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Abstract
In this paper, we employ variational arguments to establish a connection between ensemble
methods for Neural Networks and Bayesian inference. We consider an ensemble-based
scheme where each model/particle corresponds to a perturbation of the data by means
of parametric bootstrap and a perturbation of the prior. Our goal is to characterize the
ensemble distribution in terms of the the Bayesian posterior. We derive conditions under
which any optimization steps of the particles makes the associated distribution reduce its
divergence to the posterior over model parameters.

1. Introduction

Ensemble methods have a long history of successful use in machine learning to improve
performance over individual models (Hansen and Salamon, 1990; Dietterich, 2000). Re-
cently, there has been a surge of interest in ensemble methods for Deep Neural Networks
(dnns) (Lakshminarayanan et al., 2017; Osband et al., 2018) in order to characterize the
uncertainty of predictions. Although the result of this practice is not conceptually too
different from having a distribution of predictive models as in Bayesian inference, and there
are some notable theoretical contributions characterizing its properties (Newton and Raftery,
1994; Heskes, 1997; Efron, 2012), to the best of our knowledge, ensemble-based methods
lack the principled mathematical framework of Bayesian statistics.

Ensemble methods rely on a wide range of practices, which are difficult to place under
a single unified framework, including repeated training via random initialization (Szegedy
et al., 2015; Sutskever et al., 2014; Krizhevsky et al., 2012), random perturbation of
the data (Lakshminarayanan et al., 2017), or more recently, random perturbation of the
prior (Osband et al., 2018; Pearce et al., 2018). In this work, we focus on parametric
bootstrap (Efron and Tibshirani, 1993), whereby many perturbed replicates of the original
data are generated by introducing noise from a parametric distribution, and a new model
is optimized for each perturbed version of the original loss function. Then, the ensemble
of models, each member of which is represented by a “particle” in the parameter space,
makes it possible to obtain a family of predictions on unseen data, which can be used to
quantify uncertainty in a frequentist sense. We seek to investigate whether this ensemble has
any connection with the ensemble of models obtained in Bayesian statistics when sampling
parameters from their posterior distribution.
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We interpret the particles as samples from an unknown distribution approximating the
posterior over model parameters, and we derive conditions under which any optimization
steps of the particles improves the quality of the approximation to the posterior. Remarkably,
the conditions that we derive do not require assumptions on the distributional form assumed
by the particles and they are purely geometrical, involving first and second derivative of
the log-likelihood w.r.t. model parameters. We make use of variational arguments to show
that, in the linear regression case with a Gaussian likelihood, any optimization steps of
the particles associated with a perturbed replicate of the data yields an improvement of
the kl divergence between the distribution of the particles and the posterior. Interestingly,
the conditions that we derive suggest that this is also the case when the Hessian trace of
the model function w.r.t. the parameters is zero almost everywhere. As a consequence, our
result shows that applying parametric bootstrap on dnns with relu activations yields an
optimization of the particles which does not degrade the quality of the approximation.

2. Parametric Bootstrap Ensembles

In regression, observations y are assumed to be a realization of a latent function f(x; θ)
corrupted by a noise term ε:

y = f(x; θ) + ε (1)

Given n input-output training pairs D = {(xi, yi) | i = 1 . . . n}, the objective is to estimate
θ. In Bayesian inference, this problem is formulated as a transformation of a prior belief p(θ)
into a posterior distribution by means of the likelihood function p(D|θ). This is achieved
by applying Bayes rule: p(θ|D) = p(D|θ) p(θ)

p(D) , where the model evidence p(D) denotes the
probability of data when model parameters are marginalized out.

In a strictly frequentist setting, one can obtain a maximum a posteriori estimate (map):
θ∗ = arg maxθ [log p(D|θ) + log p(θ)], where log p(θ) is interpreted as a regularization term.
In parametric bootstrap (Efron and Tibshirani, 1993), data replicates are created by sampling
from a parametric distribution that is fitted to the data, typically by means of maximum
likelihood (ml). Then, a different model is fit to each replicate, and the ensemble of trained
models is used to calculate statistics of interest. In this work, we use the likelihood model
as the resampling distribution, in order to reflect the assumptions of the Bayesian model.

Consider a vectorization of model parameters θ ∈ Rm. We assume a Gaussian model for
the noise, ε ∼ N (0, σ2), and a Gaussian prior over θ:

p(D|θ) =
∏

x,y∈D
N (y; f(x; θ), σ2) and p(θ) = N (0, α2Im) (2)

For each likelihood component, we have exactly one observation y, which is also the ml
estimate for the mean parameter of a density with the same shape. In the bootstrap scheme,
the label of each data-point is resampled as: ỹ ∼ N (y, σ2), where ỹ denotes a perturbed
version of the original label y. We denote the perturbed dataset as D̃, such that (x, ỹ) ∈ D̃.

