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ABSTRACT

We present an approach to improve sentiment classification for transformers
(based on BERT and DistilBERT) using additional embeddings to represent emo-
tion inputs. We used HuggingFace’s 0-shot prediction pipeline to generate prob-
abilities of whether emotions apply to a given sample. We generated 0-shot
probabilities for 1.6 million samples from a sentiment classification dataset and
a smaller sentiment airline dataset using 63 emotions. Then we added custom
tokens to BERT’s embeddings and tokenizers representing various levels of emo-
tion for each predicted emotion. Finally, depending on the probability of each
emotion, the respective custom token representing that level was prepended to the
text input of the model to process and train for classification. We additionally test
direct classification layer addition of emotion inputs and an ensemble of BERT
and DistilBERT models both using emotion inputs achieving a modest increase in
sentiment prediction accuracy. Our results show modest improvement in all cases
over the original model for both BERT and DistilBERT tested with added emotion
inputs generated from 0-shot pretrained models.

1 INTRODUCTION

Natural language processing (NLP) is a rapidly advancing field due to the developments of the
Transformer model Vaswani et al. (2017) using a combination of encoder and decoder to process
tokenized text with attention. Some popular models use bidirectional embeddings like BERT Devlin
et al. (2018) which is composed of just the encoder, while others use just the decoder like GPT-
2 Radford et al. (2019) and GPT-3 Brown et al. (2020). All of these models are composed of a large
number of parameters and this number of parameters has tendency to increase with time from several
hundreds of millions to more than one hundred billions (GPT3). Recently, (while not the main goal
for some models) another tendency focuses on reducing parameter sizes and efficiency like with
Reformer Kitaev et al. (2020), RoBERTa Liu et al. (2019) and DistilBERT Sanh et al. (2019), as
well as to focus on increasing the input sequence length such as with Transformer-XL Dai et al.
(2019) and XLNet Yang et al. (2019).

Transformers are the state-of-the-art in many NLP tasks. In this paper we focus one of these tasks,
sentiment classification, to study how additional semantic information could improve the prediction.
Sentiment classification is important for a variety of tasks. For individual samples, sentiment clas-
sification can be used to monitor comments on a platform (social media, direct messaging in sales,
etc.). They can also be used to gather general sentiment from a user’s history of comments, or ex-
pand to the sentiment of the public regarding topics like politics or world events from general social
media scraping. Sentiment classification is generally performed by predicting a positive or negative
label for sentiment, or a probability representing 1 as positive and 0 as negative. Some instances will
have a neutral output incorporated as a third label represented as 1, 0 and -1 for positive, neutral,
and negative, respectively.

Emotion classification aims at predicting emotion labels for text rather than a general sentiment.
Emotions such as joy, anger, neutral, disgust, fear, sadness and surprised are commonly used in
addition to other common emotions like love, hate, worry and relief. Often emotion classification
datasets are small in size with extremely unbalanced labels, but also suffer from labeller interpre-
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tation of complex emotions. Many datasets only include a small number of emotions and/or one
emotion per sample, but text can have a variety of emotions, each at different levels. Emotions
are highly subjective in text especially when it comes to choosing one emotion to represent one
sample since human labelers can classify the text differently between one another depending on the
interpretation or impression left on the person.

We aim to improve sentiment predictions using enhanced emotion labeling by incorporating them as
tabular data inputs to transformers. Emotion datasets provide poor quality labeling whether through
inconsistent interpretation or selection of a single emotion to represent the sample leading to sparsity
of labels. By improving the emotion labeling to encompass multiple emotions with a range of
emotion levels (without limitations on which emotions we can use), we can apply these labels to
sentiment classification allowing the model to take a wide range of emotions into consideration
which directly correlates to sentiment.

This paper is organized as follows. Section 2 describes related previous works. We describe our
sentiment models’ design using our dataset with generated emotion labels in Section 3. Experiments,
results and comparisons are presented in Section 4. Finally, the paper is concluded in Section 5.

2 PREVIOUS WORKS

Transformers advanced NLP significantly since the original paper “Attention Is All You
Need” Vaswani et al. (2017). The transformer uses attention and self-attention mechanisms in order
to detect and model dependencies and similarities between input words that are used to construct
a dynamic embedding of all the words. Unlike Recurrent Neural Networks (RNN), the model has
a pre-set input sequence length, and is generally trained using significantly larger models. Despite
these drawbacks, transformers have outperformed RNNs significantly.

