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Abstract

A Chief complaint (CC) is the reason for the001
medical visit as stated in the patient’s own002
words. It helps medical professionals to quickly003
understand a patient’s situation, and also serves004
as a short summary for medical text mining.005
However, chief complaint records often take a006
variety of entering methods, resulting in a wide007
variation of medical notations, which makes it008
difficult to standardize across different medical009
institutions for record keeping or text mining.010
In this study, we propose a weakly supervised011
method to automatically extract and link enti-012
ties in chief complaints in the absence of human013
annotation. We first adopt a split-and-match014
algorithm to produce weak annotations, includ-015
ing entity mention spans and class labels, on016
1.2 million real-world de-identified and IRB ap-017
proved chief complaint records. Then we train018
a BERT-based model with generated weak la-019
bels to locate entity mentions in chief complaint020
text and link them to a pre-defined ontology.021
We conducted extensive experiments and the022
results showed that our Weakly Supervised En-023
tity Extraction and Linking (WESEEL) method024
produced superior performance over previous025
methods without any human annotation.026

1 Introduction027

A chief complaint (CC) is an initial statement of pa-028

tient derived medical issues, which is often elicited029

prior to formal medical tests and diagnoses. It pro-030

vides a brief statement about a patient’s reasons031

for encounter, current symptoms, and medical his-032

tory (Chang et al., 2020). It can be of great help to033

medical professionals in understanding a patient’s034

situation and lead to the appropriate diagnoses and035

treatments (Wagner et al., 2006). Furthermore, it036

can be seen as a summary of patient profiles and037

medical records, and it is useful for a wide variety038

of medical text mining tasks. But the application039

of chief complaints is greatly restricted by the fact040

that there lacks a widely accepted standard for data041

entry of chief complaints. Hospitals and health care 042

systems adopt different ontology and standards to 043

enter and store chief complaint data (Horng et al., 044

2019), which causes chief complaint records con- 045

tain various local terminologies and abbreviations. 046

Commonly, a chief complaint record is a piece 047

of free-text statement and may contain one or mul- 048

tiple medical entity mentions. In table 1, several 049

chief complaint records and the corresponding con- 050

cept annotations in HaPPy ontology (Horng et al., 051

2019) are shown, which also stress the typical dif- 052

ficulties in understanding chief complaints. First 053

of all, synonyms are very common in chief com- 054

plaints. The same concept can appear in different 055

forms, e.g. “chest pain”, “CP”, or “cerebral palsy”. 056

Another common issue is word sharing. For exam- 057

ple, in the record of “migraine with neck/back pain, 058

fever”, the word “pain” is shared by both “neck 059

pain” and “back pain”. Also, in a more complex 060

example “chills/body aches/n/d/r side jaw pain”, 061

the slash “/” acts not only as the separator to split 062

multiple entities, but also a part of the abbreviation 063

“n/d” (i.e. nausea and diarrhea). In these cases, it 064

is even challenging for domain experts to divide 065

and identify entities. Moreover, a chief complaint 066

record is often entered as a piece of free text, where 067

misspellings can occur commonly. All these ex- 068

amples exhibit the challenges in processing chief 069

complaints with automatic NLP techniques. 070

Due to the difference in terms of data format 071

(long vs. short), target applications (general pur- 072

pose vs. emergency) and concept ontology (the 073

number of concepts general medical records is 074

much larger), many tools designed for general 075

medical domain cannot be directly applied to CC 076

documents. Several attempts have been made to 077

automate the process of mining entities in chief 078

complaints. For example, Karagounis et al. uti- 079

lized rule-based matching tool MetaMap (Aronson, 080

2001) to map free-text chief complaints to ICD-10- 081

CM codes. Chang et al. fine-tuned a BERT model 082
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Chief complaint Records Concepts in Ontology NLP Challenges

urinary tract pain dysuria Synonym understanding
migraine with neck/back pain, fever migraine, neck pain, back pain, fever Resolving shared tokens
chills/body aches/n/d/r side jaw pain chills, body aches, nausea, diarrhea, jaw pain Segmentation & abbreviations
ha light headed fatigue r arm pain headache, dizziness, fatigue, arm pain Missing separators

Table 1: Examples of chief complaint records and corresponding concepts in HaPPy ontology.

