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Abstract

Background: Prediction of mental disorders based on neuroimaging is an emerging

area of research with promising first results in adults. However, research on the

unique demographic of children is underrepresented and it is doubtful whether

findings obtained on adults can be transferred to children.

Methods: Using data from 6916 children aged 9–10 in the multicenter Adolescent

Brain Cognitive Development study, we extracted 136 regional volume and thickness

measures from structural magnetic resonance images to rigorously evaluate the ca-

pabilities of machine learning to predict 10 different psychiatric disorders: major

depressive disorder, bipolar disorder (BD), psychotic symptoms, attention deficit

hyperactivity disorder (ADHD), oppositional defiant disorder, conduct disorder, post‐
traumatic stress disorder, obsessive‐compulsive disorder, generalized anxiety disor-
der, and social anxiety disorder. For each disorder, we performed cross‐validation and
assessed whether models discovered a true pattern in the data via permutation

testing.

Results: Two of 10 disorders can be detected with statistical significance when

using advanced models that (i) allow for non‐linear relationships between neuro-

anatomy and disorder, (ii) model interdependencies between disorders, and (iii)

avoid confounding due to sociodemographic factors: ADHD (AUROC = 0.567,

p = 0.002) and BD (AUROC = 0.551, p = 0.002). In contrast, traditional models

perform consistently worse and predict only ADHD with statistical significance

(AUROC = 0.529, p = 0.002).

Conclusion: While the modest absolute classification performance does not warrant

application in the clinic, our results provide empirical evidence that embracing and

explicitly accounting for the complexities of mental disorders via advanced machine

learning models can discover patterns that would remain hidden with traditional

models.
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INTRODUCTION

A growing body of research focuses on using machine learning

methods to identify viable neuroimaging biomarkers for mental ill-

nesses (Arbabshirani et al., 2017; Jollans & Whelan, 2018; Rashid &

Calhoun, 2020; Sakai & Yamada, 2019; Sui et al., 2020; Wolfers

et al., 2015; Woo et al., 2017). Such biomarkers could help to stratify

patients according to different prognoses, thereby allowing psychi-

atric treatments to be tailored to individual patients and to improve

in efficacy (Bzdok & Meyer‐Lindenberg, 2018; Kapur et al., 2012).

The most successful studies employing machine learning are those

focusing on Parkinson's disease, Alzheimer's disease, schizophrenia,

major depressive disorder (MDD), autism spectrum disorder, and

ADHD (Arbabshirani et al., 2017; Sakai & Yamada, 2019; Woo

et al., 2017). While positive results can be expected for neurode-

generative disorders that involve neuroanatomical changes visible on

a macroscopic level (Love et al., 2018), it is notable that similar

results were shown for mental disorders for which distinct disease‐
causing neuroanatomical changes have not been established (Bors-

boom et al., 2019). For instance, for MDD, median reported

accuracies are as high as 79% (Sakai & Yamada, 2019), 82%

(Arbabshirani et al., 2017), and 86.7% (Woo et al., 2017), while

sensitivity and specificity are within the 70%–90% range (Kambeitz

et al., 2017). Promising results are also reported by a few studies

exclusively focusing on mental disorders in child and adolescent

participants (First et al., 2018). Using structural magnetic resonance

imaging (sMRI) data from the ENIGMA consortium, ADHD in children

could be detected with a test set area under the curve of 0.64

(Zhang‐James et al., 2021). Pediatric depression could be successfully
predicted with an accuracy of 78.4% (Wu et al., 2015). However,

these previous findings are limited in their generalizability by the fact

that small‐scale studies that investigate single disorders exclusively

in adults still dominate. In particular, research on neuroimaging bio-

markers in children is rare and it is doubtful whether biomarker

findings obtained on adults can be readily transferred to children.

Building on the ABCD study (Karcher & Barch, 2021) and the

ABCD Neurocognitive Prediction Challenge (Pohl et al., 2019), we

seek to carry out an explorative analysis to rigorously evaluate the

potential of using sMRI and machine learning techniques to predict

10 different psychiatric disorders in an ecologically valid sample of

6916 children. We study MDD, BD, psychotic symptoms, ADHD,

ODD, conduct disorder (CD), post‐traumatic stress disorder,

obsessive‐compulsive disorder (OCD), generalized anxiety disorder

(GAD), and social anxiety disorder (SAD).

