality for uniform-PAC bound (the first bullet point) and anytime sublinear
high-probability regret bound (the second bullet point). On the other hand, an algorithm with near-
optimal uniform-PAC bound does not necessarily enjoy a near-optimal ULI guarantee as shown in
Section 3.2. The proof of Theorem 2.7 can be found in Appendix B.
Remark 2.8. Although a near-optimal ULI guarantee implies an anytime sublinear high-probability
regret bound, it cannot give an anytime sublinear expected regret bound. This is because any algorithm
with ULI guarantee is also uniform-PAC, but [Dann et al., 2017, Theorem 1] implies that no algorithm
can be uniform-PAC and achieve anytime sublinear expected regret bound simultaneously.

3 Achieving Near-Optimal ULI in Bandits with Finite Arm-Space

In this section, we answer the question whether ULI is achievable for bandit problems. To this end, we
examine three common types of bandit algorithms, including elimination-based algorithms, optimistic
algorithms, and high-probability adversarial algorithms, in the finite arm setting, i.e., |A| = K.

3.1 Elimination Framework Achieving Near-Optimal ULI Guarantee

To examine whether the elimination-type algorithms can achieve the ULI guarantee, we first provide
an elimination framework in Algorithm 1 that ensures the ULI guarantee, and we then show that most
elimination-based algorithms fall into this framework. The following result shows that with a proper
function f and a positive constant β, such an elimination framework ensures the ULI guarantee.
Theorem 3.1. For any given δ ∈ (0, 1), if there exists function f(δ, t) = t−κpolylog(t/δ) for some
κ ∈ (0, 1) and ∃β > 0, such that with probability 1− δ, Eq. (1) holds for all t, then algorithm is ULI
with FULI(δ, t) = O (f(δ, t)).

Algorithm 1 Elimination framework for ULI
Input: δ ∈ (0, 1), set A, function f(·, ·), and constant β.
Initialize: active arm set A0 = A.
for t = 1, 2, . . . do

Select an active set At based on available observations as (a∗ is one of optimal arms)

At ⊆ {a ∈ At−1 : ∆a ≤ β · f (δ, t)} ∪ {a⋆} . (1)

Play an arm At ∈ At and observe reward Xt,At
.

Theorem 3.1 suggests that Eq. (1) is a sufficient condition for elimination-based algorithms to achieve
the ULI guarantee. Now, we show that existing elimination algorithms indeed fall into such a
framework. We here consider successive elimination (SE) and phased elimination (PE). Notice
that we consider SE only for the MAB setting (called SE-MAB, e.g., Algorithm 3 in [Even-Dar
et al., 2006]) but PE for both the MAB setting (called PE-MAB, e.g., exercise 6.8 in [Lattimore and
Szepesvári, 2020]) and the linear bandit setting (called PE-L, e.g., Algorithm 12 of Chapter 22 in
[Lattimore and Szepesvári, 2020]). Since those algorithms are standard, we defer their pseudocodes
to Appendix D. Given Theorem 3.1, the following results show that the elimination framework can
be instantiated by these algorithms with proper functions and therefore they achieve the ULI.
Theorem 3.2. For any fixed δ ∈ (0, 1), elimination framework in Algorithm 1 can be instantiated by

• SE-MAB for MAB to achieve the ULI with FULI(δ, t) = O
(
t−

1
2

√
K log(δ−1Kt)

)
.
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• PE-MAB for MAB to achieve the ULI with FULI(δ, t) = O
(
t−

1
2

√
K log(δ−1K log(t+ 1))

)
.

• PE-L for linear bandits to achieve ULI with FULI(δ, t) = O
(
t−

1
2

√
d log(δ−1K log(t+ 1) log d)

)
.

Achieving ULI by adversarial bandit algorithms. Traditional elimination-based algorithms,
including the ones mentioned above, typically require a carefully designed exploration strategy which
is non-trivial even for linear bandits. Here, we provide an alternative way to achieve ULI by employing
adversarial bandit algorithms to explore and then conduct the elimination. As shown in Appendix F,
all adversarial bandit algorithms for both MAB and linear bandits that meet a certain condition can
naturally be used to achieve the ULI guarantees similar to those of traditional elimination-based
algorithms.

3.2 Lower Bound for Optimistic Algorithms

In this section, we present a lower bound to show that optimistic algorithms cannot achieve near-
optimal ULI guarantee. The procedure of optimistic algorithms is summarized as follows. After
playing each arm once, at each round t, the algorithm plays an arm At that satisfies

At ∈ argmax
a∈A

{µ̂a(Na(t)) + Uδ(Na(t))} , (2)

where Na(t) is the number of plays of arm a before round t, µ̂a(Na(t)) =
∑t−1

s=1 Xs,As I{As=a}
Na(t)

is the
empirical mean of arm a after Na(t) times play, and Uδ(Na(t)) is a positive bonus function which
encourages the exploration.

We first consider optimistic algorithms e.g., upper confidence bound (UCB) [Lattimore and Szepesvári,
2020, Algorithm 3, Chapter 7], which enjoy (near)-optimal regret bounds. This type of algorithms
typically uses the bonus function in the form of

√
log(2t2/δ)/Na(t)

5. However, the log t term forces
the algorithm to play suboptimal arms infinitely often, and thus they cannot achieve the ULI guarantee.
Similarly, other variants [Audibert and Bubeck, 2010, Degenne and Perchet, 2016] with log t term in
bonus function, also cannot achieve the ULI guarantee.

We then consider another optimistic-type algorithm, lil’UCB [Jamieson et al., 2014] which obtains the
order-optimal instance-dependent sample complexity and avoids log(t) term in Uδ(Na(t)). The bonus

function of lil’UCB is as
√
log
(
δ−1 log+ (Na(t))

)
/Na(t) where log+(x) = log (max {x, e}). Our

main result for lil’UCB is presented as follows. The full analysis of lil’UCB is deferred to Appendix E.
Theorem 3.3. There exists a constant α ∈ (0, 1) that for all ∆ ∈ (0, α), running lil’UCB on the
two-armed bandit instance with deterministic rewards and arm gap ∆ gives ∃t = Ω

(
∆−2

)
such that

∆t = Ω
(
t−

1
4

√
log log (∆−2 log(δ−1)) + log(δ−1)

)
.

Theorem 3.3 shows that lil’UCB is not near-optimal ULI, but it is unclear whether it can achieve
the ULI guarantee. Recall from Theorem 3.2 that the elimination-based algorithms ensure that with
high probability, ∀t, ∆t = Õ

(
t−1/2

)
. Theorem 3.3 suggests that the convergence rate of lil’UCB is

strictly worse than that of elimination-based algorithms, even if it enjoys a near-optimal cumulative
performance [Jamieson et al., 2014]. In fact, this lower bound holds for all optimistic algorithms as
long as the bonus function is in a similar form.
Remark 3.4 (ULI is strictly stronger than uniform-PAC). For lil’UCB, the number of times playing
suboptimal arms is finite with an order-optimal instance-dependent sample complexity, which implies
that lil’UCB is near-optimal uniform-PAC. Therefore, Theorem 3.3 also shows that an algorithm with
near-optimal uniform-PAC does not necessarily enjoy near-optimal ULI guarantee.

4 Achieving Near-Optimal ULI for Linear Bandits in Large Arm-Space

In this section, we propose a linear bandit algorithm that can handle the infinite number of arms. The
compact arm set A is assumed to span Rd and d is known.

5We slightly adjust the bonus function to ensure that with probability at least 1− δ, the confidence bound
holds for all t ∈ N.
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Algorithm 2 PE with adaptive barycentric spanner
Input: Compact arm set A, confidence δ ∈ (0, 1), and constant C > 1.
Initialize: θ̂1 = {0, . . . , 0} ∈ Rd, T0 = 1 and B0 = {e1, . . . , ed}.

1 for m = 1, 2, . . . do
2 Set Tm = 256C4 · d3

4−m log
(
δ−1d34m

)
.

3 Invoke Algorithm 12 with (A,m,Bm−1, Tm, C, θ̂m) to find a C-approximate barycentric spanner
Bm for active arm set Am where Am is in Eq. (3).

4 Set πm(a) = 1
d for each a ∈ Bm.

5 Play each arm a ∈ Bm for nm(a) = ⌈Tmπm(a)⌉ times.
6 Compute Vm = I +

∑
a∈Bm

nm(a)aa⊤ and θ̂m+1 = V −1
m

∑
t∈Tm

AtXt,At where Tm is a set
that contains all rounds in phase m.

4.1 Main Algorithm and Main Results

The starting point of our algorithm design is the phased elimination (PE) algorithm [Lattimore et al.,
2020, Algorithm 12, Chapter 22]. However, PE in general is not feasible when the arm space is large
(e.g., a continuous space). In this section, we present a carefully-designed algorithm to address the
new challenges from large arm-spaces.

Issues of PE for large arm-space. PE needs to (i) compute (approximately) G-optimal design whose
complexity scales linearly with |A| and (ii) compare the empirical mean of each arm, both of which
are impossible when the arm set is infinite, e.g., A is a ball. A natural idea is to discretize A, e.g.,
constructing a ϵ-net, but the computational complexity has an exponential dependence on d, and the
optimal arm does not necessarily lie in the net, which prevents the convergence to the optimal arm.

High-level idea behind our solution. To address the aforementioned issues, we propose an oracle-
efficient linear bandit algorithm in Algorithm 2 which can eliminate bad arms by efficiently querying
an optimization oracle. Our algorithm equips PE with a newly-developed adaptive barycentric
spanner technique. The proposed technique selects a finite representative arm set to represent
(possibly infinite) active arm set and adaptively adjusts the selection of arms across phases. By
conducting the (approximate) G-optimal design [Kiefer and Wolfowitz, 1960] on the representative
arm set and playing each arm in the set according to the design, the algorithm can acquire accurate
estimations uniformly over all active arms. Moreover, the adaptive barycentric spanner approach can
be implemented by efficiently querying an optimization oracle in polynomial times.

The definition of barycentric spanner [Awerbuch and Kleinberg, 2008] is presented as follows.
Definition 4.1 (C-approximate barycentric spanner). Let A ⊆ Rd be a compact set. The set
B = [b1, . . . , bd] ⊆ A is a C-approximate barycentric spanner for A if each a ∈ A can be expressed
as a linear combination of points in B with coefficients in the range of [−C,C].

Why adaptive barycentric spanner? The primary reason that the non-adaptive barycentric spanner
technique [Awerbuch and Kleinberg, 2008] fails to work for PE is that it requires the knowledge of
the space that the active arm set spans. However, acquiring such knowledge is often difficult because
the active arm set, which may span a proper linear subspace of Rd, varies for different phases and the
number of active arms could be infinite. Our algorithm shown in Algorithm 12 (whose pseudocode is
deferred to Appendix G.2 due to space limit) can identify a barycentric spanner for active arm set
adaptively for each phase, even if they do not span Rd.

Algorithm procedure. Our algorithm proceeds in phases m = 1, 2, . . ., and each phase consists of
consecutive rounds. At the beginning of phase m, the algorithm invokes subroutine Algorithm 12 to
identify a C-approximate barycentric spanner Bm which can linearly represent all arms in active arm
set Am where A1 = A and ∀m ≥ 2

Am =
{
a ∈ Am−1 :

〈
θ̂m, a⋆m − a

〉
≤ 2−m+1

}
, (3)

where a⋆m is the empirical best arm and θ̂m is the estimation of unknown parameter θ.

Then, the algorithm assigns πm(a) = 1
d for each a ∈ Bm. In fact, if we add ∪i∈Im

ei√
Tm

(refer
Appendix G for ei and Im) back to Bm and denote the new set by B′m, then πm : B′m → 1

d forms an
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Algorithm 3 Tabular Episodic MDPs with ULI guarantee
Input: δ ∈ (0, 1), set Πall containing all deterministic policies, absolute constant c1, c2 > 0.
Initialize: Π1 = Πall.
for m = 1, 2, . . . do

Set δm = δ/(2m2) and duration Tm =
⌈
c12

2mS2AH4 log2
(
c22

2mS2AH4|Πall|/δm
)⌉

.
Run Algorithm 4 with input (δm,Πm, Tm) to obtain {Ṽ π

m}π∈Πm .
Update active policy set Πm+1 =

{
π ∈ Πm : maxπ′∈Πm Ṽ π′

m − Ṽ π
m ≤ 2−m

}
.

optimal design. It is noteworthy that our algorithm only plays arms in Bm as these added elements do
not necessarily exist in the arm set Am. As each added element ei√

Tm
is close to zero, even if we only

play arms in Bm, we can still acquire accurate estimations uniformly overAm (refer to Appendix G.6
for details):

∀a ∈ Am : ∥a∥V −1
m

=
√

a⊤V −1
m a ≤ C · d/

√
Tm, (4)

where Vm = I +
∑

a∈Bm
nm(a)aa⊤ is the least squares matrix, used to estimate θ.

According to the standard analysis of linear bandit algorithms, the estimation error of ⟨a, θ⟩ is
proportional to ∥a∥V −1

m
. Hence, the estimation errors of {⟨a, θ⟩}a∈Am can be uniformly bounded by

Õ
(
Cd/

√
Tm−1

)
, which is known to the learner. Finally, after playing each arm a ∈ Bm for nm(a)

times, the algorithm updates the empirical estimates Vm and θ̂m+1, and then steps into the next phase.

The main results of Algorithm 2 for achieving the ULI guarantee and computational complexity are
given as follows. The full proof can be found in Appendix G.
Theorem 4.2. For any fixed δ ∈ (0, 1), Algorithm 2 achieves the ULI guarantee with function
FULI(δ, t) = O

(
t−

1
2

√
d3 log(δ−1dt)

)
. Moreover, in each phase, the number of calls to the optimiza-

tion oracle given in Definition G.2 is O
(
d3 logC d

)
.

Theorem 4.2 and Theorem 2.7 jointly suggest Õ(d3/2
√
T ) worst-case regret bound for the infinite-

armed setting, which matches those of [Dani et al., 2008, Agrawal and Goyal, 2013, Hanna et al.,
2023]. Compared with the lower bound Ω(d

√
T ) given by Dani et al. [2008], our regret bound suffers

an extra
√
d factor, caused by the spanner technique. Yet, it remains open to find a computationally

efficient linear bandit algorithm that can handle the infinite arm setting with general compact A and
matches the Ω(d

√
T ) lower bound.

Theorem 4.2 also shows that, for each phase, the spanner can be constructed by calling the oracle for
only polynomial times. Compared to the computational efficiency of the algorithm in [Awerbuch and
Kleinberg, 2008], the efficiency of our algorithm is only d times worse than theirs.

5 Achieving Near-Optimal ULI in Tabular Episodic MDPs

In this section, we propose a novel algorithm that achieves a near-optimal ULI guarantee in tabular
episodic MDPs setup. The algorithm is formally presented in Algorithm 3.

High-level idea. Algorithm 3 conducts policy elimination over a policy set Πall which enumerates
all deterministic policies. The key challenge here is to acquire accurate estimations of value functions
uniformly for all deterministic policies. Note that naïvely playing all deterministic policies will incur
linear dependence on |Πall| = ASH in FULI, which is exponentially large. Hence, the algorithm
invokes subroutine Algorithm 4 to exhaustively explore the environment, which ensures accurate
estimations of the transition model and only suffers logarithmic dependence on |Πall|. Once the
transition model can be well-approximated, the algorithm constructs an accurate estimation of the
value function for every policy and then decides which policies should be eliminated.

More concretely, Algorithm 3 first accepts a set of all deterministic policies and then it proceeds
in phases m = 1, 2, . . .. In each phase m, subroutine Algorithm 4 is invoked to learn the transition
model. Specifically, the subroutine inherits the structure of UCB-VI [Azar et al., 2017], but more
importantly the algorithm pretends to be agnostic to the reward function and uses uncertainty-driven
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Algorithm 4 Uniform estimation for value functions
Input: confidence δ ∈ (0, 1), policy set Π ⊆ Πall, duration T .
Initialize: randomly pick a policy π1 ∈ Π, N1,h(s, a) = N1,h(s, a, s

′) = 0 for all (h, s, a, s′).
for t = 1, . . . , T do

Observe initial state st,1 ∼ µ.
for h = 1, . . . ,H do

Take action at,h = πt,h(st,h) and observe st,h+1 ∼ Ph(·|st,h, at,h).
Increase counters Nt,h(st,h, at,h, st,h+1)

+← 1 and Nt,h(st,h, at,h)
+← 1.

Update estimates P̂t,h(s
′|s, a) = Nt,h(s,a,s

′)
max{1,Nt,h(s,a)} for all (s, a, s′) ∈ S ×A× S.

Update bonus function bt = {bt,h}h∈[H] where bt,h(·, ·) is updated according to Eq. (5).

Get {V̂ π
t,1(s1)}π∈Π by invoking Algorithm 5 with input (Π, bt/H, {P̂T,h}h∈[H], bt, st,1).

Update policy πt+1 = argmaxπ∈Π V̂ π
t,1(s1).

for t = 1, . . . , T do
Get {V̂ π

T,1(st,1)}π∈Π by invoking Algorithm 5 with input (Π, r, {P̂T,h}h∈[H], 0, st,1).

Output: {Ṽ π}π∈Π where Ṽ π = 1
T

∑T
t=1 V̂

π
T,1(st,1).

Algorithm 5 Construct estimated value function

Input: policy set Π ⊆ Πall, reward function r, transition P̂, bonus function b, initial state s1.
for π ∈ Π do

Q̂π
H+1(·, ·) = 0 and V̂ π

H+1(·) = 0.
for h = H,H − 1, . . . , 1 do

Q̂π
h(·, ·) = min

{[
P̂hV̂

π
h+1

]
(·, ·) + rh(·, ·) + bh(·, ·), H

}
and V̂ π

h (·) = Q̂π
h(·, π(·)).

Output: {V̂ π
1 (s1)}π∈Π.

reward functions {bt,h(s, a)/H}t,h where

bt,h(s, a) = H

√
2S log ι

max{1, Nt,h(s, a)}
+

2HS log ι

3max{1, Nt,h(s, a)}
where ι =

10SAH|Πall|T
δ

, (5)

where Nt,h(s, a) is the number of times of visiting (s, a) at stage h up to episode t. Note that
Eq. (5) captures the uncertainty of visitation a state-action pair, i.e., more visitations of (s, a),
larger Nt,h(s, a), and less uncertainty. This modification, inspired by [Wang et al., 2020] forces the
algorithm to aggressively explore the environment, in the sense that the algorithm prefers to play a
policy that maximizes the uncertainty.

The following theorem shows that our algorithm achieves the ULI guarantee.

Theorem 5.1. For any fixed δ ∈ (0, 1), Algorithm 3 achieves the ULI guarantee with function
FULI(δ, t) = O

(
t−

1
2

√
S3AH5 log (tSAH/δ)

)
.