on 1.8 million emergency department (ED) chief083

complaint records to derive a domain-specific rep-084

resentation, which achieved improved performance085

on predicting chief complaint concepts. Despite086

these advancements, most existing efforts (Dara087

et al., 2008; Conway et al., 2013; Duangsuwan and088

Saeku, 2018; Lee et al., 2019; Valmianski et al.,089

2019; Hsu et al., 2020; Osborne et al., 2020) on090

automatic chief complaint processing viewed the091

task as a classification problem, whereas in the real-092

world case, one chief complaint record often con-093

tains multiple entities (e.g. the examples shown in094

Table 1). Consequently, it is more appropriate and095

useful to view the task as entity extraction problem096

(i.e., identifying the actual mention span of each097

entity in a free text) and entity linking problem (i.e.,098

linking each entity mention to an entry in a chief099

complaint ontology).100

Besides, nowadays most machine learning ap-101

plications require extensive annotated data to train102

their models (Hsu et al., 2016; Liao et al., 2015;103

Rochefort et al., 2015; Shen et al., 2017). However,104

in the case of medical domain, the data annotation105

is prohibitively sensitive and expensive, due to the106

data privacy concern and high cost of recruiting107

healthcare professionals. The lack of high-quality108

annotation also hinders the progress of NLP meth-109

ods and applications for chief complains.110

In this study, we aim to advance the application111

of NLP to chief complaints by proposing a novel112

task setup consisting of two steps: extracting entity113

mentions from a chief complaint record and linking114

them to a given ontology. We utilize a BERT-based115

extraction and linking model to address this task116

and propose a split-and-match (S&M) algorithm to117

generate weak annotations to resolve the shortage118

of annotated data. We conducted experiments with119

1.2 million free-text ED chief complaint records120

from local hospitals and the results show that the121

proposed method can achieve better performance122

comparing with various baselines.123

Specifically, the contributions of our work are:124

• This is the first study mining entities in chief125

complaints with two explicit steps (extraction126

and linking), which is more advantageous than 127

the classification setup in previous studies. 128

• We propose a weak supervision method 129

WESEEL for extracting and linking entities 130

in chief complaints. We demonstrate the supe- 131

riority of our method over various baselines 132

with extensive experiments and analyses. 133

• We contribute a new dataset, containing 1.2 134

million free-text chief complaint records from 135

emergency departments of local hospitals, and 136

1,013 data examples are manually annotated 137

by clinicians for the purpose of testing. 138

2 Related Works 139

2.1 Studies on Chief Complaint 140

Previous works had adopted automatic chief com- 141

plaint processing in various medical tasks. Chief 142

complaint records were utilized for syndromic 143

surveillance (Travers et al., 2007; Dara et al., 2008; 144

Conway et al., 2013). Chief complaint records 145

were often studied for specific medical issues. 146

Based on chief complaint records, Devlin et al. 147

(2019a) identified the mentions of Gout flares, Hsu 148

et al. (2020) classified the mentions of inflenza- 149

like illness, and Fernandes et al. (2020) predicted 150

Intensive Care Unit (ICU) admission. 151

Recently, single-label classification was per- 152

formed on 2.1 million patient-level ED visit records 153

with ICD codes (Lee et al., 2019). Valmianski 154

et al. (2019) compared embedding from BERT and 155

its variants BioBERT (Lee et al., 2020) and Clin- 156

icalBERT (Huang et al., 2019) with TF-IDF on a 157

dataset of 200,000 patient-generated reasons-for- 158

visit entries and mapped them to 795 unique chief 159

complaint concepts. Teng et al. (2020) formulated 160

automatic diagnose code assignment as multi-label 161

classification to predict ICD codes from free-text 162

medical records including chief complaints. Most 163

datasets in these studies are not publicly available. 164

Despite several attempts over the years to sum- 165

marize chief complaints in a standard way (Travers 166

and Haas, 2006; Haas et al., 2008; Aronsky et al., 167
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abd pain / head inj , sciatica

Split Chunks
S.1
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Matching
(HaPPy)

S.2
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... sciatica ...
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... head inj ...
head injury

back pain
... sciatica ...

(a) Process flow of weak label generation. Three examples are shown and successfully matched to concepts in the ontology at
different stages (indicated in green box).