Transformers are generally trained on large corpora, such as Wikipedia, containing millions of ar-
ticles and billions of words. Due to the large size of the training data coupled with the large size
of transformer models, it requires significant resources and time to train. Rather than training a
transformer from scratch, we look to pre-trained models with proven performance on several NLP
tasks.

Our results are demonstrated using the pre-trained models BERT Devlin et al. (2018) and Distil-
BERT Sanh et al. (2019). As BERT has been a very popular model and has performed very well
since its release, we chose BERT and DistilBERT to highlight improvements in these models while
showing how we can improve the smaller distilled variation using the same approach to compete
with the original BERT model. The base uncased BERT model has 110 Million parameters and
340 Million for the large model while DistilBERT reduces the size of a BERT model by 40% while
achieving a similar performance.

Sentiment classification is a popular task but is often a difficult task due to the way humans express
themselves in style and meaning. Naseem et al. (2020) use a combination of several model em-
beddings to overcome this problem and train a bi-LSTM using embeddings from character LSTM,
(word) GloVE, parts of speech (POS), Lexicon, (context) ELMo and (transformer) BERT. This com-
parison Zimbra et al. (2018) of several SOTA approaches shows the difficulty modelling sentiment
with nearly all approaches performing under 70% averaged over 5 sentiment datasets. Yin et al.
(2020) use a BERT model for sentiment classification by applying a two layer attention system to
the outputs of the BERT encoder at the token and phrase level using a parse tree. There’s a focus
on sentiment classification using BERT in different languages such as mixed English and Spanish
(Spanglish) Palomino & Ochoa-Luna (2020) and Arabic Antoun et al. (2020). Transformers (like
BERT) and other models have also been tested for the low-resource language Bangla for sentiment
classification Arid Hasan et al. (2020).

To provide additional information to our model, we use an approach to incorporate tabular data
into transformers. There have already been some works involved in embedding tabular data into a
transformer model. Kiela et al. (2019) use the idea of embedded tokens to add pooled outputs from
a ResNet He et al. (2015) model into a transformer allowing the transformer to process both text and
associated images. Similarly, Lu et al. (2019) also embeds image information by using a Fast(er)
R-CNN Ren et al. (2016) to produce features, but the features are added to the embeddings of the
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text. They mask regions of interest and also provide them as added features to custom “’[IMG]”
tokens allowing the model to predict information about these masked regions.

3 METHODOLOGY

In this section we describe our methodology in two steps. The first step is generating emotion prob-
abilities for the sentiment dataset we intend to train on, in addition to preprocessing these emotions
for use in the transformer. The second step is our training procedure to classify the sentiment dataset
using these additional emotion features. Our approach uses the idea of custom embeddings to in-
clude emotions as token inputs into the transformer for sentiment classification. We designed our
approach to handle a range of emotional inputs for every token using multiple embeddings within a
specified emotion range, in addition to emotional inputs added to the classifier layer. We generate
63 emotion categories at random in our tests automatically generated without any training (0-shot)
relieving limitations on the number of emotion categories or the emotions used. Although there’s
no limit to the number of emotions, aside from BERT’s maximum input length of 512 which must
also include text, we limited our tests to 63 emotions to include all information. We also show the
change in accuracy by selecting subsets of emotions which highlight more emotions provide more
accuracy.

3.1 DATASETS

We use the sentiment140 Go et al. (2009) dataset which consists of 1.6 million samples classified
as 0 for negative and 4 for positive (relabeled to 1) with an even class distribution. We chose it
because it’s the largest tweet sentiment dataset with a general purpose topic (not specific to reviews
or categories). The samples were scraped from twitter and include separate information on the user
that posted the tweet such as their username and date, in addition to their tweet text. We discard user
information and data information and simply use the tweet text for sentiment classification. We do
not alter the text in any way like removing links, user mentions or symbols, we use the dataset as it
is presented.

We additionally test on a smaller dataset US-Airline sentiment from crowdflower !. The dataset
consists of tweets mentioning US airlines and are labeled for sentiment. There are 2363 positive
samples, 9178 negative samples and 3099 neutral samples. We removed the neutral samples since
our approach is built for positive or negative predictions, leaving us with 11,541 samples. Due to
the imbalance in classes, we removed most of the negative samples to match the size of the positive
class giving us 4726 samples.

