Published as a conference paper at ICLR 2023

EVIDENTIAL UNCERTAINTY AND DIVERSITY GUIDED
ACTIVE LEARNING FOR SCENE GRAPH GENERATION

Shuzhou Sun!, Shuaifeng Zhi2, Janne Heikkili!, Li Liu>"
'University of Oulu, *National University of Defense Technology
fCorresponding author: Li Liu {dreaml1iu2010}@gmail.com

ABSTRACT

Scene Graph Generation (SGG) has already shown its great potential in various
downstream tasks, but it comes at the price of a prohibitively expensive annotation
process. To reduce the annotation cost, we propose using Active Learning (AL)
for sampling the most informative data. However, directly porting current AL
methods to the SGG task poses the following challenges: 1) unreliable uncertainty
estimates and 2) data bias problems. To deal with these challenges, we propose
EDAL (Evidential Uncertainty and Diversity Guided Deep Active Learning), a
novel AL framework tailored for the SGG task. For challenge 1), we start with
Evidential Deep Learning (EDL) coupled with a global relationship mining ap-
proach to estimate uncertainty, which can effectively overcome the perturbations
of open-set relationships and background-relationships to obtain reliable uncer-
tainty estimates. To address challenge 2), we seek the diversity-based method
and design the Context Blocking Module and Image Blocking Module to alleviate
context-level bias and image-level bias, respectively. Experiments show that our
AL framework can approach the performance of a fully supervised SGG model
with only about 10% annotation cost. Furthermore, our ablation studies indicate
that introducing AL into the SGG will face many challenges not observed in other
vision tasks that are successfully overcome by our new modules.

1 INTRODUCTION

Scene Graph Generation (SGG) ( , ) aims at generating a structured representation
of a scene that jointly describes objects and their attributes, as well as their pairwise relationships.
SGG has attracted significant attention as it provides rich semantic relationships of the visual scenes
and has great potential for i 1mpr0V1ng various other vision tasks such as object detection ( ,
s ), image search ( s R ), and visual ques-
tion answermg ( s ; s ). Albeit bemg an emerging area of research,
which can bridge the gap between computer vision and natural language processing, SGG is still
underexplored despite many recent works focusing on SGG ( , ; , ).

The main challenges that impede the advancement of SGG are twofold. On the one hand, existing
datasets for SGG ( s ; , ) suffer from many serious issues, such as long-
tailed distribution, noisy and missing annotations, which makes it difficult to supervise a satisfactory
model. On the other hand, existing deep learning-based SGG methods are data hungry, requiring
tens or hundreds of labeled samples. However, acquiring high-quality labeled data can be very
costly, which is especially the case for SGG. The reason for this is that SGG involves labeling
visual <mb]ect relationship, object> triplets (e.g., <people, ride, bike>) over entlty and relatlonshlp
classes in an image, which can be difficult and time consumlng (

, ). Therefore, it is highly desirable to minimize the number of labeled samples needed
to train a well-performing model Active Learmng (AL) provides a solid framework to mitigate this
problem ( ; ). It is, therefore, natural
to investigate whether AL can be used to save labehng costs whlle maintaining accuracy, which is
the focus of this paper. In AL, the model selects the most informative examples from an unlabeled
pool according to some criteria for manual labeling, and then the model is retrained and evaluated
with the selected examples. This looks intuitive yet simple, but directly transferring existing AL
methods to the SGG task will face several challenges.
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First, existing batch query-based AL paradi gms ( ; , ;

, ) used for SGG face a large number of open-
set relatlonshlps ie., relat10nsh1ps that appear in the unlabeled pool but are absent in labeled data
mainly because of the severe long-tailed distribution of the SGG relationships ( ,

, ;b). We observe that existing uncertainty estimation approaches perform badly
in classifying SGG relationships, especially open-set relationships. Inspired by Evidential Deep
Learning (EDL) ( , ) and its advanced performance in open-set action recognition
( , ), we enhance and incorporate it into our proposed AL framework to estimate the
relationship uncertainty. Second, the relationship annotations in SGG dataset are very sparse, result-
ing in severe foreground-background imbalance ( ; , ). Foreground-
relationships are those within annotated triplets in the dataset wh1le background-relationships are
the ones that are absent between object pairs. Due to the large number of background-relationships,
they can perturb or even dominate the uncertainty estimation. To this end, we propose a relation-
ship mining module, Relationship Proposal Graph (RPG), as a part of the uncertainty estimation,
which works by filtering out background-relationships to refine the uncertainty obtained by EDL.
Third, despite our improved EDL having the capability to generate reliable estimates of relationship
uncertainty, its sampling results are still vulnerable to the problems of trad1t10nal uncertainty-based
AL methods, i.e., data bias problems ( s ). More
importantly, we also found that uncertalnty based AL used for SGG will be biased at both context-
level and image-level, where the context in SGG refers to the feature space formed by relationship
triplets. For this issue, we design the Context Blocking Module (CBM) and the Image Blocking
Module (IBM), which are inspired by diversity-based AL methods. The former can block similar
contexts to avoid the context-level bias, while the latter can block redundant images to eliminate the
image-level bias.

Contributions. The main contributions of this work are the following: (1) We carry out a pioneering
study of using AL for SGG to achieve label efficiency without significantly sacrificing performance
loss and propose a novel framework dubbed Evidential Uncertainty and Diversity Guided Deep
Active Learning (EDAL). (2) In the proposed EDAL framework, we introduce novel evidential un-
certainty to guide deep active learning and efficient one-shot estimation of relationship uncertainty.
In this process, a relationship mining module is designed to avoid the perturbation of uncertainty es-
timation by background-relationships. In order to effectively mitigate context-level and image-level
bias problems induced by AL, we design two modules, CBM and IBM. (3) Extensive experimental
results on the SGG benchmarks demonstrate that EDAL can significantly save human annotation
costs, approaching the performance of a fully supervised model with only about 10% labeling cost.

2 RELATED WORK

Scene Graph Generation (SGG). SGG extracts a structured representation of the scene by assign-
ing appropriate relationships to object pairs and enables a more comprehenswe understandmg of the
scene for intelligent agents (

; , ). For supervised tralnlng of the SGG task a mass1ve amount of trlplets w1th1n
images in the form of <subject, relation, object> need to be provided, which involves several
sub-tasks including object detection, object recognition and relationship description, and results in
an unaffordable annotation cost. To mitigate this, ( ) proposed a semi-supervised
method for SGG, which requires only a small amount of labeled data for each relationship and
generates pseudo-labels for the remaining samples using image-agnostic features. However, these
pseudo-labels tend to converge to a few dominant relationships. ( , ) designed a
weak supervision framework to reduce the reliance on labor-intensive annotations with the help of
linguistic structures. Recently, ( , ) trained an SGG model in an unsupervised man-
ner by drawing on knowledge bases extracted from the triplets of web-scale image captions. Despite
showing the promise of label efficient learning techniques in SGG, the above caption-based methods
rely on large-scale external linguistic knowledge which fits the target scene. This, to some extent,
limits its generalization to other scenes without adequate linguistic priors. We explore an alterna-
tive approach and propose a hybrid AL framework tailored to the SGG task in order to avoid the
expensive labeling cost without access to external knowledge.