Extraction
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ha light headed fatigue r arm pain

CC Record

... ha ...

... r arm pain ...

Detected Mentions
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Medical Ontology

... fatigue ...

dizziness

fatigue
... light headed ...

... ha ...

... r arm pain ...

... fatigue ...

... light headed ...

arm pain
...

...

...

...

...

(b) Schematic diagram of our model for entity extraction and linking in chief complaint.
Figure 1: Overview of our proposed method WESEEL.

2001), it is still a serious obstacle that different168

health care systems have different ways of sum-169

marizing chief complaint records, which greatly170

hampered the usefulness of chief complaint records171

to downstream medical NLP tasks (Horng et al.,172

2019). In 2019, Horng et al. (2019) derived an173

ontology for chief complaints, called Hierarchical174

Presenting Problem ontology (HaPPy), containing175

692 chief complaint concepts and successfully cap-176

tured 95.9% of 180,424 consecutive ED patient177

visit records. This was the first publicly avail-178

able chief complaint ontology, and can be used179

as ground-truth labels to predict concepts. Never-180

theless, the string matching based methods have181

very low recall since chief complaint recording is182

poorly standardized in practice.183

2.2 Medical Entity Extraction and Linking184

Named Entity Recognition (NER) is a common185

NLP technique for locating entity mentions in a186

text. Many studies have been conducted to exam-187

ine the entities in medical text and develop auto-188

matic methods to extract them. Zhao et al. (2019)189

developed a multi-task framework to jointly tackle190

the task of medical NER and entity normalization.191

Bhatia et al. (2019) developed a web service for192

medical NER and relationship extraction in medi-193

cal data. To tackle the issue of limited data anno-194

tation, Hofer et al. (2018) proposed a method for195

few-shot learning of NER in medical domain.196

Entity linking (EL) aims to map entity mentions197

in text to concepts in a knowledge base or ontol-198

ogy. String matching- and rule-based systems like199

cTAKES (Savova et al., 2010) and MetaMap (Aron- 200

son, 2001) were proposed to link medical entities 201

in EHRs. Recent studies also utilized neural net- 202

works. MedType (Vashishth et al., 2020) was pre- 203

trained with large auto-annotated datasets such as 204

WikiMed, PubMedDS and EHR documents, and 205

achieved state-of-the-art performance on multiple 206

medical entity linking benchmarks. Chen et al. 207

(2021) applied BERT to learn alignment between 208

mentions and entity names. However, most of those 209

studies requires a fixed list of mention candidates, 210

which does not apply to our task setting. 211

2.3 Resolving Shortage of Annotated Data 212

Due to the above constraints, the supervision 213

paradigm to deal with chief complaint task falls 214

under weak supervision, which is closely related 215

to few-shot learning (Yang and Katiyar, 2020) and 216

interactive learning (Greenbaum et al., 2019). Fi- 217

delity Weighted Learning (Dehghani et al., 2017a) 218

uses a teacher-student model, in which the teacher 219

model has access to the annotated data and the 220

student model is supervised by the output of the 221

teacher. Hedderich and Klakow (2018) proposed 222

to add a noise adaptation layer to LSTM to correct 223

noisy labels in training data. All of these learning 224

paradigms need a small amount of annotated data 225

to ramp up the training, which involves expensive 226

expert annotation and is difficult to scale up. 227

Weakly supervised method is effective in train- 228

ing machine learning models with automatically 229

generated pseudo-labeled data. It has been uti- 230

lized in sentiment analysis (Severyn and Moschitti, 231
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2015), relation extraction (Hoffmann et al., 2011;232

Bing et al., 2015), and information retrieval (De-233

hghani et al., 2017b). It is also used in medical234

topics such as drug-drug interactions (Li et al.,235

2016), medical term identification (Névéol et al.,236

2017), and sentence extraction in clinical trial re-237

ports (Wallace et al., 2016).238

Original Records After Expansion

hand, knee pain hand pain, knee pain
head and elbow injury head injury and elbow injury
pain in r side of face, eye pain in r side of face, pain in eye

Table 2: Examples of chief complaint records with word
sharing and the corresponding expanded texts.