In the Bayesian treatment of the model, variability is also encoded in the prior distribution.
We shall capture this behavior by introducing a perturbation on the prior, so that each
perturbed model is attracted to a different prior sample. Considering the prior of Equation (2),
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we create a perturbed version by resampling parameter components as follows:

p(θ; θ̃) = N (θ̃, α2Im), where θ̃ ∼ N (0, α2Im) (3)

The perturbed p(θ; θ̃) depends on θ̃, which has been sampled from the original Gaussian
prior. The combined resampling results in the following perturbed joint log-likelihood:

log p̃(D, θ) = log p(D̃|θ) + log p(θ; θ̃) (4)

Along these lines, we propose a gradient ascent scheme which operates on a set of
particles {θ(1), . . . , θ(k)}, where θ(i) ∈ Rm for 1 ≤ i ≤ k. We effectively maximize different
realizations of log p̃(D, θ); note that this process can be trivially parallelized. Each particle
is then attracted to a different sample of the prior and a different perturbation of the data.

If q is the empirical distribution of the particles, we hope that q can serve as an
approximation to the Bayesian posterior. The distribution q is implicitly initialized to the
prior, as we have θ(i) ← θ̃ ∼ p(θ). This is a sensible choice, as any samples away from the
support of the prior would have very low probability under the posterior. We make no
further assumptions regarding the shape of q; we only know q implicitly through its samples.

3. On the Distribution of Perturbed Models

We shall investigate the effect of the optimization of particles on the implicit distribution q.
Let kl[q||p] be the divergence between the approximating distribution q(θ) and the posterior
p(θ|D). The update on an individual particle is described by the transformation:

τ(θ) = θ + h∇ log p̃(D, θ) (5)

Assume that θ ∼ q; then the transformation τ induces a change in q so that τ(θ) ∼ qτ .
It is desirable that the updated distribution qτ is closer to the true posterior. Thus, the
derivative of the kl divergence along the direction induced by τ has to be negative. Then
for a gradient step h small enough, τ should decrease the kl divergence and the following
difference should be negative:

δh = kl[qτ ||p]− kl[q||p]

Because the approximating distribution q is arbitrary, we shall take advantage of the fact
that the kl divergence remains invariant under parameter transformations (Amari and
Nagaoka, 2000). By applying the inverse transformation τ−1, we have:

δh = kl[q||pτ−1 ]− kl[q||p] = Eq[log p(θ|D)− log pτ−1(θ|D)] (6)

where pτ−1 denotes the transformed posterior density by τ−1, which can be expanded as
follows (Bishop, 2006):

pτ−1(θ|D) = p(τ(θ)|D) det{Im + hHess log p̃(D, θ)} (7)

After substituting pτ−1 in (6), we can calculate the directional derivative of the kl along
the direction of τ by considering the following limit:

lim
h→0

δh
h

= −Eq[∇ log p>∇ log p̃+ tr{Hess log p̃}] = ∇τkl[q||p] (8)
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where:

∇ log p>∇ log p̃ = lim
h→0

log p(D, θ + h∇ log p̃)− log p
h

tr{Hess log p̃} = lim
h→0

log det{Im + hHess log p̃}
h

To keep notation concise, we refer to the joint log-densities log p(D, θ) and log p̃(D, θ) simply
as log p and log p̃, respectively. The first of the two limits above is the directional derivative
towards the gradient ∇ log p̃. In a gradient ascent scheme, it is expected to have a positive
value which gradually approaches zero over the course of optimization.

Ideally, the directional derivative in (8) should stay negative (or zero) as log p̃(D, θ) is
maximized. The conditions under which this is true are reflected in the following proposition:

Proposition 1 Let log p̃(D, θ) be a perturbed Bayesian model, and q an arbitrary distribu-
tion that approximates the true posterior p(θ|D). The transformation τ(θ) = θ+h∇ log p̃(D, θ)
induces a change of measure such that the directional derivative ∇τkl[q||p] is non-positive if:

Eq[∇ log p>∇ log p̃] ≥ −Eq[tr{Hess log p̃}] (9)

Proof The result is given by a simple manipulation of (8), and by ∇τkl[q||p] < 0.