METHODS

Participants

All 11,875 participants from the baseline assessment of the ABCD

study (Karcher & Barch, 2021) were considered for inclusion in the

present study. The participants of the ABCD study were mainly

recruited through the US school systems. Adolescent Brain Cogni-

tive Development focused on ensuring that the sample reflects the

diversity of the US population by employing probability sampling of

US schools as the primary method for recruiting eligible children.

To this end, school selection was informed by gender, race and

ethnicity, socioeconomic status, and urbanicity. Despite the effort in

ABCD to match the demographics of the US population, it may not

be representative in all dimensions that influence a child's devel-

opment. Participants provided informed consent (parents) and

assent (child). First, all participants with missing structural brain

measures (see section Imaging Data below) were excluded. Impu-

tation is not an option for recovering missing image features as

either all or none of the brain measures are available. Second,

we also excluded all participants for which Kiddie Schedule for

Affective Disorders and Schizophrenia (K‐SADS) diagnoses for the

investigated clinical conditions were missing. To rule out any sta-

tistical dependencies due to sibling relationships from the data, we

excluded all but one randomly selected child from each family.

For a detailed flow diagram of the participant selection, see

Figure 1.

Psychiatric disorders

The psychiatric disorders in the ABCD study were diagnosed using a

computerized version of the K‐SADS (Kaufman et al., 1997) for DSM‐
5 (KSADS‐5; see (Barch et al., 2018) for details regarding the appli-

cation of this instrument in the ABCD study). The paper‐and‐pencil
KSADS is a well‐established diagnostic interview with good to

Key points

� Prediction of mental disorders based on neuroimaging

showed promising results in adults.

� It is doubtful whether findings obtained on adults can be

transferred to children.

� We carry out an explorative analysis to rigorously eval-

uate the potential of neuroimaging and machine learning

to predict ten different psychiatric disorders in an

ecologically valid sample of 6916 children from the

Adolescent Brain Cognitive Development (ABCD) study.

� Our results indicate that attention deficit hyperactivity

disorder (ADHD) and bipolar disorder (BD) can be pre-

dicted with statistical significance if one accounts for the

complexities of mental disorders.

� While the overall low classification performance does

not warrant application in the clinic, our results highlight

that future studies should apply advanced machine

learning models that are appropriate for the task at hand.
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excellent test‐retest reliability (Cohen's Kappa = 0.63–1.00)

(Ambrosini, 2000) and high interrater agreement (93%–100%)

(Kaufman et al., 1997). Preliminary validity data on the computerized

KSADS‐5 demonstrated that it possesses good to excellent clinical

validity (Townsend et al., 2020). Initially, we considered all DSM‐5
coded diagnoses (American Psychiatric Association, 2013) that

were available in the baseline assessment of the ABCD study (see

Table S2 from (Barch et al., 2021)) as prediction targets. From these,

we excluded all “unspecified” and “other specified” diagnoses due to

validity concerns and the diagnoses for persistent depressive disor-

der, panic disorder, agoraphobia, eating disorders, disruptive mood

dysregulation disorder, and substance use disorder due to sparse

case numbers (Table S1). Separation anxiety disorder was excluded,

because two common anxiety disorders, generalized and SAD, were

already included.

Most psychiatric diagnoses in the ABCD study were assessed

by both parental and youth self‐report. A well‐documented phe-

nomenon in such multi‐informant mental health assessments is

high rates of disagreement between parent and self‐reports (De

Los Reyes et al., 2015), with the ABCD study being no exception.

While historically many techniques have been proposed to inte-

grate these discrepant reports into a best estimate of the child's

“true” diagnostic state, there exists no established best practice so

far (Martel et al., 2017). A frequently applied—prominently in the

DSM‐IV field trials (Lahey et al., 1994)—and robust (Bird

et al., 1992; Piacentini et al., 1992) strategy is the OR rule where a

child's symptom is considered present when it is reported by at

least one informant. We used the OR rule to aggregate parental

and self‐report DSM‐5 diagnoses into a single binary disorder for

each child. Moreover, we assumed the presence of a disorder when

the diagnosis was given at any time state (current, past, and in

remission) to capture not only the current state but the lifetime

history of the disorder.