3 Methodology239

Formally, chief complaint entity extraction and240

linking can formulate as follows. A set of241

medical concepts in an ontology is denoted as242

C = {c1, c2, ..., cN} and a free-text chief com-243

plaint record is a sequence of words D =244

(w1, w2, ..., w|D|). The goal of the task is to (1)245

identify one or multiple entity mentions M =246

{m1,m2, ...,m|M |}, each indicated by an index247

span (wi, ..., wj) of D, and (2) link them to corre-248

sponding concepts c ∈ C in the ontology.249

To reduce the reliance of human annotation,250

we utilize a split-and-match algorithm to gener-251

ate weak training labels for both extraction and252

linking. We build a sequence labeling model with253

BERT (CCME-BERT) as the extraction model to254

identify chief complaint entity mentions. Then255

a BiLSTM model (CCEL) is adopted as the en-256

tity linking model to combine the word-level and257

character-level embedding of entity mentions, fol-258

lowed by a feedforward neural network to predict259

concept label in an ontology. The schematic dia-260

gram of the proposed label generation process and261

the entity recognition model is shown in Figure 1.262

3.0 Pre-processing Chief Complaint Records263

We observe that a large percent of chief complaint264

records (55.7% on labeled subset) contain multiple265

symptoms or reasons, and triage nurses often use266

punctuation marks to delimit multiple parts. Thus267

we manually select 10 common punctuation marks268

that are used as separators.269

Besides, many chief complaint records have270

word sharing issues that occurs between two entity271

mentions, which often talk about body parts. For272

example, the word “pain” in “hand, knee pain” is273

shared by both “hand pain” and “knee pain”. This 274

issue can be troublesome for models to predict con- 275

tiguous spans for entity mentions. Thus, for each 276

record, we detect whether a word is shared by mul- 277

tiple entities with the help of THBP, an ontology 278

for normalizing names of human body parts (Wang 279

et al., 2019), then expand the record by inserting the 280

shared word at appropriate places. Table 2 shows 281

examples of mentions with word sharing and the 282

corrected chief complaint records after expansion. 283

3.1 Generating Weak Labels for Training 284

Weak supervision trains machine learning models 285

with noisy sources to provide supervision signals. 286

It is common when human annotated data is lim- 287

ited or unavailable. The key for a successful weak 288

supervision is to derive effective pseudo labels that 289

carry the inductive bias of the target task from unan- 290

notated data. In our case, a large proportion of chief 291

complaint records contain explicit punctuation sep- 292

arators that can segment a chief complaint record 293

into multiple chunks and some of them can be chief 294

complaint entity mentions. Thus, we propose a 295

split-and-match algorithm to automatically gener- 296

ate weak labels of chief complaint entity mentions 297

and concept labels. 298

1. Split: We split a chief complaint record into 299

multiple chunks by pre-defined separators. 300

2. Match: For each text chunk, we check if it can 301

match to a concept in the ontology by various 302

methods. Matched chunks will be saved as 303

weak annotations for training our models. 304

Matching chief complaint mentions to corre- 305

sponding concepts in an ontology is the core of this 306

algorithm. To seek a balance between precision and 307

recall of the weak labels, we employ three matching 308

methods as a pipeline, as illustrated in Figure 1a: 309

S.1 - Exact string match. We simply check if a 310

chunk exactly matches to any alternative form of 311

a concept in HaPPy ontology; S.2 - Approximate 312

string matching. We use QuickUMLS (Soldaini 313

and Goharian, 2016), a tool for extracting medical 314

concepts using an approximate dictionary matching 315

algorithm. This helps to resolve misspelling and 316

lexical variations. S.3 - Embedding-based match- 317

ing. It is achieved by computing the cosine similar- 318

ity between the embedding of the chunk and that of 319

an ontology concept. The embedding is obtained 320

with fastText (Joulin et al., 2016), trained on our 321

chief complaint corpus. In this way, a large amount 322
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Tokens Adjusted Token
Weight

Adjusted
Target Vector

(B/I/O)

chest pain and 0.9 [0.9, 0.0, 0.1]
chest pain and 0.9 [0.0, 0.9, 0.1]
chest pain and 0.0 [0.0, 0.0, 1.0]