Active Learning (AL). AL aims to select the most informative data from the unlabeled pool for
annotation to support model training. In vision tasks such as image classification and object detec-
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Figure 1: The overall structure of our proposed AL framework EDAL. Following the standard AL
setup, EDAL samples data from the unlabeled pool round by round to support the model training,
and the quit condition is that the label budget is exhausted.

tion, AL has been widely applied with impressive performance. Uncertainty-based methods (

s ) and dlvers1ty based methods (

) are currently two types of mainstream AL technologles For the unlabeled pool the former
aims to estimate uncertainty robustly, while the latter samples the data as dispersedly as possible
within their feature space. However, the uncertainty-based methods tend to bias towards a subset
of the unlabeled pool, mainly caused by unreliable uncertainty estimation with little labeled data,
and the diversity- based methods often struggle with large-scale datasets and complex tasks (

, ). Inspired by the above facts, we propose a hybrid AL strategy
with elements from both uncertainty-based and diversity-based methods, which is, to the best of our
knowledge, the first hybrid AL method for the challenging SGG task.

Evidential Deep Learning (EDL). The pioneering work ( , ) proposes using EDL
to estimate reliable classification uncertainty, especially for open-set entities, without loss of perfor-
mance. The authors design a predictive distribution for classification by placing a Dirichlet distribu-
tion. Deep Evidential Regression ( , ) introduces the evidential theory to regression
tasks by placing evidential priors over the original Gaussian likelihood functions. Recently, (

, ) used EDL to estimate uncertainty for open-set action recognition. A model calibration
method is also proposed to regularize EDL training and thus mitigate the overfitting problem. In this
paper, we employ EDL to perform uncertainty estimation in the proposed hybrid AL framework.
Our main motivation lies in its advantages for reliable open-set uncertainty estimation and the fact
that a large number of open-set relationships exist for AL algorithms in the SGG task.

3 METHOD

The overall pipeline of EDAL is shown in Figure 1, which is a hybrid AL model composed of
uncertainty-based and diversity-based methods. First, the evidential uncertainty estimation method
is applied with the extracted prior information from the available labeled data samples to estimate
the relationship uncertainty (Section 3.1). Diversity-based sampling driven by context-level and
image-level biases is then adopted to refine selected samples to reach the labeling budget (Section
3.2). A pseudo-code of EDAL is given in Appendix A.1.
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Figure 2: The motivations for key designs in EDAL. (a) motivation for EDL: relationship distribu-
tions (top) and average output logits of each relationship (bottom). (b) motivation for RPG: fore-
ground relationship (solid lines) and background relationship (dotted lines). (c) motivation for CBM:
the target scene contains many similar contexts (sitting on in this example). (d) motivation for IBM:
the sampling results are biased towards partial relationships (Class 1 and 3) in this example.

3.1 EVIDENTIAL UNCERTAINTY BASED SAMPLING

Assume that the unlabeled data of the t—th AL round is Uy = {I1, I2, Iy, } and that the i-th image
I; contains | I;| objects and at most | I;| x (|I;| — 1) relationship triplets {< o}, _,0? >, < o}, _, 0} >

17— "
, < 0'1 ‘,_, LI i-1 >}. In Section 3.1.1, we design an uncertainty estimation method for each
relat10nsh1p Then, in Section 3.1.2, we overcome the perturbation of the background-relationship
to the uncertainty estimate by the proposed relationship mining module.

3.1.1 EVIDENTIAL UNCERTAINTY ESTIMATION

The SGG task suffers from severe long-tailed distribution of relationships, as shown in Figure 2 (a).
In the VG150 dataset( s ), the top-5 categories amount to more than half, of which we
regard top-5 relationships as the head categories and the rest as the tail categories. It is expected
that the random samples of the first AL round will only cover a small number of categories and,
thus, inevitably yield a lot of open-set relationships in the unlabeled pool. However, commonly
adopted probability-based losses (e.g., cross-entropy loss with Softmax probabilities) often provide
unreliable uncertainty estimates, such as false over-confidence predictions, for open-set samples
( , ). On the contrary, EDL is able to predict reliable uncertainty estimates in this
scenario by collecting evidence from each output class by placing a Dirichlet distribution over the
class probabilities. For an open-set relationship that does not belong to any available labeled classes,
ideally, the model would not be able to collect any evidence that the input belongs to a known
relationship. In this case, the parameters of the Dirichlet distribution become all one and lead to an
output with a high uncertainty value of 1. Inspired by EDL and its impressive performance in open-
set action recognition ( s ), we introduce the modified EDL to estimate the uncertainty
of relationships.

Specifically, we denote an object pair and its ground truth relationship as x; and y;;, respectively,
where j € {1,2,- - -, k} is the index of k relationship categories. Hence y;; = 1 if x; owns the j-th
relationship, and O otherwise. The vanilla EDL supervises the ¢-th AL model F}; with the following
loss function to determine the expected probability p;; that x; belongs to the j-th category:

o Pij (1= Dij) D a e
(Si +1) +KL[D(p; | &) || D (pi [<1, ,1>)], ()

Lgpr (Fy) = Z (vij — Dij)*
= @

(€]

where e;; is the j-th output logit of x;, and it acts as the collected evidence. «;; = e;; + 1,
S; = Zle «;; is the strength of the Dirichlet distribution D(p; | «;), where p; is a simplex
representing class assignment probabilities, o; = (1, ..., k). Dij = @;;/S; is the EDL output
for ;. KL [-]|] is the KL divergence loss used for regularization, and ¢; is the Dirichlet parameters
after removal of the non-misleading evidence from predicted parameters «;. During inference, the
uncertainty of x; can be estimated via evidential uncertainty v; = k/S; with a maximum value
of 1. We refer our readers to ( s ) for more details of evidential theory and its
derivations. Therefore, for image I;, we can estimate the uncertainty of its triplets and denote the
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result as Ur, = {Ucpr_ 025, Ucor o35, s U_, i o'.fi"1>}' However, even though term (2) of
Equation 1 has been used as a regularizer, we found that the above vanilla EDL loss suffers from
a severe overfitting problem when supervising the SGG model (see Appendix A.2). We argue that
the insufficient regularization is due to the large number of background-relationships in the SGG
task making the prediction of foreground-relationships indiscriminate, and this intractable problem
is shown in 2 (a). Besides, the vanilla EDL loss may be hampered by incidental vanishing gradient

because its gradient is Vi, ,, = + Zfil o (f(zi) —vij) o' (f (zi))|, where o is the ReLU

activation function ( , ), and therefore, 0/ = 0 when f (x;) < 0. For the above
issues, we find that the evidential-probability based cross-entropy 10ss Lepc. can be used as a strong
regularizer when replacing term (2) of Equation 1. Specifically, the final loss of our EDL can be
formulated as:

ng (1 - IA)zj)

K
Lgpr (Fy) = Z Vij — pm
= (Si+1)

+ [~ log (Pij) vis] - 2
—_——

(2):Lepee

(€]

The cross-entropy loss is often paired with softmax, the standard output of classification models,
which provides an inflated probability due to its exponential transformation on the output. How-
ever, Ly, penalizes evidential-probability, which is a second-order probability derived from the
parameterized Dirichlet distribution ( s ). We argue that L., can effectively pe-
nalize non-discriminative prediction on foreground-relationships, and, thus, can be seen as a strong
regularizer. More importantly, cross-entropy loss based on evidential-probability can prevent over-
confident predictions in open-set relationships without affecting the uncertainty estimates.