To increase case numbers, we aggregated bipolar I and II disor-

der into a composite category “bipolar disorder”. Lastly, while there is

robust evidence for brain structural abnormalities in schizophrenia

(van Erp et al., 2018), the baseline assessment of the ABCD study did

not include any diagnoses from the Schizophrenia Spectrum and

Other Psychotic Disorders DSM‐5 category. To still include a sur-

rogate of psychotic symptomatology in our study, we defined “psy-

chotic symptoms” as the presence of at least one of the symptoms of

hallucinations, delusions, or associated psychotic symptoms or a

diagnosis of unspecified schizophrenia spectrum/other psychotic

disorder in the KSADS‐5 parent interview.

F I GUR E 1 Flow diagram of participant selection.
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Imaging data

To be able to capture a diverse range of anatomical changes, we

extracted 136 volumetric and thickness measures based on Free-

Surfer (Fischl, 2012) (see Table S2) from participants' T1‐weighted
sMRI. See Appendix S1 for a detailed description of the feature

extraction pipeline. We do not include functional MRI data in the

analysis due to the very poor reliability of task‐related brain activa-

tions in the ABCD sample (Kennedy et al., 2022), largely preventing

its use for studying individual differences.

Known confounders

To account for known confounding effects on the relationship be-

tween neuroanatomy and disorder, we residualized (see Appendix S1)

all 136 neuroanatomical measures to exclude effects due to the soci-

odemographic variables age, sex, marriage status of parents, study

site, highest parental education, ethnicity, and supratentorial brain

volume, whichwere used as known confounders on fluid intelligence in

the ABCD Neurocognitive Prediction Challenge (Pohl et al., 2021).

Machine learning models

We trained ensembles of gradient boosted trees (GBM; (Fried-

man, 2001);) to predict the binary psychiatric disorder based on brain

structural measures. GBMs currently represent the state‐of‐the‐art in
classification algorithms (Zhang et al., 2017). Bayesian hyper-

parameter optimization (J. Snoek et al., 2012) was used to tune the

hyperparameters of the model. To account for interdependencies

between disorders, we constructed classifier chains (Read et al., 2011)

of 10 GBMs. For each classifier chain, disorders are randomly ordered

in a list and 10 GBMs are trained, where the ith GBM is trained to

predict the ith disorder in the list, using image‐derived measurements
and the presence/absence of all disorders preceding i in this list. We

considered multiple such random orderings by creating a final

ensemble of 10 such chains, which we refer to as GBM‐CCE. In addi-
tion, we employed a simple logistic regression classifier (LRC) as a

linear benchmarkmodel to compare to. See Appendix S1 for a detailed

description of the machine learning models.

Model evaluation

The performance of the GBM‐CCE and LRC in predicting each disor-

der in the test set was measured in terms of the area under the

receiver operating characteristic curve ( AUROC). To assess statistical

robustness and reproducibility, we employed a 30‐times repeated 5‐
fold cross‐validation scheme (see Figure 2). At every one of the 30

repeats of the outer loop, the dataset was randomly divided into five

parts of equal size (folds). For each of the five repeats of the inner loop,

model training and validation were performed on four of the folds

(80% of the data), and the model was tested on the remaining fold

(20%) until each fold has been used as the test set exactly once. Each of

these 150 individual cross‐validation splits represented an indepen-

dent experiment with a newly initialized model, so that there was no

data leakage. All data splits were stratified with respect to all eight

disorders to ensure homogeneous label distributions between splits.

Finally, the resulting 150 unique test set AUROC values were aver-

aged. In addition, we calculated mean balanced accuracy (Brodersen

et al., 2010), mean sensitivity, andmean specificity based on the binary

classification thresholds corresponding to the highest Youden's J

statistic (Youden, 1950) in each individual test set.