3.2 DATA PRE-PROCESSING

We generate emotion categories for each sample in the dataset for the first step in our pre-processing.
We chose a random list of 63 general emotions for our examples which include some common emo-
tions found in emotion datasets. We didn’t choose any particular set of emotions because we wanted
to capture a wide range of possible informative features to the dataset, but we also try removing
emotions not specific to positive or negative sentiment. Datasets for emotion classification like the
dataset generated from crowdflower and from Saravia et al. Saravia et al. (2018) use just a single
emotion for each sample (sometimes including an “other” category), usually from these typical emo-
tions: empty, sadness, enthusiasm, neutral, worried, surprise, love, fun, hate, happiness, boredom,
relief, anger. We include all of these emotions aside from “neutral” and ”other” and added many
more: amusement, annoyed, anxious, aversion, bitter, cheated, compassion, confused, contentment,
contrary, desperate, disappointed, disapproving, disgust, dislike, disturbed, doubtful, excitement,
fear, frustrated, gloomy, grieved, heartbroken, hopeless, horrified, infuriated, insulted, irritated, joy,
loathing, lonely, lost, mad, miserable, nauseated, nervous, offended, panicked, peace, peeved, pride,
resigned, revulsion, satisfaction, stressed, terrified, troubled, uncomfortable, unhappy, vengeful,
withdrawal.

"https://www.crowdflower.com/data-for-everyone/, https://data.world/crowdflower/sentiment-analysis-in-
text
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Figure 1: Tokenized text using custom emotion tokens. Then the emotion probabilities are concate-
nated with the transformer output and processed by one or two fully connected layers.

We use the HuggingFace transformer library Wolf et al. (2019) to load a 0-shot pipeline. They use
a Natural Language Inference (NLI) method which considers a premise and hypothesis in order to
predict whether the hypothesis holds. The pipeline design can use any model, by default they use
BART Lewis et al. (2019) which shows a large improvement over BERT on Yahoo Answers, (see
the results from this paper comparing BART and BERT for 0-shot classification Yin et al. (2019)).
We use this pipeline to compare each emotion class to the sample text individually forcing the
HuggingFace 0-shot pipeline to generate a probability independent of other emotion categories. We
kept the default hypothesis format This example is { }”” where { } gets replaced with the respective
emotion, and the premise is the original sample. Each emotion is processed individually producing
a raw probability from BART whether the hypothesis follows the premise using direct probabilities
(not processed through softmax). This gives us the emotion probabilities rather than associating a
high probability to the emotion that applies the most to the text from a large list of emotions. BART
simply processes the text as ”[CLS] premise [SEP] hypothesis [SEP]” and produces a probability
for entailment. We used 4 Nvidia P-100 GPUs to predict on 1000 samples per batch (depending
on length of text, sometimes the batch must be reduced in size for lengthy samples) to generate the
probabilities for each emotion category and for each sample.

Therefore, each emotion category received a probability for how much it associates to the original
sample text. The probabilities are pre-processed to fit into a desired range of tokens. The token range
is a list of custom transformer tokens where each token represents a segmentation of the probability.
For example, if "Happy” has a predicted probability of 0.75 for a specific sample, and we want the
range squished into a list of 3 tokens, then we generate the token “[happy_-2]” where ”[happy-0]”
represents all probabilities < 1/3, ”[happy_1]" represents the remainder of probabilities < 2/3, and
“[happy_2]” represents the remaining probabilities >= 2/3. We do this for each sample and for each
emotion, then the sample text is prepended with the list of emotions. The entire token is associated
to one embedding, so there’s no meaning behind the format aside from organization. For example,
the text would look like the following (assuming the emotion ranges): ”[CLS] [amusement_1] (...)
[happy-2] (...) [worried_0] The original sample text. [SEP]”. The emotions prepended allows them
to be kept in the same position for all samples for the positional embedding.