Theorem 5.1 shows near-optimality of Algorithm 3 w.r.t. episode t. Unfortunately, the regret bound
implied by our ULI result incurs suboptimal dependence on S,H , and the logarithmic term, and our
algorithm is not computational efficient. We leave these improvements for future work.

6 Conclusions

In this paper, we propose a new metric, the uniform last-iterate (ULI) guarantee, which captures both
instantaneous and cumulative performance of sequential decision-making algorithms. To answer the
question of whether ULI is (optimally) achievable, we first examine three types of bandit algorithms
in the finite-arm setting. Specifically, we provide stronger analysis to show that elimination-based
algorithms naturally achieve near-optimal ULI guarantees. We also provide a reduction-based
approach to enable any high-probability adversarial algorithms, with a mild condition, to achieve
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near-optimal ULI guarantees. We further provide a negative result for optimistic bandit algorithms
showing that they cannot achieve near-optimal ULI guarantee. Furthermore, in the large arm space
setting, we propose an oracle-efficient linear bandit algorithm, equipped with the novel adaptive
barycentric spanner technique. Finally, we propose a new algorithm, which adapts uncertainty-driven
reward functions into policy elimination to achieve ULI guarantee in tabular episodic MDPs.
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A Proof of Theorem 2.6

We prove this claim by contradiction. Suppose that there exists an algorithm that can achieve the ULI
guarantee with function FULI(δ, t) ≤ c0

1

t
1
2
+α

for some α ∈ (0, 1
2 ) and constant c0 > 0 which may

depend on log(1/δ) and K for MAB or d for linear bandits. We consider a K-armed bandit instance
(K ≥ 2) with Gaussian rewards and all suboptimality gaps are bounded by one.

By the definition of ULI, we have that with probability at least 1− δ, for all T ∈ N with T
1
2−α > t0,

we have

RT =

T∑
t=1

∆At

=

t0∑
t=1

∆At
+

T∑
t=t0+1

∆At

≤ t0 +

T∑
t=t0+1

FULI(δ, t)

≤ t0 + c0

T∑
t=t0+1

t−α− 1
2

≤ T
1
2−α +

2c0
1− 2α

T
1
2−α,

where the first inequality holds as we assume all suboptimal gaps are bounded by one, and ∆At ≤
FULI(δ, t) for all t ≥ t0.

Since 1
2 − α ∈ (0, 1

2 ), there will be a contradiction to the regret lower bound [Lattimore and
Szepesvári, 2020, Corollary 17.3] for the Gaussian MAB setup.

B Proof of Theorem 2.7

Theorem B.1 (Restatement of Theorem 2.7). Suppose an algorithm achieves the ULI guarantee for
some δ with function FULI(δ, t) = polylog(t/δ) · t−κ where κ ∈ (0, 1). Then, we have,

• the algorithm is also uniform-PAC with

FUPAC(δ, ϵ) = O
(
polylog(δ−1ϵ−1)

ϵ1/κ

)
.

• with probability at least 1− δ, ∀T ∈ N, the regret RT is bounded by

O

(
min

{
polylog(T/δ) · T 1−κ,

polylog2
(

1
δ∆

)
∆1/κ−1

})
,

when the minimum suboptimality gap of the input instance ∆ satisfies ∆ > 0.

B.1 Proof of the first bullet: ULI guarantee implies uniform-PAC bound

In this subsection, we show the first bullet of Theorem 2.7. We define the following events for
FULI = polylog(t/δ) · t−κ:

A = {∀t ∈ N : ∆At
≤ FULI(δ, t)} , (6)

which indicates the occurrence the ULI, and denote the event B as:

B =

{
∀ϵ > 0 :

∞∑
t=1

I{∆At > ϵ} ≤ FUPAC(δ, ϵ)

}
.
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For some δ ∈ (0, 1), if event A holds for an algorithm with probability at least 1 − δ, then the
algorithm is with ULI guarantee. Therefore, to prove the claimed result, it suffices to show that
conditioning on event A that for any algorithm enjoys ULI guarantee with a function FULI(δ, t), one
can find a function FUPAC(δ, ϵ) such that event B also holds.

As for any fixed δ ∈ (0, 1), FULI(δ, t) = polylog(t/δ) · t−κ is monotonically decreasing for large t,
∃U ∈ R>0 such that FULI(δ, t) ≤ U for all t ∈ N and FULI(δ, t) = U is attainable by some t. Then,
we consider any given ϵ > 0 with two cases as follows.

Case 1: ϵ < U . Again, by the fact that FULI(δ, t) = polylog(t/δ) · t−κ is monotonically decreasing
for large t, there should exist a round t ∈ N such that FULI(δ, s) ≤ ϵ for all s ≥ t. Let t0 be the round
with the maximal index such that FULI(δ, t0) > ϵ, which gives

t0 ≤
polylog

1
κ (t0/δ)

ϵ
1
κ

.

As a result, the number of times that ∆At
> ϵ occurs is at most

∞∑
t=1

I{∆At
> ϵ} ≤

∞∑
t=1

I{FULI(δ, t) > ϵ} ≤ t0 ≤
polylog

1
κ (t0/δ)

ϵ
1
κ

.

Then, one can find constants c0 > 0 and z ∈ (0, κ) such that polylog(t/δ) ≤ c0 · polylog(1/δ)tz
for all t ∈ R≥1, thereby polylog(t0/δ) ≤ c0 · polylog(1/δ)tz0. Combining polylog(t0/δ) ≤
c0 · polylog(1/δ)tz0 and FULI(δ, t0) > ϵ gives

ϵ ≤ polylog(t0/δ)

tκ0
≤ c0 · polylog(1/δ)tz0

tκ0
= c0 · polylog(1/δ)tz−κ

0 ,

which immediately leads to

t0 ≤
(
c0 · polylog(1/δ)

ϵ

) 1
κ−z

. (7)

Then, we can further show that

∞∑
t=1

I{∆At > ϵ} ≤ t0 ≤
polylog

1
κ (t0/δ)

ϵ
1
κ

≤
polylog

(
δ−1

(
c0·polylog(1/δ)

ϵ

) 1
κ−z

)
ϵ

1
κ

≜ FUPAC(δ, ϵ),

(8)
where the third inequality follows that polylog(t/δ) is monotonically increasing for all t > 0 and
Eq. (7).

Case 2: ϵ ≥ U . Conditioning on event A and by the definition of U , we have ∆At ≤ FULI(δ, t) ≤
U ≤ ϵ for all t ∈ N, which implies

∞∑
t=1

I{∆At
> ϵ} = 0. Therefore, any positive function works

there and we still choose FUPAC(δ, ϵ) the same as above.

This argument holds for all ϵ > 0. Therefore, if an algorithm satisfies the ULI guarantee, then
P(A) ≥ 1− δ, and with the above statement, we can find a function FUPAC such that P(B) ≥ 1− δ,
which concludes the proof.

B.2 Proof of the second bullet: ULI implies regret bounds

For some fixed δ ∈ (0, 1), let us consider an algorithm enjoys the ULI guarantee with function
FULI(·, ·). The following analysis will condition on event A given in Eq. (6).

Gap-dependent bound. Recall that ∆ > 0 is the minimum gap. We replace ϵ with ∆/2 in the
proof of in Appendix B.1, case 1, and similarly define t0 ∈ N as the maximal round such that
FULI(δ, t0) = polylog(t0/δ) · t−κ

0 > ∆/2. Then, we apply a similar argument (in Appendix B.1,

14



case 1), which gives that that for some constants z ∈ (0, κ) and c0 > 0:
∞∑
s=1

I{∆As > ∆/2}

≤ t0

≤ min


(
2c0 · polylog(1/δ)

∆

) 1
κ−z

,

polylog

(
δ−1

(
2c0·polylog(1/δ)

∆

) 1
κ−z

)
(∆/2)

1
κ

 ,

(9)

where the last inequality holds by taking the minimum of Eq. (7) and Eq. (8). Therefore, the algorithm
will incur no regret, i.e., ∆At = 0 for all t ≥ t0 For every T ∈ N, the regret RT is bounded by

RT =

T∑
t=1

∆At

≤
T∑

t=1

polylog(t/δ) · t−κ

≤
t0∑
t=1

polylog(t/δ) · t−κ

≤ polylog(t0/δ)

t0∑
t=1

t−κ

≤ t1−κ
0 · polylog(δ−1t0)

1− κ
, (10)

where the first inequality holds since we condition on the event A, the second inequality holds due to
the definition of t0, the third inequality uses the fact that polylog(t/δ) is monotonically increasing
for all t > 0.

Then, one can further show

RT ≤
t1−κ
0 · polylog(δ−1t0)

1− κ

≤
polylog

(
δ−1

(
2c0·polylog(1/δ)

∆

) 1
κ−z

)
· polylog(δ−1t0)

(∆/2)1/κ−1

≤
polylog

(
δ−1

(
2c0·polylog(1/δ)

∆

) 1
κ−z

)
· polylog

(
δ−1

(
2c0·polylog(1/δ)

∆

) 1
κ−z

)
(∆/2)1/κ−1

,

where the second inequality applies the second term of Eq. (9) and the last inequality uses the first
term of Eq. (9).

Notice that these bounds in all three cases hold for all T ∈ N, and thus the proof of gap-dependent
bound is complete.

Gap-independent bound. We have

RT =

T∑
t=1

∆At ≤
T∑

t=1

polylog(t/δ) · t−κ ≤ polylog(T/δ)

T∑
t=1

t−κ ≤ T 1−κ · polylog(δ−1T )

1− κ
.
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C Proof of Theorem 3.1

For shorthand, we use E to denote the event that Eq. (1) holds for all t ∈ N. From the assumption,
E holds with probability at least 1− δ. The following proof is straightforward by the definition of
E . We conditions on E and consider an arbitrary round t. If At = a⋆, the claim trivially holds as
∆At

= 0. We then consider At ̸= a⋆. Since Algorithm 1 pulls an arm At ∈ At at each t. From the
definition of E , we have ∆At

≤ β · f(δ, t). Therefore, Algorithm 1 achieves the ULI guarantee with
FULI(δ, t) = O (f(δ, t)).

D Proof of Theorem 3.2

D.1 ULI guarantee for SE-MAB algorithm

Consider the successive elimination (SE-MAB) algorithm (e.g., Algorithm 3 in [Even-Dar et al.,
2006]) in the MAB setting where A = [K]. We present SE-MAB algorithm in Algorithm 6 and
define some notations. Let Na(t) be the number of times that arm a has been pulled before round t
and let µ̂a(s) be the empirical mean of arm a after s ∈ N number of plays. We define the confidence
width for each s ∈ N as

wd(s) =

√
log (4Ks2/δ)

2s
. (11)

The SE-MAB algorithm always chooses the arm (from the current active arm set) with the minimum
number of pulls. If there exist two arms a, j ∈ [K] such that Na(t) = Nj(t), then, the algorithm
chooses the arm with the smallest index.

Algorithm 6 Successive elimination for multi-armed bandit (SE-MAB)
Input: confidence δ ∈ (0, 1).
Initialize: active arm set A1 = [K] and sample every arm once to update Na(K + 1), µ̂a(Na(K +
1)),wd(Na(K + 1)) for all a ∈ [K].
for t = K + 1,K + 2, . . . do

Play an arm At = argmina∈At
Na(t) and observe reward Xt,At

.
Update counter Na(t+1) = Na(t)+1 for At = a and Na(t+1) = Na(t) for all a ∈ At−{At}.
Update empirical means µ̂At

(NAt
(t + 1)) =

µ̂At (NAt (t))·NAt (t)+Xt,At

NAt (t)+1 and µ̂a(Na(t + 1)) =

µ̂a(Na(t)) for all a ∈ At − {At}.
Update confidence width wd(Na(t+ 1)) based on Eq. (11) for all a ∈ At.
Update bad arm set Bt as

Bt = {a ∈ At : ∃j ∈ At such that µ̂j(Nj(t+ 1))− wd(Nj(t+ 1))− µ̂a(Na(t+ 1))− wd(Na(t+ 1)) > 0} .

Update active arm set At+1 = At − Bt.

Definition D.1. Let E be the event that |µ̂a(Na(t))− µa| ≤ wd(Na(t)) holds for all t ∈ N and all
a ∈ At.
Lemma D.2. P (E) ≥ 1− δ.

Proof. Following the standard trick (e.g., [Audibert et al., 2010]), we rewrite the empirical mean for
every a, n as µ̂a(n) =

1
n

∑n
i=1 Ri,a where Ri,a is the reward of i-th pull of arm a. Let us fix both

s ∈ N and a ∈ [K]. By Hoeffding’s inequality, with probability at least 1− δ′

|µ̂a(s)− µa| ≤

√
log
(

2
δ′

)
2s

.

Choosing δ′ = δ
2Ks2 and applying a union bound over a ∈ At (|At| ≤ K, ∀t), we have with

probability at least 1− δ/(2s2),

|µ̂a(s)− µa| ≤

√
log
(
4Ks2

δ

)
2s

= wd(s), ∀a ∈ [K].
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We apply a union bound over all s ∈ N and use the fact that
∑∞

s=1
δ

2s2 ≤ δ to finish the proof.

Lemma D.3. Suppose that E occurs where E is given in Definition D.1. For all t ∈ N, a⋆ ∈ At

holds.

Proof. We prove this by induction. For t = 1, a⋆ ∈ A1 trivially holds. Suppose that a⋆ ∈ At. To
show a⋆ ∈ At, it suffices to show that at the end of round t, arm a⋆ is deemed as a good arm. One
can use the definition of E to show that for every a ∈ At, the following holds.

0 ≤ µ⋆ − µa ≤ µ̂a⋆(Na⋆(t+ 1)) + wd(Na⋆(t+ 1))− µ̂a(Na(t+ 1)) + wd(Na(t+ 1)).

Note that the second inequality above can hold since the inductive hypothesis gives that a⋆ ∈ At.
The above inequality shows that a⋆ will not be eliminated at the end of round t thereby still being
active at round t+ 1. Once the induction is done, the proof is complete.

Lemma D.4. Suppose that E occurs where E is given in Definition D.1. For all t ∈ N and all arms
a ∈ A if a ∈ At, then

∆a ≤
√

14K log (4Kt2/δ)

t
.

Proof. Consider any round t ∈ N and any active arm a ∈ At. For simplicity, we assume that the first
arm is the unique optimal arm6. If a is an optimal arm, then ∆a = 0 and we hold the claim trivially.
Then, it suffices to consider an arm a ∈ At with ∆a > 0. Notice that wd(x) is monotonically
decreasing for all x ≥ 1 as long as K ≥ 2. Thus, we find a minimum natural number Ta ∈ N such
that

∆a ≥ 5

√
log (4KT 2

a /δ)

2Ta
= 5wd(Ta). (12)

With this definition, we have

∆a < 5wd(s) ∀1 ≤ s < Ta, and ∆a ≥ 5wd(s) ∀s ≥ Ta.

Recall that Na(t) is the number of plays of arm a before round t. We first show Na(t) ≤ Ta. As
Algorithm 6 pulls arms in a round-robin fashion, if arm a is pulled for Ta times, then, the optimal
arm a⋆ is also pulled for Ta times, thereby Ta = Ta⋆ . From Lemma D.3, optimal arm a⋆ is active for
all t ∈ N and thus we can use it as a comparator.

µ̂a⋆(Ta⋆)− wd(Ta⋆)− µ̂a(Ta)− wd(Ta)

≥ µ⋆ − 2wd(Ta⋆)− µa − 2wd(Ta) (by E)
= µ⋆ − 2wd(Ta)− µa − 2wd(Ta) (by Ta = Ta⋆ )

≥ ∆a − 2× ∆a

5
− 2× ∆a

5

=
∆a

5
> 0.

According to elimination rule, this inequality shows that arm a will be eliminated after Ta pulling
times, which suggests that Na(t) ≤ Ta. Since the Ta is the minimum natural number which holds
Eq. (12), we use Na(t) ≤ Ta to show

∆a < 5

√
log (4K(Na(t)− 1)2/δ)

2(Na(t)− 1)
≤ 5

√
log (4Kt2/δ)

2(Na(t)− 1)
,

where the last inequality follows from the fact that Na(t) ≤ t. Rearranging the above, we have

Na(t) ≤ 1 +
25 log

(
4Kt2/δ

)
2∆2

a

≤
13 log

(
4Kt2/δ

)
∆2

a

.

6This assumption is made only for simplicity, but our proof can be easily extended to multiple optimal arms
by changing the constant.
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Again, as Algorithm 6 pulls arms in a round-robin fashion, we have t ≤ K(Na(t) + 1) and show

t ≤ K(Na(t) + 1) ≤
14K log

(
4Kt2/δ

)
∆2

a

,

which gives ∆a ≤
√

14K log(4Kt2/δ)
t . Conditioning on event E the argument holds for all t ∈ N,

which thus completes the proof.

Proof of Theorem 3.2 for SE-MAB. Once Lemma D.3 and Lemma D.4 hold, Theorem 3.1 gives that
for any fixed δ ∈ (0, 1), SE-MAB achieves the ULI guarantee with a function

FULI(δ, t) = O

(√
K log (Kt/δ)

t

)
.

Therefore, the proof of Theorem 3.2 for SE-MAB is complete.

D.2 ULI guarantee for PE-MAB

In MAB setting with A = [K], we further consider phased elimination algorithm (e.g., Exercise
6.8 of [Lattimore and Szepesvári, 2020]) shown in Algorithm 7 (called PE-MAB). The algorithm
proceeds with phases ℓ = 1, 2, . . ., and each phase ℓ includes consecutive rounds, with an exponential
increase. In phase ℓ, the algorithm sequentially pulls every arm a ∈ [K] for mℓ times where

mℓ =
⌈
22ℓ+1 log

(
4Kℓ2/δ

)⌉
.

Once all arms are pulled mℓ times, the algorithm steps into the next phase ℓ+ 1. The counter Na(ℓ)
records the number of times that arm a is pulled in phase ℓ and µ̂a(mℓ) is the empirical mean by
using mℓ samples only from phase ℓ.

Algorithm 7 Phased elimination for multi-armed bandit (PE-MAB)
Input: confidence δ ∈ (0, 1).
Initialize: active arm set A1 = [K].
for ℓ = 1, 2, . . . do

Play every arm a ∈ Aℓ for mℓ times and observe corresponding rewards.
Update empirical means {µ̂a(mℓ)}a∈Aℓ

only using samples from phase ℓ.
Update active arm set Aℓ+1 as

Aℓ+1 = Aℓ −
{
a ∈ Aℓ : max

j∈Aℓ

µ̂j(mℓ)− µ̂a(mℓ) > 2−ℓ

}
.

Definition D.5. Let E be the event that |µ̂a(mℓ)− µa| ≤ 2−ℓ−1 holds for all ℓ ∈ N and all a ∈ Aℓ.