Table 3: An example of softened target labels for a chief
complaint record consisting of three tokens. Both “chest”
and “pain” can be matched to a concept in HaPPy ontol-
ogy while “and” is a noisy token mistakenly matched.

of “weak” annotations of entity spans and concept323

labels are collected.324

3.2 Entity Mention Extraction325

We formulate the task of detecting entity mentions326

from a chief complaint record as a sequence label-327

ing problem following the BIO tagging scheme,328

which is common in NER tasks. Each token takes a329

label, where “B/I” denotes a beginning/inside token330

of entity mentions, and “O” denotes other tokens331

outside mentions or separator tokens.332

A pre-trained BERT (Devlin et al., 2019b) is333

used as the backbone of the model for contextual-334

ized language information, and a softmax layer is335

utilized on the top of BERT to classify the B/I/O336

tag of each token position. We also experimented337

with conditional random fields (CRF, Lafferty et al.,338

2001) on the top to learn the constrains among out-339

put tags. However, this extra CRF layer did not340

show advantageous performance so we dropped it.341

One important feature of our model is the usage342

of the label smoothing technique to counter the343

noise in generated weak labels. With the help of la-344

bel smoothing, the model can be more aware of the345

qualify of target labels so it can learn accordingly.346

Label smoothing (Szegedy et al., 2016) is a widely347

used technique to improve the generalization of348

neural network models (Müller et al., 2019).349

We adjust the label smoothing to accommodate350

the weak span labels, since the similarity score in351

matching indicates the confidence level of a weak352

label. Formally, a target label can be represented353

as a three-dimensional vector where the value of354

each dimension follows [p(B), p(I), p(O)], p(·) ∈355

[0, 1],
∑

p(·) = 1. For each word in a chunk, we356

set the probability of a weak target label as the357

similarity between a chunk and its corresponding358

ontology concept. An example of label smoothing359

is shown in Table 3. We refer to our models for360

Mention Extraction in chief complaints as CCME.361

3.3 Linking Entities to Ontology 362

Figure 2: Architecture of the model for entity linking in
chief complaints (CCEL) .

Each extracted entity mention will be linked with 363

a given ontology through a classification model. 364

We concatenate both word embedding and charac- 365

ter embedding of an entity mention as the input, to 366

accommodate the variable forms of medical enti- 367

ties. BERT embedding is not considered here as 368

it’s hard to be integrated with character embedding. 369

Besides, two BiLSTMs are used to encode the to- 370

kens in its context from both directions, since the 371

context before/after the mention may capture dif- 372

ferent information. Lastly, the outputs from both 373

BiLSTMs are concatenated and fed to a softmax 374

layer to obtain the concept label in the ontology. 375

The diagram of our entity linking model called 376

CCEL is shown in Figure 2. 377

4 Experimental Setup 378

4.1 Data 379

Our dataset1 contains 1,232,899 free-text chief 380

complaint records (in English) of patients’ visits at 381

15 emergency departments of local healthcare in- 382

stitutes, including critical access hospitals, commu- 383

nity hospitals, and tertiary care referral centers. All 384

these departments use the same electronic health 385

record system, but do not mandate a specific data 386

entry format. The time span of the data is from 387

2015 to 2017. The dataset has been de-identified 388

and approved by IRB. 389

HaPPy ontology is utilized as the target ontol- 390

ogy to link entities. Additionally, we reduce the 391

size of HaPPy ontology to 501 medical concepts 392

1All code/data for reproducing the results will be re-
leased at https://github.com/anonymous_repo,
under IRB restrictions.
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Partial Match Exact Match
Models Precision Recall F1 Precision Recall F1

†S&M (S.1) 95.81 36.90 53.28 92.69 35.70 51.54
†S&M (S.1 + S.2) 81.15 46.04 58.75 67.46 38.28 48.84
†S&M (S.1 + S.2 + S.3) 69.64 57.36 62.91 55.66 45.84 50.27

CCME-LSTM 78.45 48.26 59.76 67.25 42.39 52.00
CCME-BERT 81.37 53.43 64.50 71.46 48.52 57.80
CCME-BERT (soft) 83.41 56.70 67.51 72.95 49.59 59.04
CCME-ClinicalBERT (soft) 83.35 56.46 67.32 72.94 49.41 58.91

CCME-BERT (soft) + S&M (S.1) 96.28 44.86 61.20 92.94 43.30 59.08
CCME-BERT (soft) + S&M (S.1 + S.2) 86.13 51.82 64.71 76.86 46.24 57.74

Table 4: Entity extraction performance of different models. Scores are computed in Partial Match and Exact
Match mode of SemEval’13. The best/2nd-best scores in each column are in bold/underlined. †S.1, S.2, S.3 refer
to string matching algorithms in Figure 1(a), respectively.