In addition, we tested binary labels for the generated emotions using a dynamic threshold (optimal
to split the dataset evenly) for each emotion. For a particular emotion, the threshold is determined by
sorting the probabilities of the training set and choosing the median of the sorted list as the threshold
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Table 1: Comparison to original BERT. IDs describe the types of tests: O := original transformer,
T := includes tokens, C := concatenated emotions to output layer, M := mix of T and C, and EN :=
ensembles. Bold results are all of the models that contribute to EN. EN+Distil include DistilBERT
(from Table 2 in bold) with the EN models. Underlined are the result with a P-value lower than
alpha=0.10. Columns in order: Test method-ID#, number of output layers, # of tokens used, concat
probability format, test accuracy, F1, F1 difference to original, and finally P value.

Classifier Concat Improvement t-test
D Layers Tokens Style Accuracy Fl over O-1 P-value
O-1 1 - - 0.87418  0.87413 N/A N/A
0-2 2 - - 0.87373  0.87347 -0.066% 5.75e-01
T-1 1 2 (opt) - 0.87597  0.87598 0.185% 2.08e-02
T-2 1 2 - 0.87581  0.87546 0.133% 4.53e-09
T3 1 10 - 0.87615  0.87584 0.171% 1.75e-15
T-4 1 20 - 0.87662  0.87651 0.238% 4.12e-02
T-5 1 30 - 0.87646  0.87629 0.216% 4.67e-01
T-6 2 20 - 0.87652  0.87677 0.264 % 2.84e-08
T-7 2 30 - 0.87627  0.87632 0.219% 6.89e-09
C-1 2 - (0-100) 0.87611  0.87591 0.178% 6.75e-01
C-2 1 - (1/0) (opt)  0.87604  0.87583 0.170% 7.42e-02
C-3 2 - (1/0) (opt)  0.87683  0.87650 0.237% 5.31e-01
M-1 2 2 (opt) (1/0) (opt) 0.87652  0.87611 0.198% 5.73e-10
M-2 2 20 (0-100) 0.87624  0.87628 0.215% 4.60e-15
M-3 2 20 (1/0) (opt)  0.87604  0.87604 0.191% 1.58e-06
EN - - - 0.87896  0.87890 0.477% 1.38e-04
EN+Distil - - - 0.87922  0.87925 0.512% 8.59¢-09

to evenly split the dataset. For example, the generated emotion empty has the majority of the dataset
classified as one label (97.89% of the dataset). This is uninformative to the model, so instead we
apply the dynamic threshold and have 50% of the samples predicted as empty. A high performing
emotion such as unhappy splits the dataset nearly in the middle at 51.14%, meaning the emotion is
more informative to the model. The dynamic threshold in this case will have little change to these
emotions when adjusted to a 50.0% split (only 1.14% of the labels change classes). This has two
benefits, the reduction of tokens (and added embeddings) when we insert tokens into the text, and
the reduction of class imbalance and inconsistencies when training. The first benefit reduces the
number of added embeddings to 2 embeddings (a range of 2, positive and negative) per emotion
compared to several tokens per emotion depending on the prior emotion level, but maintaining a
similar improvement in F1.

Note that we’ve tried adding the emotions as keywords to avoid training additional tokens and adding
negation for positive and negative classes such as "happy” and not happy” (as text, not tokens), or
simply not including the emotion when negative. This did not improve results in testing in any trial.
We believe this could be from the positional embedding since each keyword is split into one or many
tokens during the tokenization process, and secondly from an association to seeing keywords like
“happy” as a biased indication of positive sentiment when possibly appearing in the sample text
itself. In this case, using added embeddings allows the model to interpret its own meaning to the
emotion while reducing the lengthy input size to each sample using raw keywords.

We use the python libraries Transformers Wolf et al. (2019) and FastAI Howard et al. (2018) to load
the pretrained BERT transformer including the vocabulary and zero-shot pipeline. Using FastAl, we
tokenize the entire training, validation and test set. Finally, the data collection from FastAl is loaded
using the sample text with embedded emotion tokens, sentiment targets, final classifier emotion
mputs.
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Table 2: Comparison to original DistilBERT. Columns follow the same format as table 1. The results
in bold contribute to the ensemble of DistiIBERT models. Underlined are the result with a P-value
lower than alpha=0.10.

