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Abstract

Predicting molecular impact on cellular function is a core challenge in therapeutic1

design. Phenomic experiments, designed to capture cellular morphology, utilize2

microscopy based techniques and demonstrate a high throughput solution for un-3

covering molecular impact on the cell. In this work, we learn a joint latent space4

between molecular structures and microscopy phenomic experiments, aligning5

paired samples with contrastive learning. Specifically, we study the problem of6

Contrastive PhenoMolecular Retrieval, which consists of zero-shot molecular struc-7

ture identification conditioned on phenomic experiments. We assess challenges8

in multi-modal learning of phenomics and molecular modalities such as experi-9

mental batch effect, inactive molecule perturbations, and encoding perturbation10

concentration. We demonstrate improved multi-modal learner retrieval through11

(1) a uni-modal pre-trained phenomics model, (2) a novel inter sample similarity12

aware loss, and (3) models conditioned on a representation of molecular concentra-13

tion. Following this recipe, we propose MolPhenix, a molecular phenomics model.14

MolPhenix leverages a pre-trained phenomics model to demonstrate significant15

performance gains across perturbation concentrations, molecular scaffolds, and16

activity thresholds. In particular, we demonstrate an 8.1× improvement in zero shot17

molecular retrieval of active molecules over the previous state-of-the-art, reaching18

77.33% in top-1% accuracy. These results open the door for machine learning to19

be applied in virtual phenomics screening, which can significantly benefit drug20

discovery applications.21

1 Introduction22

Quantifying cellular responses elicited by genetic and molecular perturbations represents a core23

challenge in medicinal research [4, 48]. Out of an approximate 1060 druglike molecule designs,24

a small number are able to alter cellular properties to reverse the course of diseases [5, 22]. In25

recent years, microscopy-based cell morphology screening techniques, demonstrated potential for26

quantitative understanding of a molecule’s biological effects. Experimental techniques such as27

cell-painting are used to capture cellular morphology, which correspond to physical and structural28

properties of the cell [6, 7]. Cells treated with molecular perturbations can change morphology,29

which is captured by staining and high throughput microscopy techniques. Perturbations with similar30

cellular impact induce analogous morphological changes, allowing to capture underlying biological31

effects in phenomic experiments. Identifying such perturbations with similar morphological changes32

can aid in discovery of novel therapeutic drug candidates [42, 24, 19].33

Determining molecular impact on the cell can be formulated as a multi-modal learning problem,34

allowing us to build on a rich family of methods [35, 52, 45]. Similar to text-image models,35

paired data is collected from phenomic experiments along with molecules used to perturb the cells.36
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Contrastive objectives have been used as an effective approach in aligning paired samples from37

different modalities [35, 27]. A model that has learned a cross-modal joint latent space must be38

able to retrieve a molecular perturbant conditioned on the phenomic experiment. We identify this39

problem as contrastive phenomolecular retrieval (see Figure 2). Addressing this problem can allow40

for identification of molecular impact on cellular function, however, this comes with its own set of41

challenges. [15, 2, 54].42

(1) Firstly, multi-modal paired phenomics molecular data suffers from lower overall dataset sizes and43

is subject to batch effects. Challenges with uniform processing and prohibitive costs associated with44

acquisition of paired data, leads to an order of magnitude fewer data points compared to text-image45

datasets [41, 9]. Furthermore, data is subject to random batch effects that capture non-biologically46

meaningful variation [28, 46]. (2) Paired phenomic-molecular data contains inactive perturbations47

that do not have a biological effect or do not perturb cellular morphology. It is difficult to infer a48

priori whether a molecule has a cellular effect, leading to the collection of paired molecular structures49

with unperturbed cells. These data-points are challenging to filter out without an effective phenomic50

embedding, as morphological effects are rarely discernible. These samples can be interpreted as51

misannotated, under the assumption of all collected pairs having biologically meaningful interactions.52

(3) Finally, a complete solution for capturing molecular effects on cells must capture molecular53

concentration. The same molecule can have drastically different effects along its dose response curve,54

thus making concentration an essential component for learning molecular impact.55

In this work, we explore the problem of contrastive phenomolecular retrieval by addressing the above56

challenges circumvented in prior works. Our key contributions are as follows:57

• We demonstrate significantly higher phenomolecular retrieval rates by utilizing a pretrained uni-58

modal phenomic encoder. Thus alleviating the data availability challenge, reducing the impact of59

batch effects, and identifying molecular activity levels.60

• We propose a novel soft-weighted sigmoid locked loss (S2L) that addresses the effects of inactive61

molecules. This is done by leveraging distances computed in the phenomic embedding space to62

learn inter-sample similarities.63

• We explore explicit and implicit methods to encode molecular concentration, assessing the model’s64

ability to perform retrieval in an inter-concentration setting and generalize to unseen concentrations.65
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Figure 1: Illustration of proposed guidelines when incorporated in our MolPhenix contrastive
phenomolecular retrieval framework. We address challenges by utilizing uni-modal pretrained MAE
& MPNN models, inter-sample weighting with a dosage aware S2L loss, undersampling inactive
molecules, and encoding molecular concentration.

Following these principles, we build MolPhenix, a multi-modal molecular phenomics model address-66

ing contrastive phenomolecular retrieval (Figure 1). MolPhenix demonstrates large and consistent67

improvements in the presence of batch effects, generalizing across different concentrations, molecules,68

and activity thresholds. Additionally, MolPhenix outperforms baseline methods in zero-shot setting,69

achieving 77.33% top-1% retrieval accuracies on active molecules, which corresponds to a 8.1×70

improvement over the previous state-of-the-art (SOTA) [40].71
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2 Related Work72

Uni-modality Pretraining: Self-supervised methods have demonstrated success across a variety73

of domains such as computer vision, natural language processing and molecular representations74

[3, 36, 51]. In vision, contrastive methods have been used to minimize distance in the model’s75

latent space of two views of the same sample [10, 43, 16, 18]. Reconstruction objectives have76

also permeated computer vision, such as masked autoencoders (MAE). MAEs typically utilize77

vision transformers to partition the image into learnable tokens and reconstruct masked patches78

[17, 14, 8, 12]. These methods have been extended to microscopy experimental data designed79

to capture cell morphology [50, 23]. Phenom1 utilizes a masked autoencoder with a ViT-L/8+80

architecture and a custom Fourier domain reconstruction loss, yielding informative representations of81

phenomic experiments [23, 11]. From a representational perspective, Graph Neural Networks (GNN)82

have been used to predict molecular properties by reasoning over graph structures. A combination83

of reconstruction and supervised objectives have led to models generalizing to a diverse range of84

prediction tasks [31, 55, 47, 39]. Our work leverages uni-modal foundation models, which are used85

to generate embeddings of phenomic images and molecular graphs.86

Multi-Modal Objectives: Multi-modal models combine samples from two or more domains, to87

learn rich representations and demonstrate flexible ways to predict sample properties [35, 1, 20].88

Contrastive methods minimize distances between paired samples, traditionally in text-image domains.89

However, training these models is computationally expensive, requiring large datasets. Multiple90

contributions have allowed for a reduction in compute and data budgets by an order of magnitude. In91

LiT, the authors demonstrate that utilizing uni-modal pretrained models for one or both modalities92

matches zero-shot performance with an order of magnitude fewer paired examples seen [53]. Zhai93

et al. (2023) demonstrate that by replacing the softmax operation over cosine similarities with an94

element wise sigmoid loss, allows contrastive learners to improve performance under label noise95

regime [52]. By using a uni-modal pre-trained modal to calculate similarities between samples from96

one of the modalities, Srinivasa et al. (2023) have demonstrated improved performance on zero-shot97

evaluation [45]. In our work, we build along these directions in molecular phenomic multi-modal98

training.99

Molecular-Phenomic Contrastive Learning: Prior works in contrastive phenomic retrieval have100

utilized the InfoNCE objective as a pre-training technique to construct uni-modal representations101

[32]. Recent methods have attempted to improve retrieval by using the InfoLOOB objective [34].102

Specifically, CLOOME utilizes the InfoLOOB loss with hopfield networks for zero-shot retrieval103

on unseen data samples [37, 40]. Our work is parallel to the above directions, demonstrating a104

significant increase in molecular-phenomic retrieval by building on algorithmic improvements from105

the multi-modality literature.106

3 Methodology107

In this section, we explain key challenges facing phenomolecular retrieval and provide guidelines108

that are key methodological improvements behind the success of MolPhenix 1.109

Preliminaries: Our setting studies the problem of learning multi-modal representations of molecules110

and phenomic experiments of treated cells [40]. The aim of this work is to learn a joint latent space111

which maps phenomic experiments of treated cells and the corresponding molecular perturbations112

into the same latent space. We consider a set of lab experiments E defined as the tuple (X,M,C,Ψ).113

Each experiment ϵ ∈ E consists of data samples xi ∈ X (such as images) and perturbations mi ∈ M114

(such as molecules) which are obtained at a specific dosage concentration ci ∈ C, while ψ ∈ Ψ115

denotes molecular activity threshold.116

Figure 2 describes the problem of contrastive phenomolecular retrieval, where for a single image xi,117

the challenge consists of identifying the matching perturbation, mi, and concentration, ci, used to118

induce morphological effects. This can be accomplished in a zero-shot way by generating embeddings119

for (m1, c1), ...(mj , cj) and xi using functions fθm(m, c), fθx(x) which map samples into Rd.120

Then, by defining a similarity metric between generated embeddings zxi and zmi , fsim, we can121

rank (m1, c1)...(mj , cj) based on computed similarities. An effective solution to the contrastive122

phenomolecular retrieval problem would learn fθm(m, c) and fθx(x) that results in consistently high123

retrieval rates of (mi, ci) used to perturb xi.124
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Figure 2: Illustration of the contrastive phe-
nomolecular retrieval challenge. Image xi and a
set of molecules and corresponding concentrations
(mk, ck) get mapped into a Rd latent space. Their
similarities get computed with fsim and ranked to
evaluate whether the paired perturbation appears
in the top K%.