3.1.2 RELATIONSHIP PROPOSAL GRAPH

The relationship annotations in the SGG dataset are very sparse and cause a severe foreground-
background imbalance problem ( , ). For example, with five objects
in Figure 2 (b), there are, in principle, twenty p0551ble relationships, but only four are annotated
and therefore belong to foreground relationships (e.g., <woman, holding, racket>, etc.). The large
number of background-relationships is dominant and may disturb uncertainty estimation for sparse
and valuable foreground ones within the scene. An intuitive idea is to use off-the-shelf methods
which can recognize whether a relationship belongs to the foreground or not, such as Directed
Semantic Action Graph ( R ), Confusion matrix ( , ), Statistical prior
( s ), etc. Unfortunately, these methods are all driven by a large amount of labeled
data, and the limited amount of annotation in the AL setting is not enough for them. To tackle this
issue, we further leverage global information across available labeled images to refine the instance
uncertainty obtained in Section 3.1.1. Concretely, a relationship mining method is proposed to infer
how likely there exists a foreground-relationship r between two object classes p and q (i.e., instance
agnostic), which serves as a weight to refine evidential uncertainty estimation.

First, we generate proximity cluster C«p ¢~ = {< Op,r, Oy >} to accumulate correlation between
two object classes with foreground-relationships from available annotated triplets, where O, and O,
are object instances of classes p and g, respectively; r is a foreground-relationship from labeled data.
The cluster size |Cp, ¢ | is determined by the number of triplets within it. Note that proximity clusters
are instance agnostic. Hence triplets from different images can contribute to the same cluster.

We then extract a statistical graph (SG) and a probabilistic graph (PG) from proximity clusters to
represent foreground/background probability of a relationship r with different neighboring orders.
The statistical graph (SG) models the existence of foreground-relationships whose nodes represent
object categories and the edge weights wSS’I are binary values depending on whether the correspond-
ing proximity cluster is empty or not. An edge with values of 1 or 0 indicates that the corresponding
relationship belongs to the foreground or background, respectively. Considering the lack of repre-
sentativeness of a few labeled data samples, we further construct a probabilistic graph (PG) which
infers the potential likelihood of the relationship r as foreground by taking the second-order neigh-
borhood of the nodes into consideration. Specifically, PG has the same nodes as SG but instead
assigns soft edge weights between nodes if they both are connected to a shared neighboring node
in SG with non-zero edge weight. By extending proximity cluster to second-order neighboring, we
define Cip o> = ={< O0p,r1,0p, >,< O, 12,04 >} where O,, O,,, O, are instances of object
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classes p, m and q, respectively, r1 and ro are two foreground-relationships. We can then compute
the edge weight w of PG between classes p and g as follows:

=[CZ, 4> /Max(1,|C2, 15 | 1C2, 50|+ 1C2 5 D), 3)

where k is the number of object classes. The intuition of PG is that we observe nodes within the
second-order foreground neighborhood also possibly correlate via foreground-relationship, and we
create PG to take full advantage of such information from the limited labeled data.

Finally, the Relationship Proposal Graph (RPG) is obtained by merging SG and PG to infer our fi-
nal likelihood of owning foreground-relationship between two classes. RPG has the same nodes
as PG and SG whose weights wX"0 are computed via Max(w;G, wSG), where Max(-,-) is an
operation kernel taking the maximum edge weights between the same two corresponding nodes.
RPG can be thought of as class-wise prior information of the existence of foreground-relationship
considering both first and second order adjacent nodes from the pool of labeled triplets. We can
use wiro to weight Uy, to overcome the perturbation of background-relationships. Specifically,
we denote the weighted uncertainty as UI , UI,- = {U<qu 02> X wgf%;, Ucol, o3> X w§f%,~ .

LU <olfil_olTil =1y X wEEG‘ Sl s where o’ o; represents the category to which object oj belongs.
Please note that as RPG is retrieved using only sampled data during training and its computatlonal
overhead is marginal, we, therefore, keep RPG constantly updated whenever new labeled data arrive.

3.2 DIVERSITY-BASED BLOCKING MODULE

In this subsection, we introduce the Context Blocking Module (CBM) and the Image Blocking
Module (IBM) to cope with the data bias issue of the uncertainty-based AL methods.

As to the context-level data bias illustrated in Figure 2 (c), a scene may contain many similar con-
texts (e.g., <people, sitting on, chair>). We argue that when considering the potential similarity of
objects in the learned feature space, not all triplets sharing similar contexts contribute equally to the
performance of SGG but instead increase the labeling cost and computational expense. Image-level
data bias is also shown in Figure 2 (d). The uncertainty-based sampling will be biased towards the
classes where the current model performs poorly (the sampling results will bias toward data from
Class 1 and Class 3 in this case), Wthh has been discussed in the existing literature as well (

; ) ; , ). See Appendix A.3
for further drscussmn of the data bras problem.

To alleviate the data bias problem at the context-level, we propose CBM to block certain
triplets/object pairs sharing similar contexts. Let the context feature of I; in the ¢-th AL round

be fr,.0 fr.o = {flo i }fftlx(w*l)}, where f'}ht is the j-th context feature extracted
by the model F;_;. We then calculate the context-level density of I; denoted by Dy, ¢ =
{D} . D3 oy -+ DY U0y where DY o = (YUY g2 2 [)=1 Similar con-

texts with the largest densrty value are removed whose actual number is determmed by a pre-set
deduplication ratio 7, and we update the uncertainty.

For the data bias problem at the image-level, we propose IBM to filter images that contribute simi-
larly to SGG. Let the labeling budget at ¢-th round is £;. Although typical AL methods often directly

select ¢, samples with the largest uncertainty, in EDAL ¢, (¢, > {,) preliminary samples with the
highest uncertainties are first chosen, i.e. St i, = {IL,I,- -, IZZ }. Similar to the density compu-

tation in CBM, we also calculate the image-level density Ds . = {Dy,, Dr,," - -, D1, }, where

Gy
Dy, 1 = (Zj:l ‘f{lt -
nally, we remove ¢; — {; images with the largest image-level density value to reach the desired
labeling budget ¢;. Note that because ¢; in IBM is the actual labeling budget and ¢; is a hyperpa-

rameter related to the degree of image-level bias. We argue that Zt should be gradually increased
during training, as several existing AL works have shown that the data bias problem will become

more and more serious as AL progresses. Specifically, ¢, in our framework can be computed as
by = € + XU t", and we call it De-bias Temperature Units (DeTu). In the Appendix A.4, we
explain why /; is modeled in an exponential form rather than constant ¢; = ¢; + A\ |U;| (De-bias

/. +)7% fi.; is the i-th image feature extracted by the model F; ;. Fi-
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Figure 3: Active Learning performance of EDAL and baseline methods. mR @/20/50/100 represents
the average performance of R@20, R@50, and R@100. We repeat each experiment three times and
report the mean (solid line) and standard deviation (shadow).

Constant value, DeCv) or linear form ENt = Uy + Ao |U;| t (De-bias Linear Units, DeLu). We will also
quantify the advantages of DeTu through the ablation study (Section 4.3).