(originally 692) by removing child nodes that have393

no significant clinical difference with their parent394

node. For example, two child nodes “ruq abdomi-395

nal pain” (“ruq” means right upper quadrant) and396

“rlq abdominal pain” (“rlq” means right lower quad-397

rant) are merged to their parent node “abd pain”.398

The testset consists of 1,013 instances (randomly399

sampled from the original collection) and 1,771400

chief complaint mentions. Two domain experts in-401

dependently annotated the data (linking mentions402

to concepts in HaPPy ontology), whereas the 2nd403

expert only annotated 200 data points to measure404

the inter-annotator agreement. The resulting Co-405

hen’s Kappa of concept classification (entity type)406

is 0.9326, and the accuracy of exact span overlap407

is 0.9029, both indicating a very high reliability408

between two annotators.409

4.2 Experiment Settings410

With regard to the entity mention extraction,411

we design three weak baselines based on our412

split-and-match (S&M) algorithm introduced in413

Sec 3.1: S&M (HaPPy), S&M (QuickUMLS)414

and S&M (Embedding). Besides, we also exper-415

iment with LSTM and several variants of BERT416

for CCME: CCME-LSTM, CCME-BERT and CCME-417

ClinicalBERT. We refer to the CCME-BERT model418

with the label smoothing as CCME-BERT (soft).419

As for entity linking, a fastText- and a BERT-420

based classification model are used as baseline421

models. The input to fastText and BERT is the422

same as CCEL, i.e. mention tokens with context423

tokens within a window size of 2 (two tokens be-424

fore/after the mention). We also train a fastText425

model following the single-label paradigm, that426

only predicts one concept class for each chief com-427

plaint record. We take MedType (Vashishth et al.,428

2020) (pretrained with WikiMed, PubMedDS and 429

EHR documents, use QuickUMLS for extraction) 430

as a strong baseline system. 431

We follow the setting of (Yang et al., 2018) for 432

training the CCME-LSTM model and default set- 433

tings of HuggingFace (Wolf et al., 2020) for BERT. 434

Our CCEL model adopts two separate BiLSTMs, 435

and the size of word-/character-level embedding is 436

set to 100/30. The word-level embedding is initial- 437

ized by training a fastText model on our CC corpus. 438

All experiments are performed on a single NVIDIA 439

2080Ti graphics card (11GB). 440

4.3 Evaluation Metrics 441

We adopt the evaluation protocol of SemEval 2013 442

task 9.1 (Segura Bedmar et al., 2013) to evaluate 443

models for mention extraction and entity linking. 444

Precision, Recall, and F1 scores are reported in 445

“Partial” mode (partial boundary match, regardless 446

of the type) and “Exact” mode (exact boundary 447

match, regardless of the type) for entity extraction. 448

Besides, scores in “Entity type” mode (i.e., partial 449

boundary match and correct entity type) are used 450

for evaluating extraction and linking together. 451

5 Results and Discussion 452

5.1 Results of Entity Mention Extraction 453

Results of entity extraction are shown in table 454

4. Among three matching-based methods, S&M 455

(HaPPy) has highest precision but lowest recall. 456

This indicates that alternative strings provided by 457

HaPPy ontology can lead to precise matches, but 458

its coverage is very limited. Both S&M (Quick- 459

UMLS) and S&M (embedding) can achieve a better 460

recall with the help of approximate string matching 461

and embedding-based matching. But S&M (em- 462
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# Extraction Model Linking Model Precision Recall F1
s.1 †S&M (S.1) †S&M (S.1) 98.02 37.75 54.51
s.2 †S&M (S.1 + S.2) †S&M (S.1 + S.2) 79.34 45.02 57.44
s.3 †S&M (S.1 + S.2 + S.3) †S&M (S.1 + S.2 + S.3) 57.73 47.54 52.14