In practice, the image embeddings are gener-125

ated using a phenomics microscopy foundation126

MAE model [23, 17]. We use phenomic embed-127

dings to marginalize batch effects, infer inter-128

sample similarities, and undersample inactive129

molecules. Activity is determined using con-130

sistency of replicate measurements for a given131

perturbation. For each sample, a p value cutoff132

ψ ∈ Ψ is used to quantify molecular activity.133

Only molecules below the p value cutoff ψ are134

considered active.135

Prior methods in multi-modal contrastive learn-136

ing utilize the InfoNCE loss, and variants thereof137

[32] to maximize the joint likelihood of xi and138

mi. Given a set of N × N random samples139

(x1,m1, c1), · · · , (xN ,mN , cN ) containingN140

positive samples at kth index and (N − 1)×N141

negative samples, optimizing Equation 1 maximizes the likelihood of positive pairs while minimizing142

the likelihood of negative pairs:143

LInfoNCE = − 1

N

N∑
i=1

[
log

exp(⟨zxi
, zmi

⟩/ τ)∑N
k=1 exp(⟨zxi , zmk

⟩ /τ)
+ log

exp(⟨zxi
, zmi

⟩/ τ)∑N
k=1 exp(⟨zmi , zxk

⟩ /τ)

]
. (1)

Where zx, zm correspond to phenomics and molecular embeddings respectively, τ is softmax144

temperature, and ⟨·⟩ corresponds to cosine similarity.145

Challenge 1: Phenomic Pretraining and Generalization146

We find that using a phenomics foundation model to embed microscopy images allows for mitigation147

of batch effects, reduces the required number of paired data points, and improves generalization in the148

process. While CLIP, a hallmark model in the field of text-image multi-modality, was trained on 400149

million curated paired data points, there is an order of magnitude fewer paired molecular-phenomic150

molecule samples [35]. Cost and systematic pre-processing of data make large scale data generation151

efforts challenging, and resulting data is affected by experimental batch effects. Batch effects induce152

noise in the latent space as a result of random perturbations in the experimental process, while153

biologically meaningful variation remains unchanged [33, 44]. Limited dataset sizes and batch effects154

make it challenging for contrastive learners to capture molecular features affecting cell morphology,155

yielding low retrieval rates [40].156

We address data availability and generalization challenges by utilizing representations from a large uni-157

modal pre-trained phenomic model, θPh, trained to capture representations of cellular morphology.158

θPh is pretrained on microscopy images using a Fourier modified MAE objective, utilizing the159

ViT-L/8 architecture with methodology similar to Kraus et al. (2024) [17, 12, 23]. For simplicity160

in future sections, we refer to this model as Phenom1. This pretrained model allows a drastic161

reduction in the required number of paired multi-modal samples [53]. In addition, using phenomic162

representations alleviates the challenge of batch effects by averaging samples, zx, generated with the163

same perturbation mi over multiple lab experiments ϵi. Averaging model representations 1
NΣ1

i∈Nzxi
164

allows marginalizing batch effect induced by individual experiments.165

Guideline 1 Utilizing pre-trained uni-modal encoder, θPh, can be used to reduce the num-
ber of paired data-points compared to training θ without prior optimization. In addition,
averaging phenomic embeddings zx from matched perturbations can alleviate batch effects.

166

To reason over molecular structures, we make use of features learned from GNNs trained on molecular167

property prediction [29]. We utilize a pretrained MPNN foundational model up to the order of 1B168

parameters for extracting molecular representations following a similar procedure to Sypetkowski et169

al. (2024) [47]. We refer to this model as MolGPS.170
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Challenge 2: Inactive Molecular Perturbations171

Figure 3: Data generation process of a phe-
nomic experiment on cells xi with molecular
perturbations mi and concentrations ci.

The phenomics-molecular data collection process can172

result in pairing of molecular structures with unper-173

turbed cells in cases where the molecule has no effect174

on cell morphology (Figure 3)175

Since the morphological effects observed in cell xi176

is conditioned on the perturbation, in the absence of177

a molecular effect P (xi|x0
i , ci,mi) ∼ P (xi|x0

i ). In178

these samples, phenomic data will be independent,179

from paired molecular data, which results in misanno-180

tation under the assumption of data-pairs having an181

underlying biological relationship. We demonstrate how utilizing Phenom1 to undersample inactive182

molecules and learn continuous similarities between samples can alleviate this challenge.183

To undersample inactive molecules, we extract the embeddings from Phenom1 and calculate the184

relative activity of each perturbation (mi, ci) ∈ (M,C). This is done using the rank of cosine simi-185

larities between technical replicates produced for a molecular perturbation against a null distribution.186

The null distribution is established by calculating cosine similarities from random pairs of Phenom1187

embeddings generated with perturbation (mj , cj), (mk, ck). Hence, we can compute a p-value and188

filter out samples likely to belong to the null distribution with an arbitrary threshold ψ.189

In addition, by utilizing an inter-sample aware S2L training objective, the model can learn similari-190

ties between inactive molecules. S2L is grounded in previous work which demonstrates improved191

robustness to label noise (SigLip) and learnable inter-sample associations (CWCL) [52, 45]. Continu-192

ous Weighted Contrastive Loss (CWCL) provides better multi-modal alignment using a uni-modal193

pretrained model to suggest sample distances, relaxing the negative equidistant assumption present in194

InfoNCE [45]:195

LCWCL, M→X = − 1

N

N∑
i=1

 1∑N
j=1 w

X
i,j

N∑
j=1

wX
i,j log

exp
(
⟨zxi

, zmj
⟩/τ

)∑N
k=1 exp

(
⟨zxj

, zmk
⟩/τ

)
 . (2)

CWCL weights logits with a continuous measure of similarity wX , resulting in better alignment of196

embeddings zxi and zmj across modalities. In equation 2, wX is computed using a within modality197

similarity function such as wX
i,j = ⟨zxi

, zxj
⟩/2 + 0.5. Note, the above formula is used only for198

mapping samples from modality M to X for which a pre-trained model θPhis available.199

Another work, SigLIP, demonstrates robustness to label noise and reduces computational requirements200

during contrastive training [52]. It does so by avoiding computation of a softmax over the entire set201

of in-batch samples, instead relying on element-wise sigmoid operation:202

LSigLIP = − 1

N

N∑
i=1

N∑
j=1

[
log

1

1 + exp
(
yi,j(−α ⟨zxi

, zmj
⟩+ b)

)] . (3)

In equation 3, α and b are learned, calibrating the model confidence conditioned on the ratio of203

positive to negative pairs. yi,j is set to 1 if i = j and -1 otherwise.204

Inspired by prior works, we introduce S2L for molecular representation learning, which leverages205

inter-sample similarities and robustness to label noise to mitigate weak or inactive perturbations.206

LS2L = − 1

N

N∑
i=1

N∑
j=1

log

[
wX

i,j

1 + exp
(
−αzxi

.zmj
+ b)

) +
(1−wX

i,j)

1 + exp
(
αzxi

.zmj
+ b)

)] . (4)

In the equation above, zxi and zmj correspond to latent representations of images and molecules,207

respectively. α and b correspond to learnable temperature and bias parameters for the calibrated208

sigmoid function. wX
ij is an inter-sample similarity function computed from images using the209

pretrained model θPh. To compute wX
i,j , we use the arctangent of L2 distance instead of cosine210

5



similarity, as was the case for Equation 2 (more details in Appendix D.3). Intuitively, S2L can be211

thought of as shifting from a multi-class classification to a soft multi-label problem. In our problem212

setting, the labels are continuous and determined by sample similarity in the phenomics space.213

Guideline 2 When training a molecular-phenomic model, mitigating the effect of inac-
tive molecules in training data distribution can be carried out by undersampling inactive
molecules and using an inter-sample similarity aware, S2L loss (equation 4).

214

Challenge 3: Variable Concentrations215

Perturbation effect on a cell is determined by both molecular structure and corresponding concentra-216

tion [49]. A model capturing molecular impact on cell morphology must be able to generalize across217

different doses, since variable concentrations can correspond to different data distributions.218

We note that providing concentrations ci as input to the model would benefit performance, as this219

would indicate the magnitude of molecular impact. However, we find that simply concatenating220

concentrations does not result in effective training due to its compressed dynamic range. To that end,221

we add concentration information in two separate ways: implicit and explicit formulations.222

We add implicit concentration as molecular perturbation classes by using the S2L loss (Equation 4)223

to treat perturbation mi with concentrations ci and cj as distinct classes. This pushes samples apart224

in the latent space proportionally to similarities between phenomic experiments.225

We add explicit concentration ci by passing it to the molecular encoder. We explore different226

formulation for dosage concentrations, f ′(ci), where f ′ maps ci → R. Encoded representations f ′(ci)227

are concatenated at the initial layer of the model. We find simple functional encodings f ′ (such as228

one-hot and logarithm) to work well in practice.229

Guideline 3 When training a molecular-phenomic model, conditioning on an (implicit and
explicit) representation of concentration f ′(ci) aids in capturing molecular impacts on cell
morphology and improves generalization to previously unseen molecules and concentrations.

230

4 Experimental Setup231

In this section, we describe evaluation datasets used, and descriptions of the underlying data modalities.232

To assess phenomolecular retrieval, we use 1% recall metric unless stated otherwise, as it allows233

direct comparison between datasets with different number of samples. Additional implementation234

and evaluation details can be found in Appendix D.235

Datasets: Our training dataset consists of fluorescent microscopy images paired with molecular236

structures and concentrations, which are used as perturbants. We assess models’ phenomolecular237

retrieval capabilities on three datasets of escalating generalization complexity. First dataset, consisting238

of unseen microscopy images and molecules present in the training dataset. Second, a dataset consist-239

ing of previously unseen phenomics experiments and molecules split by the corresponding molecular240

scaffold. Finally, we evaluate on an open source dataset with a different data generating distribution241

[13]. In the case of the latter two datasets, the model is required to perform zero-shot classification,242

as it has no access to those molecules in the training data. This requires the model to reason over243

molecular graphs to identify structures inducing corresponding cellular morphology changes. Using244

methodology described in guideline 2 we report retrieval results for all molecules as well as on an245

active subset. Finally, all datasets are comprised of molecular structures at multiple concentrations246

(.01, .1, 1.0, 10, etc.) Additional details regarding the datasets can be found in Appendix C.247

Modality Representations: In our evaluations, we consider different representations for molecular248

perturbations and phenomic experiments and quantitatively evaluate their impact.249

• Images: Image encoders utilize 6-channel fluorescent microscopy images of cells representing250

phenomic experiments. Images are 2048 × 2048 pixels, capturing cellular morphology changes post251

molecular perturbation. We downscale each image to 256 × 256 using block mean downsampling.252
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• Phenom1: We characterize phenomic experiments by embedding high resolution microscopy253

images in the latent space of a phenomics model θPh as described in guideline 1.254

• Fingerprints: Molecular fingerprints utilize RDKIT [26], MACCS [25] and MORGAN3 [38] bit255

coding, which represent binary presence of molecular substructures. Additional information such256

as atomic identity, atomic radius and torsional angles are included in the fingerprint representations.257

• MolGPS: We generate molecular representations from a large pretrained GNN. Specifically, we258

obtain molecular embeddings from a 1B parameter MPNN [29].259

5 Results and Discussion260
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Figure 4: Comparison of training phenomic
encoder from scratch and utilizing pre-trained
Phenom1 unseen dataset. X-axis plotted on
logarithmic scale.