Classifier Concat Improvement t-test
D Layers Tokens Style Accuracy Fl over Original ~ P-value
Original 2 - - 0.86870  0.86863 N/A N/A
Tokens 2 20 - 0.87221  0.87263 0.400% 1.18e-20
Concat 2 - (0-100)  0.87217  0.87226 0.363% 1.80e-03
Mixed 2 20 (0-100)  0.87218  0.87231 0.368% 1.76e-04
Ensemble - - - 0.87479  0.87505 0.642% 1.48e-11

3.3 INCORPORATING GENERATED EMOTIONS INTO TRANSFORMERS

In this section we describe the model designs which incorporate the generated emotion information.
We specifically tested our models using BERT and DistilBERT, but the approaches can be used
on any transformer architecture. We use the following optimization parameters: momentum set
to (0.8, 0.7), discriminative weight decay (le-7, le-5, le-4, 1e-3, le-2) segmented by the following
components (embedding, encoder layers 0-3, encoder layers 4-7, encoder layers 8-11, pool and clas-
sification layers), and discriminative learning rates set to a range of 8e-6 to le-4 for the segmented
layers of the model. We use FastAlI’s fit function to take advantage of these optimization parameters
to train the models over 2 epochs. The optimization parameters were tuned to have the model fit by
the end of 2 epochs, one more epoch would begin to overfit the model slightly. We split DistilBERT
in a similar fashion, but using 2 encoder layers per section rather than 4.

The first step in processing the samples with emotions is prepending the emotions as a text input
to the transformer. We altered the tokenizer to expand the vocabulary to include the pre-processed
custom tokens like ”[happy_2]” as one whole token. Then the transformer is resized to fit this vo-
cabulary with a newly initialized embedding for each custom token. Finally, the text with prepended
custom tokens can be tokenized and processed as whole tokens by the transformer. Note that we test
the alternative labeling using optimal thresholds (1/0 binary classification of emotions) in place of
the range of tokens and/or classifier inputs.

As an additional experiment, we input the probabilities of each emotion category for the sample into
the classification layers of the transformer. The classification layers will have the transformer output
appended with the emotion probabilities, then one or two fully connected layers with 200 neurons
and finally an output layer for the sentiment probability. At prediction time, we can use a threshold
of 0.5 to determine positive or negative sentiment. See Figure 1 for a diagram of the full model.

4 EXPERIMENTATIONS AND RESULTS

We compared different combinations of emotion embeddings to the original BERT transformer with-
out any additional information (see table 1). We trained all of our models on the same data using a
test size of 20%, a validation size of 12% and a training size of 68%. The table shows five sections,
a section *O’ for the original BERT models (either 1 or 2 classification layers), a section *T° with
added custom tokens to the transformer input only, a section ’C’ with emotions concatenated to the
classification layer(s) only, a section "M’ where we try a combination of concatenation and custom
tokens, and finally an ensemble. The fifth section is an ensemble of all models highlighted bold in
their improvement column, and another ensemble (ID EN+Distil) which includes the same BERT
models and additional DistilBERT models trained with emotions highlighted in bold in table 2. We
also compare the DistilBERT models results on the same problem using the best emotion inputs we
found for BERT (see table 2). We include the same five sections as in table 1 and the ensemble is all
DistilBERT models highlighted in bold.

We tested each model using Accuracy and F1, and show the difference (improvement) over the orig-
inal BERT (table 1) or DistilBERT (table 2) model. We include a t-test P-value score for each model,
note that the 2 layer original BERT (ID O-2) has a P-value of 0.57459 much greater than alpha=0.10
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Table 3: Results for the Sentiment140 dataset using the O-shot HuggingFace pipeline where we
use the predictions of the individual emotion to classify the dataset. Highlighted in bold are direct
positive and negative sentiment predictions and their softmax result.

Emotions Acc | Emotions Acc | Emotions  Acc | Emotions Acc
unhappy 0.7813 | desperate 0.7195 | offended 0.6393 | revulsion 0.5758
pos/neg soft.  0.7715 | contrary 0.6999 | joy 0.6367 | nauseated 0.5721
disappointed 0.7667 | disapproving 0.6966 | excitement 0.6290 | anger 0.5707
fun 0.7664 | miserable 0.6933 | withdrawal 0.6288 | happiness 0.5692
grieved 0.7649 | heartbroken  0.6906 | stressed 0.6206 | contentment (.5666
frustrated 0.7601 | nervous 0.6823 | insulted 0.6185 | lost 0.5656
disturbed 0.7575 | anxious 0.6822 | hopeless 0.6181 | love 0.5572
uncomfortable 0.7545 | doubtful 0.6800 | disgust 0.6169 | fear 0.5458
annoyed 0.7514 | mad 0.6784 | resigned 0.6164 | compassion  0.5448
irritated 0.7471 | infuriated 0.6713 | relief 0.6159 | peace 0.5429
worried 0.7465 | panicked 0.6695 | lonely 0.6157 | pride 0.5426
peeved 0.7460 | aversion 0.6640 | confused 0.6090 | surprise 0.5394
troubled 0.7451 | enthusiasm 0.6547 | terrified 0.6082 | hate 0.5338
negative 0.7377 | satisfaction 0.6508 | amusement 0.6013 | boredom 0.5224
positive 0.7333 | bitter 0.6503 | cheated 0.6007 | empty 0.5132
gloomy 0.7306 | sadness 0.6450 | loathing 0.5899