We first give the following lemmas, whose proof is similar to those of Lemma D.2 and Lemma D.3.
Lemma D.6. P(E) ≥ 1− δ.

Proof. We first fix both ℓ ∈ N and a ∈ [K]. By Hoeffding’s inequality, with probability at most δ′,
we have

|µ̂a(mℓ)− µa| ≥

√
log
(

2
δ′

)
2mℓ

.

Choosing δ′ = δ
2Kℓ2 and applying union bounds over a ∈ Aℓ (Aℓ is at most K), with probability at

most δ/2ℓ2, we have

|µ̂a(mℓ)− µa| ≥

√
log (4Kℓ2/δ)

2mℓ
= 2−ℓ−1.

We apply union bounds over all ℓ ∈ N and use the fact that
∑∞

ℓ=1
δ

2ℓ2 ≤ δ to finish the proof.
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Lemma D.7. Suppose that E occurs where E is given in Definition D.5. For all ℓ ∈ N, a⋆ ∈ Aℓ.

Proof. We prove this by induction. For the base case ℓ = 1, the claim trivially holds. Suppose the
claim holds for ℓ, and then we will show that a ∈ Aℓ+1. For all ℓ ∈ N and all a ∈ Aℓ, we have

0 ≤ µ⋆ − µa ≤ µ̂a⋆(mℓ)− µ̂a(mℓ) + 2−ℓ,

where the second inequality holds because the induction hypothesis ensures a⋆ ∈ Aℓ and thus we
can use the definition of E . Based on the elimination rule, a⋆ ∈ Aℓ+1. Once the induction is done,
the proof is complete.

Lemma D.8. Suppose that E occurs where E is given in Definition D.5. For each arm a with ∆a > 0,
it will not be in Aℓ for all phases ℓ ≥ ℓa + 1 where ℓa is the smallest phase such that ∆a

2 > 2−ℓa .

Proof. Consider any arm a with ∆a > 0. We only need to consider a ∈ Aℓa and otherwise, the
claimed result holds trivially. Recall that ℓa is the smallest phase such that ∆a

2 > 2−ℓa and one can
show

max
j∈Aℓa

µ̂j(mℓa)− µ̂a(mℓa)− 2−ℓa

≥ µ̂a⋆(mℓa)− µ̂a(mℓa)− 2−ℓa

≥ µ⋆ − 2−ℓa − µa − 2−ℓa

> ∆a − 2× ∆a

2
= 0,

where the first inequality follows from Lemma D.7 that a⋆ ∈ Aℓa and the second inequality holds
due to E .

According to the elimination rule, arm a will not be in phases ℓ for all ℓ ≥ ℓa + 1.

Lemma D.9. Let ℓ(t) be the phase in which round t lies. Then, ℓ(t) ≤ log2(t+ 1) for all t ∈ N.

Proof. We prove this by contradiction. Suppose that ∃t ∈ N that ℓ(t) > log2(t+1). Note that we can
further assume ℓ(t) ≥ 2 since one can easily verify that for all t such that ℓ(t) = 1, ℓ(t) ≤ log2(t+1)
must hold. We have

t ≥ mℓ(t)−1 ≥ 22ℓ(t)−1 log
(
4K(ℓ(t)− 1)2/δ

)
>

1

2
(t+ 1)2 log (4K/δ) > t,

where the third inequality bounds ℓ(t) in the logarithmic term by ℓ(t) ≥ 2 and bound the other
ℓ(t) > log2(t+1) by assumption. Therefore, once a contradiction occurs, the proof is complete.

Lemma D.10. Let ℓ(t) be the phase in which round t lies. Suppose that E occurs where E is given in
Definition D.5. For all t ∈ N and all a ∈ [K], if a ∈ Aℓ(t), then

∆a ≤

√√√√256K log
(
4K (log2(t+ 1))

2
/δ
)

3t
.

Proof. If a ∈ Aℓ(t) is optimal, then, ∆a = 0 and the claim trivially holds. In what follows, we only
consider arm a ∈ Aℓ(t) with ∆a > 0. From Lemma D.8, if an arm a ∈ Aℓ(t) is with ∆a > 0, then,
ℓ(t) ≤ ℓa where ℓa is defined in Lemma D.8. Thus, the total number of rounds that such an arm a is
active is at most

K

ℓ(t)∑
s=1

ms = K

ℓ(t)∑
s=1

⌈
22s+1 log

(
4Ks2/δ

)⌉
≤ 4K log

(
4Kℓ(t)2/δ

) ℓ(t)∑
s=1

22s
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≤ 4K log
(
4Kℓ(t)2/δ

) ℓa∑
s=1

22s

≤
16K log

(
4Kℓ(t)2/δ

)
3

· 4ℓa

≤
256K log

(
4Kℓ(t)2/δ

)
3∆2

a

≤
256K log

(
4K (log2(t+ 1))

2
/δ
)

3∆2
a

,

where the first inequality follows from ⌈x⌉ ≤ 2x for all x ≥ 1, the second inequality bounds
ℓ(t) ≤ ℓa, the fourth inequality follows from the definition of ℓa, i.e., ∆a

2 ≤ 2−(ℓa−1), and the last
inequality follows from Lemma D.9 that ℓ(t) ≤ log2(t+ 1).

Since this argument holds for each round t and each arm a ∈ Aℓ(t) conditioning on E , the proof is
complete.

Proof of Theorem 3.2 for PE-MAB. Once Lemma D.7 and Lemma D.10 hold, Theorem 3.1 gives
that for any fixed δ ∈ (0, 1), PE-MAB achieves the ULI guarantee with a function

FULI(δ, t) = O
(
t−

1
2

√
K log (K log(t+ 1)/δ)

)
.

Therefore, the proof of Theorem 3.2 for PE-MAB is complete.

D.3 ULI guarantee for PE-linear

Algorithm 8 Phased elimination for linear bandit (PE-linear)
Input: confidence δ ∈ (0, 1).
Initialize: active arm set A1 = A.
for ℓ = 1, 2, . . . do

Find a design πℓ ∈ ∆(Aℓ) with

max
a∈Aℓ

∥a∥2G−1
ℓ
≤ 2d, and |supp(πℓ)| ≤ 4d log log(d) + 16, (13)

where Gℓ =
∑

a∈Aℓ
πℓ(a)aa

T .
Play every arm a ∈ Aℓ for mℓ(a) = ⌈πℓ(a)mℓ⌉ times and observe corresponding rewards.
Update the empirical estimate as

θ̂ℓ = V −1
ℓ

∑
t∈Tℓ

AtXt,At , where Vℓ =
∑
a∈Aℓ

mℓ(a)aa
⊤. (14)

Update active arm set

Aℓ+1 = Aℓ −
{
a ∈ Aℓ : max

b∈Aℓ

〈
θ̂ℓ, b− a

〉
> 2−ℓ+1

}
.

We consider a phased elimination algorithm (e.g., algorithm in Chapter 22 of [Lattimore and
Szepesvári, 2020]) for linear bandits setting with a finite arm set A = [K]. The algorithm proceeds
with phases ℓ = 1, 2, . . ., and in each phase ℓ, the algorithm first computes a design πℓ ∈ ∆(Aℓ) over
all active arms where ∆(Aℓ) is the set of all Radon probability measures over set Aℓ. Rather than
computing an exact design in [Lattimore and Szepesvári, 2020], we follow Lattimore et al. [2020] to
compute a nearly-optimal design (13), which can be efficiently implemented. Then, PE-linear plays
each arm a ∈ Aℓ for mℓ(a) times and updates the active arm set by using the estimates in this phase.

Let us define Tℓ be a set that contains all rounds in phase ℓ and

mℓ(a) = ⌈πℓ(a)mℓ⌉ , where mℓ =
4d

2−2ℓ
max

{
log
(
4Kℓ2/δ

)
, log log d+ 4

}
. (15)
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Lemma D.11. For all ℓ ∈ N and all a ∈ Aℓ, ∥a∥2V −1
ℓ
≤ 2d

mℓ
holds.

Proof. For each ℓ ∈ N and a ∈ Aℓ, one can show

∥a∥2V −1
ℓ

= aTV −1
ℓ a ≤ aT

(
mℓ

∑
a∈Aℓ

πℓ(a)aa
⊤

)−1

a ≤ 2d

mℓ
,

where the first inequality follows from Eq. (15) and the fact that if we let A = mℓ

∑
a∈Aℓ

πℓ(a)aa
⊤

and B = Vℓ then, ∥a∥A−1 ≥ ∥a∥B−1 holds since A−1 ⪰ B−1 and the second inequality uses
Eq. (13).

Definition D.12. Let E be the event that
∣∣∣〈θ̂ℓ − θ, a

〉∣∣∣ ≤ 2−ℓ holds for all ℓ ∈ N and all a ∈ Aℓ.

Lemma D.13. P(E) ≥ 1− δ.

Proof. Consider a fixed phase ℓ and a fixed arm a ∈ Aℓ. We start from the following decomposition.〈
θ̂ℓ − θ, a

〉
=

〈
V −1
ℓ

∑
t∈Tℓ

AtXt,At
− θ, a

〉

=

〈
V −1
ℓ

∑
t∈Tℓ

At

(
AT

t θ + ηt
)
− θ, a

〉

=

〈
V −1
ℓ

∑
t∈Tℓ

Atηt, a

〉
=
∑
t∈Tℓ

〈
V −1
ℓ At, a

〉
ηt.

By Eq. (20.2) of [Lattimore and Szepesvári, 2020], we have with probability at least 1− δ/(2ℓ2K),

∣∣∣〈θ̂ℓ − θ, a
〉∣∣∣ = ∣∣∣∣∣∑

t∈Tℓ

〈
V −1
ℓ At, a

〉
ηt

∣∣∣∣∣ ≤√2 ∥a∥2V −1
ℓ

log(4ℓ2K/δ) ≤ 2

√
d log(4ℓ2K/δ)

mℓ
≤ 2−ℓ,

where the last inequality applies Lemma D.11. Finally, applying union bounds over all a, ℓ completes
the proof.

Lemma D.14. Suppose that E occurs where E is given in Definition D.12. We have a⋆ ∈ Aℓ for all
ℓ ∈ N.

Proof. This can be proved by using induction on ℓ via the same reasoning of Lemma D.3.

Lemma D.15. Suppose that E occurs where E is given in Definition D.12. For each arm a with
∆a > 0, it will not be in Aℓ for all phases ℓ ≥ ℓa + 1 where ℓa is the smallest phase such that
∆a

4 > 2−ℓa .

Proof. Consider any arm a with ∆a > 0. Let ℓa be the smallest phase such that ∆a

4 > 2−ℓa and we
have

max
b∈Aℓa

〈
θ̂ℓa , b− a

〉
− 2−ℓa+1 ≥

〈
θ̂ℓa , a

⋆ − a
〉
− 2−ℓa+1 ≥ ⟨θ, a⋆ − a⟩ − 2−ℓa+2 > ∆a − 4× ∆a

4
= 0,

where the first inequality follows from Lemma D.14 that a⋆ ∈ Aℓ for all ℓ.

According to the elimination rule, arm a will not be inAℓ for all phases ℓ ≥ ℓa+1. Since conditioning
on E , this argument holds for every arm a, the proof is complete.

Lemma D.16. Let ℓ(t) be the phase in which round t lies. Then, ℓ(t) ≤ log2(t+ 1) for all t ∈ N.

21



Proof. We prove this by contradiction. Suppose that ∃t ∈ N that ℓ(t) > log2(t+1). Note that we can
further assume ℓ(t) ≥ 2 since one can easily verify that for all t such that ℓ(t) = 1, ℓ(t) ≤ log2(t+1)
must hold. We have

t ≥
∑

a∈Aℓ(t)−1

⌈
πℓ(t)−1mℓ(t)−1

⌉
≥ mℓ(t)−1 ≥

4d

2−2(ℓ(t)−1)

(
log
(
4K(ℓ(t)− 1)2/δ

))
> d(t+ 1)2 log (4K/δ) > t,

where the fourth inequality bounds ℓ(t) in the logarithmic term by ℓ(t) ≥ 2 and bound the other
ℓ(t) > log2(t+1) by assumption. Therefore, once a contradiction occurs, the proof is complete.

Lemma D.17. Let ℓ(t) be the phase in which round t lies. Suppose that E occurs where E is given in
Definition D.12. For all t ∈ N and all a ∈ [K], if a ∈ Aℓ(t), then

∆a ≤

√√√√512d log
(
4 log(d)K (log2(t+ 1))

2
/δ
)
+ 4

3t
.

Proof. If a ∈ Aℓ(t) is optimal, then, ∆a = 0 and the claim trivially holds. In what follows, we only
consider arm a ∈ Aℓ(t) with ∆a > 0. From Lemma D.15, if an arm a ∈ Aℓ(t) is with ∆a > 0, then,
ℓ(t) ≤ ℓa where ℓa is defined in Lemma D.15. Then, the total number of rounds that such an arm a
is active is at most

ℓ(t)∑
s=1

∑
a∈As,πs(a)̸=0

⌈πs(a)ms⌉

≤
ℓ(t)∑
s=1

4d log log(d) + 16 +
∑

a∈As,πs(a)̸=0

πs(a)ms


≤ 2

ℓ(t)∑
s=1

ms

≤ 8dmax
{
log
(
4Kℓ(t)2/δ

)
, log log d+ 4

} ℓ(t)∑
s=1

1

2−2s

≤ 8dmax
{
log
(
4K (log2(t+ 1))

2
/δ
)
, log log d+ 4

} ℓa∑
s=1

1

2−2s

≤ 512d

3∆2
a

(
log
(
4 log(d)K (log2(t+ 1))

2
/δ
)
+ 4
)
,

where the first inequality applies ⌈πs(a)ms⌉ ≤ πs(a)ms+1 and Eq. (13), the second inequality uses
the definition of ms (see Eq. (15)), the fourth inequality follows from ℓ(t) ≤ ℓa and Lemma D.16
gives ℓ(t) ≤ log2(t+ 1), and the last inequality uses ∆a

4 ≤ 2−(ℓa−1) to apply ℓa ≤ log2 (8/∆a).

Since this argument holds for each round t and each arm a ∈ Aℓ(t) conditioning on E , the proof is
complete.

Proof of Theorem 3.2 for PE-linear. Once Lemma D.14 and Lemma D.17 hold, Theorem 3.1 gives
that for any fixed δ ∈ (0, 1), PE-linear achieves the ULI guarantee with a function

FULI(δ, t) = O
(
t−

1
2

√
d log (log(d)K (log(t+ 1)) /δ)

)
.

Therefore, the proof of Theorem 3.2 for PE-linear is complete.
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E Omitted Details of Section 3.2

The bonus function that we here consider for lil’UCB is as:

Uδ(x) =

√
log log (max {x, e}) + log (6/δ)

x
. (16)

The choice of Uδ(x) in Eq. (16) is slightly different from that of [Jamieson et al., 2014] because we
consider for any δ ∈ (0, 1) and they constrain the choice of δ in a more restricted range. The choice
of Uδ(x) is motivated from another lemma of law of iterated logarithm, given in [Dann et al., 2017,
Lemma F.1] with σ2 = 1/4 as we here consider [0, 1]-bounded rewards. Note that the concentration
bounds in [Dann et al., 2017] apply for the conditionally subgaussian random variables, and one can
get the same result for i.i.d. subgaussian random variables, by simply replacing the Doob’s maximal
inequality by Hoeffding’s maximal inequality (see [Jamieson et al., 2014, Lemma 3]).

One caveat here is that our analysis still works for other choices of Uδ(x) if one adjust constant or
change log log(·) to log(·).

Algorithm 9 lil’UCB
Input: confidence δ ∈ (0, 1) and arm set A.
Initialize: play each arm a ∈ A once to update Na(|A|+ 1) and µ̂a(Na(|A|+ 1)) for all a ∈ A.
for t = |A|+ 1, |A|+ 2, . . . do

Play an arm
At = argmax

a∈A
{µ̂a(Na(t)) + Uδ (Na(t))} ,

where Uδ(Na(t)) is given in Eq. (16).
Update counters Na(t+ 1) = Na(t) + 1 for At = a and Na(t+ 1) = Na(t) for all a ̸= At.
Update empirical means µ̂At

(NAt
(t + 1)) =

µ̂At (NAt (t))·NAt (t)+Xt,At

NAt (t)+1 and µ̂a(Na(t + 1)) =

µ̂a(Na(t)) for all a ∈ A− {At}.

E.1 Proof of Theorem 3.3

In the following proof, we consider the following instance.
Definition E.1 (Two-armed bandit instance). Consider a two-armed setting with µ1 > µ2. In
each round, each arm generates deterministic rewards µ1 and µ2, respectively. The arm gap is
∆ = µ1 − µ2 and ∆ ∈ (0, 0.6).

According to Lemma E.2, the total number of plays of arm 2 is finite. Therefore, one can find a round
t0 ∈ N that the last play of arm 2 occurs. At the beginning of this round, the algorithm compares
µ1 + Uδ(N1(t0)) and µ2 + Uδ(N2(t0)). Since arm 2 gets the last play at this round, we have

µ1 + Uδ(N1(t0)) ≤ µ2 + Uδ(N2(t0)) ≤ µ2 + (1 + f(∆))∆,

where the last inequality holds due to Lemma E.4 and f(∆) is defined as

f(∆) := ∆ ·
√
3√

log log
(

log(6/δ)
∆2

)
+ log(6/δ)

. (17)

Rearranging the above, we have
Uδ(N1(t0)) ≤ f(∆)∆,

which immediately leads to

N1(t0) ≥
log log

(
log(6/δ)
f2(∆)∆2

)
+ log(6/δ)

f2(∆)∆2
.

Moreover, since arm 2 is played at round t0, ∆ = ∆At0
, which further implies that

t0 = N1(t0) +N2(t0)
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> N1(t0)

>
log log

(
log(6/δ)
f2(∆)∆2

)
+ log(6/δ)

f2(∆)∆2

≥

(
log log

(
log(6/δ)

∆2

)
+ log(6/δ)

)2
3∆4

=

(
log log

(
log(6/δ)

∆2

)
+ log(6/δ)

)2
3∆4

At0

,

where the third inequality uses f(∆) ≤ 1 for all ∆ ∈ (0, 0.6), and the last equality holds due to
∆ = ∆At0

(recall that in round t0, arm 2 gets the last play).

Rearranging the above, we have

∆At0
>

√
log log

(
log(6/δ)

∆2

)
+ log(6/δ)

(3t0)
1
4

=

√√√√ (3t0)
1
2

(
log log

(
log(6/δ)

∆2

)
+ log(6/δ)

)
3t0

.

Finally, by Lemma E.3, we have t0 = Ω(∆−2), which completes the proof.