To evaluate the effectiveness of Guidelines 1, 2, and261

3 we carry out evaluation in two different settings:262

(1) cumulative concentrations, and (2) held-out con-263

centrations, testing the models’ ability to generalize264

to new molecular doses. Finally, we perform com-265

prehensive ablations testing model performance with266

varying data, model, and optimization parameters.267

The comprehensive set of results can be found in268

Tables 10, 11, 12, and 13.269

5.1 Evaluation on cumulative concentrations:270

We demonstrate improvements in phenomolecular271

recall due to usage of a phenomics pre-trained foun-272

dation model, identify that MolPhenix set of design273

choices results in higher final performance, and more274

data efficient learning. Figure 4 demonstrates recall275

accuracy on all molecules and an active subset for276

CLOOME and MolPhenix models, as a function of training samples seen.277

We observe a large performance gap between models trained on Phenom1 embeddings as opposed to278

images, emphasizing the utility of using a pre-trained encoder for microscopy images (Table 1). We279

note that provision of Phenom1 (CLOOME-Phenom1 Vs CLOOME-Images) significantly improves280

both active and all molecule retrieval by 5.69× and, 4.75× respectively (Table 1).281

Furthermore, we identify that while all molecules retrieval stagnates throughout training, the per-282

formance on an active subset keeps improving, underscoring the importance of identification of the283

active subset. Finally, we compare CLOOME and MolPhenix trained using Phenom1 embeddings284

and find there is a consistent retrieval performance gap, throughout training, with a 1.26 × final285

improvement (Figure 4, Table 1). Compared to CLOOME [40] trained directly on images, MolPhenix286

achieves an average improvement of 8.78× on active molecules on the unseen dataset. These results287

verify the effectiveness of Guideline 1 in accelerating training, and the importance of Guidelines 2288

and 3 in recall improvements over CLOOME.289

Table 1: Impact of pre-trained Phenom1 and MolGPS on CLOOME and MolPhenix for a matched
number of seen samples (Top), where we observe an 8.1 × improvement of MolPhenix over the
CLOOME baseline for active unseen molecules. SOTA results trained with a higher number of steps
by utilizing the best hyperparameters (Bottom *). We note that MolPhenix’s main components such
as S2L and embedding averaging relies on having a pre-trained uni-modal phenomics model.

Active Molecules All Molecules

Method Modality Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

CLOOME Images & Multi-FPS .0756± .0042 .0787± .0065 .0528± .0057 .0547± .0028 .0661± .0020 .0223± .0014
CLOOME Phenom1 & Multi-FPS .4659± .0042 .5057± .0014 .2065± .0146 .3009± .0053 .2474± .0013 .1337± .0045
MolPhenix Phenom1 & Multi-FPS .7807± .0025 .6365± .0014 .3545± .0097 .5253± .0029 .3655± .0017 .2163± .0021
MolPhenix Phenom1 & MolGPS .7646± .0014 .6387± .0056 .4160± .0016 .5012± .0002 .3511± .0004 .2508± .0026

MolPhenix* Phenom1 & MolGPS .9689± .0017 .7733± .0036 .5860± .0082 .5583± .0007 .3824± .0016 .2809± .0060
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Table 2: Top-1% recall accuracy with use of the proposed MolPhenix guidelines, such as Phenom1
and embedding averaging. We omit explicit concentration from this experiment.

Active Molecules All Molecules

Loss Unseen
Images

Unseen
Im. + Mol.

Unseen
Dataset

Unseen
Images

Unseen
Im. + Mol.

Unseen
Dataset

CLIP .3373± .0043 .4228± .0008 .1514± .0038 .1761± .0043 .1867± .0022 .0734± .0022
Hopfield-CLIP .2578± .0042 .3559± .0042 .1256± .0092 .1531± .0046 .1709± .0029 .0673± .0020
InfoLOOB .3351± .0011 .4206± .0031 .1563± .0028 .1746± .0003 .1860± .0029 .0745± .0019
CLOOME .3572± .0026 .4348± .0039 .1658± .0063 .1968± .0029 .2005± .0026 .0911± .0022
DCL .6363± .0025 .6177± .0047 .3184± .0087 .3277± .0047 .2562± .0008 .1364± .0067
CWCL .7091± .0045 .6529± .0020 .3556± .0094 .3635± .0064 .2696± .0019 .1526± .0058
SigLip .7763± .0045 .6401± .0065 .3396± .0042 .3729± .0039 .2544± .0014 .1470± .0038
S2L (ours) .9097± .0020 .6759± .0012 .4181± .0012 .4688± .0009 .2852± .0001 .1838± .0007

Table 3: Top-1% recall accuracy across different concentration encoding choices with use of the
proposed MolPhenix guidelines, such as Phenom1 and embedding averaging.

Active Molecules All Molecules

Implicit
Concentration

Explicit
Concentration

Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

✗ ✗ .7350± .0071 .6509± .0104 .3333± .0004 .3610± .0025 .2668± .0034 .1532± .0007
✓ ✗ .9097± .0020 .6759± .0012 .4181± .0012 .4688± .0009 .2852± .0001 .1838± .0007
✓ sigmoid .9423± .0011 .7155± .0016 .4573± .0022 .5071± .0024 .3441± .0026 .2144± .0026
✓ logarithm .9426± .0066 .7451± .0050 .4727± .0056 .5183± .0027 .3700± .0036 .2275± .0032
✓ one-hot .9430± .0029 .7490± .0052 .4850± .0020 .5433± .0030 .3819± .0032 .2384± .0049

We evaluate the impact of different loss objectives on the proposed MolPhenix training frame-290

work. Table 2 presents top-1% retrieval accuracy across different contrastive losses utilized to291

train molecular-phenomics encoders on cumulative concentrations. Compared to prior methods, the292

proposed S2L loss demonstrates improved retrieval rates in cumulative concentration setting. Label293

noise and inter-sample similarity aware losses such as CWCL and SigLip also demonstrate improved294

performance. The effectiveness of S2L can be attributed to smoothed inter-sample similarities and295

implicit concentration information.296

Finally, in Table 3, we observe recall improvements when considering both molecular structures and297

concentration. We note the importance of the addition of implicit concentration, further confirming the298

importance of considering molecular effects at different concentrations as different classes. Explicitly299

encoding molecular concentration with one-hot, logarithm and sigmoid yields improved recall300

performance, where one-hot performs the best in a cumulative concentration setting. These findings301

verify the efficacy of implicit and explicit concentration encoding outlined in Guideline 3.302

Table 4: Top-1% recall accuracy of dif-
ferent loss objectives while using the
proposed MolPhenix guidelines, such as
Phenom1 and embedding averaging.

Loss Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

CLIP .2109 .2425 .1519
Hopfield-CLIP .1581 .2034 .1198
InfoLOOB .2122 .2496 .1501
CLOOME .2164 .2461 .1479
DCL .4717 .4027 .2841
CWCL .5731 .4403 .3232
SigLip .5718 .4217 .3021
S2L (ours) .8334 .4615 .3792

Table 5: Top-1% recall accuracy across different concentra-
tion encoding choices while using the proposed MolPhenix
guidelines, such as Phenom1 and embedding averaging.

Implicit
Concentration

Explicit
Concentration

Unseen
Im.

Unseen
Im. + Mol.

Unseen
Dataset

✗ ✗ .5942 .4315 .3129
✓ ✗ .8334 .4615 .3792
✓ sigmoid .8256 .4692 .3765
✓ logarithm .7953 .4466 .3664
✓ one-hot .7489 .4088 .3379

Results are averaged across experiments for each dropped concentration, and across three seeds.
Recall is reported for active molecules, while the results for all molecules can be found in Table 13.

5.2 Evaluation on held-out concentrations:303

Next, we evaluate recall on held-out concentrations to obtain a measure of generalization performance.304

This evaluation allows us to capture the utility of our models for prediction of unseen concentrations,305
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hence resembling in-silico testing. We omit concentrations from the training set and evaluate recall306

at the excluded data, where we observe a drop in retrieval performance for unseen concentrations.307

Similar to cumulative concentration results, we find that using S2L improves recall over other losses308

and outperforms CLOOME by up to 126% (Table 4). While one-hot encoding exhibits significant309

improvements in cumulative concentrations, its expressivity on unseen concentrations is limited310

(Table 5) and sigmoid encoding provides a sufficient representation of concentration.311

5.3 Ablation Studies312

We assess the importance of our design decisions by conducting an ablation study over our proposed313

guidelines. Figure 5 presents the variation of top-1% recall accuracy across key components such as314

cutoff p value, fingerprint type, and embedding averaging. We observe that employing a lower cutoff315

p value yields improved generalization for unseen dataset, while employing a higher cutoff appears to316

be optimal for unseen images + unseen molecules. For molecular structure representations, we find317

that using embeddings from the large pretrained MPNN graph based model (e.g., MolGPS) surpasses318

traditional fingerprints. Finally, utilization of embedding averaging demonstrates improved recall.319

More ablations over model size, projector dimension, and batch size can be found in Appendix E.5.320
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Figure 5: Ablations of top-1 % recall accuracy with (bottom-left) cutoff p value, (bottom-center)
fingerprint type, and (bottom-right) embedding averaging.

6 Conclusion321

In this work, we investigate the problem of contrastive phenomolecular retrieval by constructing a322

joint multi-modal embedding of phenomic experiments and molecular structures. We identify a set of323

challenges afflicting molecular-phenomic training and proposed a set of guidelines for improving324

retrieval and generalization. Empirically, we observed that contrastive learners demonstrate higher325

retrieval rates when using representations from a high-capacity uni-modal pretrained model. Use326

of inter-sample similarities with a label noise resistant loss such as S2L allows us to tackle the327

challenge of inactive molecules. Finally, adding implicit and explicit concentrations allows models to328

generalize to previously unseen concentrations. MolPhenix demonstrates an 8.1× improvement in329

zero shot retrieval of active molecules over the previous state-of-the-art, reaching 77.33% in top-1%330

accuracy. In addition, we conduct a preliminary investigation on MolPhenix’s ability to uncover331

biologically meaningful properties (activity prediction, zero-shot biological perturbation matching,332

and molecular property prediction in Appendix E.1, E.2, and E.3, respectively.). We expect a wide333

range of applications for MolPhenix, particularly in drug discovery. While there’s a remote chance of334

misuse for developing chemical weapons, such harm is unlikely, with our primary focus remaining335

on healthcare improvement.336

Limitations and Future Work: While our study covers challenges in phenomolecular recall, we337

leave three research directions for future work. (1) Future investigations could consider studying338

additional modalities such as text, genetic perturbations and chemical multi-compound interventions.339

(2) While we propose and evaluate our guidelines on previously conducted phenomic experiments,340

we note that a rigorous evaluation would evaluate model predictions in a wet-lab setting. (3) In341

addition, our work makes the assumption that the initial unperturbed cell state x0i can be marginalized342

by utilizing a single cell line with an unperturbed genetic background. Future works can relax this343

assumption, aiming to capture innate intercellular variation.344
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paper’s contributions and scope?517
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Justification: In the abstract, we claim that we build a multi-modal molecular-phenomics519

model and demonstrate improvements over prior works. This is done by taking using a520

uni-modal pre-trained phenomics model, tackling inactive molecules by undersampling and521

learning inter-sample similarities. In addition, we take into account concentration in our522

model training. We demonstrate comprehensive results supporting these claims.523

Guidelines:524

• The answer NA means that the abstract and introduction do not include the claims525

made in the paper.526

• The abstract and/or introduction should clearly state the claims made, including the527

contributions made in the paper and important assumptions and limitations. A No or528