To statistically test whether the models had found real patterns

in the features that are predictive of a particular disorder, we

employed the permutation test described in (Ojala & Garriga, 2010),

which yielded a p‐value for each model with the null hypothesis that

the model did not discover a meaningful relationship between fea-

tures and labels (see Appendix S1 for details). As we performed 20

independent permutation tests (two models times 10 disorders), we

applied Bonferroni correction to obtain the adjusted significance

level αadj ¼ 0:05
20 ¼ 0:0025.

RESULTS

Sample characteristics

We used a sample of 6916 children from the ABCD study (Karcher &

Barch, 2021) (see Figure 1). Table 1 summarizes the characteristics of

the sample used in our study. Data was pooled from 22 study sites

with a median of 4.0% (IQR: 3.4%–6.0%) of participants coming from

a single site (see Figure 3). The most common disorder was ADHD

F I GUR E 2 Model evaluation pipeline. Area under the receiver operating characteristic curve (AUROC) values are obtained by evaluating
trained models on the test set, then averaged over all cross‐validation folds. This results in one average AUROC for the original dataset and a

distribution of 500 average AUROC representing the distribution under the null hypothesis of “no real pattern has been discovered”.
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with a prevalence of 18.7% (see Figure 4, top), followed by ODD

(14.8%), and OCD (9.4%). The most common co–occurrence of dis-

orders was that of ADHD and ODD with a prevalence of 2.9%, which

was more common than any isolated disorder, except for isolated

ADHD or ODD (see Figure 4, bottom).

Predictive performance

We studied the predictive performance of detecting each of the bi-

nary psychiatric disorders using 136 regional subcortical volumes

and cortical volume and thickness measurements derived from sMRI.

Using an ensemble of classifier chains of gradient boosted trees

(GBM‐CCE) has two major advantages over a traditional LRC. First,

by relying on gradient boosted trees (Friedman, 2001), we do not

have to specify non‐linear feature transformations nor interaction

terms explicitly, but can learn those implicitly from the data. Second,

by using classifier chains (Read et al., 2011), our model considers all

10 disorders concurrently. Specifically, we use classifier chains to

leverage interdependencies among disorders, which is particularly

relevant due to the high prevalence of comorbidities among mental

illnesses in youth (Newman et al., 1998). Moreover, we accounted for

confounding due to acquisition site and sociodemographic factors by

residualizing MRI‐derived measurements. Figure 5 summarizes the

predictive performance in terms of the AUROC for all 10 disorders,

and whether the model has found a real pattern in the data based on

permutation testing. Finally, we repeated our experiments using

volumetric measures based on the SRI24 Atlas (Rohlfing et al., 2010).

Results for these experiments are summarized in Appendix S2.

The GBM‐CCE achieved a statistically significant prediction

performance for two disorders: ADHD (mean AUROC = 0.567,

p = 0.002) and BD (mean AUROC = 0.551, p = 0.002). For both

disorders, the mean AUROC was higher than all 500 AUROC values

on the permuted data sets, resulting in the lowest possible p‐value of
p¼ 1

500¼ 0:002. Table 2 provides the mean balanced accuracy,

sensitivity and specificity for these disorders. Mean balanced accu-

racy was 56.1% and 56.2%, mean sensitivity 57.7% and 52.6%, and

mean specificity 54.6% and 59.9% for ADHD and BD, respectively.

The two disorders, which were predicted significantly, were also

among the four most prevalent.

To investigate the performance improvement due to modeling

interdependencies among disorders, and non‐linear relationships, we
evaluated a simple LRC that does not have these desirable proper-

ties. As seen in Figure 5, such a model achieved a statistically sig-

nificant prediction only for ADHD, and with a lower performance

(AUROC = 0.539, p = 0.002).

Impact of confounding

Finally, we evaluated the impact of confounding factors by fitting LRC

and GBM‐CCE models on the original volume and thickness mea-

surements without adjusting them for confounding factors via resi-

dualization (see dashed diamonds in Figure 5). The results

demonstrate that ignoring confounding resulted in an inflated pre-

diction performance in five out of 10 disorders for the GBM‐CCE:
MDD, BD, OCD, GAD, and SAD. Whereas for LRC, ignoring

TAB L E 1 Demographics of selected participants.