The inequality in (9) is not always satisfied, as the Hessian can contain negative numbers
in its diagonal; e.g., the second derivatives for θ near local maxima should be negative.
As an example where the inequality in (9) is violated, consider a convex unperturbed joint
log-likelihood, i.e. different particles θ ∼ q optimize log p(D, θ). Eventually, the different
gradients ∇ log p would approach zero for any θ. The directional derivative expectation
would also approach zero, as all points converge to the same maximum. The directional
derivative of the kl divergence would tend to be positive, implying that further application
of the transformation τ results in poorer approximation of the true posterior.

In the general case, it is rather difficult to reason precisely about the value of ∇τkl[q||p].
Nevertheless, we conjecture that the introduction of a perturbation makes the inequality
in (9) less likely to be violated. We demonstrate this effect for certain kinds of prior and
likelihood in the rest of the section.

Gradient analysis for Gaussian prior and likelihood

Let f(x; θ) be the output of a nonlinear model (i.e. a dnn) and let θ ∈ Rm be a vectorization
of its parameters including weight and bias terms. We shall consider a Gaussian prior
N (0, α2Im) and a likelihood function of the form N (f(x; θ), σ2).

Let N (θ̃, α2Im) denote a perturbed version of the prior, where θ̃ ∼ N (0, α2Im). Let
the perturbed version of the data be D̃, where for all (x, y) ∈ D and (x, ỹ) ∈ D̃ we have
ỹ = y + ỹ0 and ỹ0 ∼ N (0, σ2). The perturbed version of the log-likelihood is:

log p̃(D, θ) = −
∑

x,ỹ∈D̃

(f(x; θ)− ỹ)2

2σ2 −
m∑
j=1

(θj − θ̃j)2

2α2 (10)
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For the gradient and the Hessian trace of the perturbed log-likelihood above, we have:

∇ log p̃(D, θ) = ∇ log p(D, θ) +
∑

x,ỹ∈D̃

ỹ0
σ2∇f(x; θ) + θ̃j

α2 (11)

tr{Hess log p̃(D, θ)} = tr{Hess log p(D, θ)}+
∑

x,ỹ∈D̃

 ỹ0
σ2

m∑
j=1

∂θ2
j
f(x; θ)

 (12)

During the optimization process, each particle θ is associated with a particular random
perturbation. We have not made any specific assumptions regarding the approximating
distribution q, therefore the random variable θ ∼ q and the perturbations ỹ0 and θ̃ are
mutually independent. We leverage this mutual independence and we exploit certain
properties of the Gaussian assumptions, so as to develop Eq. (9) into the following theorem.

Theorem 2 Let log p̃(D, θ) be a perturbed Bayesian nonlinear model with prior N (0, α2Im)
and likelihood N (f(x; θ), σ2), with perturbations ỹ ∼ N (f(x; θ), σ2) and θ̃ ∼ N (0, α2Im). Let
q be an arbitrary distribution that approximates the true posterior p(θ|D). The transformation
τ(θ) induces a change of measure such that the directional derivative ∇τkl[q||p] is non-
positive if:

Eq,ỹ0,θ̃

[
‖∇ log p̃‖22

]
≥ Eq

 ∑
x,y∈D

f(x; θ)− y
σ2

m∑
j=1

∂θ2
j
f(x; θ)

 (13)

Proof We can calculate the expectation of the kl directional derivative w.r.t. ỹ0, θ̃ by
noticing that Eỹ0 [ỹ0] = 0 and Eθ̃[θ̃] = 0:

Eỹ0,θ̃
[∇τkl[q||p]] = −Eq[∇ log p>∇ log p+ tr{Hess log p}] (14)

We next express the gradient norm ‖∇ log p‖22 in terms of the expectation Eỹ0,θ̃

[
‖∇ log p̃‖22

]
(see Lemma 1 in Appendix A.3). The same quadratic terms appear in both the norm
expectation and the Hessian, thus the inequality simplifies to Eq. (13). See details in Section
A.3 of the supplement.

Theorem 2 involves the expectation of the perturbed gradient norm. This should be a
positive value that approaches zero, as the optimization converges. The theorem demands
that this positive value is larger in expectation than a summation involving the diagonal
second derivatives of f(x; θ).

The fraction term in r.h.s. of (13) may have large absolute values if the particles θ ∼ q
are far from the posterior, but so will the perturbed gradient norm. However, the difference
f(x; θ) − y is not evaluated in absolute value; if the data are reasonably approximated,
any discrepancies are averaged out. Nevertheless, it is rather difficult to reason about the
magnitude of this difference in the general case.
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Figure 1: Regression on a 8-layer dnn with 50 relu nodes – State of 200 ensemble-based
particles at different optimization stages.