NA answer to this question will not be perceived well by the reviewers.529

• The claims made should match theoretical and experimental results, and reflect how530
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals532

are not attained by the paper.533

2. Limitations534

Question: Does the paper discuss the limitations of the work performed by the authors?535

Answer: [Yes]536

Justification: In the conclusion, we have a limitations subsection discussing future research537

directions and assumptions in our work.538

Guidelines:539

• The answer NA means that the paper has no limitation while the answer No means that540

the paper has limitations, but those are not discussed in the paper.541

• The authors are encouraged to create a separate "Limitations" section in their paper.542

• The paper should point out any strong assumptions and how robust the results are to543

violations of these assumptions (e.g., independence assumptions, noiseless settings,544

model well-specification, asymptotic approximations only holding locally). The authors545

should reflect on how these assumptions might be violated in practice and what the546

implications would be.547

• The authors should reflect on the scope of the claims made, e.g., if the approach was548

only tested on a few datasets or with a few runs. In general, empirical results often549
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• The authors should reflect on the factors that influence the performance of the approach.551

For example, a facial recognition algorithm may perform poorly when image resolution552

is low or images are taken in low lighting. Or a speech-to-text system might not be553

used reliably to provide closed captions for online lectures because it fails to handle554
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and how they scale with dataset size.557
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• While the authors might fear that complete honesty about limitations might be used by560

reviewers as grounds for rejection, a worse outcome might be that reviewers discover561

limitations that aren’t acknowledged in the paper. The authors should use their best562

judgment and recognize that individual actions in favor of transparency play an impor-563

tant role in developing norms that preserve the integrity of the community. Reviewers564

will be specifically instructed to not penalize honesty concerning limitations.565
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Question: For each theoretical result, does the paper provide the full set of assumptions and567

a complete (and correct) proof?568

Answer: [NA]569

Justification: Our work does not contain proofs or theorems.570

Guidelines:571

• The answer NA means that the paper does not include theoretical results.572

• All the theorems, formulas, and proofs in the paper should be numbered and cross-573

referenced.574

• All assumptions should be clearly stated or referenced in the statement of any theorems.575

• The proofs can either appear in the main paper or the supplemental material, but if576

they appear in the supplemental material, the authors are encouraged to provide a short577

proof sketch to provide intuition.578

• Inversely, any informal proof provided in the core of the paper should be complemented579

by formal proofs provided in appendix or supplemental material.580

• Theorems and Lemmas that the proof relies upon should be properly referenced.581

4. Experimental Result Reproducibility582

Question: Does the paper fully disclose all the information needed to reproduce the main ex-583

perimental results of the paper to the extent that it affects the main claims and/or conclusions584

of the paper (regardless of whether the code and data are provided or not)?585

Answer: [Yes]586

Justification: Our work documents our design decisions in detail and has comprehensive587

details about the underlying dataset. We document all our hyperparameter choices and model588

architectural decisions. Our evaluation is performed on a publicly accessible dataset RXRX3,589

allowing for benchmarking of other methods. To reproduce the pre-trained phenomics model,590

we base our architecture on the work from [23], for which they have also provided access591

to a snakker model, namely Phenom-Beta via a web platform hosted on the BioNeMo592

platform https://www.rxrx.ai/phenom. To reproduce the pre-trained molecular model,593

we based our architecture on [47], for which the authors provide all the code and data594

needed to reproduce it. We further note that the molecular model can be replaced by simple595

molecular fingerprints with only a slight drop in performance.596

Guidelines:597

• The answer NA means that the paper does not include experiments.598

• If the paper includes experiments, a No answer to this question will not be perceived599

well by the reviewers: Making the paper reproducible is important, regardless of600

whether the code and data are provided or not.601

• If the contribution is a dataset and/or model, the authors should describe the steps taken602

to make their results reproducible or verifiable.603

• Depending on the contribution, reproducibility can be accomplished in various ways.604

For example, if the contribution is a novel architecture, describing the architecture fully605

might suffice, or if the contribution is a specific model and empirical evaluation, it may606

be necessary to either make it possible for others to replicate the model with the same607

dataset, or provide access to the model. In general. releasing code and data is often608

one good way to accomplish this, but reproducibility can also be provided via detailed609

instructions for how to replicate the results, access to a hosted model (e.g., in the case610

of a large language model), releasing of a model checkpoint, or other means that are611

appropriate to the research performed.612

• While NeurIPS does not require releasing code, the conference does require all submis-613

sions to provide some reasonable avenue for reproducibility, which may depend on the614

nature of the contribution. For example615

(a) If the contribution is primarily a new algorithm, the paper should make it clear how616

to reproduce that algorithm.617

(b) If the contribution is primarily a new model architecture, the paper should describe618

the architecture clearly and fully.619
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(c) If the contribution is a new model (e.g., a large language model), then there should620

either be a way to access this model for reproducing the results or a way to reproduce621

the model (e.g., with an open-source dataset or instructions for how to construct622

the dataset).623

(d) We recognize that reproducibility may be tricky in some cases, in which case624

authors are welcome to describe the particular way they provide for reproducibility.625

In the case of closed-source models, it may be that access to the model is limited in626

some way (e.g., to registered users), but it should be possible for other researchers627

to have some path to reproducing or verifying the results.628

5. Open access to data and code629

Question: Does the paper provide open access to the data and code, with sufficient instruc-630

tions to faithfully reproduce the main experimental results, as described in supplemental631

material?632

Answer: [No]633

Justification: As part of the submission, we are unable to provide code to reproduce model634

training due to use of its proprietary nature. The training dataset is also an asset of a private635

institution, meaning that we are unable to be made publicly accessible. The unseen dataset636

RXRX3 is, however, open source and can be used by the community to evaluate public637

phenomics models.638

Guidelines:639

• The answer NA means that paper does not include experiments requiring code.640

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/641

public/guides/CodeSubmissionPolicy) for more details.642

• While we encourage the release of code and data, we understand that this might not be643

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not644

including code, unless this is central to the contribution (e.g., for a new open-source645

benchmark).646

• The instructions should contain the exact command and environment needed to run to647

reproduce the results. See the NeurIPS code and data submission guidelines (https:648

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.649

• The authors should provide instructions on data access and preparation, including how650

to access the raw data, preprocessed data, intermediate data, and generated data, etc.651

• The authors should provide scripts to reproduce all experimental results for the new652

proposed method and baselines. If only a subset of experiments are reproducible, they653

should state which ones are omitted from the script and why.654

• At submission time, to preserve anonymity, the authors should release anonymized655

versions (if applicable).656

• Providing as much information as possible in supplemental material (appended to the657

paper) is recommended, but including URLs to data and code is permitted.658

6. Experimental Setting/Details659

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-660

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the661

results?662

Answer: [Yes]663

Justification: We provide details regarding our hyperparameter choices in the Appendix664

C. In addition we document the use of scaffold splitting for Unseen Molecules & Images665

dataset. Unseen Dataset RXRX3 is publicly accessible.666

Guidelines:667

• The answer NA means that the paper does not include experiments.668

• The experimental setting should be presented in the core of the paper to a level of detail669

that is necessary to appreciate the results and make sense of them.670

• The full details can be provided either with the code, in appendix, or as supplemental671

material.672
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7. Experiment Statistical Significance673

Question: Does the paper report error bars suitably and correctly defined or other appropriate674

information about the statistical significance of the experiments?675

Answer: [Yes]676

Justification: Our reported results are averaged over 3 random seeds used to initialize the677

model and dictating stochasticity during model training. We report most standard deviations678

in the main text, and the remaining ones are all present in the Appendix E.679

Guidelines:680

• The answer NA means that the paper does not include experiments.681

• The authors should answer "Yes" if the results are accompanied by error bars, confi-682

dence intervals, or statistical significance tests, at least for the experiments that support683

the main claims of the paper.684

• The factors of variability that the error bars are capturing should be clearly stated (for685

example, train/test split, initialization, random drawing of some parameter, or overall686

run with given experimental conditions).687

• The method for calculating the error bars should be explained (closed form formula,688

call to a library function, bootstrap, etc.)689

• The assumptions made should be given (e.g., Normally distributed errors).690

• It should be clear whether the error bar is the standard deviation or the standard error691

of the mean.692

• It is OK to report 1-sigma error bars, but one should state it. The authors should693

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis694

of Normality of errors is not verified.695

• For asymmetric distributions, the authors should be careful not to show in tables or696

figures symmetric error bars that would yield results that are out of range (e.g. negative697

error rates).698

• If error bars are reported in tables or plots, The authors should explain in the text how699

they were calculated and reference the corresponding figures or tables in the text.700

8. Experiments Compute Resources701

Question: For each experiment, does the paper provide sufficient information on the com-702

puter resources (type of compute workers, memory, time of execution) needed to reproduce703

the experiments?704

Answer: [Yes]705

Justification: We provide details on compute time for each experiment in Appendix D.2.706

Guidelines:707

• The answer NA means that the paper does not include experiments.708

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,709

or cloud provider, including relevant memory and storage.710

• The paper should provide the amount of compute required for each of the individual711

experimental runs as well as estimate the total compute.712

• The paper should disclose whether the full research project required more compute713

than the experiments reported in the paper (e.g., preliminary or failed experiments that714

didn’t make it into the paper).715

9. Code Of Ethics716

Question: Does the research conducted in the paper conform, in every respect, with the717

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?718

Answer: [Yes]719

Justification: The research described does not violate the NeurIPS Code of Ethics. Our720

experiments do not include human subjects, we follow fair use of data, privacy, and do not721

release model weights for mitigating impact measures.722

Guidelines:723
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.724

• If the authors answer No, they should explain the special circumstances that require a725

deviation from the Code of Ethics.726

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-727

eration due to laws or regulations in their jurisdiction).728

10. Broader Impacts729

Question: Does the paper discuss both potential positive societal impacts and negative730

societal impacts of the work performed?731

Answer: [Yes]732

Justification: Our work discusses the potential in which MolPhenix can have positive societal733

impact and we touch on the extenralities in our concluding statements.734

Guidelines:735

• The answer NA means that there is no societal impact of the work performed.736

• If the authors answer NA or No, they should explain why their work has no societal737

impact or why the paper does not address societal impact.738

• Examples of negative societal impacts include potential malicious or unintended uses739

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations740

(e.g., deployment of technologies that could make decisions that unfairly impact specific741

groups), privacy considerations, and security considerations.742

• The conference expects that many papers will be foundational research and not tied743

to particular applications, let alone deployments. However, if there is a direct path to744

any negative applications, the authors should point it out. For example, it is legitimate745

to point out that an improvement in the quality of generative models could be used to746

generate deepfakes for disinformation. On the other hand, it is not needed to point out747

that a generic algorithm for optimizing neural networks could enable people to train748

models that generate Deepfakes faster.749

• The authors should consider possible harms that could arise when the technology is750

being used as intended and functioning correctly, harms that could arise when the751

technology is being used as intended but gives incorrect results, and harms following752

from (intentional or unintentional) misuse of the technology.753

• If there are negative societal impacts, the authors could also discuss possible mitigation754

strategies (e.g., gated release of models, providing defenses in addition to attacks,755