Measure Statistic

Age 9.9 (0.6) years

Gender

Female 3617 (47.7%)

Male 3299 (52.3%)

Race/Ethnicity

Asian 162 (2.3%)

Black 761 (11.0%)

Hispanic 1464 (21.2%)

White 3834 (55.4%)

Other 695 (10.0%)

Marriage status of parents

Married 4820 (69.7%)

Unmarried 2096 (30.3%)

Highest parental education

Less than high‐school diploma 272 (3.9%)

High‐school diploma or GED 564 (8.2%)

Some college 1782 (25.8%)

Bachelor's degree 1821 (26.3%)

Post‐graduate degree 2477 (35.8%)

Note: Data are counts and percentage in parenthesis, except for Age,

where mean and standard deviation are provided.

F I GUR E 3 Participants per geographical study site.

CAN WE DIAGNOSE MENTAL DISORDERS IN CHILDREN? - 5 of 12
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confounding inflated the predictive performance for all disorders

except SAD. The difference in performance with and without

adjustment for confounding was highly significant in seven out of 10

disorders for both the GBM‐CCE and the LRC (Table S5).

DISCUSSION

In this study, we evaluated the potential of structural neuroimaging

to detect 10 psychiatric disorders in children, based on T1‐weighted
MRI from 6916 children from the ABCD study (Karcher &

Barch, 2021). Compared to many earlier studies, the ABCD study

offers the advantage of an exceptionally high degree of heteroge-

neity and ecological validity due to pooling data from 22 sites and

featuring mental disorder prevalence and comorbidity rates that

closely approximate that of the general population. Moreover, the

ABCD study includes assessments of many sociodemographic mea-

sures, which enables a rigorous analysis of confounding effects.

Our evaluation showed that the GBM‐CCE was able to learn

statistically significant patterns to detect ADHD and BD. These

findings are suggestive of the existence of brain structural patterns

that are associated with certain mental disorders and corroborate

previous findings (Arbabshirani et al., 2017; Rashid & Calhoun, 2020;

Sakai & Yamada, 2019; Wolfers et al., 2015; Woo et al., 2017).

Importantly, we only obtained a statistically significant classification

performance for BD when accounting for interdependencies and co‐
occurrence of disorders, and non‐linear relationships between neu-

roimaging biomarkers and disorder. A traditional logistic regression

model that does not account for interdependencies nor non‐linear
relationships failed to achieve a statistically significant prediction

performance for BD and showed lower classification performance in

terms of AUROC for all disorders compared with the GBM‐CCE.
First, this confirms that the relationship between brain structure and

disorders is highly non‐linear (Arbabshirani et al., 2017). Second, it
suggests that there is no one‐to‐one mapping between neuro-

anatomy and disorder, and that patterns of comorbidity can only be

leveraged if appropriate machine learning models are employed. The

latter relates to the fact the etiopathophysiology of psychiatric dis-

ease is highly complex due to "functional dependencies among neural

systems that yield complex patterns of comorbidity” (Beauchaine &

Hinshaw, 2020) (p. 329). Moreover, there is a growing concern that

classifying subjects into discrete and seemingly independent cate-

gories does not align with underlying neurobiological mechanisms

(Astle et al., 2022; Beauchaine & Hinshaw, 2020). Here, we

acknowledged that symptoms are possibly an imperfect basis for

psychiatric nosology and interdependencies exist, and employed

machine learning models, namely classifier chain ensembles, that

leverage interdependencies among symptoms. Our additional ex-

periments based on neuroanatomical features from the SRI24 Atlas

(see Appendix S2) confirmed that GBM‐CCE is often preferred over

F I GUR E 4 Comorbidities of studied mental disorders. (top) Studied mental health conditions with overall prevalence; (bottom) 14 most
common patterns of disorders and their prevalence. Having no disorder at all was most common (63.7% of participants).

6 of 12 - GAUS ET AL.
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LRC (5 of 10 disorders)—although none of the results achieved sta-

tistical significance. This suggests that the choice of neuroanatomical

segmentation algorithm may impact the maximum achievable per-

formance, but that modeling interdependencies between diagnoses is

often preferred, independent of the segmentation algorithm.