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Implementations. We show the effectiveness of EDAL
on the popular VG150 dataset (Xu et al., 2017) for the
SGG task through extensive experiments. To prepare the
AL dataset, we first remove all the relationship annota-
tions from the official training set (about 56k images) to
create the initial unlabeled pool &/ with object annotations
only. We randomly sample from I/ at the rate of p; in the
first round and start the AL framework. For the follow-
ing ¢-th round (¢ > 2), sampling with the rate of p; by
the proposed method is used to obtain S; ¢, until the la-
bel budget is exhausted. Specifically, in our experiments,
p1=0.01, p;=0.01, ¢ = 2,3, - --. We set the label budget
to be 10%,~i.e., to label 10% of the data in /. For 7 in
CBM and ¢; = 4 + MUy |t" in IBM, we set 7 = 0.2,
A = 107° and = 4. See Appendix B.1 for how these
parameters are determined.

animal

YR 20ima

Full supervision 10-th AL r :;und
Figure 4: Qualitative examples of the
fully supervised model and our method
at the 5-th and the 10-th AL rounds. Dif-
ferences are highlighted in blue.

Baselines and backbones. We compare our proposed method against the following baseline meth-
ods: 1) Random sampling. 2) Classical uncertainty-based methods: including Least Confidence
Sampling (LCS) (Shen et al., 2017), Maximum Entropy Sampling (MES) (Luo et al., 2013), and
Margin Sampling (MS) (Culotta & McCallum, 2005). 3) Recent state-of-the-art methods: The
Core-set approach (Sener & Savarese, 2017), Fisher Kernel Self Supervision (FKSS) (Gudovskiy



Published as a conference paper at ICLR 2023

, ), Integer Programming Approach (IPA) ( , ), Loss Prediction Mod-
ule (LPM) ( ) and Temporal Output Discrepancy (TOD) ( s ). Please
refer to Appendix B.2 for implementation details. We use three typical SGG backbones in our evalu-
ation: 1) Neural Motifs backbone (MotifsNet) ( , ). 2) VCTree ( , ).
3) Transformer-based backbone ( s ).

Evaluation metrics and modes. The first is evaluation metrics for AL. We follow the standard
evaluation metric, i.e., performance under fixed labeling budget. Under this metric, the higher the
performance, the better the AL framework. Then comes the evaluation modes for SGG. Following
MotifsNet ( , ), we use three evaluation modes: 1) Predicate classification (PredCls).
2) Scene Graph Classification (SGCls), and 3) Scene Graph Detection (SGDet).

Table 1: Ablation study results. The SGG back- Table 2: Performance on open-set relationship
bone used here is MotifsNet. recognition. The SGG backbone used here is Mo-

PredCls SGCls SGDet tifsNet.
R@/20/50/100 R@/20/50/100 R@/20/50/100

EDAL-EDL | 56.0/61.5/632 29.0/32.0/329 18.7/24.9/28.8
EDAL-RPG | 55.5/61.9/63.7 29.3/32.1/33.0 19.0/25.4/29.3  EDAL+LCS
EDALIBM | 56.7/62.2/63.8 29.9/31.7/329 18.4/24.4/289 ~ EPAL+TOD

Method
PredCls SGCls SGDet

R@/20/50/100  R@/20/50/100  R@/20/50/100

50.1/62.4/70.1 34.3/40.4/43.7 14.4/20.4/25.5
53.2/66.0/73.8  34.0/42.2/44.3 15.8/22.0/27.0

Method

EDAL+FKSS | S7.3/604/76.8  35.2/43.1/462 17123412838
EDAL-CBM | 56.8/62.6/64.3 30.3/32.833.6 18.7/25.2/293  ppAL+LPM | 552/684175.6 3474261453  163/22.7/28.1
EDAL ‘ 57.0/63.5/65.1  31.7/35.0/35.8  21.4/27.2/30.3  EDAL | 59.7/72.7/80.6  37.1/44.6/48.4  17.7/25.2/30.3

4.2 MAIN RESULTS AND ANALYSIS

In this section, we compare EDAL with other baseline g = 5
methods. We report the quantitative results in Figure 3 E E
and show some qualitative samples in Figure 4. From the  @rwud1  tyromd2  ©rounas
above results, we have several observations: 1) Our pro-
posed AL framework shows improvement with a clear ;
margin over all baseline methods, i.e., EDAL has higher @it @roma2 ®rouma3 : ®
performance under fixed label budgets. 2) The stan- Figure 5: Relationship heatmaps ob-
dard deviation (shadows in Figure 3) shows that our pro- tained by RPG (a, b, ¢), simple binary
posed AL framework has a more stable learning process. statistics (d, e, f), and the full training
We believe that this mainly comes from CBM and IBM, set (g). Here we only show 10 object
which can alleviate the data bias problem at the image categories for clarity.
and context-level to ensure that the results of each AL
round can cover the unlabeled pool better, while the biased data obtained by baseline strategies can
obviously mislead the model training. 3) The uncertainty-based methods (e.g., TOD ( ,
), FKSS ( s ), LCS ( s ), etc.) perform better in the first few
AL rounds but lag in the subsequent rounds, and we conjecture that the data bias problem is responsi-
ble for this, which gets worse as AL progresses. This phenomenon also justifies our claim in section

3 that the hyperparameter ¢; in IBM to alleviate data bias should be gradually increased. Thus, we
argue that the exponential deduplication strategy DeTu is key to our proposed AL framework. 4)
The diversity-based methods (e.g., IPA ( s ), the Core-set approach (

, ), etc.) perform very poorly due to the large dataset in the SGG task. However, our
hybrid AL framework can avoid the curse of scale by leveraging uncertainty to obtain preliminary
samples. 5) Figure 4 shows that our method can output more fine-grained/meaningful relationships,
e.g., <animal, sitting on, shelf> VS <animal, on, shelf>. We argue that this improvement stems
from our uncertainty estimation method giving more attention to tail categories, which we discuss
in more detail in Appendix B.3. 6) Due to space limitations, we only report average performance
mR @/20/50/100 here instead of individual R@/20, R@/50 and R@/100. For the detailed results,
see Appendix B.4. Furthermore, Figure 3 shows the results under the most commonly used met-
rics for AL, we also report the performance under another metric, labeling budget under expected
model performance, in Appendix B.5. Finally, the label budget set in this paper is 10%, but we also
explored the model performance under more budgets with the results presented in Appendix B.6.

4.3 ABLATION STUDY

As discussed in Section 3 and illustrated in Figure 1, our proposed AL framework consists of
four key designs, i.e., EDL-based uncertainty estimation module, RPG, CBM, and IBM. We
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drop the above designs one by one from our framework and report the numbers in Table 1.
Note that to keep the framework running, the removed EDL-based module will be replaced by
a baseline uncertainty estimation method (we use LCS ( , ) here). The above
quantitative results show that each design can contribute to our AL framework. In the fol-
lowing, we will further prove the effectiveness of those designs and explore their functionality.