dislike 0.7223 | horrified 0.6436 | vengeful 0.5826

Table 4: Tests on small training sets randomly selected from Sentiment140. The samples columns
has the number of training samples used. The F1 score is provided for each test, one without the use
of tokens and the other with tokens using a range of 20.

Samples F1 original F1 tokens Improvement
50000 0.84347 0.85081 0.734%
25000 0.83519 0.84548 1.029%
10000 0.82279 0.83341 1.062%

5000 0.81387 0.82338 0.951%
1000 0.79162 0.80036 0.874%
750 0.78456 0.78335 -0.121%
500 0.78449 0.78039 -0.410%

when compared to the one layer model (ID O-1), while also keeping almost no change in accuracy
and F1, meaning we cannot reject the Null Hypothesis, which is expected. Other models have a
higher P-value than alpha which are models using too many tokens (30 tokens for example) or using
just classifier inputs, but it is possible that we do not have enough information about these models
to show a significant change for P-value since accuracy and F1 improve. This is in-line with the fact
that the 2 layer BERT model does not show much difference in terms of accuracy and F1 compared
to the 1 layer model. All other models show P-values much lower than alpha=0.05 meaning we
can reject the Null Hypothesis for the models embedded with additional emotion information. Thus
embedding emotions into the models (using tokens and/or concatenation) generates improved and
differing results from the original model. Additionally, adding the predictions of each model as an
ensemble shows an improvement by combining these differing models.

We found that adding emotions regardless of the input style has a statistically significant improve-
ment over the original model for both cases (BERT and DistilBERT). The best improvement was
achieved using the 20 token range input style with a modest improvement of 0.264% and 0.400% for
BERT and DistilBERT, respectively. The concatenation of emotion probabilities does not improve
nearly as much as with the token models, but we see an improvement over the original models. Us-
ing optimal thresholds show a greater improvement within the concatenation tests, but not for tokens
inputs. The attempt at mixed tests (tokens inputs and concatenation) show an improvement as well,
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Table 5: Tests performed by reducing number of emotions for the Sentiment140 dataset. We used a
token range of 20 for these tests.

# Emotions F1 Difference
63 0.87677 0.264%
31 0.87630 0.217%
15 0.87557 0.144%
0 0.87413 N/A

but averaged out between the improvement provided by tokens and concatenation individually. Ad-
ditionally, the ensemble of BERT models shows an improvement of 0.477% over the original BERT.
The ensemble of the three DistiiBERT models using added emotions improves over the original
BERT model by 0.092% while improving the original DistilBERT model by 0.642%. Finally, the
ensemble of the selected BERT and DistilBERT models show our highest improvement of 0.512%
over the original BERT model. The runtime to train each model ranged from 3 to 4 hours on 4
Nvidia P-100 GPUs and a batch size of 100.

We also use the optimal threshold for each emotion to classify the whole dataset using the 0-shot
model. We present the results of each individual emotion used to classify the dataset as positive and
negative sentiment (see table 3). We also included an attempt to classify as positive and negative
sentiment directly by using the 0-shot model and words “positive” and “negative” as classes. We
included a softmax classification between both categories as well shown as ”pos/neg soft.”” in the
table. The results of this test shows that none of 0-shot predictions comes close to the accuracy of
the original BERT or DistilBERT models for direct sentiment classification. If one of the 0-shot
predicted emotions could classify the dataset with better accuracy, then the model could rely on that
input for its improvement in classification results. Instead, the models use the emotion information
for improved sentiment classification since the best performing emotion is “unhappy” with 78.13%
accuracy, roughly 8-9% below BERT or DistilBERT’s performace. Even a direct prediction with
positive and negative sentiment using softmax (”’pos/neg soft.”) achieves just 77.15%, lower than the
“unhappy” emotion result.