E.2 Proof of Supporting Lemmas

Lemma E.2. Suppose that we run Algorithm 9 for the two-armed bandit instance given in Defini-
tion E.1. For any δ ∈ (0, 1), suboptimal arm 2 will be played at most

2
(
log log

(
16 log(6/δ)

∆2

)
+ log(6/δ)

)
∆2

 .

Proof. Note that for any fixed δ ∈ (0, 1), function Uδ(x) is monotonically-decreasing for x ≥ 6. To
show the claimed result, it suffices to find an integer x ≥ 6 such that

Uδ(x) < ∆.

Now, we consider the following choice.

N = ⌈n⌉ , where n =
2
(
log log

(
16 log(6/δ)

∆2

)
+ log(6/δ)

)
∆2

Notice that N ≥ n ≥ 6 for all ∆ ∈ (0, 1]. Then, one can show

Uδ(N) ≤ Uδ(n)

= ∆ ·

√√√√√√ log log

(
2(log log( 16 log(6/δ)

∆2 )+log(6/δ))
∆2

)
+ log (6/δ)

2 log log
(

16 log(6/δ)
∆2

)
+ 2 log(6/δ)

≤ ∆ ·

√√√√√√ log log

(
4 log log( 16 log(6/δ)

∆2 )·log(6/δ)
∆2

)
+ log (6/δ)

2 log log
(

16 log(6/δ)
∆2

)
+ 2 log(6/δ)

= ∆ ·

√√√√√ log
(
log
(

1
4 log log

(
16 log(6/δ)

∆2

))
+ log

(
16 log(6/δ)

∆2

))
+ log (6/δ)

2 log log
(

16 log(6/δ)
∆2

)
+ 2 log(6/δ)
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≤ ∆ ·

√√√√√ 2 log log
(

16 log(6/δ)
∆2

)
+ log (6/δ)

2 log log
(

16 log(6/δ)
∆2

)
+ 2 log(6/δ)

≤ ∆,

where the first inequality uses the fact that for any fixed δ ∈ (0, 1), Uδ(x) is monotonically-decreasing
for x ≥ 6, the second inequality uses x + y ≤ 2xy for all x, y > 1 (here x = log(6/δ) and
y = log log

(
16 log(6/δ)

∆2

)
), the last inequality first bounds 1

4 log log
(

16 log(6/δ)
∆2

)
≤ 16 log(6/δ)

∆2 and

then uses 2x ≤ x2 for all x ≥ 2 with x = log
(

16 log(6/δ)
∆2

)
≥ 2.

Thus, the proof is complete.

From Lemma E.2, the total number of plays of suboptimal arm is finite. Based on this fact, we present
the following lemmas.
Lemma E.3. Suppose that we run Algorithm 9 for the two-armed bandit instance given in Defini-
tion E.1. Let n+ 1 be the total number of plays of arm 2. Then,

n ≥

 log log
(

log(6/δ)
∆2

)
+ log(6/δ)

∆2

 ≥ 6.

Proof. For shorthand, we define

m =
log log

(
log(6/δ)

∆2

)
+ log(6/δ)

∆2
. (18)

With this definition and ∆ ∈ (0, 0.6), we have m ≥ 6 and ⌊m⌋ ≥ 6.

Now, we show that n ≥ ⌊m⌋. To this end, it suffices to show Uδ(⌊m⌋) > ∆. As Uδ(x) is
monotonically-decreasing for all x ≥ 6 and m ≥ ⌊m⌋ ≥ 6, we have

Uδ(⌊m⌋) ≥ Uδ(m)

= ∆ ·

√√√√√√ log log

(
log log( log(6/δ)

∆2 )+log(6/δ)

∆2

)
+ log(6/δ)

log log
(

log(6/δ)
∆2

)
+ log(6/δ)

> ∆,

where the last inequality holds as log(6/δ)
∆2 > log(6)

∆2 > e.

Once Uδ(⌊m⌋) > ∆ holds, ⌊m⌋ cannot be the last play of arm 2 (i.e., at least the one before the last),
which completes the proof.

Lemma E.4. Suppose that we run Algorithm 9 for the two-armed bandit instance given in Defini-
tion E.1. Let n+ 1 be the total number of plays of arm 2. The following holds.

Uδ(n) ≤ ∆

1 + ∆

√√√√ 3

log log
(

log(6/δ)
∆2

)
+ log(6/δ)

 .

Proof. From Lemma E.3, we have n ≥ 6, and thus Uδ(n) ≥ Uδ(n+ 1) as Uδ(x) is monotonically
decreasing for all x ≥ 6. Using the fact that for all a ≥ b ≥ 0, a− b ≤

√
a2 − b2 (here a = Uδ(n)

and b = Uδ(n+ 1)), one can show that

Uδ(n)− Uδ(n+ 1)

=

√
log log (max{n, e}) + log (6/δ)

n
−
√

log log (max{n+ 1, e}) + log (6/δ)

n+ 1
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≤
√

log log (max{n, e}) + log (6/δ)

n
− log log (max{n+ 1, e}) + log (6/δ)

n+ 1

=

√
(n+ 1) log log (max{n, e})− n log log (max{n+ 1, e}) + log (6/δ)

n(n+ 1)

≤

√
log log (max{n, e}) + log (6/δ)

n(n+ 1)
. (19)

Since for any fixed δ ∈ (0, 1), Uδ(x) is monotonically-decreasing for all x ≥ 6, and thus by using
the definition of m (see Eq. (18)), one can show that

Uδ(n)− Uδ(n+ 1)

≤

√
log log (⌊m⌋) + log (6/δ)

⌊m⌋ (⌊m⌋+ 1)

≤
√

log log (m) + log (6/δ)

m2

=
∆2

log log
(

log(6/δ)
∆2

)
+ log(6/δ)

·

√√√√√log log

 log log
(

log(6/δ)
∆2

)
+ log(6/δ)

∆2

+ log (6/δ)

≤ ∆2

log log
(

log(6/δ)
∆2

)
+ log(6/δ)

·

√
log

(
2 log

(
log(6/δ)

∆2

))
+ log (6/δ)

≤ ∆2

log log
(

log(6/δ)
∆2

)
+ log(6/δ)

·

√
3 log log

(
log(6/δ)

∆2

)
+ log (6/δ)

≤
√
3∆2√

log log
(

log(6/δ)
∆2

)
+ log(6/δ)

,

where the first inequality uses Eq. (19) with n ≥ ⌊m⌋ ≥ e and Uδ(x) is monotonically decreasing
for all x ≥ 6, the second inequality upper-bounds ⌊m⌋ ≤ m in numerator and lower-bounds
⌊m⌋ (⌊m⌋+ 1) ≥ m2, the third inequality follows from

log log
(

log(6/δ)
∆2

)
+ log(6/δ)

∆2
≤

log(6/δ)
∆2 + log(6/δ)

∆2
≤
(
log(6/δ)

∆2

)2

,

and the fourth inequality follows 2x ≤ x3 for all x ≥
√
2 with x = log

(
log(6/δ)

∆2

)
≥
√
2 (∆ ∈

(0, 0.6)).

After arm 2 gets n+ 1 times play, it will not be played anymore, which implies that Uδ(n+ 1) < ∆.
Using this bound gives

Uδ(n) ≤ ∆+∆2

√√√√ 3

log log
(

log(6/δ)
∆2

)
+ log(6/δ)

.

Therefore, we complete the proof.
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Algorithm 10 Meta-algorithm towards ULI
Input: δ ∈ (0, 1), finite arm set A, and base-algorithm Alg with function g(δ) that satisfies Condi-
tion. F.1.
Initialize: A1 = [K].

1 for m = 1, 2, . . . do
2 Set duration Tm = ⌈576gm2m⌉ where gm = g

(
δ

2m2

)
.

3 Run Alg with active arm set Am for Tm rounds and construct ℓ̂t,a =
ℓt,a·I{At=a}

pt,a
for all t, a in

this phase.
4 Update active arm set Am+1 = Am − Bm where:

Bm =

{
a ∈ Am :

∑
s∈Tm

(
ℓ̂s,a − ℓ̂s,k

)
> 7
√
gmTm

}
, (20)

and Tm is a set that contains all rounds in phase m and k is the empirical best arm:

k ∈ argmin
a∈Am

∑
s∈Tm

ℓ̂s,a

F Achieving ULI by Adversarial Bandit Algorithms

F.1 Meta-algorithm Enabling Adversarial Algorithms to Achieve ULI

In this subsection, we propose a meta-algorithm shown in Algorithm 10 which enables any high-
probability adversarial algorithm, with a mild condition, to achieve the ULI guarantee. Then, we show
that existing high-probability adversarial bandit algorithms naturally meet this condition in both MAB
and linear bandit settings. For notational simplicity, we follow the convention of adversarial analysis
to use loss ℓt,a = 1 −Xt,a. Note that all algorithms in this subsection require [0, 1]-boundedness
assumption on loss.

At a high-level, our meta-algorithm keeps running a base-algorithm Alg to play arms and collects
rewards. The meta-algorithm uses collected rewards to construct the importance-weighted (IW)
estimator ℓ̂t,a =

ℓt,a·I{At=a}
pt,a

for each t, a, which helps to eliminate bad arms, and then runs Alg
on a reduced arm space. To achieve the ULI guarantee, our meta-algorithm requires the input
base-algorithm to satisfy the following:

Condition F.1. An algorithm Alg runs for given consecutive T rounds with a finite arm set A and a
fixed δ ∈ (0, 1). At each round t ∈ [T ], Alg maintains a distribution pt over A and samples an arm
At ∼ pt. With probability at least 1− 3

5δ, Alg ensures for all a ∈ A,

T∑
t=1

(ℓt,At
− ℓt,a) ≤

√
g(δ)T − 2

∣∣∣∣∣
T∑

t=1

(
ℓ̂t,a − ℓt,a

)∣∣∣∣∣ , (21)

where g(δ) is a positive-valued function, monotonically decreasing for all δ ∈ (0, 1), polynomial in
log(1/δ), and g(δ) ≥ log (10|A|/δ) ,∀δ ∈ (0, 1).

In fact, many high-probability adversarial bandit algorithms naturally meet Condition. F.1, but require
stronger analysis. In particular, we show that EXP3.P [Auer et al., 2002b] for MAB holds this
condition with g(δ) = O

(
|A| log(|A|/δ)

)
(omitted proof can be found in Appendix F) and Lee

et al. [2021] show that GEOMETRICHEDGE.P [Bartlett et al., 2008] with John’s exploration meets
the condition for linear bandits with g(δ) = O

(
d log(|A|/δ)

)
. Hence, feeding those algorithms to

Algorithm 10 yields the following:

Theorem F.2. For any fixed δ ∈ (0, 1), if Algorithm 10 uses

• EXP3.P as a base-algorithm, then, for K-armed bandit, ULI guarantee is achieved with

FULI(δ, t) = O
(
t−

1
2

√
K log (δ−1K log(t+ 1))

)
.
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• GEOMETRICHEDGE.P as a base-algorithm then for linear bandits with K arms, ULI
guarantee is achieved with

FULI(δ, t) = O
(
t−

1
2

√
d log (δ−1K log(t+ 1))

)
.

Theorem F.2 suggests that Algorithm 10 enables EXP3.P and GEOMETRICHEDGE.P to achieve near-
optimal ULI guarantees for MAB and linear bandits, respectively. Moreover, their ULI guarantees
are as good as those of conventional elimination-based algorithms (refer to Theorem 3.2).

Our main objective in this section is to prove the following results.
Theorem F.3 (Restatement of Theorem F.2). For any fixed δ ∈ (0, 1), if Algorithm 10 uses

• EXP3.P as a base-algorithm, then, for K-armed bandit, ULI guarantee is achieved with

FULI(δ, t) = O
(
t−

1
2

√
K log (δ−1K log(t+ 1))

)
.

• GEOMETRICHEDGE.P as a base-algorithm then for linear bandits with K arms, ULI
guarantee is achieved with

FULI(δ, t) = O
(
t−

1
2

√
d log (δ−1K log(t+ 1))

)
We decompose the proof of Theorem F.2 into two parts. In the first part, we first show that any
algorithm with Condition. F.1 for some δ ∈ (0, 1) can achieve the ULI guarantee. Then, we only
need to show that EXP3.P and GEOMETRICHEDGE.P satisfy Condition. F.1, which completes the
proof of Theorem F.2.

The following result suggests that showing an algorithm enjoys the ULI guarantee is reduced to show
that this algorithm meets Condition. F.1.
Theorem F.4. For any fixed δ ∈ (0, 1), if Algorithm 10 uses a base-algorithm that satisfies Condi-
tion. F.1, then, it achieves the ULI guarantee that

P

∀t ∈ N : ∆At = O

√g
(
δ−1 log2(t+ 1)

)
t

 ≥ 1− δ.

We sketch the proof of Theorem F.4 as follows. The full proof can be found in Appendix F.2.

Proof Sketch. The high-level objectives are to show the sufficient condition of Eq. (1) given in
Algorithm 1 to achieve the ULI. We first show that the optimal arm will not be eliminated, i.e.,
a⋆ ∈ Am for all phases m ∈ N. To show this, we only need show

∀m ∈ N
∑
s∈Tm

(
ℓ̂s,a⋆ − ℓ̂s,k

)
≤ 7
√
gmTm, where k ∈ argmin

a∈Am

∑
s∈Tm

ℓ̂s,a, (22)

which does not meet the elimination rule in Eq. (20).

For analysis purpose, we decompose Eq. (22) as∑
s∈Tm

(
ℓ̂s,a⋆ − ℓ̂s,k

)
=
∑
s∈Tm

(
ℓ̂s,a⋆ − ℓs,a⋆

)
+
∑
s∈Tm

(ℓs,a⋆ − ℓs,k) +
∑
s∈Tm

(
ℓs,k − ℓ̂s,k

)
. (23)

The first and the third term in Eq. (23) can be handled thanks to the bound on
∣∣∣∑t(ℓ̂t,a − ℓt,a)

∣∣∣ in
Eq. (21), and the second term in Eq. (23) can be handled by invoking the standard concentration
inequality as losses are drawn from fixed distributions.

Then, we show that if an arm is still active at a round t, then, for all active arms a ∈ At, ∆a is
bounded by a function, monotonically decreasing for large t. This can be proved again via a similar
decomposition of Eq. (23) to get∑

s∈Tm

(
ℓ̂s,a − ℓ̂s,k

)
≥ 0.5Tm∆a − 5

√
gmTm.

Therefore, for some large Tm such that 0.5Tm∆a − 5
√
gmTm > 7

√
gmTm, bad arms will be

eliminated. Putting two pieces together, we complete the proof.
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With Theorem F.4 in hand, our next objective is to show that EXP3.P and GEOMETRICHEDGE.P are
able to satisfy Condition. F.1. For GEOMETRICHEDGE.P with John’s exploration (which improves
the original bound [Bartlett et al., 2008]), Lee et al. [2021] have already shown that it achieves the
condition, and the rest result will show that EXP3.P also holds it. The full proof can be found in
Appendix F.3.
Proposition F.5. In MAB setting, for any δ ∈ (0, 1), EXP3.P with given arm set A, satisfies
Condition. F.1 with g(δ) = O (|A| log (|A|/δ)).

The key that EXP3.P as well as GEOMETRICHEDGE.P can fulfill Condition. F.1 is because it adds a
small amount of probability for uniform exploration to each arm. Therefore, the importance-weighted
(IW) estimator can be lower-bounded and the term

∣∣∣∑t(ℓ̂t,a − ℓt,a)
∣∣∣ will not be too large.

Apart from EXP3.P for MAB and GEOMETRICHEDGE.P for linear bandits, Lee et al. [2021] show
that refined version of SCRIBLE [Lee et al., 2020] can be used as a base-algorithm for Algo-
rithm 10 to achieve the ULI guarantee for linear bandits, but the ULI guarantee is inferior to that of
GEOMETRICHEDGE.P (i.e., inferior FULI w.r.t. d).

F.2 Proof of Theorem F.4

Lemma F.6. If Algorithm 10 accepts a base-algorithm which satisfies Condition. F.1 as an input,
then, with probability at least 1− 3

5δ, for all m ∈ N and a ∈ Am,

∑
s∈Tm

(ℓs,As
− ℓs,a) ≤

√
gmTm − 2

∣∣∣∣∣ ∑
s∈Tm

(
ℓs,a − ℓ̂s,a

)∣∣∣∣∣ . (24)

Proof. We first consider a fixed phase m. Since the base-algorithm satisfies Condition. F.1, if the
base-algorithm runs for consecutive Tm and active arm set Am ⊆ A, then, with probability at least
1− 3

5δ
′, for all a ∈ Am∑

s∈Tm

(ℓs,As − ℓs,a) ≤
√

g(δ′)Tm − 2

∣∣∣∣∣ ∑
s∈Tm

(
ℓs,a − ℓ̂s,a

)∣∣∣∣∣ .
By setting δ′ = δ/(2m2) for phase m and applying a union bound over all m ∈ N, we complete the
proof.

Recall from the second bullet of Condition. F.1 that

g(δ′) ≥ log (10|A|/δ′) , ∀δ′ ∈ (0, 1).

As the above holds for all δ′ ∈ (0, 1), according to the definition gm = g(δ/(2m2)), we also have
that

gm ≥ log

(
20m2|A|

δ

)
, ∀m ∈ N. (25)

Lemma F.7. With probability at least 1− δ/5, for all m ∈ N and a ∈ Am, we have∣∣∣∣∣ ∑
s∈Tm

ℓs,a −
∑
s∈Tm

(1− µa)

∣∣∣∣∣ ≤
√

gmTm

2
. (26)

Proof. Consider any fixed m and a ∈ Am. By applying Hoeffding’s inequality with probability at
least 1− δ′, ∣∣∣∣∣ ∑

s∈Tm

ℓs,a −
∑
s∈Tm

(1− µa)

∣∣∣∣∣ ≤
√

Tm log(2/δ′)

2
.

Choosing δ′ = δ/(10|A|m2), applying union bounds over all m ∈ N and a ∈ Am, and using
Eq. (25), we complete the proof.
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Lemma F.8. With probability at least 1− δ/5, for all m ∈ N, we have∣∣∣∣∣ ∑
s∈Tm

ℓs,As
−
∑
s∈Tm

∑
a∈Am

ps,a(1− µa)

∣∣∣∣∣ ≤√8gmTm. (27)

Proof. Consider a fixed m. For each round s in this phase, let us define

Ms = ℓs,As
− Es [ℓs,As

] =
∑

a∈Am

(ℓs,aBs,a − ps,a(1− µa)) .

By applying Azuma-inequality with the fact that |Ms −Ms−1| ≤ 2 for all s and also using a union
bound over all m ∈ N, with probability at least 1− δ/5, for all m ∈ N∣∣∣∣∣ ∑

s∈Tm

ℓs,As −
∑
s∈Tm

∑
a∈Am

ps,a(1− µa)

∣∣∣∣∣ ≤√8Tm log(20m2/δ) ≤
√

8gmTm,

where the last inequality uses Eq. (25), which thus completes the proof.