Ablation on EDL-based uncertainty estimation mod- e

ule. This subsection evaluates the robustness of our pro- " m
posed uncertainty method. To evaluate this advantage, we !‘ ‘ Hw H il il ik “

report open-set recognition performances of different un-

certainty methods in Table 2. Our evaluation procedure ¢ i
is inspired by ( , ), which emphasizes NW“W WMW WMWWM
that a robust uncertainty method should perform well for /Il " [ ! u 0l

out-of-distribution (OOD) data. The results show that the a5 A

EDL-based module outperforms other methods by a clear Figure 6: Normalized Slmllarlty of sam-
margin. We argue these improvements are achieved by ples at different AL rounds.

placing a Dirichlet distribution on the class probabilities

to avoid over-confident predictions on the open-set relationships. Due to space constraints, we give
the implementation details in Appendix B.7.

Ablation on RPG. As shown in Figure 5, simple bi- PredCls
nary statistics can only cover a very small number ]
of relationships, especially in the early AL rounds.
Therefore, we argue that in the AL setting, simple bi- 601
nary statistics cannot complete the task of filtering the
background-relationships. In contrast, our method lever-
ages the second-order neighboring to complement the bi-
nary statistics. We can find that even in the early AL
rounds (e.g., round 1 (Figure 5 (a)), RPG can still obtain
satisfactory relationship mining results, and in the third
round, our method can obtain mining results that cover 8

almost all the true relationships in the training set. Tabel budget (%)

. ) o Figure 7: Performance of different
Ablation on CMB. Figure 6 shows the average similarity deduplication strategies in IBM. The

of the context features in each sample, which illustrates  §GG backbone used here is MotifsNet.
that CBM can remove duplicate information and provide

a more meaningful uncertainty estimate. Furthermore, we find that different AL rounds of CBM
(with the same 7) have consistent deduplication effects. This is expected as we believe that the
context-level bias is only related to the data itself, which is why we set 7 to a constant value.

mR@/20/50/100

50

Ablation on IBM. We show different deduplication strategies in Figure 7, and we have the following
observations. DeCyv is a lot behind DeTu and DeLu, which fully supports our claim in Section 3 that
different AL rounds have different uncertainty estimation capabilities and should use a progressively
improved deduplication strategy. At the same time, in the early AL rounds (e.g., 2-5 rounds), DeLu
can be on par with DeTu, but in the later rounds, their gap widens. We argue that this reflects the
fact that the linear form is no longer sufficient to keep pace with the degree of the data bias problem
due to the improvement of uncertainty estimation ability.

5 CONCLUSION

Compared with simple tasks, AL for SGG suffers from a large number of complex open-set relation-
ships, background-relationships that perturb the uncertainty estimation, as well as data bias problems
at both the image-level and context-level. For the above challenges, in this work, we have developed
a hybrid Active Learning framework, EDAL, for releasing the expensive relationship annotation cost
in the SGG task. We have extensively experimented on different types of SGG backbones, and the
results in three SGG evaluation modes show that our proposed AL framework outperforms other
state-of-the-art methods by a clear margin. EDAL consists of four key components, the EDL-based
uncertainty estimation module, RPG, CBM, and IBM, and we have also explained their motivations
in detail and explored their contributions through the ablation study. Finally, we discuss the limita-
tions of existing metrics in Appendix B.4 and explore the potential of multimodal annotation-based
active learning for the SGG task in Appendix C, which belongs to our future work.
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A APPENDIX TO METHOD

A.1 PESUDO-CODE FOR THE EDAL

Without loss of generality, we show the sampling process for t—th AL round (¢ > 2). Assume
that the unlabeled data of the t—th AL round is ¢y = {I1,I5,- - -I, |}, and that the i-th image I;
contain |I;| objects and thus |I;| x (|I;| — 1) relationship triplets {< o}, _,0? >, < o}, 03 >,--+, <

70— Y4
|L; [1:]—1
o;",_,0; >}

Algorithm 1 Evidential Uncertainty and Diversity Guided Deep Active Learning (EDAL)

Input: ¢,U; = {11, 1o, - Iy, }, 7, 0e, A // inputs of t—th AL round
Output: S, 4,

1: fori =1to || do

2 Uy, = {U<O}MO?>, U<01 P SR U<0L1i‘7,,oy'i"1>} /I estimate the uncertainty of
each triplet using evidential uncertainty estimation (Section 3.1.1)

3: wiFS = {wi, wiFS, - whS // calculate the RPG weight for each triple

B 0% 0% oi’,oiI
in L
. i RPG RPG RPG

4: UI,; = {U<0%’—’0?> X wag,a%vU<o},_,o?> X wag,aﬁv' . "U<0LI“,,7OLI”71> X wau”,a‘.li‘_l}
/I refine the evidential uncertainty (Section 3.1.2)

5:endfor )

6: Uy, = {U;,, Uy, -, UIW} // reliable uncertainty obtained by Section 3.1

7: for i = 1to |Uy| do

<o}, ,02> <o}, ,0%> <olfil _oltil=ts .

8: Dy, c = {Dli o Dy ETT T Dyl i } /I calculate the density at
context-level (Section 3.2)

9: remove the [|/;| x (|/;] — 1) x 7] context with the smallest density, denoted as D; .,
D) . ={D} . D? D‘Dlli‘c‘ // alleviate th level bias

n.c=1D1.c: D1 o s .G } alleviate the context-level bias
10: get the uncertainty of each context in the D}  according to Uy, denoted as Uy, ¢, Uy,,c =
1 g D5,
{Ur,.c: U SUn.e }
|Dy, !

11: get the uncertainty of I, U}i =2 U;i,c/|D;i,C|

12: endfor =~ B

13: Uy, = {U;,,Up,,- -+, UIW”} /I uncertainty obtained by Context Blocking Module 3.2.
Compared with Uy, Uz;t does not contain context-level bias

14: 0y = by + XUy | 7

15: select £, samples with the highest uncertainty, denoted as S$,7,S0, = {h, Lo, 17 }

16: fori = 1to £, do N

17: Dy, ={D;, 1, D}, 1, -, Dﬁ:,l} // calculate the density at image-level (Section 3.2)

18: end for

19: Dst]t = {D117D12, ceey DI@,}

20: remove the E — {; samples with the smallest density, denoted as Sy ¢, /[ alleviate the image-
level bias. S; g, is the final sampling result of t—th AL round

A.2 LOSS FUNCTION

As shown in Table 3, the vanilla EDL loss function performs very poorly on the SGG task. We
think this is mainly because the regularization term (2) of Equation 1 is insufficient. We prove it
by reporting the performance of Equation 1 without term (2), and the results validate our point that
term (2) can only bring about trivial improvement. Instead, our loss function can provide the model
with better supervision without compromising the estimation of uncertainty. We have discussed this
fully in Section 3.
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Table 3: Model performance with different loss functions.

method R@20/50/100 R@20/50/100 R@20/50/100

term (1) in Equation 1 | 56.1/60.7/62.1 28.7/31.3/32.4  17.3/23.5/27.5
Equation 1 55.4/60.9/62.6  29.5/34.9/32.5 18.6/24.1/27.5

Equation 2 (ours) | 57.0/63.5/65.1 31.7/35.0/35.8  21.4/27.2/30.3

‘ PredCls SGCls SGDet

A.3 DATA BIAS PROBLEM IN ACTIVE LEARNING

Active learning, especially those based on uncertainty estimation, is prone to data bias problems.
This has been discussed in much of the existing literature ( ;

, ; , ). Here we further explain how actlve learning produces
biased sampling.