n.1 CCME-BERT (soft) fastText (single-label) 92.93 21.11 34.41
n.2 CCME-BERT (soft) fastText 89.27 26.69 41.09
n.3 CCME-BERT (soft) BERT 83.48 34.52 48.84
n.4 CCME-BERT (soft) CCEL 84.36 45.22 58.88

b.1 QuickUMLS MedType (EHR) 53.32 23.09 32.23
m.1 †S&M (S.1 + S.2) fastText (single-label) 89.07 15.77 26.79
m.2 †S&M (S.1 + S.2) fastText 86.49 19.52 31.85
m.3 CCME-BERT (soft) †S&M (S.1) 97.86 45.60 62.20
m.4 CCME-BERT (soft) †S&M (S.1 + S.2) 85.64 51.53 64.34
m.5 CCME-BERT (soft) †S&M (S.1 + S.2) + CCEL 86.28 55.43 67.49

Table 5: Entity linking performance. Scores are computed in Entity Type mode of SemEval’13. The best/2nd-best
scores in each column are in bold/underlined. †S.1, S.2, S.3 refer to string matching algorithms in Figure 1(a).

P R F1

CCEL 84.36 45.22 58.88
- context emb 83.53 36.75 51.04

- character emb 83.46 29.35 43.43

Table 6: Ablation study on CCEL model with different
input settings (using CCME-BERT(soft) as extraction
model). Scores are computed following the Entity type
setting of SemEval’13.

bedding) also introduces a fairly high rate of false463

positives and leads to the worst precision.464

Most neural models outperform the matching-465

based methods, indicating that machine learning466

models can learn task-relevant inductive bias from467

weak labels. CCME-BERT performs better than468

LSTM, largely due to the better generalizability of469

BERT from pre-training. With the help of label470

smoothing, CCME-BERT (soft) demonstrates better471

performance than CCME-BERT model, suggesting472

that adjusting label weights by confidence can ef-473

fectively alleviate the noise in weak labels. CCME-474

ClinicalBERT, which is pre-trained with electronic475

health record (EHR) notes, performs slightly worse476

than the CCME-BERT, suggesting the pre-training477

on EHR notes is not helpful for chief complaint478

related tasks. Without loss of generality, we mainly479

use CCME-BERT in following experiments.480

We also consider the ensemble of CCME-BERT481

models and matching methods. Given the out-482

put (extracted mention spans) of CCME-BERT soft483

model, we further apply exact and approximate484

string matching aiming for a better precision. Com-485

pared with CCME-BERT (soft), both ensemble mod-486

els achieve worse scores in terms of partial match,487

while CCME-BERT (soft) with S&M (HaPPy) per-488

forms the best for exact match. Although the over-489

all performance is not improved, such ensemble 490

models might useful when exact span matching is 491

crucial to the task. 492

5.2 Results of Entity Linking 493

We present the scores of entity linking in Ta- 494

ble 5, Among three matching-based methods, S&M 495

(HaPPy) attains a high precision but a low recall. 496

This confirms the observation from the extraction 497

part. However, most neural models (n.1 to n.3) fail 498

to beat the matching methods (s.1 to s.3) except for 499

CCEL. Neural models can achieve a high precision 500

score but the recall is relatively low. In the case 501

of entity linking, weakly supervised labels cannot 502

cover all the classes and most of them may concen- 503

trate on a small proportion of classes, thus models 504

trained with weak labels may not perform well on 505

classes that only have a small number of labels. Be- 506

sides, different from entity extraction that models 507

can utilize contextual information to detect spans, 508

it is difficult for linking models to understand a 509

target class if it is rarely seen in the data. 510

The major difference between CCEL and other 511

neural models is on the direct use of contextual in- 512

formation. As shown in Table 6, the performance of 513

CCEL drops after removing the context embedding 514

part or the character embedding part, especially 515

for recall. This confirms that including context in- 516

formation or character-level input can improve the 517

model performance. As for fastText models, the 518

single-label fastText model achieves highest preci- 519

sion among all neural models. Its advantage may 520

lie in that the model is trained with the most likely 521

labels and thus it is less affected by the noisy labels. 522

Nonetheless, it fails to predict other concepts and 523

results in the lowest recall. 524

Among all models, the general medical entity 525
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Training P R F1

WeakSup 83.41 56.70 67.51

Supervised 77.76 89.66 83.29
Fine-tuning 82.25 85.98 84.07

Table 7: Extraction performance (Partial Match) of
CCME-BERT (soft) with three training strategies.