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from756

feedback over time, improving the efficiency and accessibility of ML).757

11. Safeguards758

Question: Does the paper describe safeguards that have been put in place for responsible759

release of data or models that have a high risk for misuse (e.g., pretrained language models,760

image generators, or scraped datasets)?761

Answer: [NA]762

Justification: In our work we do not release model weights or the underlying code.763

Guidelines:764

• The answer NA means that the paper poses no such risks.765

• Released models that have a high risk for misuse or dual-use should be released with766

necessary safeguards to allow for controlled use of the model, for example by requiring767

that users adhere to usage guidelines or restrictions to access the model or implementing768

safety filters.769

• Datasets that have been scraped from the Internet could pose safety risks. The authors770

should describe how they avoided releasing unsafe images.771

• We recognize that providing effective safeguards is challenging, and many papers do772

not require this, but we encourage authors to take this into account and make a best773

faith effort.774

12. Licenses for existing assets775
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in776

the paper, properly credited and are the license and terms of use explicitly mentioned and777

properly respected?778

Answer: [Yes]779

Justification: Assetts used are referenced and licenses checked or otherwise not released780

publicly.781

Guidelines:782

• The answer NA means that the paper does not use existing assets.783

• The authors should cite the original paper that produced the code package or dataset.784

• The authors should state which version of the asset is used and, if possible, include a785

URL.786

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.787

• For scraped data from a particular source (e.g., website), the copyright and terms of788

service of that source should be provided.789

• If assets are released, the license, copyright information, and terms of use in the790

package should be provided. For popular datasets, paperswithcode.com/datasets791

has curated licenses for some datasets. Their licensing guide can help determine the792

license of a dataset.793

• For existing datasets that are re-packaged, both the original license and the license of794

the derived asset (if it has changed) should be provided.795

• If this information is not available online, the authors are encouraged to reach out to796

the asset’s creators.797

13. New Assets798

Question: Are new assets introduced in the paper well documented and is the documentation799

provided alongside the assets?800

Answer: [NA]801

Justification: The paper does not release new assets.802

Guidelines:803

• The answer NA means that the paper does not release new assets.804

• Researchers should communicate the details of the dataset/code/model as part of their805

submissions via structured templates. This includes details about training, license,806

limitations, etc.807

• The paper should discuss whether and how consent was obtained from people whose808

asset is used.809

• At submission time, remember to anonymize your assets (if applicable). You can either810

create an anonymized URL or include an anonymized zip file.811

14. Crowdsourcing and Research with Human Subjects812

Question: For crowdsourcing experiments and research with human subjects, does the paper813

include the full text of instructions given to participants and screenshots, if applicable, as814

well as details about compensation (if any)?815

Answer: [NA]816

Justification: The paper does not involve crowdsourcing not human subject research.817

Guidelines:818

• The answer NA means that the paper does not involve crowdsourcing nor research with819

human subjects.820

• Including this information in the supplemental material is fine, but if the main contribu-821

tion of the paper involves human subjects, then as much detail as possible should be822

included in the main paper.823

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,824

or other labor should be paid at least the minimum wage in the country of the data825

collector.826
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human827

Subjects828

Question: Does the paper describe potential risks incurred by study participants, whether829

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)830

approvals (or an equivalent approval/review based on the requirements of your country or831

institution) were obtained?832

Answer: [NA]833

Justification: The paper does not involve crowdsourcing not human subject research.834

Guidelines:835

• The answer NA means that the paper does not involve crowdsourcing nor research with836

human subjects.837

• Depending on the country in which research is conducted, IRB approval (or equivalent)838

may be required for any human subjects research. If you obtained IRB approval, you839

should clearly state this in the paper.840

• We recognize that the procedures for this may vary significantly between institutions841

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the842

guidelines for their institution.843

• For initial submissions, do not include any information that would break anonymity (if844

applicable), such as the institution conducting the review.845
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B Assumption of the Initial Cell State846

There is an important distinction between phenomics - molecule and text - image contrastive training847

although there are initial similarities. In the text - image domain the two modalities are directly848

generated by the same latent variable which is the underlying semantic class. Whereas in phenomics -849

molecule, the observed phenomics variable is actually conditioned on molecular structure and the850

initial state. There are two important conclusions from this: (1) This indicates that if molecular851

structure has no effect on the initial cell state, there will not be a positive pairing between the852

molecular structure and morphological patterns captured by phenomics, making it indistinguishable853

from a control image. (2) There is an underlying assumption that the initial cell state x0i is constant.854

In accordance with this assumption we utilize experiments with a fixed cell line, HUVEC-19, and855

a constant genetic background. Future works can relax this assumption by taking into account856

phenomics experiments of the cells prior to the perturbation. This can allow the models to generalize857

beyond a single cell line and to diverse genetic backgrounds.858

C Dataset859

Models have been trained using our in house training set and we have conducted our evaluation on860

two novel datasets and an open-source molecule dataset [13]:861

• Training Set: Our training dataset comprises 1,316,283 pairs of molecules and concentration862

concentration combinations, complemented by fluorescent microscopy images generated through863

over 2,150,000 phenomic experiments.864

• Evaluation set 1 - Unseen Images + Seen Molecules: The first set consists of unseen865

images and seen molecules. Unseen microscopy images are associated with 15,058 pairs of866

molecules and concentrations from the training set and selected randomly.867

• Evaluation set 2 - Unseen Images + Unseen Molecules: The second set includes pre-868

viously unseen molecules, and images (consisting of 45,771 molecule and concentration pairs).869

Predicting molecular identities of previously unseen molecular perturbations corresponds to zero-870

shot prediction. Scaffold splitting was used to split this validation dataset from training ensuring871

minimal information leakage.872

• Evaluation set 3 - Unseen Dataset: Finally, we utilize the RXRX3 dataset [13], an open-873

source out of distribution (OOD) dataset consisting of 6,549 novel molecule and concentration874

pairs associated with phenomic experiments. The distribution of molecular structures differs from875

previous datasets, making this a challenging zero-shot prediction task.876

C.1 Concentration Details877

Additional details regarding the number of molecules at significant concentrations of each evaluation878

set are available in Table 6.879

Table 6: Separated number of molecules for different concentrations at various pvalue cut-offs
pvalue=1.0 pvalue=.1 pvalue=.01

Concentration Unseen Im. Unseen
Im. + Mol. Unseen Data Unseen Im. Unseen

Im. + Mol. Unseen Data Unseen Im. Unseen
Im. + Mol. Unseen Data

.1 1497 1109 0 387 170 0 161 68 0
.25 1775 1111 1638 600 203 237 334 121 165
1.0 2721 11392 1639 1259 734 390 672 390 268
2.5 1787 4018 1636 1329 644 516 929 413 375
3.0 74 10454 0 12 1540 0 4 729 0
5.0 3 50 0 0 27 0 0 20 0
1.0 2712 11392 1636 2544 8117 792 2116 4815 625

25.0 0 2916 0 0 1734 0 0 950 0
Unique

molecules 3026 14256 1639 2729 9857 823 2309 5778 642
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D Implementation Details880

In our experiments we report the top 1% recall metric as it is agnostic to the size of the dataset used.881

Across different datasets, top 1 metric can correspond to varying levels of difficulty due to the number882

of negatives evaluated. Top 1% can be used to compare models with different batch sizes, datasets,883

and evaluations with different number of concentrations.884

D.1 Hyperparameters885

Our design choices and utilized hyperparameters for is presented in Table 7. We set batch size to 512886

through experiments presented in top section of Table 1 and Figure 4 since training CLOOME model887

on images is not efficient compared to using pretrained models. In addition, results presented at888

bottom section of Table 1 are based on the best parameters found through described ablation studies889

(section E.5).890

Table 7: Hyperparameter values utilized in our proposed MolPhenix training framework.
Parameter Value

number of seeds 3
learning rate 1e-3
weight decay 3e-3

optimizer AdamW
training batch size 8192

validation batch size 12000
embedding dim 512

model size medium (38.7 M)
model structure 6 ResNet Blocks + 1 Linear layer + 1 ResNet Block + 1 Linear layer

epochs 100
self similarity clip val .75

learnable temperature initialization 2.302
learnable bias initialization -1.0

Distance function arctangent of l2 distance

D.2 Resource Computation891

We utilized an NVIDIA A100 GPU to train Molphenix using Phenom1 and MolGPS embeddings,892

which takes approximately ∼4.75 hours each. For loss comparison experiments, we run each model893

using 3 different seeds and 8 different losses, resulting in a total of 114 hours of GPU processing894

time. For concentration experiments we train 7 runs, one for each concentration, with 3 seeds each895

totaling 21 runs per set of parameters. With 25 sets of parameters evaluated (13), that amounts to896

2,500 A100 compute hours. Moreover, we employed 8 NVIDIA A100 GPUs to train CLOOME897

model on phenomics images, with an average of 40 hour usage per run. Across three seeds, that898

amounts to ∼ 1000 hours of A100 GPU usage (8 GPUs for 40 hours 3 times).899

Note that, without accounting for the time to train Phenom1, MolPhenix is 8.4 × faster than the900

CLOOME baseline.901

D.3 S2L Distance function902

To calculate inter sample distances, we utilize arctangent of l2 distances between Phenom1 embed-903

dings. More specifically, we calculate distances with904

arctan(∥zxi
− zxj

∥22/c) ∗
4

π
− 1, (5)

where c is a constant indicating the median l2 distance between a null set of embeddings. Empirically,905

we’ve found that setting similarities below a threshold k to 0 improves model performance: ⌈w⌉k.906

Usage of arctan-l2 distances is motivated by an observation that cosine similarities do not effectively907

separate inactive molecules from other molecular pairs (Figure 6). To alleviate inactive molecule908

challenge, we require significant separation of CDF curves of inactive perturbations (p value > .9) and909

active molecules (p < .01). We observe that in both the plots using arctangent and cosine similarities910

achieves this purpose. However, if we compare high p-value curves with high-low, we find that911

in the case of cosine similarities they are almost identical. This indicates that the distribution of912
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Figure 6: Plotted are cumulative densities of distance metrics for cosine similarity and arctangent of
l2 distances between embeddings. Random mol corresponds to Phenom1 distances between random
molecules, high pval corresponds to distances between molecules with high p-values, low pval
corresponds to distances between active molecules with low p-values, finally high-low corresponds
to distances between active and inactive molecules.

cosine similarities between active - inactive molecules is almost identical to that of inactive - inactive913

molecules. In contrast, when using arctangent similarities, we observe that the two CDF curves are914

well separated.915

This property of l2 distances can inform our model training to identify inactive-inactive molecules.916

These results informed our decision to utilize arctangent of l2 distances to specify sample similarities917

for the S2L loss.918

E Additional Results919

E.1 Predicting molecular activity920

Given the significance of identifying active molecules, we evaluate the ability of the chemical encoder921

to predict molecular activity. To do so, we assessed whether embeddings generated from the chemical922

encoder can be used to predict calculated p-values for unseen molecules. We fit a logistic regression923

on molecular embeddings from the training set, classifying whether a molecular perturbation and924

concentration have a p-value below .01. We find that the trained logistic regression is capable of925

predicting molecular activity on two downstream datasets with a non-overlapping set of molecules,926

Figure 8. In addition, we provide a u-map of molecular embedding for the unseen dataset RXRX3,927

colored by p-value. We qualitatively observe a clustering of active molecules using a U-map (Figure928

7). It demonstrates that predicting compounds activity is possible using MolPhenix chemical encoder929

as molecules representations are distinct, independent of the experimented dosage concentration.930
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Figure 7: U-map demonstrating dimensionality reduction of the chemical embeddings of unseen
dataset RXRX3. First two dimensions are visualized and points are colored corresponding to their
activity measured in phenomics experiments. Activity is evaluated using p-values calculated using
technical replicability of Phenom1 embeddings. Top plot shows the u-map figure of all chemical
embeddings, and bottom figure contains u-map figure of representations at specific concentrations.
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Figure 8: Top left: ROC AUC of logistic regression predicting molecular activity on new dataset.
Top right: ROC AUC of logistic regression predicting molecular activity on validation dataset with
new molecules and new images.