When repeating those analyses without confounding correction

(see dashed diamonds in Figure 5), 14 out of 20 experiments resulted

in inflated significance. These results indicate that the relationship

between neuroanatomy and mental disorder is often confounded.

This is confirmed by our supplementary analyses using the SRI24

Atlas, where 17 of 20 experiments were inflated. Hence, it is para-

mount to account for common confounders to minimize the risk that

machine learning models leverage spurious correlations rather than

biologically meaningful concepts in their predictions. Alternatively to

residualization, one could control for confounding by including soci-

odemographic variables as additional predictors. While this will likely

increase the overall prediction performance, it would not allow us to

accurately evaluate the predictive performance of neuroimaging

alone, because neuroimaging and sociodemographic factors will

F I GUR E 5 Violin plots of cross‐validation results. For each disorder and both classifiers, the distribution of area under the receiver
operating characteristic curve (AUROC) under the nullhypothesis of “no real pattern has been discovered” (in gray) is contrasted with the

AUROC value (diamond) on the original dataset. Dashed diamonds show AUROC values on unpermuted data with no adjustment by
sociodemographic confounders (see Table S5 for a statistical comparison with original AUROC values). Dashed line at AUROC ¼ 0:5
corresponds to a classifier with no discriminative ability. CCE, Gradient boosting model classifier chain ensemble; GBM‐LRC, Logistic regression
classifier.

TAB L E 2 Disorders for which significant predictions were

achieved.

Disorders

ADHD Bipolar disorder

Best model GBM‐CCE GBM‐CCE

AUROC Mean 0.567 0.551

Range 0.523–0.608 0.487–0.620

Balanced accuracy Mean 56.1% 56.2%

Range 53.3%–59.7% 51.5%–61.0%

Sensitivity Mean 57.7% 52.6%

Range 30.7%–89.3% 13.8%–93.1%

Specificity Mean 54.6% 59.9%

Range 20.0%–80.3% 17.8%–93.6%

Note: Shown are mean and range of 150 different test set AUROC

values obtained by 30‐times repeated 5‐fold cross‐validation on the

original dataset. Mean of balanced accuracy, sensitivity, and specificity

correspond to the maximum Youden's J statistic.

CAN WE DIAGNOSE MENTAL DISORDERS IN CHILDREN? - 7 of 12
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contribute to the prediction. Common sources of confounding in

neuroimaging studies include imaging site, age, gender, and head size

(Kirkpatrick et al., 2020; Nielsen et al., 2020; Scheinost et al., 2019;

Wachinger et al., 2020). In addition, studies in children are often

subject to bias due to sociodemographic factors. For instance, chil-

dren in households with low parental education or those part of

racial/ethnic minorities are less likely to participate in clinical

research (Kirkpatrick et al., 2020; Reiss, 2013). In this study, we

accounted for all of these factors to ensure reported prediction

performances are indeed based on biologically meaningful signals.

The fact that two of the four most prevalent diagnoses (see

Figure 4, top) could be predicted with statistical significance can in

part be attributed to the variance of the AUROC under the nullhy-

pothesis of “no real pattern has been discovered”. For a fixed sample

size n, the variance of the AUROC will be larger for rare disorders

compared to common disorders, because the variance of the AUROC

scales inversely with n1⋅n2, where n1, n2 (n = n1 + n2) are the size of

the number of cases and controls respectively (Hanley &

McNeil, 1982). In turn, an increase in variance increases the

threshold of statistical significance, which is evident from Figure 5

too. Hence, our results should be interpreted as conservative esti-

mates with a focus on reducing the type I error (false positives).

While our findings are statistically significant, the low classifica-

tion performance in absolute terms seems to contradict results from

previous studies (Arbabshirani et al., 2017; Sakai & Yamada, 2019;

Woo et al., 2017). Our highest achieved test set performance was a

mean AUROC of 0.567 for ADHD (mean balanced accuracy of 56.1%).