Train Data Partial Exact

w/ punct 25.98 9.91
w/o punct 34.17 17.63
w/ punct + denoising 54.18 41.94

Table 8: The extraction performance (F1) of CCME-
BERT (soft) model on the no-punctuation test subset.

linking model MedType performs the worst, al-526

though it is pretrained with large medical datasets527

and annotated EHR documents. This indicates a528

non-negligible domain difference between chief529

complaint and common EHR data. Among five530

combined models, using CCME-BERT (soft) for531

extraction and S&M for linking (m.3, m.4) outper-532

forms the reverse ways (m.1, m.2) by a clear mar-533

gin. This confirms that CCME-BERT models are534

good at identifying entity mentions, while match-535

ing methods are good at classifying concepts given536

identified mentions. We also experiment with stack-537

ing CCEL to handle the unmatched cases of m.4538

and it leads to a boost in recall.539

5.3 Effect of Weak Supervision540

In order to examine the effect of weak supervision,541

we conduct an ablation study by training models542

with and without weak labels. To this end, we543

conduct a five-fold cross validation and report the544

average score of five runs, by taking 80% of data545

points from the annotated test set as a training set546

for fully supervised learning, and the rest 20% is547

used for testing. We also experiment with two548

training strategies: 1) Supervised: training models549

with annotated data only; 2) Fine-tuning: pre-train550

the model using weak labels and fine-tune it with551

the annotated data. The result in Table 7 demon-552

strates that, even trained with little annotated data,553

CCME-BERT can achieve decent results on mention554

extraction, but pre-training the model with weak555

labels can be beneficial for precision and F1.556

5.4 Resolving Cases without Punctuation557

Separators558

We observe that in the chief complaint corpus559

nearly 40% of chief complaint records do not con-560

tain any punctuation as separators. The split-and- 561

match algorithm cannot work to provide weak la- 562

beled data, and the models may fail to generalize 563

to this kind of cases. To prove this hypothesis, 564

we split the training data to two parts by check- 565

ing if it contains punctuation separators. We train 566

CCME-BERT with the two parts and evaluate mod- 567

els on a subset of the test set that only contains 568

no-punctuation instances. The result in Table 8 569

shows that the model trained with labels derived 570

from with-punctuation records does not generalize 571

well to no-punctuation cases. 572

To improve models’ robustness against this is- 573

sue, we propose to train the model with additional 574

noise: we intentionally remove punctuation marks 575

from the instances that contain them. In this way, 576

the model is trained to “denoise” each record by 577

implicitly predicting the existence of separators. 578

The resulting model demonstrates significant im- 579

provements over the previous ones. 580

5.5 Error Analysis 581

The majority of errors can be grouped into two cat- 582

egories. First, the absence of separators in a record 583

leads to many wrong predictions. For example, in 584

the record of “cough chest pain/congestion”, the 585

separator to delimit “cough” and “chest pain” is 586

missing. Thus S&M methods are likely to miss one 587

of the two chunks in mention extraction. Second, 588

the variation in terminology can cause difficulty 589

in linking. For example, we do not find the word 590

“dysuria” in the dataset, since it’s often referred to 591

as “urinary tract pain”. Even though neural mod- 592

els have the capability to infer synonyms, they can 593

hardly perform well without a certain amount of 594

annotated data to learn such knowledge. 595

6 Conclusions 596

We propose WESEEL, a weak supervision method 597

for extracting and linking chief complaint entities 598

in the absence of human annotation. We develop a 599

split-and-match algorithm to produce weak labels 600

of both entity spans and concept labels. We also 601

show that the customized label smoothing can ef- 602

fectively alleviate the noise in weak labels. Our 603

framework is considered to be generic enough for 604

chief complaint data across departments and we 605

will check its generalizability on more data in the 606

future. Our framework is also applicable to other 607

entity identification tasks where human annotation 608

is limited, and we leave it for future work. 609
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