E.2 Zero Shot Biological Validation931

We conduct a preliminary investigation into whether MolPhenix can be used to identify biological932

relationships without the need for conducting the underlying experiments. To this end, we evaluate933

on a subset of ChEMBL with curated pairs of gene knockouts and molecular perturbants [30]. These934

pairs of perturbations were curated due to the similarity of their effects on cells, although these might935

not always be captured through phenomic experiments. Thus, there is maximum performance that936

can be reached through just phenomic data, which we assume to be achieved by experimental data937

embedded using Phenom1.938

To evaluate MolPhenix’s ability to identify previously known biological associations directly from939

data, we embed phenomics experiments from gene knockouts using the vision encoder. To perform940

in-silico screening, we then embed the molecular structures associated with positive pairs using the941

chemical encoder. Generating molecular embeddings and the corresponding concentrations does not942

utilize any experimental data. We then calculate cosine similarities between embeddings of phenomics943

experiments evaluating gene knockouts, and representations of the chemical representations along944

with encoded concentrations. Using the computed cosine similarities we are then able to assess945

whether MolPhenix is capable of identifying known associations between gene knockouts and946

molecular structures. Since there is no information on molecular concentration at which the cells947

must be treated with, we repeat the experiment across 4 concentrations. To get a null distribution of948

cosine similarities we take pairs of genes knockouts and molecules for which there are no annotated949

relationships. We calculate a cut-off for a low and high percentiles, and then evaluate what percentage950

of pairs of genes and molecules with known relationships exceed the set thresholds.951

Figure 9 demonstrates that in-silico screening using MolPhenix Molecular encoder is capable of952

recovering a significant portion of known interactions. This is performed without the use of exper-953

imental data on the molecular encoder. It is difficult to estimate an upper bound on the expected954

performance due to uncertainty in the quality of curation of known pairs, presence of unknown955

associations between genes and molecules, and uncertainty regarding molecular concentration. There956

is a clear trend however that MolPhenix molecular encoder is capable of recovering a meaningful957

fraction of these interactions.958
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Figure 9: Evaluation of 0-shot ChEMBL identification of gene knockout and molecular phenomic
similarities. On the X axis are percentile ranges, at which points the threshold is computed for cosine
similarities. On the y axis is plotted total recall of recovered known interactions. Grey x plotted for
each range indicate baseline recall. Orange line indicates MolPhenix-Molecular encoding of chemical
compounds and MolPhenix-Vision for encoding gene knockout phenomics experiment. Blue line
indicates Phenom1 encoding of phenomics experiments for both the molecular perturbation and gene
knockouts. In-silico encoding of molecular perturbation, as well as the corresponding concentration,
recovers a significant fraction of observed interactions.

E.3 Molecular Property Prediction959

We expand our evaluation with additional experiments supporting the utility of MolPhenix beyond960

retrieval. We conduct a KNN evaluation of the MolPhenix latent space, assessing the learned961

embedding on 35 molecular property prediction tasks across the Polaris and TDC datasets (Table962

8 and 9). We find that MolPhenix trained with fingerprint embeddings consistently outperforms963

standalone input fingerprints, demonstrating that the MolPhenix latent space effectively clusters964

molecules according to their biological properties. We observed an interesting effect where prediction965

quality is positively correlated with implied dosage, indicating that MolPhenix learns dosage-specific966

effects. In addition, utilizing967

Table 8: Comparison of a KNN applied on MolPhenix molecular embedding with traditional
fingerprints on different tasks of TDC and Polaris datasets. Mean results for TDC, Polaris and
together are available in the last three columns. Binary fingerprints use tanimoto similarity, while
floating-point fingerprints use cosine similarity.
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rdkit 0.32 0.34 0.48 0.23 0.38 0.29 0.69 0.72 0.58 -0.54 0.25 0.45 0.31 0.45 0.45 0.29 0.54 0.59 0.71 0.26 0.61 0.71 -0.70 -0.84 0.76 0.20 0.42 0.33 0.53 0.36 0.45 -13.03 -1.63 0.22 -2.62 -0.51 -1.88

ecfp 0.46 0.60 0.49 0.43 0.60 0.39 0.69 0.75 0.48 -0.43 0.37 0.50 0.32 0.52 0.44 0.33 0.60 0.64 0.67 0.47 0.73 0.65 -0.73 -0.78 0.79 0.41 0.57 0.33 0.51 0.40 0.55 -9.91 -1.27 0.47 -1.96 0.03 -1.26

maccs 0.37 0.56 0.52 0.22 0.43 0.44 0.71 0.77 0.53 -0.47 0.35 0.42 0.32 0.49 0.45 0.32 0.62 0.61 0.75 0.43 0.66 0.70 -0.66 -0.83 0.79 0.21 0.35 0.25 0.32 0.44 0.49 -10.13 -1.47 0.46 -1.91 -0.45 -1.40

Concatnated fps 0.41 0.66 0.58 0.33 0.40 0.37 0.70 0.77 0.58 -0.43 0.38 0.52 0.33 0.54 0.42 0.33 0.57 0.62 0.74 0.45 0.70 0.72 -0.67 -0.80 0.84 0.36 0.56 0.34 0.57 0.44 0.57 -10.94 -1.46 0.48 -1.78 0.00 -1.15

Molphenix fingerprint 1 0.57 0.75 0.57 0.55 0.72 0.57 0.70 0.74 0.54 -0.48 0.29 0.46 0.32 0.57 0.47 0.38 0.59 0.64 0.77 0.55 0.67 0.69 -0.71 -0.70 0.80 0.20 0.41 0.30 0.43 0.31 0.39 -8.93 -1.10 0.55 -1.64 0.14 -1.01

Molphenix fingerprint 25 0.64 0.71 0.65 0.62 0.67 0.58 0.69 0.78 0.54 -0.42 0.30 0.43 0.32 0.56 0.49 0.42 0.60 0.67 0.77 0.38 0.69 0.74 -0.67 -0.66 0.84 0.17 0.42 0.32 0.39 0.37 0.46 -8.43 -1.02 0.50 -1.40 0.26 -0.82
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Table 10: Evaluation on cumulative concentrations for active molecules: Average Top-1% and
Top-5% recall accuracies of methods utilizing different contrastive learning loss functions and
concentration encoding information. We evaluate all methods on unseen images, unseen images
and unseen molecules and an unseen dataset for zero-shot retrieval. Entries in bold denote best
performance when the loss function is fixed while entries in highlight denote best performance
across all guidelines.

top-1% top-5%
Method Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.

Concentration (ours) Unseen Molecules (0-shot) Unseen Molecules (0-shot)
CLIP ✗ Phenom1 .3373 .4228 .1514 .3038 .6162 .7182 .3660 .5668

Hopfield-CLIP ✗ Phenom1 .2578 .3559 .1256 .2464 .5457 .6751 .3270 .5159

InfoLOOB ✗ Phenom1 .3351 .4206 .1563 .3040 .6128 .7204 .3730 .5687

CLOOME ✗ Phenom1 .3572 .4348 .1658 .3193 .6330 .7259 .3918 .5836
CLOOME sigmoid Phenom1 .5813 .4968 .2360 .4380 .8748 .7658 .4859 .7088
CLOOME logarithm Phenom1 .6057 .5255 .2445 .4586 .8858 .8117 .4957 .7310
CLOOME one-hot Phenom1 .5967 .5255 .2380 .4534 .8800 .8120 .4829 .7250

DCL ✗ Phenom1 .6363 .6177 .3184 .5241 .8638 .8180 .5632 .7483
DCL sigmoid Phenom1 .8858 .6694 .4527 .6693 .9600 .8472 .6845 .8305
DCL logarithm Phenom1 .8934 .6952 .4511 .6799 .9581 .8788 .6889 .8419
DCL one-hot Phenom1 .8901 .7002 .4601 .6834 .9591 .8770 .6873 .8411

CWCL ✗ Phenom1 .7091 .6529 .3556 .5725 .9018 .8368 .6027 .7804
CWCL sigmoid Phenom1 .9138 .6985 .4810 .6977 .9681 .8643 .7070 .8464
CWCL logarithm Phenom1 .9141 .7248 .4815 .7068 .9651 .8920 .7131 .8567
CWCL one-hot Phenom1 .9128 .7261 .4850 .7079 .9665 .8927 .6998 .8530

SigLip ✗ Phenom1 .7763 .6401 .3396 .5853 .9361 .83038 .5714 .7792
SigLip sigmoid Phenom1 .9463 .6931 .4576 .6990 .9816 .8606 .6759 .8393
SigLip logarithm Phenom1 .9493 .7256 .4868 .7205 .9814 .8926 .7019 .8586
SigLip one-hot Phenom1 .9489 .7210 .4859 .7186 .9823 .8868 .7045 .8578

MolPhenix (ours) ✗ Phenom1 .9097 .6759 .4181 .6679 .9768 .8539 .6436 .8247
MolPhenix (ours) sigmoid Phenom1 .9423 .7155 .4573 .7050 .9808 .8775 .6778 .8453
MolPhenix (ours) logarithm Phenom1 .9426 .7451 .4727 .7201 .9808 .8964 .6952 .8574
MolPhenix (ours) one-hot Phenom1 .9430 .7490 .4850 .7256 .9816 .8984 .7040 .8613
MolPhenix (ours) ✗ Phenom1 + MolGPS .9105 .6710 .4501 .6772 .9755 .8527 .7098 .8460
MolPhenix (ours) sigmoid Phenom1 + MolGPS .9395 .7034 .5252 .7227 .9811 .8729 .7630 .8723
MolPhenix (ours) logarithm Phenom1 + MolGPS .9413 .7505 .5473 .7463 .9811 .9085 .7878 .8924
MolPhenix (ours) one-hot Phenom1 + MolGPS .9430 .7514 .5577 .7507 .9830 .9043 .7821 .8898