Let Q(z,y) and P, ,) denote the distribution of the unlabeled data pool and the selected data ob-
tained by an AL method, and suppose their densities are ¢(z,y) = q(y | 2)q(x) and p(z,y) = p(y |
x)p(x), respectively. We use H(h ~ H) to represent the optimal sampling for the original distribu-
tion H under the condition of a given sampling rate, where h obeys the distribution H. Based on
this definition, H((z,y) ~ P(myy)) can be calculated as:

H((@,y) ~ Q) = — [ aly | 2)a(x) n(q(y | #)q(x))ddy . )
H((z,y) ~ =— [aly | 2)q(x) In(p(y | 2)p(x))d.d, . (5)

We then use KL divergence Dxr,(Q(z,y) || Pa,y)) to describe the extent to which P, .y covers

Qay):

Drr(Qy) |l Play)) = H((@,y) ~ P, y)) = H((@,y) ~ Qay))
6
// (| 2)al (ylx)()dwdy. (6)
oy T2)p(o)
Therefore, we can obtain the optimal active learning query function Q,; by minimizing

D r(Qay) I| Pay)):

Qar = al;)g minDg 1 (Qz,y) || Pay)) - (7N
(z,y)

However, from an example shown in Figure 2 (d), we can see that P, , is biased towards partial
categories in practice. Assuming that the optimal sampling of training data under given conditions
Q4 - Obviously, in P, .y, some high uncertainty data Q7 \H((z,y) ~ P(5,y)) are not queried by
QL. but some low uncertainty data H((z,y) ~ Q(4,,))\Q 57 are selected instead. This unreason-
able sampling is exactly the data bias problem in active learning.

A.4 DE-BIAS UNIT

In the Image Blocking Module (IBM), an exponential formulation of De-bias Temperature Units
(DeTu) ét = ét -+ A\ U | t" is adopted rather than its counterparts of constant form (De-bias Constant

value, DeCv) Et = {; + Ay [Uy] or linear form (De-bias Linear Units, DeLu) ﬁt =Ll + Ao U] t (see
Section 3.2).

In addition to the quantitative result from Figure 7, here we further explain the intuition. The
uncertainty-based methods suppose that data with higher uncertainty contains more valuable in-
formation, while the diversity-based methods believe that data with lower density obtain richer in-
formation. Based on these two viewpoints, we define the information of the data X as F(X) to
quantify the value of samples, £(X) = Ux/ (Dx + 0), where Ux and Dx are the uncertainty and
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density of X, respectively and ¢ is an infinitesimal value to avoid the numerical issue. Thus, the
information-gain of IBM is:
(Dsf,,lt + 6)US/ - (DS;J{t + 5)U5t,[t

t,04

(D +0)% (D5, 18)

’

E(Ste,) = E(Ste) =

®)

where S;’ ¢, is the data sampled without IBM, and S; 4, is the results obtained by our proposed AL
framework with IBM. We assume two extreme but representative scenarios to support our choice
of DeTu. (1) Assume the current model is uncertainty-unreliable, i.e., it cannot provide any valid
uncertainty estimation. In this case, the result of the uncertainty method is equivalent to random
sampling. In this case, the IBM will be indistinctive or even play a negative role if i.e., E(S; 0,) —
E(Sts,) < 0. (2) Assume the current model is uncertainty-reliable, i.e., it provides reasonable
uncertainty estimations with the confidence of 1. In this case, considering the fact that uncertainty-
based methods suffer from data bias problems and E(St' ¢,) — E(Ste,) > 0, this indicates that the
IBM will always bring a positive effect.

The above facts suggest that different blocking strategies should be used in different AL rounds be-
cause the uncertainty estimation ability of the model is gradually improved, so the constant strategy
(DeCv) can not meet our requirements. At the same time, for the linear strategy (DeLu), we argue
that the DeLu with a large slope may have an adverse impact in the early AL rounds due to the
unreliable uncertainty estimation, while the DeLu with a small slope may not meet the demand of
data removal in the later AL rounds due to serious data bias problem. Therefore, we believe that
IBM needs a nonlinear data removal strategy, and the results in Figure 7 can also prove our point.

B APPENDIX TO EXPERIMENT

B.1 HYPERPARAMETERS SETTING

For 1 and A in IBM. Motivated by the fact that the data bias problem will become more serious as
AL progresses, we argue and experimentally prove that the deduplication ratio should be gradually
increased during training. The exponential deduplication function is a natural choice that meets
the above expectations. The value of A is set according to 7, and the basic principle is to ensure
a suitable deduplication amount. In our paper, we keep the deduplication amount at approximately
less than 10% via . We show the exponential functions with different 77 and A in Figure 8. We argue
that the 7 should be nearly flat in the early AL rounds and should grow rapidly in the later rounds to
combat the increasingly serious data bias problem. As a tradeoff, we set 7 = 4 and thus A = 107>,

However, for 7 in CBM, we argue that the data bias problem at context-level is only related to the
input data itself and thus should be set as a constant value. In Figure 9, we show model performance
with different 7. Inspired by this experiment, we set 7 = 0.2 in this paper.

—— A =102 p=1
0107 oy _ g5 oo

—— \=10",9=3

- \=10"n=4
0. 08

—— \=1019=5
A=107",

n=6

0.004

2 3 4 5 6 7 8 9 10

Figure 8: Deduplication function with different 1 and .
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Figure 9: Model performance with different 7.

hea 479%
il s21%
s

fullvdataset 2- nd AL round 3-rd AL round 4-th AL round 5-th AL round

3% head 481% hea 2.0% he:
. il ca - il 2 i EAT. ui
il i "

6-th AL round 7-th AL round 8-th AL round 9-th‘ AL round » 10-th AL round

Figure 10: The relationship distributions of full dataset (trainset of VG150) and sampling results of
our AL framework.

B.2 COMPARISON DETAILS OF ACTIVE LEARNING BASELINES

To validate our proposed method, we compare a large number of baseline active learning methods,
including classical uncertainty-based methods and recent state-of-the-art methods. Specifically, the
companson details of these baselines are as follows. The Core-set approach (

) is a diversity-based AL method, and we follow the training tricks and hyperparameters in the
original paper. Fisher Kernel Self Supervision (FKSS) ( , ) proposes a low-
complexity feature density matching method and calculates the uncertainty of unlabeled data based
on it. Note, for fairness, we use the complete unlabeled pool when comparing this method rather
than using only part of the pool in the original paper to create artificial data. Integer Programming
Approach (IPA) ( , ) minimizes the discrete Wasserstein distance in feature space
from the unlabeled pool to select the core set. Temporal Output Discrepancy (TOD) ( , )
calculates the uncertainty on unlabeled data based on losses at different training stages, and it also
incorporates the semi-supervised method to improve the performance. To keep focus and follow the
AL setup, we only compare the uncertainty method proposed in TOD.

B.3 ANALYSIS ON LONG-TAILED DISTRIBUTION

Our proposed EDL-based method can provide reliable uncertainty estimates, and in this subsection
we show that it also leads to an important product, i.e., alleviating the long-tail distribution problem.
Our uncertainty estimation method pays more attention to tail categories due to these relationships
and performs poorly in the head categories-dominated model. Figure 10 shows the relationship
distributions of the full dataset and sampling results of our AL framework. We can see that the
proportion of head categories in the full data is 78%. However, that in our method does not exceed
50%. We think this improvement is very important for the SGG task because it encourages the model
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to predict more fine-grained/meaningful relationships, e.g., predict sitting on instead of on. Besides,
this advantage has the potential to make our method approach or even exceed fully supervised model
performance with less label cost, which we have analyzed in Appendix B.6.