Definition F.9. Let E be the event in which the concentration inequalities in Lemma F.6, Lemma F.7,
and Lemma F.8 hold simultaneously.

By a union bound, we have the following fact.

Fact. With the definition of E in Definition F.9, E occurs with probability at least 1− δ.
Lemma F.10. Suppose that E occurs where E is defined Definition F.9, and then for all m ∈ N and
a ∈ Am,

2

∣∣∣∣∣ ∑
s∈Tm

(
ℓs,a − ℓ̂s,a

)∣∣∣∣∣ ≤ 5
√
gmTm + Tm∆a.

Proof. Conditioning on E , for each m ∈ N and a ∈ Am, one can show

2

∣∣∣∣∣ ∑
s∈Tm

(
ℓs,a − ℓ̂s,a

)∣∣∣∣∣
≤
√
gmTm +

∑
s∈Tm

(ℓs,a − ℓs,As
)

≤
√
gmTm −

∑
s∈Tm

∑
j∈Am

ps,j(1− µj) +
√

8gmTm +
∑
s∈Tm

(1− µa) +

√
gmTm

2

≤ 5
√

gmTm +
∑
s∈Tm

∑
j∈Am

ps,j(µj − µa)

≤ 5
√
gmTm + Tm∆a,

where the first inequality holds due to Lemma F.6, the second inequality uses Lemma F.7 and
Lemma F.8, and the last inequality bounds µj ≤ µ⋆ for all j.

Corollary F.11. Suppose that E occurs where E is defined Definition F.9, and then for all m ∈ N
and a ∈ A, we have ∑

s∈Tm

ℓs,a⋆ −
∑
s∈Tm

ℓs,a ≤ −Tm∆a +
√

2gmTm, (28)

∑
s∈Tm

ℓs,a −
∑
s∈Tm

ℓs,a⋆ ≤ Tm∆a +
√

2gmTm. (29)

Proof. The proof is immediate by applying Lemma F.7.

Lemma F.12. Suppose that E occurs where E is defined Definition F.9, and then a⋆ ∈ Am for all
m ∈ N.

30



Proof. We prove the claimed result by induction. For the base case, the claim holds for the first phase
m = 1 as A1 = A. Suppose that a⋆ ∈ Am. Then, we show that a⋆ will not be eliminated at the end
of phase m, thereby active for phase m+ 1. Then, we have∑

s∈Tm

(
ℓ̂s,a⋆ − ℓ̂s,k

)
=
∑
s∈Tm

(
ℓ̂s,a⋆ − ℓs,a⋆

)
+
∑
s∈Tm

(ℓs,a⋆ − ℓs,k) +
∑
s∈Tm

(
ℓs,k − ℓ̂s,k

)
≤ 5

2

√
gmTm +

(
−Tm∆k +

√
2gmTm

)
+

1

2

(
5
√
gmTm + Tm∆k

)
=

13

2

√
gmTm − 0.5Tm∆k

< 7
√
gmTm,

where the first inequality uses Lemma F.10 together with ∆a⋆ = 0 and Corollary F.11.

Once the induction is done, we complete the proof (recall the elimination rule in Algorithm 10).

Lemma F.13. Suppose that E occurs where E is defined Definition F.9. For each arm a ∈ A with
∆a > 0, it will not be in Am for all m ≥ ma + 1, where ma is the smallest phase such that
2ma > 1

∆2
a

.

Proof. Consider fixed phase m and arm a ∈ A with ∆a > 0. Suppose that arm a is still active in an
phase m. One can show∑

s∈Tm

(
ℓ̂s,a − ℓ̂s,k

)
≥
∑
s∈Tm

(
ℓ̂s,a − ℓ̂s,a⋆

)
=
∑
s∈Tm

(
ℓ̂s,a − ℓs,a

)
+
∑
s∈Tm

(ℓs,a − ℓs,a⋆) +
∑
s∈Tm

(
ℓs,a⋆ − ℓ̂s,a⋆

)
≥ −1

2

(
5
√
gmTm + Tm∆a

)
+
(
Tm∆a −

√
2gmTm

)
+
−5
2

√
gmTm

≥ 0.5Tm∆a − 5
√
gmTm, (30)

where the first inequality holds since Lemma F.12 implies that a⋆ ∈ Am for all m ∈ N, and the
second inequality uses Lemma F.10 together with ∆a⋆ = 0 and Corollary F.11.

Let ma be the minimum phase such that 2ma > 1
∆2

a
(i.e., 2ma−1 ≤ 1

∆2
a

), which further gives that

Tma = ⌈576gma2
ma⌉ ≥ 576gma2

ma >
576gma

∆2
a

.

Hence, by the definition of ma, we have Tm > 576gm
∆2

a
for all m ≥ ma, which gives that Tm∆a >

24
√
gmTm for all m ≥ ma. Plugging this into Eq. (30), we arrive at∑

s∈Tm

(
ℓ̂s,a − ℓ̂s,k

)
≥ 0.5Tm∆a − 5

√
gmTm > 7

√
gmTm,

which implies that arm a will not be active in all phases m ≥ ma + 1 according to the elimination
rule.

Finally, one can repeat this argument for each a ∈ A with ∆a > 0 conditioning on E .

Lemma F.14. Let m(t) be the phase in which round t lies. Then, m(t) ≤ log2(t+ 1) for all t ∈ N.

Proof. We prove this by contradiction. Suppose that ∃t ∈ N that m(t) > log2(t + 1). Note that
we can further assume m(t) ≥ 2 since one can easily verify that for all t such that m(t) = 1,

31



m(t) ≤ log2(t+ 1) must hold. Recall that in phase m(t), each active arm will be played for mℓ(t)

times, we have

t ≥ Tm(t)−1 ≥ 576gm(t)−12
m(t)−1 > 288(t+ 1)gm(t)−1 > t,

where the third inequality bounds ℓ(t) > log2(t+ 1) by assumption. Therefore, once a contradiction
occurs, the proof is complete.

Lemma F.15. Let m(t) be the phase in which round t lies. Suppose that E occurs. For all t ∈ N and
all a ∈ A, if a ∈ Am(t), then,

∆a ≤

√
4608g(δ/(2 log22(t+ 1)))

t
.

Proof. If a ∈ Am(t) is optimal, then, ∆a = 0 and the claim trivially holds. In what follows, we only
consider arm a ∈ Am(t) with ∆a > 0. Then, t can be bounded by

t ≤
m(t)∑
n=1

⌈576gn2n⌉

≤ 1152

m(t)∑
n=1

gn2
n

≤ 1152gm(t)

m(t)∑
n=1

2n

≤ 1152gm(t)

ma∑
n=1

2n

≤
4608gm(t)

∆2
a

,

where the second inequality simply bounds ⌈576gn2n⌉ ≤ 2× 576gn2
n for all phases n, the fourth

inequality holds because Lemma F.13 implies that if a ∈ Am(t), then, m(t) ≤ ma holds, and the last
inequality uses 1

∆2
a
≥ 2ma−1.

Since for any fixed δ ∈ (0, 1), g(δ/x2) is monotonically increasing for x ≥ 1 (recall Condition. F.1)
and Lemma F.14 gives m(t) ≤ log2(t+ 1), we have

gm(t) = g(δ/(2m(t)2)) ≤ g(δ/(2 log22(t+ 1))),

which gives t ≤ 4608g(δ/(2 log2
2(t+1)))

∆2
a

. Conditioning on E , this argument holds for each t, a, which
completes the proof.

Proof of Theorem F.4. Once Lemma F.12 and Lemma F.15 hold, and g(x) is polynomial in log(1/x),
Theorem 3.1 gives that for any fixed δ ∈ (0, 1), Algorithm 10 achieves the ULI guarantee with a
function

FULI(δ, t) = O

√g(δ/(2 log22(t+ 1)))

t

 .

According to the first bullet of Condition. F.1, the proof is complete.

F.3 Proof of Proposition F.5

In this section, we prove that EXP3.P [Auer et al., 2002b] meets Condition. F.1. In our setting,
arm set is A = [K], and the loss ℓt,a generated by each arm a at each round t is assumed to be
[0, 1]-bounded.
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Algorithm 11 EXP3.P
Input: Time horizon T , arm set [K], confidence δ ∈ (0, 1).
Initialize: ∀a ∈ [K], w1,a = 1 and parameters η = ηδ(T ), γ = γδ(T ), β = βδ(T ) according to
Eq. (33).
for t = 1, 2, . . . , T do

Play an arm At ∈ [K] from distribution pt = [pt,1, . . . , pt,K ] and observe loss ℓt,At where

pt,a = (1− γ)
wt,a

Wt
+

γ

K
where Wt =

∑
a∈[K]

wt,a. (31)

Update wt+1,a = wt,a exp(−ηℓ̃t,a) for all a ∈ [K] with

ℓ̃t,a = ℓ̂t,a −
2β

pt,a
, where ℓ̂t,a =

ℓt,aBt,a

pt,a
, and Bt,a = I {At = a} . (32)

The pseudocode of EXP3.P is given in Algorithm 11 and we briefly review its procedure. Ahead of
time, EXP3.P accepts a fixed time horizon T ∈ N arm set [K], and confidence δ ∈ (0, 1) as inputs.
At each round t ∈ [T ], EXP3.P pulls an arm At ∼ pt from a distribution pt = [pt,1, . . . , pt,K ], and
then observes the loss ℓt,At

. The probability of playing an arm a at round t is (1 − γ)
wt,a

Wt
+ γ

K

where γ > 0 is a fixed parameter, which encourages the exploration, wt,a is the weight of arm a, and
Wt =

∑
a∈[K] wt,a. After pulling the arm, the algorithm uses the observed reward to construct the

shifted IW-estimators ℓ̃t,a according to Eq. (32), and finally uses the shifted IW-estimators to update
the weight wt,a for each arm.

The parameters of γδ(T ), ηδ(T ), βδ(T ) are as a function T , given as

γδ(T ) = min

{
1

2
,

√
K log(10K/δ)

T

}
, βδ(T ) = ηδ(T ) =

γδ(T )

K
. (33)

Let Et[·] be the conditional expectation given the history prior to round t.
Lemma F.16 (Exercise 5.15 of [Lattimore and Szepesvári, 2020]). Let {Xt}Tt=1 be a sequence of
random variables adapted to filtration {Ft}Tt=1 and let β > 0 such that βXt ≤ 1 almost surely for
all t ∈ [T ]. With probability at least 1− δ,

T∑
t=1

(Xt − Et[Xt]) ≤ β

T∑
t=1

Et[X
2
t ] +

log(1/δ)

β
.

Corollary F.17. With probability at least 1− δ/5, for all a ∈ [K],
T∑

t=1

(
ℓ̃t,a − ℓt,a

)
≤ log(5K/δ)

β
.

Proof. Consider a fixed arm a. For all t, a, we have ℓt,a ∈ [0, 1], and thus

Et

[
ℓ̂2t,a

]
= Et

[
ℓ2t,aB

2
t,a

p2t,a

]
= Et

[
ℓ2t,aBt,a

p2t,a

]
≤ Et

[
Bt,a

p2t,a

]
=

1

pt,a
. (34)

Then, we check βℓ̂t,a ≤ 1 almost surely for all t ∈ [T ]. Specifically, we use pt,a ≥ γ/K to show

βℓ̂t,a = β
Bt,aℓt,a
pt,a

≤ β
1

pt,a
≤ βK

γ
= 1,

where the last equality holds due to β = γ/K according to Eq. (33).

For the fixed a, applying Lemma F.16 with Xt = ℓ̂t,a, we have that with probability at least 1− δ′

T∑
t=1

(
ℓ̃t,a − ℓt,a

)
=

T∑
t=1

(
ℓ̂t,a − ℓt,a

)
−

T∑
t=1

2β

pt,a
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≤ β

T∑
t=1

1

pt,a
+

log(1/δ′)

β
−

T∑
t=1

2β

pt,a

≤ log(1/δ′)

β
.

Choosing δ′ = δ/(5K) and applying a union bound over all a ∈ [K] yield the claimed bound.

Lemma F.18. With probability at least 1− δ/5, for all a ∈ [K], we have∣∣∣∣∣
T∑

t=1

ℓt,a −
T∑

t=1

(1− µa)

∣∣∣∣∣ ≤
√

T log (10K/δ)

2
. (35)

Proof. Consider any fixed arm a. By applying Hoeffding’s inequality with probability at least 1− δ′,∣∣∣∣∣
T∑

t=1

ℓs,a −
T∑

t=1

(1− µa)

∣∣∣∣∣ ≤
√

T log(2/δ′)

2
.

Choosing δ′ = δ/(5K) and applying a union bound over all arms, we complete the proof.

Lemma F.19 (Freedman’s inequality). Let {Xt}Tt=1 be a martingale difference sequence with respect
to filtration {Ft}Tt=1 and |Xt| ≤M almost surely for all t. Then, for any δ ∈ (0, 1), with probability
at least 1− δ, ∣∣∣∣∣

T∑
t=1

Xt

∣∣∣∣∣ ≤ 2M

3
log(2/δ) +

√√√√2 log(2/δ)

T∑
t=1

Et[X2
t ].

Corollary F.20. With probability at least 1− δ/5, the following holds for all a,∣∣∣∣∣
T∑

t=1

(
ℓ̂t,a − (1− µa)

)∣∣∣∣∣ ≤ 2 log(10K/δ)

3

K

γ
+

√√√√2 log(10K/δ)

T∑
t=1

1

pt,a
.

Proof. Consider a fixed arm a. Let Mt,a = ℓ̂t,a− (1−µa) and {Mt,a}Tt=1 is a martingale difference
sequence. We have Et[Mt,a] = 0, |Mt,a| ≤ K

γ and also√√√√ T∑
t=1

Et

[
M2

t,a

]
≤

√√√√ T∑
t=1

Et

[
ℓ̂2t,a

]
≤

√√√√ T∑
t=1

1

pt,a
,

where the last step holds due to Eq. (34).

By Lemma F.19 and a union bound over all a, with probability at least 1− δ′ for all a∣∣∣∣∣
T∑

t=1

(
ℓ̂t,a − (1− µa)

)∣∣∣∣∣ ≤ 2 log(2K/δ′)

3

K

γ
+

√√√√2 log(2K/δ′)

T∑
t=1

1

pt,a
.

Choosing δ′ = δ/5 completes the proof.

Definition F.21. Let E0 be the event in which all inequalities of Corollary F.17, Lemma F.18, and
Corollary F.20 hold simultaneously. With this definition, E0 occurs with probability at least 1− 3δ

5 .
Lemma F.22. Let θ0 be an arbitrary constant such that θ0 ≥ 1. Suppose that E0 occurs where E0 is
defined in Definition F.21, and then for all a ∈ [K], we have

−
T∑

t=1

β

pt,a
≤ −θ0

∣∣∣∣∣
T∑

t=1

(
ℓ̂t,a − ℓt,a

)∣∣∣∣∣+ 2Kθ0 log(10K/δ)

3γ
+

θ20 log(10K/δ)

β
+ θ0

√
T log (10K/δ)

2

(36)
T∑

t=1

(
ℓ̃t,a − ℓt,a

)
≤ 2K log(10K/δ)

3γ
+

θ0 log(10K/δ)

β
+

√
T log (10K/δ)

2
− β

T∑
t=1

1

pt,a
, (37)
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Proof. Let θ0 > 0 be an arbitrary constant. By Corollary F.20, for all a ∈ [K]∣∣∣∣∣
T∑

t=1

(
ℓ̂t,a − (1− µa)

)∣∣∣∣∣ ≤ 2 log(10K/δ)

3

K

γ
+

√√√√2 log(10K/δ)

T∑
t=1

1

pt,a

=
2 log(10K/δ)

3

K

γ
+

√√√√2
θ0 log(10K/δ)

β
· β
θ0

T∑
t=1

1

pt,a

≤ 2 log(10K/δ)

3

K

γ
+

θ0 log(10K/δ)

β
+

β

θ0

T∑
t=1

1

pt,a
, (38)

where the second inequality uses
√
2ab ≤ a+ b for all a, b ≥ 0.

Moreover, by the triangle inequality, we have∣∣∣∣∣
T∑

t=1

(
ℓ̂t,a − ℓt,a

)∣∣∣∣∣ ≤
∣∣∣∣∣

T∑
t=1

(
ℓ̂t,a − (1− µa)

)∣∣∣∣∣+
∣∣∣∣∣

T∑
t=1

(ℓt,a − (1− µa))

∣∣∣∣∣
≤ 2 log(10K/δ)

3

K

γ
+

θ0 log(10K/δ)

β
+

β

θ0

T∑
t=1

1

pt,a
+

√
T log (10K/δ)

2
,

(39)

where the last inequality applies Lemma F.18 and uses Eq. (38).

Rearranging the above gives

−
T∑

t=1

β

pt,a
≤ −θ0

∣∣∣∣∣
T∑

t=1

(
ℓ̂t,a − ℓt,a

)∣∣∣∣∣+ 2θ0 log(10K/δ)

3

K

γ
+

θ20 log(10K/δ)

β
+ θ0

√
T log (10K/δ)

2
.

Finally, if we constrain θ0 ≥ 1, then

T∑
t=1

(
ℓ̃t,a − ℓt,a

)
=

T∑
t=1

(
ℓ̂t,a − ℓt,a

)
−

T∑
t=1

2β

pt,a

≤ 2 log(10K/δ)

3

K

γ
+

θ0 log(10K/δ)

β
+

√
T log (10K/δ)

2
+

1

θ0

T∑
t=1

βℓt,a
pt,a

−
T∑

t=1

2β

pt,a

≤ 2 log(10K/δ)

3

K

γ
+

θ0 log(10K/δ)

β
+

√
T log (10K/δ)

2
−

T∑
t=1

β

pt,a
,

where the first inequality uses Eq. (39) and the last one bounds θ0 ≥ 1.

Since this argument holds for all a ∈ [K] conditioning on E0, we complete the proof.

Lemma F.23. The following holds for all t ∈ [T ].

K∑
a=1

pt,aℓ̃
2
t,a ≤

K∑
a=1

ℓ̃t,a +
4K2β2

γ
.

Proof. For any fixed t, we can show

K∑
a=1

pt,aℓ̃
2
t,a =

K∑
a=1

pt,a

(
ℓ̂t,a −

2β

pt,a

)2
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=

K∑
a=1

pt,a

(
ℓ̂2t,a −

4β

pt,a
ℓ̂t,a +

4β2

p2t,a

)

=

K∑
a=1

pt,aℓ̂t,a

(
ℓ̂t,a −

4β

pt,a

)
+

K∑
a=1

4β2

pt,a

≤
K∑

a=1

pt,aℓ̂t,aℓ̃t,a +
4K2β2

γ

≤
K∑

a=1

ℓ̃t,a +
4K2β2

γ
,

where the first inequality uses ℓ̂t,a − 4β
pt,a
≤ ℓ̂t,a − 2β

pt,a
= ℓ̃t,a and pt,a ≥ γ

K , and the last inequality

bounds pt,aℓ̂t,a ≤ 1 for each a ∈ [K]. Since the claim deterministically holds for all t, the proof is
complete.