Table 9: Comparison of a KNN applied on MolPhenix molecular embedding with MolGPS on
different tasks of TDC and Polaris datasets. Mean results for TDC, Polaris and together are available
in the last three columns.
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MolGPS 0.54 0.66 0.70 0.56 0.64 0.55 0.69 0.76 0.49 -0.50 0.40 0.57 0.30 0.62 0.50 0.41 0.66 0.68 0.81 0.52 0.70 0.74 -0.69 -0.71 0.84 0.34 0.51 0.44 0.55 0.30 0.48 -9.71 -0.98 0.63 -1.19 0.36 -0.65

Molphenix with Molgps 1 0.60 0.78 0.69 0.61 0.68 0.65 0.70 0.79 0.59 -0.49 0.36 0.51 0.29 0.62 0.55 0.42 0.58 0.67 0.72 0.45 0.74 0.79 -0.71 -0.65 0.83 0.14 0.33 0.34 0.44 0.32 0.42 -8.28 -1.00 0.63 -1.23 0.29 -0.69

Molphenix with Molgps 25 0.68 0.74 0.70 0.67 0.77 0.63 0.71 0.78 0.60 -0.47 0.38 0.53 0.33 0.62 0.50 0.43 0.66 0.67 0.79 0.40 0.73 0.83 -0.70 -0.62 0.84 0.12 0.29 0.41 0.45 0.29 0.43 -8.46 -0.97 0.62 -.92 0.38 -0.46

E.4 Addressing Challenges in Contrastive Phenomic Retrieval968

Table 10 and 12 show the complete Top 1% and 5% results of evaluation on cumulative concentrations969

on only active and all molecules, respectively. Similarly, Table 11 and 13 presents the full retrieval970

results of held-out concentrations experiments. In comparison to prior loss functions, S2L loss971

objective demonstrates consistent high retrieval rate in all tasks and molecular groups (i.e. all or active972

molecules), while using the same modality (Phenom1) and with or without explicit concentration973

information.974

E.5 Ablation Studies975

Figure 10 and Table 15, 16, 17, 18 and 19 present top-1% recall accuracy across for the full ablation976

study on the variation of MolPhenix key components. We note that compact embedding sizes from977

pretrained models stabilize training. This indicates that embeddings are expressive and accurately978

capture intricate aspects of molecules. Larger batch sizes result in a greater number of negative979

samples, hence improving performance. This is in line with prior contrastive learning methods980

continuing to improve by increasing the batch size [10]. Increasing the number of parameters leads981

to more expressive models thereby enhancing retrieval performance. This result is in accordance with982

27



Table 11: Evaluation on held-out concentration for active molecules: Average Top-1% and Top-5%
recall accuracies of methods utilizing different contrastive learning loss functions and concentration
encoding information. We evaluate all methods on unseen images, unseen images and unseen
molecules and an unseen dataset for zero-shot retrieval. Entries in bold denote highest performance
when the loss function is fixed while entries in highlight denote highest performance across all
guidelines.

top-1% top-5%
Method Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.

Concentration (ours) Unseen Molecules (0-shot) Unseen Molecules (0-shot)
CLIP ✗ Phenom1 .2109 .2425 .1519 .2018 .4458 .4968 .3591 .4339

Hopfield-CLIP ✗ Phenom1 .1581 .2034 .1198 .1604 .3783 .4413 .3045 .3747
InfoLOOB ✗ Phenom1 .2122 .2496 .1501 .2040 .4443 .5003 .3515 .4320
CLOOME ✗ Phenom1 .2164 .2461 .1479 .2035 .4590 .4956 .3528 .4358
CLOOME sigmoid Phenom1 .3338 .2681 .1801 .2606 .6037 .5202 .3879 .5039
CLOOME logarithm Phenom1 .3094 .2345 .1665 .2368 .5960 .4874 .3534 .4790
CLOOME one-hot Phenom1 .3073 .2040 .1670 .2261 .5997 .4246 .3657 .4633

DCL ✗ Phenom1 .4717 .4027 .2841 .3861 .7352 .6579 .5322 .6417
DCL sigmoid Phenom1 .7282 .4100 .3560 .4980 .9226 .6561 .6015 .7267
DCL logarithm Phenom1 .6903 .3558 .3211 .4557 .8869 .6146 .5667 .6894
DCL one-hot Phenom1 .6562 .3607 .3272 .4480 .8831 .5983 .5659 .6824

CWCL ✗ Phenom1 .5731 .4403 .3232 .4455 .8218 .6833 .5706 .6919
CWCL sigmoid Phenom1 .7780 .4425 .3777 .5327 .9386 .6844 .6244 .7491
CWCL logarithm Phenom1 .7452 .3989 .3523 .4988 .9117 .6482 .5962 .7187
CWCL one-hot Phenom1 .7048 .4009 .3593 .4883 .9037 .6284 .6061 .7127

SigLip ✗ Phenom1 .5718 .4217 .3021 .4318 .8104 .6602 .5176 .6627
SigLip sigmoid Phenom1 .8366 .4640 .3830 .5612 .9623 .7023 .6080 .7575
SigLip logarithm Phenom1 .8097 .4391 .3747 .5411 .9437 .6746 .6046 .7409
SigLip one-hot Phenom1 .7561 .4020 .3345 .4975 .9279 .6248 .5557 .7028

MolPhenix (ours) ✗ Phenom1 .8334 .4615 .3792 .5580 .9638 .6937 .6128 .7567
MolPhenix (ours) sigmoid Phenom1 .8256 .4692 .3765 .5571 .9638 .7068 .6115 .7607
MolPhenix (ours) logarithm Phenom1 .7953 .4466 .3664 .5361 .9466 .6889 .5924 .7426
MolPhenix (ours) one-hot Phenom1 .7489 .4088 .3379 .4985 .9325 .6465 .5644 .7144

MolPhenix (ours) ✗ Phenom1 & MolGPS .8277 .4739 .4071 .5695 .9602 .7041 .6798 .7813
MolPhenix (ours) sigmoid Phenom1 & MolGPS .8218 .4771 .4287 .5758 .9588 .7117 .7045 .7916
MolPhenix (ours) logarithm Phenom1 & MolGPS .7836 .4757 .4297 .563 .9402 .7138 .7011 .7850
MolPhenix (ours) one-hot Phenom1 & MolGPS .7391 .4307 .3940 .5212 .9198 .6724 .6698 .7540

Table 12: Evaluation on cumulative concentrations for active and inactive perturbations Average
Top-1% and Top-5% Recall accuracy of methods utilizing different contrastive learning methods.
Best performing methods are highlighted in bold.

top-1% top-5%
Loss Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.

Concentration Unseen Molecules (0-shot) Unseen Molecules (0-shot)
CLIP ✗ Phenom1 .1761 .1867 .0734 .1454 .3710 .3769 .2065 .3181

Hopfield-CLIP ✗ Phenom1 .1531 .1709 .0673 .1304 .3464 .3637 .1942 .3014

InfoLOOB ✗ Phenom1 .1746 .1860 .0745 .1450 .3697 .3756 .2058 .3170

CLOOME ✗ Phenom1 .1968 .2005 .0911 .1628 .3938 .3888 .2321 .3383
CLOOME sigmoid Phenom1 .3875 .2592 .1415 .2627 .5662 .4601 .2940 .4401
CLOOME logarithm Phenom1 .4088 .3046 .1503 .2879 .5730 .5166 .3053 .4650
CLOOME one-hot Phenom1 .4080 .3123 .1496 .2900 .5801 .5306 .3054 .4720

DCL ✗ Phenom1 .3277 .2562 .1364 .2401 .4856 .4170 .2768 .3931
DCL sigmoid Phenom1 .4881 .3380 .2009 .3423 .6222 .5186 .3381 .4930
DCL logarithm Phenom1 .4983 .3615 .2122 .3573 .6311 .5581 .3587 .5160
DCL one-hot Phenom1 .5226 .3790 .2288 .3768 .6791 .5870 .3968 .5543

CWCL ✗ Phenom1 .3635 .2696 .1526 .2619 .5122 .4267 .2933 .4107
CWCL sigmoid Phenom1 .5070 .3457 .2101 .3542 .6378 .5272 .3462 .5037
CWCL logarithm Phenom1 .5146 .3725 .2246 .3706 .6437 .5733 .3660 .5277
CWCL one-hot Phenom1 .5401 .3849 .2336 .3862 .6882 .5991 .4001 .5625
SigLip ✗ Phenom1 .3729 .2544 .1470 .2581 .5200 .4179 .2838 .4072
SigLip sigmoid Phenom1 .5021 .3275 .2072 .3456 .6360 .5231 .3430 .5007
SigLip logarithm Phenom1 .5156 .3636 .2233 .3675 .6452 .5689 .3653 .5265
SigLip one-hot Phenom1 .5354 .3745 .2317 .3805 .6858 .5928 .3945 .5577

S2L (ours) ✗ Phenom1 .4688 .2852 .1838 .3126 .5970 .4519 .3171 .4554
S2L (ours) sigmoid Phenom1 .5071 .3441 .2144 .3552 .6428 .5315 .3554 .5099
S2L (ours) logarithm Phenom1 .5183 .3700 .2275 .3720 .6492 .5650 .3756 .5300
S2L (ours) one-hot Phenom1 .5433 .3819 .2384 .3879 .6954 .5895 .4030 .5626
S2L (ours) ✗ Phenom1 .4688 .2729 .2001 .3139 .5956 .4374 .3430 .4587

& MolGPS
S2L (ours) sigmoid Phenom1 .4983 .3230 .2397 .3537 .6343 .5035 .3790 .5056

& MolGPS
S2L (ours) logarithm Phenom1 .5101 .3589 .2535 .3742 .6398 .5660 .3992 .5350

& MolGPS
S2L (ours) one-hot Phenom1 .5370 .3720 .2676 .3922 .6870 .5888 .4326 .5695

& MolGPS
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Table 13: Evaluation on held-out concentrations for active and inactive perturbations Average
Top-1% and Top-5% Recall accuracy of methods utilizing different contrastive learning methods.
Best performing methods are highlighted in bold.

top-1% top-5%
Loss Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.