Remarks on linear and piecewise-linear models The second-order derivative term
in r.h.s. of (13) represents the curvature of the learned regression model. This term can
be further simplified for certain families of functions. For a linear model, f is linear w.r.t.
the parameters; this means that the directional derivative of kl divergence is guaranteed
to be non-positive. This result can be extended to functions that are only piecewise-linear
w.r.t. their parameters. A popular dnn design choice involves relu activations, which are
known to produce piecewise-linear models. It is easy to see that the Hessian of a relu
network is defined almost everywhere and its diagonal contains zeros. The set for which the
Hessian is not defined has zero measure (for the same set the gradient is not defined either,
but this has little effect on the usability of relu models). As a final remark for models for
which ∂θ2

j
f(x; θ) = 0, the kl divergence would only decrease over the course of optimization,

until its directional derivative finally becomes zero. That does not guarantee that the kl
divergence is optimized, as the derivative would have to be zero towards any direction.

Example – Regression ReLU network We consider a 8-layer dnn with 50 relu nodes
per layer, featuring prior θ ∼ N (0, Im), where m = 18000, and likelihood y|θ ∼ N (f(x), 0.1).
Figure 1 shows the particles given by the ensemble scheme at different stages of the
optimization. We compare against samples of the Metropolis-Hastings algorithm featuring a
Gaussian proposal with variance 0.01. We generated 200 samples by performing 10 restarts
and having kept one sample every 20000 steps, after discarding the first 40000 samples.
The average value for the R̂ statistic (Gelman and Rubin, 1992) on the predictive models
has been: R̂ = 1.08. As the optimization progresses, the distribution of predictive models
improves until it reasonably approximates the mcmc result.

4. Conclusions

We have employed variational arguments to establish a connection between a certain kind of
ensemble learning and Bayesian inference beyond linear regression with a Gaussian likelihood,
for which this connection was already known. The particles associated to perturbed versions
of the joint log-likelihood are interpreted as samples from a distribution approximating the
posterior over model parameters. We derived conditions under which any optimization steps
of these particles yields an improvement of the divergence between the approximate and
the actual posterior. We applied this result to dnns with relu activations to establish that
the optimization of particles is guaranteed to have no detrimental contribution to the kl
divergence between the approximate and the actual posterior.
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Appendix A. Derivations and Proofs

Let log p(D, θ) be the joint log-likelihood of a model with likelihood N (f(x; θ), σ2) and prior
N (0, α2Im). We consider a perturbation of the prior θ̃ ∼ N (0, α2Im), and the data D̃ such
that for all (x, y) ∈ D and (x, ỹ) ∈ D̃ we have ỹ = y + ỹ0, where ỹ0 ∼ N (0, σ2). Then the
perturbed version of the log-likelihood will be:

log p̃(D, θ) = −
∑

x,ỹ∈D̃

(f(x; θ)− ỹ)2

2σ2 −
m∑
j=1

(θj − θ̃j)2

2α2 (1)

A.1. Expectation of perturbed gradient

The components of the perturbed gradient will be:

∂

∂θj
log p̃(D, θ) = −

∑
x,ỹ∈D̃

f(x; θ)− ỹ
σ2 ∂θj

f(x; θ)− θj − θ̃j
α2

= ∂

∂θj
log p(D, θ) +

∑
x,ỹ∈D̃

ỹ0
σ2∂θj

f(x; θ) + θ̃j
α2

(2)

It is easy to see that for the gradient of a perturbed log-likelihood, its expectation with
respect to the perturbation will be equal to the unperturbed gradient:

Eỹ0,θ̃
[∇ log p̃(D, θ)] = ∇ log p(D, θ) (3)

c© D. Milios, P. Michiardi & M. Filippone.



Supplementary Material:Parametric Bootstrap Ensembles as Variational Inference

A.2. Expectation of perturbed Hessian

For the trace we only need the diagonal components of the perturbed Hessian; by differenti-
ating Equation (2) by θj we get:

tr{Hess log p̃(D, θ)} =
m∑
j=1

∂2

∂θ2
j

log p(D, θ) +
∑

x,ỹ∈D̃

 ỹ0
σ2

m∑
j=1

∂θ2
j
f(x; θ)

 (4)

Since Eỹ0 [ỹ0] = 0, we have:

Eỹ0,θ̃
[tr{Hess log p̃(D, θ)}] = tr{Hess log p(D, θ)} (5)

A.3. Proof of Theorem 2

Before proving Theorem 2, we shall review the following lemma:

Lemma 1 Let log p̃(D, θ) be a perturbed Bayesian non-linear model as in (1). For the
perturbation distributions we assume: ỹ0 ∼ N (0, σ2) and θ̃ ∼ N (0, αIm). Then, for arbitrary
θ we have:

‖∇ log p‖22 = Eỹ0,θ̃

[
‖∇ log p̃‖22

]
+ 1
σ2

∑
x,ỹ∈D̃

‖∇f(x; θ)‖22 + m

α2 (6)

Proof From (2), we have the following for the original gradient:

∇ log p(D, θ) = −
∑

x,ỹ∈D̃

ỹ0
σ2∇f(x; θ)− θ̃

α2 +∇ log p̃(D, θ) (7)

We consider the following joint expectation with respect to ỹ0 and θ̃:

Eỹ0,θ̃
[∇ log p(D, θ)>∇ log p(D, θ)]

= Eỹ0,θ̃


− ∑

x,ỹ∈D̃

ỹ0
σ2∇f(x; θ)− θ̃

α2 +∇ log p̃(D, θ)

>− ∑
x,ỹ∈D̃

ỹ0
σ2∇f(x; θ)− θ̃

α2 +∇ log p̃(D, θ)




= Eỹ0,θ̃

 ∑
x,ỹ∈D̃

ỹ2
0
σ4 ‖∇f(x; θ)‖22 +

m∑
j=1

θ̃2
j

α4 + ‖∇ log p̃‖22


(8)

Note that the terms of the polynomial that we have omitted are zero in expectation, because
we have E[ỹ0] = 0 and E[θ̃] = 0. Also since we have E[ỹ2

0] = σ2 and E[θ̃j ] = α2, the
expectation becomes:

∇ log p(D, θ)>∇ log p(D, θ) = 1
σ2

∑
x,ỹ∈D̃

‖∇f(x; θ)‖22 + m

α2 + Eỹ0,θ̃

[
‖∇ log p̃‖22

]
(9)

Now we can move to the main theorem.
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Theorem 2 Let log p̃(D, θ) be a perturbed Bayesian non-linear model with prior N (0, α2Im)
and likelihood N (f(x; θ), σ2), with perturbations ỹ0 ∼ N (f(x; θ), σ2) and θ̃ ∼ N (0, α2Im).
Let q be an arbitrary distribution that approximates the true posterior p(θ|D). The transfor-
mation τ(θ) will induce a change of measure such that the directional derivative ∇τkl[q||p]
is non-positive if:

Eq,ỹ0,θ̃

[
‖∇ log p̃‖22

]
≥ Eq

 ∑
x,y∈D

f(x; θ)− y
σ2

m∑
j=1

∂θ2
j
f(x; θ)


Proof

According to Theorem 1, the directional derivative ∇τkl[q||p] is non-positive if the
following holds:

Eq[∇ log p>∇ log p̃] ≥ −Eq[tr{Hess log p̃}]

For a non-linear model with Gaussian prior and likelihood, the gradient and the Hessian
trace of the perturbed log-likelihood log p̃ will have expectations:

Eỹ0,θ̃
[∇ log p̃] = ∇ log p (10)

Eỹ0,θ̃
[tr{Hess log p̃}] = tr{Hess log p} (11)

Derivations for the expectations above can be found in Sections A.1 and A.2 of the sup-
plementary material. Also, we can expand ∇ log p̃ in the following inner product using
(2):

∇ log p>∇ log p̃ = ∇ log p>
∇ log p+

∑
x,ỹ∈D̃

ỹ0
σ2∇f(x; θ) + θ̃

α2


Eỹ0,θ̃

[∇ log p>∇ log p̃] = ∇ log p>∇ log p

If we consider the joint expectation with respect to θ ∼ q, ỹ0 and θ̃, the condition specified
by Theorem 1 can be approximated as follows:

Eq,ỹ0,θ̃
[∇ log p>∇ log p̃] ≥ −Eq,ỹ0,θ̃

[tr{Hess log p̃}]

Eq[∇ log p>∇ log p] ≥ −Eq[tr{Hess log p}]
(12)

Finally, if we use Lemma 1 on Equation (12) and we expand the Hessian,we obtain:

Eq

 1
σ2

∑
x,ỹ∈D̃

‖∇f(x; θ)‖22 + m

α2 + Eỹ0,θ̃

[
‖∇ log p̃‖22

]
≥ −Eq

− 1
σ2

∑
x,y∈D

‖∇f(x; θ)‖22 −
m

α2 −
∑

x,y∈D

f(x; θ)− y
σ2

m∑
j=1

∂θ2
j
f(x; θ)


which easily simplifies to the condition required for non-positive ∇τkl[q||p] in Theorem 2.
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