In contrast, the largest previous effort to predict ADHD in children

(N = 2454) using sMRI features yielded an AUROC of 0.64 (Zhang‐
James et al., 2021). Current reviews with a main focus on adults even

report a mean classification accuracy of over 77% for ADHD across

individual studies (Arbabshirani et al., 2017; Woo et al., 2017). For

MDD, reviews report an accuracy of over 80% (Arbabshirani

et al., 2017; Sakai & Yamada, 2019; Woo et al., 2017), which could not

be predicted with statistical significance in our study. In the following,

we highlight three key characteristics of the ABCD study that distin-

guish it from previous studies and that likely contribute to this marked

discrepancy.

First, the recruitment process of the ABCD study ensures a near‐
representative selection of participants to reduce systemic bias. It

included probabilistic sampling of schools within the catchment of

the 22 research sites (Garavan et al., 2018) and only minimal exclu-

sion criteria (Thompson et al., 2019). Although the resulting sample

should not be considered a fully representative sample (Compton

et al., 2019), it closely matches the distribution of the U.S. population

as a whole (Garavan et al., 2018), thus reaching an exceptionally high

degree of ecological validity. In contrast, many of the previous studies

assembled equally sized groups of affected and healthy participants

(Arbabshirani et al., 2017; Zhang‐James et al., 2021).
The second factor that contributes to the observed discrepancy

stems from the high heterogeneity that the ABCD studies captures

and that is largely absent in previous studies. We distinguish between

three sources of heterogeneity: (a) sociodemographic diversity, (b)

comorbidities, and (c) scanning devices. (a) The ABCD study comprises

a highly heterogeneous sample in terms of sociodemographic di-

versity, because children with a wide range of ethnical, cultural, and

economic backgrounds were included.We accounted for these effects

by residualizing the image‐derived measures. Our results indicate that
confounding effects due to sociodemographic status can be substan-

tial. For the two disorders that could be predicted with statistically

significant performance, accounting for confounding effects increased

the mean AUROC by 0.023 for ADHD and reduced it by 0.012 for BD

(see dashed diamonds in Figure 5). (b) The second source of hetero-

geneity is due to the high rate of comorbidities (see Figure 4). Since

different mental illnesses likely overlap in their neuroanatomical as-

sociations (Goodkind et al., 2015) and disorder subtypes can arise

(Schnack & Kahn, 2016), accurate classification of subjects with co-

morbid clinical conditions is inherently more difficult. Nevertheless,

the fact that our GBM‐CCE outperformed the LRC, shows that we can
also leverage this overlap to improve accuracy. (c) Finally, the ABCD

study is subject to heterogeneity due to scanning devices: it employed

29 different scanning devices by three different vendors, across 22

sites (Casey et al., 2018; Owens et al., 2021). Recent studies revealed

that large multi‐center studies can be sensitive to confounding effects
due to differences in acquisition, thus increasing heterogeneity in ac-

quired scans and the measures extracted from them (Alfaro‐Almagro
et al., 2021; Wachinger et al., 2020). How to best overcome hetero-

geneity due to differences in scanner is subject to ongoing research,

and no consensus has been reached yet.

Precisely these three sources of heterogeneity are thought to be

the reason why recent studies on neuroimaging for mental disorders

found the striking result that classification accuracy consistently de-

clines as the sample size of studies increases (Arbabshirani et al., 2017;

Rashid & Calhoun, 2020; Sakai & Yamada, 2019; Wolfers et al., 2015;

Woo et al., 2017). Smaller studies typically comprise a more homo-

geneous sample with fewer comorbidities, which in turn does away

with many of the aforementioned challenges to discovering patterns

for classifying the majority of participants accurately (Schnack, 2019).

In this regard, our results are in line with our experience in the ABCD

Neurocognitive Prediction Challenge (Pohl et al., 2019) where our

team ranked third, but none of the predictions of fluid intelligence—of

any team—was accurate enough to be meaningful (Pohl et al., 2019)—

despite access to data from thousands of children.

The third factor that contributes to the observed discrepancy

stems from the fact that our work was conducted exclusively on

children. Firstly, diagnoses are more difficult to establish in children,

because reports from multiple informants must be considered, and

there is no single established best practice for aggregating them

(Martel et al., 2017). In clinical practice, diagnoses are often given by

mental health professionals. However, when only informant survey

reports are available, as in the ABCD study, we must resort to

simpler rule‐based aggregation—like the OR rule—which may not

replicate the clinician gold standard in all cases. Secondly, the

neuroanatomy of children's brains changes continuously and non‐
linearly during maturation, and children of the same ages can be at

different points in this process (Tamnes et al., 2017). This change may

obscure structural neuroimaging patterns associated with psychiatric

disorders, complicating accurate prediction.