Concentration Unseen Molecules (0-shot) Unseen Molecules (0-shot)
CLIP ✗ Phenom1 .1684 .1111 .0964 .1253 .3916 .2545 .2356 .2476

Hopfield-CLIP ✗ Phenom1 .1290 .0921 .0756 .0989 .3485 .2287 .2095 .2217

InfoLOOB ✗ Phenom1 .1715 .1114 .0948 .1259 .3944 .2578 .2349 .2495

CLOOME ✗ Phenom1 .1745 .1088 .0910 .1248 .4093 .2487 .2355 .2439
CLOOME sigmoid Phenom1 .2573 .1208 .1062 .1614 .5169 .2638 .2513 .3440
CLOOME logarithm Phenom1 .2379 .1081 .0992 .1484 .4958 .2444 .2324 .3242
CLOOME one-hot Phenom1 .2346 .0970 .0974 .1430 .5014 .2224 .2348 .3195

DCL ✗ Phenom1 .3516 .1655 .1533 .2235 .5693 .3125 .3006 .3082
DCL sigmoid Phenom1 .4741 .1725 .1726 .2731 .6637 .3261 .3105 .3204
DCL logarithm Phenom1 .4286 .1596 .1581 .2488 .6244 .3071 .3032 .3056
DCL one-hot Phenom1 .4308 .1495 .1600 .2468 .6244 .2938 .3015 .2966

CWCL ✗ Phenom1 .4126 .1801 .1667 .2531 .6128 .3266 .3066 .3194
CWCL sigmoid Phenom1 .5112 .1856 .1811 .2926 .6901 .3384 .3190 .3314
CWCL logarithm Phenom1 .4664 .1696 .1709 .2690 .6502 .3195 .3066 .3148
CWCL one-hot Phenom1 .4681 .1612 .1734 .2676 .6465 .3019 .3104 .3050

SigLip ✗ Phenom1 .3942 .1578 .1390 .2303 .5931 .3015 .2737 .2914
SigLip sigmoid Phenom1 .5392 .1828 .1710 .2977 .7102 .3399 .3121 .3298
SigLip logarithm Phenom1 .5022 .1698 .1669 .2796 .6841 .3240 .3068 .3177
SigLip one-hot Phenom1 .4657 .1443 .1451 .2517 .6544 .2879 .2790 .2847

S2L (ours) ✗ Phenom1 .5336 .1842 .1713 .2963 .6961 .3322 .3045 .3221
S2L (ours) sigmoid Phenom1 .5409 .1899 .1753 .3020 .7178 .3469 .3201 .3372
S2L (ours) logarithm Phenom1 .5036 .1791 .1727 .2851 .6925 .3342 .3157 .3275
S2L (ours) one-hot Phenom1 .4726 .1537 .1521 .2595 .6696 .2998 .2887 .2958

S2L (ours) ✗ Phenom1 .5248 .1829 .1910 .2996 .6904 .3268 .3305 .3281
& MolGPS

S2L (ours) sigmoid Phenom1 .5338 .1897 .2029 .3088 .7098 .3427 .3495 .3452
& MolGPS

S2L (ours) logarithm Phenom1 .4900 .1839 .2031 .2923 .6776 .3354 .3511 .3411
& MolGPS

S2L (ours) one-hot Phenom1 .4622 .1569 .1762 .2651 .6578 .3030 .3187 .3087
& MolGPS

recent advances in language modelling and scaling laws across different data and compute budgets983

[21].984

Model size Depth Width Unseen images Unseen images + Unseen dataset
Unseen molecules (0-shot)

Tiny - 2.7m 4 ResBlocks 256 .8337 .7186 .4030
Small - 9.4m 6 ResBlocks 512 .9174 .7352 .4562

Medium - 38.7m 8 ResBlocks 1024 .9430 .7490 .485

Table 14: Ablations across different model sizes. Larger capacity models are found to be more
expressive.

Batch size Unseen images Unseen images + Unseen dataset
Unseen molecules (0-shot)

128 .8600 .7163 .4044
512 .9252 .7511 .4657
2048 .9450 .7616 .4940
8192 .9489 .7563 .4966

Table 15: Ablation across different batch sizes. Larger batch sizes benefit contrastive learning.

E.6 Investigating Other Pre-trained Phenomic Encoders985

To investigate the impact of pre-trained encoders, we perform additional experiments evaluating a986

supervised phenomic image encoder (Table 20). Instead of Phenom1, we trained Molphenix frame-987

work using AdaBN, a CNN-based supervised phenomic encoder, with an analogous implementation988

discussed in [46]. We find that the general trends between Phenom1 and AdaBN are consistent with a989

slight decrease in overall performance. These findings provide additional support to the generality of990

the proposed guidelines.991

E.7 Integrating MolGPS Embeddings With Other Fingerprints992

Molphenix architecture is flexible, allowing that the proposed components be replaced by other993

phenomic or molecular pretrained models. We leveraged from MolGPS, which is a MPNN based994
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Figure 10: Ablations of top-1 % recall accuracy with (top-left) the size of embedding dimension,
(top-center) number of parameters, (top-right) batch size, (bottom-left) cutoff p value, (bottom-
center) fingerprint type, and (bottom-right) random batch averaging. Compact embedding sizes
from pretrained models, larger number of parameters, larger batch sizes, lower cutoff p-values,
pretrained MolGPS fingerprints and presence of random batch averagin improving retrieval of our
MolPhenix framework.

Dim size Unseen images Unseen images + Unseen dataset
Unseen molecules (0-shot)

256 .9452 .7510 .4929
512 .9430 .7490 .4850

1024 .9392 .7288 .4710
Table 16: Ablation across different embedding dimensions. Compact embedding sizes capture more
molecular information.

GNN model with 1B parameters which allows us to maximize architecture expressivity while995

minimizing the risk of overfitting [29, 47]. For additional investigation, we combine MolGPS996

molecular embeddings with RDKIT, MACCS, and Morgan fingerprints and show that they can997

provide Molphenix with richer molecular information and yields overall higher performance of998

MolPhenix in both cumulative and held-out concentration scenarios. Results for active and all999

molecules retrieval of Molphenix trained on the discussed combinational molecular embeddings are1000

available in table 21 and 22.1001
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cut-off Unseen images Unseen images + Unseen dataset
Unseen molecules (0-shot)

p < 1.0 .9312 .7057 .3686
p < .1 .9430 .7490 .4850

p < .01 .9284 .7192 .5005
Table 17: Ablation across different p-value cutoff threhsolds. p values < .1 benefit retrieval of active
molecules.

fingerprint unseen images unseen images + unseen dataset
unseen molecule

MACCS .9180 .5503 .3526
RDKit .9341 .6693 .3925
Morgan .9524 .7417 .4613

Multi-FPs .9430 .7490 .485
Phenom1 + MolGPS .9430 .7514 .5577

Table 18: Ablation across different fingerprint types. A combination of embeddings bootstrapped
from Phenom1 and MolGPS significantly benefit retrieval.

Unseen images Unseen images + Unseen dataset
Unseen molecules (0-shot)

W/O Random Embedding Avg. .9482 .7198 .4759
With Random Embedding Avg. .9430 .7490 .485

Table 19: Ablation across random embedding averaging. Utilizing random batch averaging stabilizes
training and benefits retrieval.

Table 20: Evaluation on cumulative concentrations while using AdaBN. Molphenix is trained on
combination of RDKIT, MACCS, and Morgan fingerprints in this experiment

Method Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.
Concentration Unseen Molecules (0-shot) Unseen Molecules (0-shot)

top-1% active molecules top-5% active molecules
MolPhenix - AdaBN .8568 .5336 .3525 .581 .9562 .7603 .5772 .7646
MolPhenix sigmoid AdaBN .911 .5858 .4 .6323 .971 .7997 .6203 .797
MolPhenix logarithm AdaBN .9155 .6106 .4242 .6501 .9729 .8332 .6503 .8188
MolPhenix one-hot AdaBN .9187 .6125 .4225 .6512 .9744 .8302 .6419 .8155

top-1% all molecules top-5% all molecules
MolPhenix - AdaBN .4593 .2409 .1599 .2867 .5983 .4081 .285 .4305
MolPhenix sigmoid AdaBN .5104 .3142 .1957 .3401 .6496 .5165 .331 .499
MolPhenix logarithm AdaBN .5379 .3393 .2071 .3614 .6867 .5561 .3606 .5345
MolPhenix one-hot AdaBN .5476 .3425 .2082 .3661 .7007 .5641 .3603 .5417

Table 21: Evaluation on cumulative concentrations while combining MolGPS, RDKIT, MACCS,
and Morgan fingerprints.

Method Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.
Concentration Unseen Molecules (0-shot) Unseen Molecules (0-shot)

top-1% active molecules top-5% active molecules
MolPhenix - Phenom1 & MolGPS & 3 fps .9185 .7212 .4717 .7038 .9784 .8805 .718 .859
MolPhenix sigmoid Phenom1 & MolGPS & 3 fps .9395 .7408 .5119 .7307 .9817 .8932 .7458 .8736
MolPhenix logarithm Phenom1 & MolGPS & 3 fps .9454 .7798 .5658 .7637 .9815 .9163 .7849 .8942
MolPhenix one-hot Phenom1 & MolGPS & 3 fps .9419 .7687 .5526 .7544 .9807 .9113 .7681 .8867

top-1% all molecules top-5% all molecules
MolPhenix - Phenom1 & MolGPS & 3 fps .4764 .3011 .2068 .3281 .604 .4647 .3415 .4701
MolPhenix sigmoid Phenom1 & MolGPS & 3 fps .5076 .342 .2382 .3626 .6383 .521 .3769 .512
MolPhenix logarithm Phenom1 & MolGPS & 3 fps .525 .379 .2648 .3896 .658 .5743 .411 .5478
MolPhenix one-hot Phenom1 & MolGPS & 3 fps .5355 .3845 .265 .395 .6862 .5916 .4233 .567

Table 22: Evaluation on heldout concentrations while combining MolGPS, RDKIT, MACCS, and
Morgan fingerprints.

Method Explicit Modality Unseen Images Unseen Images + Unseen Dataset Avg. Unseen Images Unseen Images + Unseen Dataset Avg.
Concentration Unseen Molecules (0-shot) Unseen Molecules (0-shot)

top-1% active molecules top-5% active molecules
MolPhenix - Phenom1 & MolGPS & 3 fps .8364 .5115 .4263 .5914 .9640 .7363 .6850 .7951
MolPhenix sigmoid Phenom1 & MolGPS & 3 fps .8300 .5021 .4363 .5895 .9640 .7409 .6931 .7993
MolPhenix logarithm Phenom1 & MolGPS & 3 fps .8112 .5107 .4376 .5865 .9544 .7406 .6866 .7939
MolPhenix one-hot Phenom1 & MolGPS & 3 fps .7467 .4409 .3830 .5235 .9320 .6827 .6520 .7556

top-1% all molecules top-5% all molecules
MolPhenix - Phenom1 & MolGPS & 3 fps .5339 .1980 .1966 .3095 .6968 .2909 .4274 .4717
MolPhenix sigmoid Phenom1 & MolGPS & 3 fps .5463 .2026 .2066 .3185 .7179 .3116 .4359 .4885
MolPhenix logarithm Phenom1 & MolGPS & 3 fps .5247 .2009 .2078 .3111 .7067 .3133 .4319 .4840
MolPhenix one-hot Phenom1 & MolGPS & 3 fps .4690 .1653 .1756 .2700 .6635 .2592 .4118 .4448
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