Although our method can alleviate the long-tailed distribution problem, it is worth noting that the
head categories in SGG are often common relationships that will appear in various scenes. There-
fore, although our method gives priority to tail categories, many head category relationships (on,
has, in, etc.) that appear in tail category scenarios are also sampled. As a result, we believe our
method will perform better in tasks with a low fusion of head and tail categories.
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Figure 11: Quantitative evaluation on the VG150 dataset using MotifsNet ( , ).

B.4 DETAILED EXPERIMENTAL RESULTS

In this section, we provide more details on experimental results for benchmarking purposes with
further analysis. In Figure 3, we have shown the average performance of R@/20/50/100 due to
space limitations. Here we report more detailed quantitative results with different backbones of
MotifsNet, VCTree, and Transformer in Figure 11, Figure 12, and Figure 13, respectively.

From these figures, we have the following observations and inspirations: 1) In both challenging
SGCls mode and SGDet evaluation modes, the performance of our proposed EDAL is closer to that
of using full supervision than other methods. In addition, we see a great potential of active learning
in SGG because all baseline methods achieve competitive performance given 10% of training labels,
which further implies that discovering the most valuable data from long-tailed imbalanced SGG
training data is worth further investigation. This gives us the confidence to continue the topic of this
paper in the future. 2) The overall trend of performance under R@50 and R@100 are very similar,
and we suspect this is mainly caused by the lack of representativeness of the recall metric (R@K)
with a larger value of K, especially when K is much higher than the actual number of relationships
within the scene. To verify our assumption, we compute the histogram of the number of ground truth
relationships and all possible relationships per image in the test set of VG150, shown in Figure 14.
Where all possible relationships refer to the relationship between all object pairs. Specifically, N
objects have N (N — 1) possible relationships. We can see that the histogram of relationship statistics
can support the above point. This observation shows that to accurately validate the SGG backbone,
it is necessary to set an appropriate recall parameter according to the relationship distribution in the
scene. 3) Metric R@K is order-insensitive, e.g., under R@50 there is no performance difference
whether the successfully retrieved relation lies the 1-st or 50-th of the predictions. Moreover, R@K
is K-dependent, i.e., inappropriate K may affect the model evaluation. Thus, we aim to design a
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K-independent and order-sensitive evaluation metric for SGG and which will be our pursuit in the
immediate future.

PredCis PredCis PredCls 664 Preacis
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abel budget (%) tabel budget (%)

R@100
mR@2050/100

5 6 1 5 6 1
Iabel budget (%) label budget (%)

mR@

2 3 4 5 7 56 1 56 1 5 .
tabel budgt (%) abel budget (%) abel budget (%) tabel budget (%)

(a) R@20 (b) R@50 (c) R@100 (d) mR@/20/50/100

Figure 12: Quantitative evaluation on the VG150 dataset using VCTree (Tang et al., 2020b).
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Figure 13: Quantitative evaluation on the VG150 dataset using Transformer (Shi & Tang, 2020).

B.5 LABELING BUDGET UNDER EXPECTED MODEL PERFORMANCE

Figure 3 shows the evaluation results under the most commonly used metric for active learning, i.e.,
performance under fixed labeling budget. In Table 4, Table 5, and Table 6, we report the performance
under another active learning metric, i.e., labeling budget under expected model performance. Under
this metric, the less the labeling cost, the better the sampling of active learning approaches.
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Figure 14: The number distribution of ground truth relationships (a) and all possible relationships
(b). The distribution shown here is counted come the test set of VG150.

From Table 4, Table 5, and Table 6, we can see that EDAL outperforms other baseline methods,
which means that our proposed active learning framework requires less annotation cost when pursu-
ing a fixed model performance. In addition, our experimental results also reveal another important
advantage of EDAL: there will be a round gap between EDAL and the baseline methods. For ex-
ample, when evaluated under the backbone of MotifsNet ( , ), our proposed AL
framework uses 7 rounds while the baselines take a minimum of 8 rounds to meet the expected per-
formance (the expected performance here is that the R@20 reaches 30 in SGCIs mode). The round
gap shows that EDAL can reduce the labeling cost and also save training resources.

Table 4: Labeling budget under expected model performance. The SGG backbone used here is
MotifsNet ( , ).

Predicate classification (PredCls) Scene Graph Classification (SGCls) Scene Graph Detection (SGDet)

R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

50 55 55 60 60 65 25 30 28 30 30 35 15 18 20 25 25 28
random 567 100 533 9.00 8.00 10.0|3.00 833 3.00 5.00 4.67 100 |3.67 9.00 467 9.00 500 8.00
Least 6.00 100 567 9.67 833 10.0|3.00 9.00 3.00 4.67 433 100|433 833 400 100 5.00 7.33
Entropy 6.33 100 6.00 933 800 100|333 867 400 500 4.67 100|400 7.67 433 100 500 7.33
Margin 6.67 10 6.00 9.00 800 10.0 |3.67 833 333 467 467 100 |3.67 833 400 100 533 7.67
IPA 467 867 433 767 600 100 |3.00 7.67 3.67 467 400 100|433 7.67 400 933 4.67 7.00
TOD 400 7.67 400 7.00 533 100|267 733 300 4.67 4.00 10.0]|3.00 7.00 3.67 9.00 4.00 7.33
FKSS 467 733 433 633 533 100|267 7.67 300 467 433 100 |3.67 667 3.67 833 433 7.00
The Core Set | 5.67 8.67 533 867 7.00 10.0 |3.00 8.67 3.00 467 467 100|433 7.67 400 9.00 500 833
EDAL | 3.67 6.67 3.67 567 500 967|267 633 300 433 400 833|367 733 400 7.67 4.00 7.00

Table 5: Labeling budget under expected model performance. The SGG backbone used here is
VCTree ( R

Predicate classification (PredCls) Scene Graph Classification (SGCls) Scene Graph Detection (SGDet)
R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

50.00 5500 55.00 60.00 60.00 65.00 | 30.00 35.00 30.00 3500 35.00 38.00|15.00 18.00 20.00 25.00 25.00 28.00
random 400 9.00 400 833 600 1000| 433 900 3.67 667 600 9.67| 367 9.00 467 900 500 8.00
Least 433 933 400 967 700 1000| 400 867 233 633 567 1000| 433 833 400 1000 500 733
Entropy 400 9.00 433 900 700 1000| 433 867 3.00 633 600 9.00| 400 7.67 433 867 500 733
Margin 500 900 433 867 7.00 10.00| 400 867 300 633 600 933 367 833 400 933 533 767
IPA 400 733 400 7.00 600 1000| 433 867 3.00 633 600 800| 433 767 400 933 467 7.00
TOD 400 733 400 6.67 533 1000| 3.67 867 233 600 500 867 333 7.00 333 800 400 733
FKSS 433 633 400 633 567 1000| 433 800 233 600 567 800| 3.67 667 367 833 433 700
The Core Set | 4.67 833 400 7.67 6.67 1000| 367 833 3.00 600 600 867| 433 800 400 900 500 8.00
EDAL \ 400 633 367 600 500 9.00 \ 367 767 200 600 500 7.00 \ 3.67 733 400 7.67 400 7.00

B.6 RESULTS WITH MORE LABEL BUDGET
In our main paper, we set the label budget to be 10%, i.e., label 10% of the data in the unlabeled pool.