Lemma F.24. The following holds for all arms k ∈ [K].

T∑
t=1

K∑
a=1

pt,aℓ̃t,a −
T∑

t=1

ℓ̃t,k ≤
log(K)

η
+ 2η

K∑
a=1

T∑
t=1

ℓ̃t,a + 4TKβ2.

Proof. Let us define

Φ0 = 0, Φt =
1− γ

η
log

(
1

K

K∑
a=1

exp

(
−η

t∑
s=1

ℓ̃s,a

))
, ∀t ≥ 1.

With this definition, one can show for t ≥ 2

Φt − Φt−1 =
1− γ

η
log

∑K
a=1 exp

(
−η
∑t

s=1 ℓ̃s,a

)
∑K

a=1 exp
(
−η
∑t−1

s=1 ℓ̃s,a

)


=
1− γ

η
log

∑K
a=1 exp

(
−η
∑t−1

s=1 ℓ̃s,a

)
∑K

a=1 exp
(
−η
∑t−1

s=1 ℓ̃s,a

) exp
(
−ηℓ̃t,a

)
=

1− γ

η
log

(
K∑

a=1

wt,a

Wt
exp

(
−ηℓ̃t,a

))

≤ 1− γ

η
log

(
K∑

a=1

wt,a

Wt

(
1− ηℓ̃t,a + η2ℓ̃2t,a

))

=
1− γ

η
log

(
1 + η

K∑
a=1

wt,a

Wt

(
ηℓ̃2t,a − ℓ̃t,a

))

=
1− γ

η
log

(
1 +

η

1− γ

K∑
a=1

(
pt,a −

γ

K

)(
ηℓ̃2t,a − ℓ̃t,a

))

≤ −
K∑

a=1

(
pt,a −

γ

K

)
ℓ̃t,a + η

K∑
a=1

(
pt,a −

γ

K

)
ℓ̃2t,a

≤ −
K∑

a=1

pt,aℓ̃t,a +
γ

K

K∑
a=1

ℓ̃t,a + η

K∑
a=1

pt,aℓ̃
2
t,a,

where the first inequality uses e−x ≤ 1− x+ x2 whenever x ≥ −1 (here we repeat x = ηℓ̃t,a for
every a), and the second inequality follows from log(1 + x) ≤ x for all x > −1.
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By summing over all t and using Lemma F.23 with η = γ
K , the above result yields

T∑
t=1

K∑
a=1

pt,aℓ̃t,a ≤
T∑

t=1

(Φt−1 − Φt) + η

T∑
t=1

K∑
a=1

ℓ̃t,a + η

T∑
t=1

K∑
a=1

pt,aℓ̃
2
t,a

≤
T∑

t=1

(Φt−1 − Φt) + 2η

T∑
t=1

K∑
a=1

ℓ̃t,a + 4TKβ2.

As Φ0 = 0 and 1− γ ≤ 1, we have for an arbitrary arm k ∈ [K],
T∑

t=1

(Φt−1 − Φt) = −ΦT

≤ (1− γ) log(K)

η
− 1− γ

η
log

(
K∑

a=1

exp

(
−η

T∑
t=1

ℓ̃t,a

))

≤ (1− γ) log(K)

η
− 1− γ

η
log

(
exp

(
−η

T∑
t=1

ℓ̃t,k

))

≤ log(K)

η
+

T∑
t=1

ℓ̃t,k.

As this argument deterministically holds for all k ∈ [K], we complete the proof.

Proof of Proposition F.5. The following analysis will condition on event E0 which is defined in
Definition F.21. As mentioned in Definition F.21, this event occurs with probability at least 1− 3

5δ.
We first note that for all t, a

K∑
a=1

pt,aℓ̃t,a =

K∑
a=1

pt,a

(
ℓt,aBt,a

pt,a
− 2β

pt,a

)
=

K∑
a=1

(ℓt,aBt,a − 2β) = ℓt,At − 2βK. (40)

Recall that we choose parameters as

γ = min

{
1

2
,

√
K log(10K/δ)

T

}
, β = η =

γ

K
. (41)

In what follows, we consider T > 4K log(10K/δ)7. In this case, we have η, γ, β ∈ (0, 1
2 ].

Then, for an arbitrary arm k ∈ [K], we pick θ0 = 2 and show
T∑

t=1

(ℓt,At
− ℓt,k)

=

T∑
t=1

(
K∑

a=1

pt,aℓ̃t,a − ℓt,k

)
+ 2βKT

≤
T∑

t=1

(
K∑

a=1

pt,aℓ̃t,a − ℓ̃t,k

)
︸ ︷︷ ︸

TERM 1

+2βKT +
2 log(10K/δ)

3

K

γ
+

2 log(10K/δ)

β
+

√
T log (10K/δ)

2︸ ︷︷ ︸
TERM 2

+(−β)
T∑

t=1

ℓt,k
pt,k︸ ︷︷ ︸

TERM 3

,

where the equality uses Eq. (40) and the inequality applies Lemma F.22.

We first apply Lemma F.24 to bound TERM 1 as

TERM 1 ≤ log(K)

η
+ 2η

K∑
a=1

T∑
t=1

ℓ̃t,a + 4TKβ2

7With the choice of g(δ) in Proposition F.5, this requirement always holds if EXP3.P is a base-algorithm in
Algorithm 10.
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≤ log(K)

η
+ 2η

K∑
a=1

(
T∑

t=1

ℓt,a +
log(10K/δ)

β

)
+ 4TKβ2

≤ log(K)

η
+ 2ηKT +

2ηK log(10K/δ)

β
+ 4TKβ2

≤ 3
√
KT log(10K/δ) + 2K log(10K/δ) + 4 log(10K/δ)

≤ 6
√
KT log(10K/δ),

where the second inequality uses Corollary F.17, the third inequality uses
∑

i ℓt,a ≤ K, and the last

inequality uses T ≥ 4K log(10K/δ) (i.e., K ≤
√

KT
4 log(10K/δ) ).

Then, we use K/γ = 1/η to bound TERM 2:

TERM 2 = 2βKT +
2 log(10K/δ)

3η
+

2 log(10K/δ)

β
+

√
T log (10K/δ)

2

= 2
√
KT log(10K/δ) +

2

3

√
KT log(10K/δ) + 2

√
KT log(10K/δ) +

√
T log(10K/δ)

2

≤ 14

3

√
KT log(10K/δ) +

√
T log(10K/δ)

2
.

Finally, we apply Eq. (36) with θ0 = 2 to bound TERM 3.

TERM 3 ≤ −2

∣∣∣∣∣
T∑

t=1

(
ℓ̂t,k − ℓt,k

)∣∣∣∣∣+ 4 log(10K/δ)

3η
+

4 log(10K/δ)

β
+
√
2T log (10K/δ)

= −2

∣∣∣∣∣
T∑

t=1

(
ℓ̂t,k − ℓt,k

)∣∣∣∣∣+ 16

3

√
KT log(10K/δ) +

√
2T log(10K/δ).

Putting bounds of TERM 1, TERM 2, and TERM 3 together gives

T∑
t=1

(ℓt,At
− ℓt,k) ≤ −2

∣∣∣∣∣
T∑

t=1

(
ℓ̂t,k − ℓt,k

)∣∣∣∣∣+ 16
√
KT log(10K/δ) +

3
√
2

2

√
T log(10K/δ)

≤ −2

∣∣∣∣∣
T∑

t=1

(
ℓ̂t,k − ℓt,k

)∣∣∣∣∣+ 19
√
KT log(10K/δ).

As this argument holds for all k ∈ [K] conditioning on E0, the proof is thus complete.

F.4 Proof of Theorem F.2

For EXP3.P, we apply g(δ) = O (K log (K/δ)) given in Proposition F.5 into Theorem F.4 to get the
claimed result.

As for GEOMETRICHEDGE.P, we consider an improved version in [Lee et al., 2021] which uses
John’s exploration and shows that g(δ) = d log(K/δ). Note that this is slightly different from
d log(K log2 T/δ) presented in [Lee et al., 2021]. The extra log2 T term is caused by Lemma 2 of
[Bartlett et al., 2008], a concentration inequality for martingales, but one can invoke Lemma F.19 to
avoid it. By applying such a function g(δ) into Theorem F.4, we obtain the claimed result.
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Algorithm 12 Adaptive barycentric spanner

Input: compact arm set A, phase m, spanner Bm−1, parameters Tm, C, and estimation θ̂m.
Initialize: matrix A = [a1, . . . , ad] by setting ai =

ei√
Tm
∈ Rd for all i ∈ [d], and Im = [d].

1 Let Bm−1 ∈ Rd×|Bm−1| be a matrix whose the i-th column vector is the i-th element of set Bm−1.
2 if |Bm−1| < d then
3 Use Gaussian elimination to get Mm ∈ R(d−|Bm−1|)×d such that Span(Bm−1) = {x ∈ Rd :

Mmx = 0⃗}.
4 else
5 Remove constraints in (42), (43) related to Bm−1,Mm.
6 Query oracle to get empirical best arm a⋆m, the solution of

argmax
a∈A

〈
θ̂m, a

〉
(42)

s.t. Mma = 0⃗, − C⃗ ≤
(
B⊤

m−1Bm−1

)−1
B⊤

m−1a ≤ C⃗.

7 for i = 1, . . . , d do
8 Set si = LI-Argmax(A, A, θ̂m,Bm−1,m,C, a⋆m).
9 if si ̸= NULL then

10 Update ai = si and Im = Im − {i}.

11 for i = 1, . . . , d do
12 Set si = LI-Argmax(A, A, θ̂m,Bm−1,m,C, a⋆m).
13 if si ̸= NULL then
14 if |det (si, A−i)| ≥ C |det(A)| or i ∈ Im then
15 Update Im = Im − {i} and ai = si.
16 Restart this for-loop with current parameters.

17 Return: {ai}di=1 − ∪i∈Im

ei√
Tm

.

G Omitted Details of Section 4

G.1 Notations

We use ei ∈ Rd to denote a vector whose i-th coordinate is one and all others are zero. For any two
vectors x, y ∈ Rd, x ≤ y indicates that xi ≤ yi holds for each coordinate i. For a positive definite
matrix A ∈ Rd×d, the weighted 2-norm of vector x ∈ Rd is given by ∥x∥A =

√
x⊤Ax. For matrix

A = [a1, · · · , ad] ∈ Rd×d with each ai ∈ Rd, we use A−i to denote the (d − 1)-tuple of vectors
[a1, · · · , ai−1, ai+1, ·, ad]. For matrices A,B, we use A ≻ B to indicate that A − B is positive
definite. For two sets A,B, we use A− B to indicate the exclusion. For any scalar C ∈ R, we use C⃗
to denote a vector, with all coordinates equal to C.

G.2 Key Technique: Adaptive Barycentric Spanner

Algorithm description. Algorithm 12 aims to identify a finite arm set Bm to linearly represent the
(possibly infinite) active arm set Am, so that playing arms in Bm allows us to obtain an accurate
estimation of ⟨a, θ⟩ for each a ∈ Am.

Algorithm 12 initializes a matrix A = [a1, . . . , ad] whose column vectors are linearly independent,
and ai = ei/

√
Tm. At the beginning, the algorithm solves (42) to find an empirical best arm a⋆m (line

1-6). Then, in two for-loops (line 7-10 and line 11-16), the algorithm tries to replace each column
vector of A with an active arm a ∈ Am by invoking the subroutine LI-Argmax in Algorithm 13,
while keeping column vectors of A linearly independent. For each column i, LI-Argmax attempts
to find maxa∈Am |det(a,A−i)|8 by solving (43) with a⋆m. If maxa∈Am |det(a,A−i)| = 0, then,

8It is equivalent to maxa∈Am | ⟨u, a⟩ | where u can be found by rank-one update. See [Zhu et al., 2022] for
more details.
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Algorithm 13 Linear-independent argmax (LI-Argmax)

Input: compact arm set A, matrix A, estimation θ̂m, spanner Bm−1, and phase m, parameter C, and
arm a⋆m.

1 Find u ∈ Rd s.t. ⟨u, x⟩ = det (x,A−i), ∀x ∈ Rd.
2 Query oracle to obtain a+, the solution of

argmax
a∈A

⟨u, a⟩

s.t.
〈
θ̂m, a⋆m − a

〉
≤ 2−m+1, (43)

Mma = 0⃗, − C⃗ ≤
(
B⊤

m−1Bm−1

)−1
B⊤

m−1a ≤ C⃗.

3 Query oracle to get a− from (43) by replacing u with −u.
4 if ⟨u, a+⟩ = 0 and ⟨u, a−⟩ = 0 then

Return: NULL.
5 else

Return: argmaxb∈{a+,a−} |⟨u, b⟩|.

the algorithm returns NULL, since there does not exist an active arm that can maintain the linear
independence. In this case, the algorithm keeps ei/

√
Tm in the i-th column of A. Otherwise, ai will

be updated to si ∈ argmaxa∈Am
|det(a,A−i)|. We use set Im to record the indices of columns

where the replacement fails. According to the conditions in line 14, the second for-loop will be
repeatedly restarted to ensure that the linear combination of elements in Bm can represent all active
arms in Am with coefficients in the range of [−C,C]. Also note that, as shown in Theorem 4.2,
LI-Argmax will be oracle-efficient as it only queries the oracle Õ

(
d3
)

times.

Formally, we have the following result.
Lemma G.1. Suppose C > 1 and Bm is the output of Algorithm 12 in phase m. Then, for all m ∈ N,
Bm is a C-approximate barycentric spanner of Am.

G.3 Computational Analysis

Recall from the previous subsection that Algorithm 12 and LI-Argmax needs to find the empirical
best arm a⋆m and argmaxa∈Am

|det(a,A−i)|, both of which rely on the access to the following
optimization oracle.
Definition G.2 (Optimization oracle). Given a compact set A ⊆ Rd, the oracle can solve problems
of the form

argmax
a∈A

⟨θ, a⟩ , s.t. Ua = β⃗1, V a ≤ β⃗2,

for any β1, β2 ∈ R, θ ∈ Rd, U ∈ Rτ1×d, V ∈ Rτ2×d, where τ1, τ2 are at most O(d). If the optimal
solution is not unique, the oracle returns any one of them.

We note that the constrained optimization oracles are commonly-used and also crucial for elimination-
type approaches e.g., [Bibaut et al., 2020, Li et al., 2022]. Although this oracle is slightly powerful
than that used for non-elimination based approaches [Dani et al., 2008, Agarwal et al., 2014], linear
constrained oracle, in fact, can be implemented efficiently in many cases (e.g., a common assumption
that A is a ball [Plevrakis and Hazan, 2020]) via the ellipsoid method. We refer readers to [Bibaut
et al., 2020, Plevrakis and Hazan, 2020] for more discussions.

With the optimization oracle in hand, our goal here is to query the oracle to solve the optimization
problem argmaxa∈Am

|det(a,A−i)|, which can be rewritten as follows based on Eq. (3).

argmax
a∈Am−1

|det(a,A−i)|s.t.
〈
θ̂m, a⋆m − a

〉
≤ 2−m+1. (44)

Problem (44) also needs to find the empirical best arm a⋆m. A natural idea to compute the empirical
best arm a⋆m is to solve argmaxa∈Am−1

⟨θ̂m, a⟩. Notice that both finding a⋆m and solving Eq. (44)
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require to deal with constraint a ∈ Am−1. However, this constrain prevents us from querying the
optimization oracle due to the following reason.

Issue: a ∈ Am−1 may cause a large (even infinite) number of constraints. One can rewrite
a ∈ Am−1 as: {

a ∈ A :
〈
θ̂τ , a

⋆
τ − a

〉
≤ 2−τ+1,∀τ ≤ m− 1

}
. (45)

However, the evolution of phases blows up the number of constraints in (45) (e.g., when m =
Ω(exp(d))), which prevents LI-Argmax from directly querying the optimization oracle defined in
Definition G.2, since it requires the number of constraints at most O(d). To address this issue, one
needs to remove the dependence on m.

Solution: enlarging active arm set Am−1. Our solution is to slightly enlarge the active arm set
Am−1 in Eq. (45) so that the enlarged set can be expressed by finitely-many linear constraints,
independent of m. Before showing the way to enlarging Am−1, we first give the following definition.
Definition G.3 (C-bounded spanner). For any given set S ⊆ Rd and constant C > 0, Span[−C,C](S),
defined as follows, is a set that contains all possible linear combinations from S with coefficients
within [−C,C].

Span[−C,C](S) =

{∑
s∈S

cs · s : ∀cs ∈ [−C,C]

}
, (46)

where cs is the coefficient associated with element s.

We enlarge Am−1 to A ∩ Span[−C,C](Bm−1), and one can easily verify that this is true since
Am−1 ∩ A = Am−1 and Lemma G.1 implies that Am−1 ⊆ Span[−C,C](Bm−1).

Now, it remains to show that Span[−C,C](Bm−1) can be expressed by O (d) number of linear
constraints. The following lemma gives the desired result.
Lemma G.4. Suppose that |Bm−1| < d. For Mm and Bm−1 given in Algorithm 12,
Span[−C,C](Bm−1) can be equivalently written as{

a ∈ Rd : Mma = 0⃗,−C⃗ ≤
(
B⊤

m−1Bm−1

)−1
B⊤

m−1a ≤ C⃗
}
.

Hence, LI-Argmax can invoke the optimization oracle in Definition G.2 to solve problems of
argmaxa∈Am−1

⟨θ̂m, a⟩ and (44) approximately by solving (42) and (43), respectively.

Computational efficiency. We mainly focus on two costly steps in Algorithm 12. The first step
is to use Gaussian elimination to obtain the matrix Mm ∈ Rn×d for some n ≤ d. This step can
be done with at most O(d3) complexity and is implemented at most once for each phase m. The
other expensive step is to query the optimization oracle to construct a C-approximate barycentric
spanner. The number of calls to the oracle depends on the number of times that Algorithm 12 invokes
LI-Argmax subroutine. The LI-Argmax will be invoked for d times in the first for-loop. For the
second for-loop, LI-Argmax will be invoked for Õ

(
d3
)

times. Compared with Õ
(
d2
)

in [Awerbuch
and Kleinberg, 2008], the extra d in our complexity comes from the additional restart-condition
i ∈ Im in line 14 of Algorithm 12. As |Im| ≤ d and Im is non-increasing when update, this
condition will be met for at most d times.