In light of the modest classification performance, we currently do

not see a clinical utility of biomarkers derived from structural MRI for

the diagnosis of mental disorders in children. This is in line with the

conclusion drawn by (First et al., 2018), who stated that neuroimaging

has yet tomake an impact on the diagnosis of psychiatric disorders in a

clinical setting. Notably, this statement includes the diagnosis of

8 of 12 - GAUS ET AL.

 26929384, 2023, 4, D
ow

nloaded from
 https://acam

h.onlinelibrary.w
iley.com

/doi/10.1002/jcv2.12184, W
iley O

nline L
ibrary on [08/08/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



adults, where prior research studies have reported high classification

accuracy. The reason for the lacking clinical utility in classifying in-

dividuals is mainly due to the small effect sizes of neuroimaging

markers with respect to psychiatric illnesses, yielding insufficient

sensitivity and specificity. As a future direction, the combination of

neuroimaging markers with non‐imaging data may be promising to

improve the performance by establishing a more comprehensive pic-

ture of a patient. In this regard, exploring how neuroimaging can

enhance already established diagnostic tools such as clinical and

neurocognitive tests will be of particular clinical relevance.

There are several limitations to this study. First, because the

ABCD study was conducted in the U.S., the data are limited to this

geographic region. Factors such as symptom reports and ethno-

graphic backgrounds may not be representative of other geographic

and cultural contexts. Second, socioeconomic variables in the ABCD

study are not exactly representative of the comparable‐age U.S.

population. Both family income and the proportion of participants

with married parents, who are both employed, are higher in the

ABCD cohort (Heeringa & Berglund, 2020). Although we adjusted our

analysis for parental marriage status, residual confounding may have

persisted and may limit the generalizability of our results to the

general population. Although we followed the common approach of

assuming a linear relationship between confounding factors and

neuroanatomical measures (L. Snoek et al., 2019), we cannot prove

based on data alone that this is indeed the true (unknown) causal

relationship. Moreover, the classifier is dependent on hyper-

parameters and while we have performed Bayesian hyperparameter

optimization, further tuning may improve results. While model

explainability was not an explicit focus of our study, future research

on predicting mental disorders using neuroimaging could benefit

from incorporating feature importance analyses, as this would add

knowledge of the associations between features (such as regional

brain volumes or comorbid disorders) and the target disorder. Finally,

we captured neuroanatomical changes by relying on regional volume

and thickness measures. While these measures are relatively robust

to imaging noise, they cannot capture the full range of neuroana-

tomical changes, because multiple geometric structures can have the

same volume/thickness. Hence, our models may fail to capture subtle

changes in neuroanatomy.

CONCLUSION

Our findings illustrate that detecting psychiatric disorders in chil-

dren based on structural neuroimaging remains a significant chal-

lenge when generalization to large, ecologically valid, and

heterogeneous samples is desired. At the same time, we showed that

we can leverage comorbidities and interdependencies among

symptoms to significantly improve prediction accuracy, although the

absolute performance remains modest. To overcome common pit-

falls, we argue that researchers should (i) study a heterogeneous

sample, (ii) employ advanced machine learning techniques appro-

priate for the task at hand, and (iii) account for confounding effects

due to sociodemographic factors. We analyzed a sample of 6916

children from the ABCD study (Karcher & Barch, 2021), which is the

largest and most comprehensive study on psychiatric disorders in

children to date. Next, we embraced the complexity of detecting

psychiatric disorders by leveraging the capabilities of advanced

machine learning models that are better suited for this task than

traditional linear models. Finally, we ensured that our models were

not significantly impacted by spurious correlations due to common

sociodemographic factors by residualizing neuroanatomical mea-

surements. We hope these strategies can form the basis for a push

to advance our understanding of the etiopathophysiology of psy-

chiatric disorders.
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