In this section, we explore the performance of active learning under more label budgets. Specifically,
we increase the budget to 13%, and the results are reported in Figure 15. From these experimental
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results, we find that in Predicate classification (PredCls) mode, active learning can only obtain very
trivial gains when increasing the budget. However, in Scene Graph Classification (SGCls) mode and
Scene Graph Detection (SGDet) mode, active learning can continue to benefit from the increased
budget and even over the full supervised performance. This promising result is exciting for the SGG
task, which means that the active learning method can not only save considerable labeling costs but
also further improve the model performance. We think this is mainly because the object information
used by PredCls is ground-truth labels, while those used by SGCls and SGDet are obtained by a
biased detector, i.e., the detector is trained on data with the severe long-tailed distribution. In other
words, both SGCls and SGDet try to predict the relationship between object pairs obtained by the bi-
ased detector. It is expected that the long-tailed distribution at the relationship-level further amplifies
the detector bias. However, active learning has a certain mitigation effect on long-tailed distribu-
tions, which we believe is the reason why active learning methods can outperform the full supervised
performance in some cases. In addition, two debiasing modules, CBM and IBM, are included in our
active learning framework, which also plays a key role in improving model performance in SGCls
and SGDet modes.

Further, we continue to increase the label budget to observe performance trends. Specifically, we
increase the label budget to 20%, and the results are shown in Figure 16. The performance of EDAL
begins to converge when the labeling budget reaches a certain value and increasing the labeling
budget after that cannot improve performance. This inspires us that it is imperative to set a suitable
stopping point for active learning.

Table 6: Labeling budget under expected model performance. The SGG backbone used here is
Transformer-based backbone ( , ).

Predicate classification (PredCls) Scene Graph Classification (SGCls) Scene Graph Detection (SGDet)
R@20 R@50 R@100 R@20 R@50 R@100 R@20 R@50 R@100

50.00 5500 60.00 65.00 60.00 65.00|30.00 33.00 30.00 3500 3500 38.00|1500 20.00 22.00 2500 25.00 30.00
random 333 600 633 1000 500 10.00| 333 600 300 733 733 744 333 867 467 733 367 9.67
Least 267 533 533 1000 433 1000 | 267 533 233 700 600 6.00| 200 833 367 700 3.00 9.00
Entropy 233 667 600 1000 467 833| 333 633 333 700 667 689| 233 833 400 667 3.00 9.00
Margin 3.00 567 567 1000 467 833| 400 600 333 700 667 689| 267 767 400 667 3.00 9.00
IPA 300 567 533 1000 433 767| 367 600 333 700 600 6.00| 267 767 400 733 300 833
TOD 200 533 500 1000 400 800| 267 567 200 700 600 6.00| 233 700 333 633 200 8.00
FKSS 200 500 500 1000 400 767| 367 567 300 700 600 6.00| 200 800 433 633 300 8.00
The Core Set | 2.33 567 533 1000 400 800| 333 600 3.00 700 600 6.00| 200 700 367 667 267 8.00
EDAL | 233 500 467 900 333 700| 267 500 200 600 600 600] 200 700 333 633 200 800

B.7 IMPLEMENTATION DETAILS OPEN-SET RELATIONSHIP RECOGNITION

VG150, a subset of the VG dataset, contains 150 object classes and 50 relationship classes. There-
fore, as to V G150, there will be many open-set relationships in the VG dataset, i.e., those labeled
as foreground in VG but background in VG150. Our statistical result shows that there are about 68k
open-set relatlonshlps in the test set of VG150. Similar to current work (

s ) evaluating on VG150 ( s ), to compare the effectlveness
of dlfferent uncertamty estimation methods on open-set relationship recognition without contamina-
tion from data sampling, we conduct evaluations on the Visual Genome (VG) (
test set. Specifically, we first leverage the full training set of VG150 to train the model and use
different strategies to estimate the relationship uncertainty. Then, we then classify the relationships
based on the uncertainty, i.e. open-set relationships and non-open-set relationships, according to
a fixed threshold (0.5 in our paper). We then classify the relationships based on the uncertainty,
i.e. open-set relationships and non-open-set relationships, according to a fixed threshold (0.5 in our
experiment). Finally, we rank the relationships for each scene according to uncertainty and com-
pute the recall of open-set among the top-20/50/100 relationships. The performance on open-set
relationship recognition is shown in Table 2.
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Figure 15: Active Learning performance of EDAL and baseline methods. mR@/20/50/100 repre-
sents the average performance of R@20, R@50, and R@100. We repeat each experiment three
times and report the mean (solid line) and standard deviation (shadow). Unlike the label budget set

(10%) in our main paper, we explore the model performance of more budgets here.
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Figure 16: Active Learning performance of EDAL under 20% label budget.

C APPENDIX TO CONCLUSION

The annotation expenses of SGG can be decoupled into relationship-level annotation and object-
level annotations, of which the former is the most laborious. In addition, thanks to the existing
large-scale datasets of object detection, our primary goal in this paper focus on reducing relation-
ship annotations by leveraging the proposed active learning system EDAL. However, we found that
the object-level annotations can be further decoupled into bounding box annotations and category
annotations (see Figure 17). To further improve the practicability of active learning in SGG, it is
worth more investigation to explore the joint active learning framework of both object-level and
relationship-level annotations. We believe the correlation of multi-modal annotations would bring
further benefits to improve the labeling efficiency of EDAL, which serves as our future work.
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SGG annotations
<(girl, [221, 188, 483, 491]), has, (hair, [309, 181, 360, 221])>
<(girl, [221, 188, 483, 491]), has, (mouth, [313, 278, 346, 294])>

<(h 1 191, 4 h; 1 114 132, 445])>
(horse, [10, 35, 191, 495)), has, (leg, [114, 359, 132, 445]) Bounding box annotations

[221, 188, 483, 491]
/\ [309, 181, 360, 221]

<girl, has, hair> (girl, [221, 188, 483, 491]) - : —
<girl, has, mouth> (hair, [309, 181, 360, 221]) Category annotations
<horse, has, leg> (mouth, [313, 278, 346, 294]) girl, hair, leg, horse

Figure 17: Decoupling of SGG annotations.

22



	Introduction
	Related Work
	Method
	Evidential Uncertainty based Sampling
	Evidential Uncertainty Estimation
	Relationship Proposal Graph

	Diversity-based blocking module

	Experiments
	Experiment setup
	Main results and analysis
	Ablation study

	Conclusion
	Appendix to method
	Pesudo-code for the EDAL
	Loss function
	Data bias problem in active learning
	De-bias Unit

	Appendix to experiment
	Hyperparameters setting
	Comparison details of active learning baselines
	Analysis on long-tailed distribution
	Detailed Experimental Results
	Labeling budget under expected model performance
	Results with more label budget
	Implementation details open-set relationship recognition

	Appendix to conclusion