G.4 Proof of Lemma G.4

Lemma G.5 (Restatement of Lemma G.4). Suppose that |Bm−1| < d. For Mm and Bm−1 given in
Algorithm 12, the set Span[−C,C](Bm−1) = Hm where

Hm =
{
a ∈ Rd : Mma = 0⃗,−C⃗ ≤

(
B⊤

m−1Bm−1

)−1
B⊤

m−1a ≤ C⃗
}
. (47)

Proof. For this proof, we show that a ∈ Span[−C,C](Bm−1) if and only if a ∈ Hm.

We first show that if a ∈ Span[−C,C](Bm−1), then a ∈ Hm. As matrix Mm ∈ R(d−|Bm−1|)×d is
defined by Span(Bm−1) = {x ∈ Rd : Mmx = 0⃗}, a ∈ Span[−C,C](Bm−1) ⊆ Span(Bm−1) gives
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that Mma = 0⃗. Recall that Bm−1 ∈ Rd×|Bm−1| is a matrix whose the i-th column is the i-th element
of set Bm−1 and rank(Bm−1) = |Bm−1| because Bm−1 is linearly independent. Therefore, for each
a ∈ Span[−C,C](Bm−1), there exists a unique vector9 xa ∈ R|Bm−1| such that Bm−1xa = a and
the value of each coordinate of xa is no larger than C. As Bm−1 is linearly independent, Bm−1

is a full-column rank matrix, which gives that xa =
(
B⊤

m−1Bm−1

)−1
B⊤

m−1a. As a result, if
a ∈ Span[−C,C](Bm−1), then, −C⃗ ≤

(
B⊤

m−1Bm−1

)−1
B⊤

m−1a ≤ C⃗, which concludes the proof of
this argument.

Then, we show that if a ∈ Hm, then, a ∈ Span[−C,C](Bm−1). If Mma = 0⃗, then, we
have a ∈ Span(Bm−1) due to the definition of Mm. As rank(Bm−1) = |Bm−1|, for each
a ∈ Span(Bm−1), there exists a unique vector xa ∈ R|Bm−1| such that Bm−1xa = a, which
gives that xa =

(
B⊤

m−1Bm−1

)−1
B⊤

m−1a. Thus, −C⃗ ≤
(
B⊤

m−1Bm−1

)−1
B⊤

m−1a ≤ C⃗ requires
each coordinate of xa no larger than C. As a consequence, if a ∈ Hm, then, a ∈ Span[−C,C](Bm−1).

Combining the above analysis, we complete the proof.

G.5 Proof of Lemma G.1

In this section, we aim to show that Bm is a C-approximate barycentric spanner of Am. To this end,
we first show that Bm is a C-approximate barycentric spanner of Sm which is defined below and
Am ⊆ Sm results in the desired claim. In fact, throughout our analysis, we stick with Sm rather than
Am.

S1 = A, Sm =
{
a ∈ A :

〈
θ̂m, a⋆m − a

〉
≤ 2−m+1, a ∈ Span[−C,C] (Bm−1)

}
, ∀m ≥ 2. (48)

Moreover, according to Lemma G.4, for all m ≥ 2, Sm can also be equivalently rewritten as:

Sm =
{
a ∈ A :

〈
θ̂m, a⋆m − a

〉
≤ 2−m+1, Mma = 0⃗, −C⃗ ≤

(
B⊤

m−1Bm−1

)−1
B⊤

m−1a ≤ C⃗
}

Lemma G.6. Let C > 1 and Bm is in Algorithm 2. For all m ∈ N, Bm is a C-approximate
barycentric spanner of Sm.

Proof. For all m ∈ N, we define B′m = Bm ∪
(
∪i∈Im

ei√
Tm

)
. We further define set S ′m =

Sm ∪
(
∪i∈Im

ei√
Tm

)
, and matrix B′

m = [b1, · · · , bd] where bi is the i-th element of B′m. By
these definitions, bi = ei√

Tm
for all i ∈ Im. The proof consists of three steps, and we first proceed

step 1.

Step 1: each solution of (43) is in Sm. According to the optimization problem (43), for each phase
m, the solution is drawn from (see Eq. (47) for definition ofHm)

Hm ∩
{
a ∈ A :

〈
θ̂m, a⋆m − a

〉
≤ 2−m+1

}
= Span[−C,C](Bm−1) ∩

{
a ∈ A :

〈
θ̂m, a⋆m − a

〉
≤ 2−m+1

}
= Sm,

where the first equality holds due to Lemma G.4 and the last equality holds due to Eq. (48).

Step 2: B′m is a C-approximate barycentric spanner of S ′m. The proof idea of this step follows
a similar arguments of Proposition 2.2 and Proposition 2.5 in [Awerbuch and Kleinberg, 2008]. In
Algorithm 12, each update for matrix A ∈ Rd×d always maintains |det(A)| > 0, and thus B′m spans
Rd. As S ′m ⊆ Rd, every element a ∈ S ′m can be linearly represented by a =

∑d
i=1 wibi for some

coefficients {wi}di=1, and then we have

|det (a, (B′
m)−i)| =

∣∣∣∣∣det
(

d∑
i=1

wibi, (B
′
m)−i

)∣∣∣∣∣ =
∣∣∣∣∣

d∑
i=1

wi det (bi, (B
′
m)−i)

∣∣∣∣∣ = |wi| |det(B′
m)| .

9We have the uniqueness because one can treat Bm−1xa = a as an overdetermined linear system in terms of
xa ∈ R|Bm−1| and we have rank(Bm−1) = |Bm−1|.
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Step 1 shows that each solution of (43) is in Sm, and thus Bm ⊆ Sm, which further implies B′m ⊆ S ′m.
Recall that before the termination, the algorithm will scan each column vector of matrix A to ensure
that no more replacement can be made. Hence, once Algorithm 12 terminates, we have that ∀i ∈ [d],
supa∈S′

m
|det(a, (B′

m)−i)| ≤ C |det(B′
m)|, and then ∀i ∈ [d], |wi| ≤ C, which implies that B′m is a

C-approximate barycentric spanner of S ′m.

Step 3: Bm is a C-approximate barycentric spanner of Sm. Here, we show that every a ∈ Sm
can be written as a linear combination of elements only in Bm with coefficients in [−C,C]. Notice
that we only need to consider a ∈ Sm − Bm since if a ∈ Bm, then, one can find a trivial linear
combination by itself (recall that we assume C > 1). Then, we prove the desired claim for all
a ∈ Sm−Bm by contradiction. Suppose that there exists an arm a ∈ Sm−Bm such that it cannot be
linearly represented only by elements in Bm with coefficients in [−C,C]. As Sm ⊆ S ′m and B′m is a
C-approximate barycentric spanner of S ′m (shown in step 2), there must exist coefficients {di}di=1 to
linearly represent a as:

a =

d∑
i=1

dibi, ∀i ∈ [d], di ∈ [−C,C], and ∃i ∈ Im such that di ̸= 0. (49)

As for Eq. (49), we assume without loss of generality that the coefficient index j ∈ Im satisfies
dj ̸= 0. Since a /∈ Bm, the second for-loop in Algorithm 12 ensures that a can be represented as a
linear combination of {bi}i∈[d]:i ̸=j , and it would be put in Bm otherwise (recall that Algorithm 12
terminates the second for-loop, when it scans every column vector of A and makes no replacement).
Hence, there exist coefficients {ci}i∈[d]:i̸=j such that

a =
∑

i∈[d]:i̸=j

cibi, ∀i ̸= j, ci ∈ R, . (50)

Bridging Eq. (49) and Eq. (50), we have

djbj =
∑
i̸=j

(ci − di) bi −→ bj =
1

dj

∑
i̸=j

(ci − di) bi,

which implies that the j-th element of B′m, i.e., bj can be expressed as a linear combination of other
elements of B′m, i.e., {bi}i ̸=j . This leads to a contradiction because Algorithm 12 ensures B′m to
be linearly independent. As a consequence, every element of a ∈ Sm can be written as a linear
combination of elements only in Bm with coefficients in [−C,C], which completes the proof.

Proof of Lemma G.1. Recall from Eq. (3) that Am is defined as

A1 = A, Am =
{
a ∈ Am−1 :

〈
θ̂m, a⋆m − a

〉
≤ 2−m+1

}
, ∀m ≥ 2.

Since Lemma G.6 gives that Bm is a C-approximate barycentric spanner of Sm, it suffices to show
that Am ⊆ Sm to prove the claimed result. We prove this by induction. For the base case m = 1,
A1 ⊆ S1 trivially holds based on definitions. Suppose that Am ⊆ Sm holds for m ≥ 2. For m+ 1,
Am+1 is defined as:

Am+1 =
{
a ∈ Am :

〈
θ̂m+1, a

⋆
m+1 − a

〉
≤ 2−m

}
.

Since Lemma G.6, gives that Bm is a C-approximate barycentric spanner of Sm, and the inductive
hypothesis gives Am ⊆ Sm, we have Am ⊆ Span[−C,C](Bm), which implies that

Am+1 =
{
a ∈ Am :

〈
θ̂m+1, a

⋆
m+1 − a

〉
≤ 2−m

}
=
{
a ∈ A :

〈
θ̂m+1, a

⋆
m+1 − a

〉
≤ 2−m, a ∈ Am

}
⊆
{
a ∈ A :

〈
θ̂m+1, a

⋆
m+1 − a

〉
≤ 2−m, a ∈ Span[−C,C] (Bm)

}
= Sm+1.

Once the induction is done, the proof is complete.
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G.6 Proof of Theorem 4.2: Regret Analysis

Before proving Theorem 4.2, we first present technical concept and lemmas. We first formally
introduce the concept of C-approximate optimal design, both of which help us to prove a stronger
result of Eq. (4), paving the way to prove the main theorem. Let ∆(A) be the set of all Radon
probability measures over set A.
Definition G.7 (C-approximate optimal design). Suppose that A ⊆ Rd is a finite and compact set.
A distribution π ∈ ∆(A) is called a C-approximate optimal design with an approximation factor
C ≥ 1, if

sup
a∈A
∥a∥2V (π;A)−1 ≤ C · d, where V (π;A) =

∑
a∈A

π(a)aa⊤.

Then, the following lemma shows that if one computes a uniform design for set B, a barycentric
spanner for another set A, then, playing arms in B can guarantee accurate estimations over A.
Lemma G.8 (Lemma 2 of [Zhu et al., 2022]). Suppose that A ⊆ Rd is a compact set that spans
Rd. If B = [b1, · · · , bd] is a C-approximate barycentric spanner for A, then, π : B → 1

d is a
(C2 · d)-approximate optimal design, which guarantees

sup
a∈A
∥a∥2V (π;B)−1 ≤ C2 · d2, where V (π;B) =

∑
b∈B

π(b)bb⊤.

We then present the following lemma which provides a stronger result than that of Eq. (4). More
specifically, we are supposed to show that ∥a∥V −1

m
≤ C·d/

√
Tm holds for all a ∈ Am in Eq. (4), but

we will show that this holds for all a ∈ Sm. This is stronger since Am ⊆ Sm for all m ∈ N.
Lemma G.9. For Sm defined in Eq. (48) and Bm returned by Algorithm 12, setting πm(a) = 1

d for
each a ∈ Bm and playing each arm a ∈ Bm for nm(a) = ⌈Tmπm(a)⌉ times ensure that

∀a ∈ Sm, ∥a∥V −1
m
≤ C · d√

Tm

. (51)

Proof. For all m ∈ N, we define B′m = Bm ∪
(
∪i∈Im

ei√
Tm

)
and

V (πm;B′m) =
∑

a∈B′
m

πm(a)aa⊤ =
∑

a∈Bm

πm(a)aa⊤ +
∑

a∈B′
m−Bm

πm(a)aa⊤.

With this definition and also the definition nm(a) = ⌈Tmπm(a)⌉, we have

Vm = I +
∑

a∈Bm

nm(a)aa⊤

⪰ I + Tm

∑
a∈Bm

πm(a)aa⊤

≻ TmV (πm;B′m), (52)
where the last step follows from the fact that

I = Tm

d∑
i=1

ei√
Tm

e⊤i√
Tm

≻ Tm

∑
i∈Im

πm

(
ei√
Tm

)
ei√
Tm

e⊤i√
Tm

= Tm

∑
a∈B′

m−Bm

πm(a)aa⊤.

Since B′m spans Rd and B′m ⊆ Span[−C,C] (B′m), set Span[−C,C] (B′m) also spans Rd. Lemma G.8
gives that

∀a ∈ Span[−C,C] (B′m) , ∥a∥(V (πm;B′
m))−1 ≤ C · d.

Thus, one can use Eq. (52) to show that for all

∀a ∈ Span[−C,C] (B′m) , ∥a∥V −1
m
≤
∥a∥(V (πm;B′

m))−1

√
Tm

≤ C · d√
Tm

.

As Bm is a C-approximate barycentric spanner of Sm, we have Sm ⊆ Span[−C,C] (Bm) ⊆
Span[−C,C] (B′m), the proof is thus complete.
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The following analysis will condition on the nice event E , defined as:

E =
{
∀m ∈ N :

∣∣∣〈a, θ̂m+1 − θ
〉∣∣∣ ≤ 2−m−1 for all a ∈ Sm

}
, (53)

where Sm is defined in Eq. (48).
Lemma G.10. We have P(E) ≥ 1− δ.

Proof. One can show that

∀a ∈ Sm,
∣∣∣〈a, θ̂m+1 − θ

〉∣∣∣ ≤ ∥a∥V −1
m

∥∥∥θ̂m+1 − θ
∥∥∥
Vm

≤ C · d√
Tm

∥∥∥θ̂m+1 − θ
∥∥∥
Vm

, (54)

where the first inequality uses Cauchy-Schwartz inequality and the second inequality uses Lemma G.9.

Notice that the above inequality holds for all m ∈ N. Finally, Theorem 20.5 of [Lattimore and
Szepesvári, 2020] shows that with probability at least 1− δ, for all m ∈ N∥∥∥θ̂m+1 − θ

∥∥∥
Vm

≤ 2
√
log(1/δ) + d log(Tm). (55)

Combining Eq. (55) and Eq. (54), we have that ∀a ∈ Sm,∣∣∣〈a, θ̂m+1 − θ
〉∣∣∣

≤ 2Cd

√
log(1/δ) + d log(Tm)

Tm

≤ 1

8C
· 2−m

√
log(1/δ) + log

(
256C4 · d3

4−m log
(
d34m

δ

))
log
(
d34m

δ

)
=

1

8C
· 2−m

√
4 log(4C) + log

(
d34m

δ log
(
d34m

δ

))
log
(
d34m

δ

)
≤ 1

8C
· 2−m

√
8C + 2 log

(
d34m

δ

)
log
(
d34m

δ

)
≤ 1

8C
· 2−m

√
16C log

(
d34m

δ

)
log
(
d34m

δ

)
= 2−m−1,

where the third inequality uses 4 log(4x) ≤ 8x for all x ∈ R>0, the fourth inequality follows from
a+ b ≤ 2ab whenever a, b > 1 (here a = 8C and b = 2 log(d34m/δ)), and the last inequality holds
due to C > 1.

Hence, the proof is complete.

Lemma G.11. Suppose E occurs where E is in Eq. (53). For all m ∈ N, a⋆ ∈ Sm holds where Sm is
defined in Eq. (48).

Proof. We prove this by induction. For the base case m = 1, the claim holds trivially. Suppose that it
holds for phase m (i.e., a⋆ ∈ Sm) and then we aim to show a⋆ ∈ Sm+1. For all a ∈ Sm, one can
show

0 ≤ ⟨θ, a⋆⟩ − ⟨θ, a⟩ ≤
〈
θ̂m+1, a

⋆
〉
−
〈
θ̂m+1, a

〉
+ 2× 2−m−1 =

〈
θ̂m+1, a

⋆ − a
〉
+ 2−m,

where the second inequality follows from the definition of E (see Eq. (53)) and a⋆ ∈ Sm by inductive
hypothesis. Then, we have 〈

θ̂m+1, a
⋆ − a⋆m+1

〉
+ 2−m ≥ 0.

The inductive hypothesis gives a⋆ ∈ Sm, and thus

a⋆ ∈ Span[−C,C](Bm) ∩ A, (56)

45



since Lemma G.6 gives that Bm is a C-approximate barycentric spanner of Sm. Combining〈
θ̂m+1, a

⋆ − a⋆m+1

〉
+ 2−m ≥ 0 and Eq. (56), we have a⋆ ∈ Sm+1 according to definition of

Sm in Eq. (48). Once the induction is done, the proof is complete.

Lemma G.12. Suppose that E occurs where E is in Eq. (53). For each arm a ∈ A with ∆a > 0, it
will not be in Sm for all phases m ≥ ma + 1, where ma is the smallest phase such that ∆a

2 > 2−ma .

Proof. Consider an arbitrary arm a ∈ A with ∆a > 0. Let ma be the smallest phase such that
∆a

2 > 2−ma (i.e., ∆a

2 ≤ 2−(ma−1)). Then, we will show that arm a will be not in Sτ for all τ ≥ ma.
Suppose that a ∈ Sma

(if not, it does not impact the claim). One can show that〈
θ̂ma+1, a

⋆
ma+1 − a

〉
− 2−ma

= sup
b∈Sma

〈
θ̂ma+1, b− a

〉
− 2−ma

≥
〈
θ̂ma+1, a

⋆ − a
〉
− 2−ma

≥ ⟨θ, a⋆ − a⟩ − 2−ma+1

> ∆a − 2× ∆a

2
= 0,

where the first inequality uses Lemma G.11 that a⋆ ∈ Sm for all m ∈ N, the second inequality
follows from the definition of E (see Eq. (53)), and the last inequality holds due to the choice of ma.

According to the definition of Sm in Eq. (48), arm a will not be in Sm for all m ≥ ma + 1 as long as
E occurs.

Lemma G.13. Let m(t) be the phase in which round t lies. Then, m(t) ≤ log2(t+ 1) for all t ∈ N.

Proof. We prove this by contradiction. Suppose that ∃t ∈ N that m(t) > log2(t + 1). Note that
we can further assume m(t) ≥ 2 since one can easily verify that for all t such that m(t) = 1,
m(t) ≤ log2(t+ 1) must hold. Recall that in phase m(t), each active arm will be played for mℓ(t)

times, we have

t ≥
∑

a∈Bm(t)−1

⌈
πm(t)−1(a)Tm(t)−1

⌉
≥

Tm(t)−1

d
= 256C4 · d2

4−(m(t)−1)
log
(
δ−1d34m(t)−1

)
≥ 64C4 · d2(t+ 1)2 log

(
4δ−1d3

)
> t,

where the third inequality bounds ℓ(t) in the logarithmic term by ℓ(t) ≥ 2 and bound the other
ℓ(t) > log2(t+1) by assumption. Therefore, once a contradiction occurs, the proof is complete.

Lemma G.14. Let m(t) be the phase in which round t lies. Suppose that E occurs where E is in
Eq. (53) and Algorithm 2 computes a C-approximate barycentric spanner with C > 1. For all t ∈ N
and all a ∈ A, if a ∈ Sm(t), then,

∆a ≤

√√√√64× 512C4d3 log
(

d34(t+1)2

δ

)
3t

.

Proof. If a ∈ Sm(t) is optimal, then, ∆a = 0 and the claim trivially holds. In what follows, we
only consider arm a ∈ Sm(t) with ∆a > 0. Consider an arbitrary round t ∈ N and an arbitrary arm
a ∈ Sm(t). Then, t can be bounded by

t ≤
m(t)∑
s=1

∑
a∈Bs

⌈πs(a)Ts⌉
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≤ 2

m(t)∑
s=1

∑
a∈Bs

πs(a)Ts

= 512C4

m(t)∑
s=1

d3

4−s
log

(
d34s

δ

)

≤ 512C4d3 log

(
d34m(t)

δ

)m(t)∑
s=1

1

4−s

(a)

≤ 512C4d3 log

(
d34m(t)

δ

) ma∑
s=1

1

4−s

(b)

≤
64× 512C4d3 log

(
d34m(t)

δ

)
3∆2

a

(c)

≤
64× 512C4d3 log

(
d34log2(t+1)

δ

)
3∆2

a

≤
64× 512C4d3 log

(
d34(t+1)2

δ

)
3∆2

a

,

where the second inequality holds because πs(a) = 1
d for all s ∈ N and all a ∈ Bs, thereby

πs(a)Ts ≥ 1, which gives ⌈πs(a)Ts⌉ ≤ 2πs(a)Ts, the inequality (a) bounds m(t) ≤ ma where ma

is defined in Lemma G.12, the inequality (b) uses ∆a

2 ≤ 2−ma+1 to bound ma ≤ log2 (4/∆a), and
the inequality (c) follows from Lemma G.13 that m(t) ≤ log2(t+ 1).

Conditioning on E , this argument holds for each t, a, which completes the proof.

Proof of Theorem 4.2. Once Lemma G.11 and Lemma G.14 hold, Theorem 3.1 gives that for any
fixed δ ∈ (0, 1), Algorithm 10 achieves the ULI guarantee with a function (omitting C as it is a
constant)

FULI(δ, t) = O

(√
d3 log (dt/δ)

t

)
.

Therefore, the proof is complete.

G.7 Proof of Theorem 4.2: Computational Analysis

As the second for-loop restarts repeatedly, and we first present the following lemma to bound the
number of times that it restarts.

Lemma G.15. Under the same setting of Lemma G.1, Algorithm 12 outputs a C-barycentric spanner
by restarting the second for-loop for O

(
d2 logC(d)

)
times.

Proof. According to [Awerbuch and Kleinberg, 2008, Lemma 2.6], if Im never changes after entering
the second for-loop, then, the second for-loop restarts for at most O(d logC(d)) times, and then the
algorithm terminates. In Algorithm 12, if Im changes, the second for-loop restarts. As set Im is
always non-increasing, it suffices to consider the worst case (Im changes at most O(d) times). Hence,
the second for-loop restarts at most O(d2 logC(d)) times.

Now, we are ready to show the computational complexity.

From Lemma G.15, Algorithm 12 restarts the second for-loop at most O(d2 logC(d)) times. For each
run of the second for-loop, the optimization oracle is invoked at most d times. Thus, the number
of calls to the oracle is at most O(d3 logC(d)). Apart from the second for-loop, the first for-loop
invokes the oracle d times and computing the empirical best arm a⋆m requires once call to the oracle.
Combining all together, we obtain the claimed bound.
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H Omitted Details of Section 5

H.1 Proof of Theorem 5.1

The proof of main theorem conditions on a nice event E in which some high-probability bounds hold
simultaneously. We defer the formal definition of E to Appendix H.2.

The key to conducting policy elimination is to ensure that the estimated value functions will be closer
to the true value functions as phases evolve. The following proposition gives us the desired result.

Proposition H.1. Suppose that E occurs. For all m ∈ N and π ∈ Πm, we have∣∣∣Ṽ π
m − Es1∼µ [V

π
1 (s1)]

∣∣∣ ≤ 2m−1.

With the above result at hand, one can treat each policy as an arm and repeat the same arguments in
Appendix D.2 (counterparts are Lemma D.7, Lemma D.8, and Lemma D.9) to get the following three
lemmas.

Lemma H.2. Suppose that E occurs. For each m ∈ N, π⋆ ∈ Πm holds.

Lemma H.3. Suppose that E occurs. For each policy π with ∆π > 0, it will not be in Πm for all
phases m ≥ mπ + 1 where mπ is the smallest phase such that ∆π

2 > 2−mπ .

Lemma H.4. Let m(t) be the phase that round t lies in. Then, m(t) ≤ log2(t+ 1) for all t ∈ N.

The next lemma shows that if a policy is not eliminated, then, the policy gap is in order of Õ(t−1/2).

Lemma H.5. Let m(t) be the phase in which episode/round t lies. Suppose that E occurs. For all
t ∈ N and all π ∈ Π, if π ∈ Πm(t), then

∆π ≤

√
S3AH5 log2 (tSAH/δ)

t
.

Proof. If π ∈ Πm(t) is optimal, then, ∆π = 0 and the claim trivially holds. In what follows, we only
consider policy π ∈ Πm(t) with ∆π > 0. From Lemma H.3, if a policy π ∈ Πm(t) is with∆π > 0,
then, m(t) ≤ mπ where mπ is defined in Lemma H.3. Thus, the total number of episodes/rounds
that such a policy π is active is at most

t ≤
m(t)∑
s=1

Ts

≤ 2c1S
2AH4

m(t)∑
s=1

22s log2
(
2c2s

222sS2AH4|Πall|/δ
)

≤ 2c1S
2AH4 log2

(
2c2 log

2 t(t+ 1)2S2AH4|Πall|/δ
)m(t)∑

s=1

22s

≤ O
(
S2AH4 log2 (tSAH|Πall|/δ)

∆2
π

)
= O

(
S3AH5 log2 (tSAH/δ)

∆2
π

)
,

where the second inequality holds due to s ≤ m(t) ≤ log2(t+ 1), and the last step uses the fact that
Πall = ASH . Rearranging the above, we complete the proof.

Now, Theorem 5.1 is immediate if we treat each policy as an arm and invokes Theorem 3.1.
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H.2 Construction of Nice Event

We extend the definitions of value function and action value functions to reward-dependent ones.

Qπ
h(s, a, r) = E

[
H∑

h′=h

rh′(sh′ , ah′) | sh′ = s, ah′ = a, π

]
,

V π
h (s, r) = E

[
H∑

h′=h

rh′(sh′ , ah′) | sh′ = s, π

]
.

(57)

Next, we start to construct high-probability event. We first construct an event that high-probability
bounds occur for a single phase (i.e., a single execution of Algorithm 4), and then extend it to the
case in which those bounds simultaneously hold for all phases.
Lemma H.6. Suppose that Algorithm 4 is executed with input (δ,Π, T ) where Π ⊆ Πall. With
probability at least 1− δ/5, for all (t, h, π, s, a) ∈ [T ]× [H]×Π× S ×A:∣∣∣[(Ph − P̂t,h)V

π
h+1

]
(s, a)

∣∣∣ ≤ H

√
log(10HSA|Πall|T/δ)
2max{Nt,h(s, a), 1}

.

Proof. For (s, a) has been visited, we apply Hoeffding’s inequality and union bounds to complete
the proof. For those (s, a) that has not been visited yet, the claim trivially holds true.

Lemma H.7. Suppose that Algorithm 4 is executed with input (δ,Π, T ) where Π ⊆ Πall. With
probability at least 1− δ/5, for all (h, s, a, π, t) ∈ [H]× S ×A×Π× [T ],∣∣∣[(P̂t,h − Ph)V̂

π
t,h+1

]
(s, a)

∣∣∣ ≤ bt,h(s, a).

Proof. For those (s, a) that has not been visited yet, the claim trivially holds true. For (s, a) has been
visited, by Bernstein’s inequality, with probability at least 1− δ′,∣∣∣[(P̂t,h − Ph)V̂

π
t,h+1

]
(s, a)

∣∣∣ ≤∑
s′∈S

(√
2P (s′|s, a) log(2/δ′)

Nt,h(s, a)
+

2 log(2/δ′)

3Nt,h(s, a)

)
V̂ π
t,h+1(s

′)

≤
∑
s′∈S

H

√
2P (s′|s, a) log(2/δ′)

Nt,h(s, a)
+

2HS log(2/δ′)

3Nt,h(s, a)

≤ H

√
2S log(2/δ′)

Nt,h(s, a)
+

2HS log(2/δ′)

3Nt,h(s, a)
,

where the last inequality uses the Cauchy-Schwarz inequality. By taking a union bound, choosing a
proper δ′, and using the definition of bt,h(s, a), we complete the proof.

In the following high-probability bounds, we again assume that Algorithm 4 is executed with input
(δ,Π, T ) where Π ⊆ Πall. By Azuma-Hoeffding’s inequality and union bounds, with probability at
least 1− δ/5, for all π ∈ Π,

Es1∼µ

[
T∑

t=1

V π
1 (s1, bt/H)

]
≤

T∑
t=1

V π
1 (st,1, bt/H) +H

√
8T log(5|Πall|/δ). (58)

For shorthand, we denote

ξt,h = PhV̂
πt

t,h+1(st,h, at,h)− V̂ πt

t,h+1(st,h). (59)

By Azuma-Hoeffding’s inequality and union bounds, with probability at least 1 − δ/5, for all
(t, h) ∈ [T ]× [H],

T∑
t=1

H−1∑
h=1

ξt,h ≤ H2
√

8T log(5HT/δ), (60)
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where c2 > 0 is some absolute constant.

Again, by the fact that |Πall| ≥ |Π| and Azuma-Hoeffding’s inequality and union bounds, with
probability at least 1− δm/5, for all π ∈ Π,∣∣∣Ṽ π − Es1∼µ

[
V̂ π
T,1(s1)

]∣∣∣ ≤ H
√

8T log (10|Πall|/δm) (61)

Definition H.8 (definition of Ê , single phase). Suppose that Algorithm 4 is executed with input
(δ′,Π, T ) where Π ⊆ Πall. Let Ê be the event that all high probability bounds in Eq. (58), Eq. (60),
and Eq. (61) hold simultaneously.

Taking a union bound over those high-probability bounds, we have

P
(
Ê
)
≥ 1− δ′. (62)

Definition H.9 (definition of E). Let E be the event that when running Algorithm 3, all high
probability bounds in Eq. (58), Eq. (60), and Eq. (61) hold for all phases m ∈ N simultaneously.

Recall that Algorithm 3 runs Algorithm 4 in phases with input (δm,Πm, Tm) where δm = δ/(2m2)
and ∀m ∈ N, |Πm| ≤ |Πall| holds. By a union bound over all m ∈ N, P (E) ≥ 1− δ.

H.3 Supporting Lemmas

Recall the reward-dependent value function given in Eq. (57), and we give the following lemmas.
Lemma H.10. Suppose that Algorithm 4 is executed with input (δ′,Π, T ) where Π ⊆ Πall, and
suppose Ê occurs. For all (π, t, h, s) ∈ Π× [T ]× [H]× S , V π

h (s, bt/H) ≤ V̂ π
h,t(s) holds.

Proof. Conditioning on Ê , one can use Lemma H.6 and follow the same idea of Lemma 18 in [Azar
et al., 2017] to complete the proof.

Lemma H.11. Suppose that Algorithm 4 is executed with input (δ′,Π, T ) where Π ⊆ Πall, and
suppose Ê occurs. For all policy π ∈ Π, the following holds.

∀π ∈ Π,
∣∣∣Es1∼µ

[
V̂ π
T,1(s1)− V π

1 (s1)
]∣∣∣ ≤ Es1∼µ [V

π
1 (s1, bT )] .

Proof. One can show the following:

Es1∼µ

[
V̂ π
T,1(s1)− V π

1 (s1)
]

= Es1∼µ

[
Q̂π

T,1(s1, π1(s1))−Qπ
1 (s1, π1(s1))

]
≤ Es1∼µ

[
[P̂T,1V̂T,2](s1, π1(s1))− [P1V2](s1, π1(s1))

]
≤ Es1∼µ

[
bT,1(s1, π1(s1)) + [P1V̂T,2](s1, π1(s1))− [P1V2](s1, π1(s1))

]
= Es1∼µ,s2∼P1(·|s1,π1(s1))

[
bT,1(s1, π1(s1)) + V̂T,2(s2)− V2(s2)

]
≤ · · ·
≤ Es1∼µ [V

π
1 (s1, bT )] ,

where the second inequality follows from Lemma H.7.

Since those concentration bounds are also two-sided, the other side of desired claim can be similarly
proved. Note that for the other side, one only need to consider Q̂π

T,1(s, a) ≤ H for all (s, a), and
otherwise, the difference is negative, which implies that the claim trivially holds.

Lemma H.12. Suppose that Algorithm 4 is executed with input (δ′,Π, T ) where Π ⊆ Πall, and
suppose Ê occurs. For ξt,h defined in Eq. (59), we have

T∑
t=1

V̂ πt
t,1 (st,1) ≤

T∑
t=1

H−1∑
h=1

ξt,h +

T∑
t=1

H−1∑
h=1

(
2 +

1

H

)
bt,1(st,1, at,1). (63)
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Proof. Conditioning on Ê , we have

T∑
t=1

V̂ πt
t,1 (st,1) ≤

T∑
t=1

(
[P̂t

1V̂
πt
t,2 ](st,1, at,1) + rt,1(st,1, at,1) + bt,1(st,1, at,1)

)
=

T∑
t=1

(
[P̂t

1V̂
πt
t,2 ](st,1, πt(st,1)) +

(
1 +

1

H

)
bt,1(st,1, at,1)

)

≤
T∑

t=1

(
[P1V̂

πt
t,2 ](st,1, at,1) +

(
2 +

1

H

)
bt,1(st,1, at,1)

)

≤
T∑

t=1

(
ξt,1 + V̂ πt

t,2 (st,2) +

(
2 +

1

H

)
bt,1(st,1, at,1)

)
≤ · · ·

≤
T∑

t=1

H−1∑
h=1

ξt,h +

(
2 +

1

H

) T∑
t=1

H∑
h=1

bt,h(st,h, at,h),

where the first inequality holds due to Lemma H.7.

Then, we turn to bound two terms in Eq. (63). Note that Eq. (60) already gives the bound of the first
term, and thus we only need to bound the second term. Before that, we first present an auxiliary
lemma. The proof of this lemma can be found in [Jin et al., 2020, Lemma 10]
Lemma H.13. Suppose that Algorithm 4 is executed with input (δ′,Π, T ) where Π ⊆ Πall. For all
h ∈ [H], the followings hold.

∑
(s,a)∈S×A

T∑
t=1

I{(st,h, at,h) = (s, a)}
max{1, Nt,h(s, a)}

= O (SA log T ) ,

∑
(s,a)∈S×A

T∑
t=1

I{(st,h, at,h) = (s, a)}√
max{1, Nt,h(s, a)}

= O
(√

SAT
)
.

With the above lemma in hand, one can show:
T∑

t=1

H∑
h=1

bt,h(st,h, at,h)

=

H∑
h=1

T∑
t=1

(
H

√
2S log ι

max{1, Nt,h(st,h, at,h)}
+

2HS log ι

3max{1, Nt,h(st,h, at,h)}

)

=

H∑
h=1

∑
(s,a)∈S×A

T∑
t=1

(
H
√

2S log ι
I{(st,h, at,h) = (s, a)}√

max{1, Nt,h(s, a)}
+

2HSI{(st,h, at,h) = (s, a)} log ι
3max{1, Nt,h(s, a)}

)

= O
(
SH2

√
AT log ι+HS2A log(T ) log ι

)
,

where the last step holds due to Lemma H.13.

Therefore, we have
T∑

t=1

V̂ πt
t,1 (st,1) = O

(
SH2

√
AT log ι+HS2A log(T ) log ι

)
. (64)

H.4 Proof of Proposition H.1

We first consider a single execution of Algorithm 4 with input (δ,Π, T ) where Π ⊆ Πall. With the
above supporting results, we are now ready to prove the claimed result. The following proof will
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condition on event E . First, one can show that for all π ∈ Π:∣∣∣Ṽ π − Es1∼µ [V
π
1 (s1)]

∣∣∣
≤
∣∣∣Ṽ π − Es1∼µ

[
V̂ π
T,1(s1)

]∣∣∣+ ∣∣∣Es1∼µ

[
V̂ π
T,1(s1)

]
− Es1∼µ [V

π
1 (s1)]

∣∣∣
≤ H

√
8T log(10|Πall|/δ) +

∣∣∣Es1∼µ

[
V̂ π
T,1(s1)

]
− Es1∼µ [V

π
1 (s1)]

∣∣∣ . (By Eq. (61))

Then, we turn to bound the second term. Recall the reward dependent value function defined in
Eq. (57), and we have∣∣∣Es1∼µ

[
V̂ π
T,1(s1)− V π

1 (s1)
]∣∣∣ ≤ Es1∼µ [V

π
1 (s1, bT )] (By Lemma H.11)

= HEs1∼µ [V
π
1 (s1, bT /H)]

≤ H

T
Es1∼µ

[
T∑

t=1

V π
1 (s1, bt/H)

]
. (bT ≤ bt,∀t)

From Eq. (58), we have

Es1∼µ

[
T∑

t=1

V π
1 (s1, bt/H)

]
≤

T∑
t=1

V π
1 (st,1, bt/H) + c1H

√
T log ι

≤
T∑

t=1

V̂ π
t,1(st,1) + c1H

√
T log ι (By Lemma H.10)

≤
T∑

t=1

V̂ πt
t,1 (st,1) + c1H

√
T log ι. (πt ∈ argmaxπ∈Π V̂ π

t,1(st,1))

Combining the above with Eq. (64), we arrive at

Es1∼µ

[
T∑

t=1

V π
1 (s1, bt/H)

]
= O

(
SH2

√
A log ι

T
+

HS2A log2 ι

T

)
.

Now, we consider a fixed phase m where the input of Algorithm 4 is (δm,Πm, Tm). There always
exist two absolute constants c1, c2 > 0 for Tm = c12

−2mS2AH4 log2
(
c22

−2mS2AH4|Πall|δ−1
)

such that ∣∣∣Ṽ π
m − Es1∼µ [V

π
1 (s1)]

∣∣∣ ≤ 2−m

2
.

As conditioning on event E , the above holds for all m ∈ N. Thus, the proof is complete.
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