We gathered a list of emotions selected from the top of table 3 which most closely resembles the
final target (positive/negative) using the top 31 and 15 emotions in an attempt to cut the list of
emotion inputs down by half (for example the 15 selected were: ’desperate’, ’dislike’, ’gloomy’,
’troubled’, ’peeved’, worried’, ’irritated’, ’annoyed’, 'uncomfortable’, ’disturbed’, ’frustrated’,
“grieved’, ’fun’, ’disappointed’, 'unhappy’). We present the results in table 5 which shows the
reduction of the number of emotions (even chosen specific for sentiment) correlates to the reduction
of accuracy using the best 20-token model.

We also show the variation of the results of our best 20-token BERT model by reducing the training
set size. Note that the size of the test set remains the same as in all other tests. We show in table 4
that our design benefits smaller datasets more significantly than larger sets at a range of 5000-25000
training samples. Even as low as 1000 samples we can show a modest improvement until we lose
accuracy at 750 and 500 samples.

To compare with other approaches applied on the same sentiment140 dataset, Tago et al. (2019) use
a selection strategy to use dates and user information along with emoticons to classify the dataset
with 77.6% accuracy. In Wang et al. (2020) authors report accuracies of several models using a 70/30
train-test split for the following models: 82.00% multilayer LSTM using embeddings, 77.98% SVM,
76.44% Logistic Regression, 76.52% Multinomial Naive Bayes, and 77.67% using an ensemble. In
all approaches, models have a difficulty achieving high accuracy results with minor differences in
results without using complex models such as the multilayer LSTM with embeddings. Imran et al.
(2020) claim to have state-of-the-art (SOTA) with 0.824 F1 on the dataset using an LSTM on a 10%
test set outperforming previous SOTA using a convolutional neural network (CNN) with a variety of
embeddings including BERT embeddings. We currently have 0.87925 F1 using an ensemble while
also achieving 0.87677 F1 from a single BERT model using 20% test set, 12% validation and 68%
training.
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Table 6: US Airline results using original BERT (ID O), BERT using the 2 token approach (ID
T), BERT using concatenated classifier inputs (ID C), and BERT using a mix between the 2 token
approach and concatenated classifier inputs (ID M). The “Improv.” column is the improvement in
F1 over the original BERT score. Underlined are the result with a P-value lower than alpha=0.10.

t-test
ID  Accuracy F1 Improv. P-value
0.93869  0.93830 N/A N/A

0.95032  0.95079 1.249%  2.86e-02
0.95032  0.94930 1.100% 6.87e-02
0.94609  0.94557 0.727% 7.06e-01

zZ0—=0

For the US Airline sentiment dataset, Table 6 presents our results for the original BERT, BERT with
the 2 token approach, BERT with concatenated classifier inputs, and BERT with a mix of tokens
and concatenated inputs, all using 2 classification layers. We see an improvement of 1.249% with
0.95079 F1 in the 2 token approach over the original BERT. With nearly 5000 training samples in
this dataset, the runtime to train each model took roughly 5-10 minutes on 4 Nvidia P-100 GPUs. For
comparison with other approaches, Rani & Gill (2020) achieve 87.422% accuracy using an ensemble
of Naive Bayes, svmRadial, C5.0 and a DictionaryBased Classifier. Umer et al. (2020) use a CNN-
LSTM combined model with 82.0% accuracy and 83.0 F1. Note that these comparisons use the
neutral samples which were omitted from our tests.

Authors of TweetBERT Qudar & Mago (2020) have shown a great improvement in tweet classifi-
cation, especially in the Sentiment140 and US Airline datasets we’ve tested with in this paper. The
authors use BERT in its current state and continuously pretrain on a very large amount of data includ-
ing 680 million tweets. The continuously pretrained BERT presents a much better understanding of
tweets compared to BERT with reported accuracies of 95.18% and 92.99% on Sentiment140 and US
Airline, respectively. Since our approach is general for any transformer and tested for BERT, emo-
tions embedded as tokens for this pretrained BERT model could likely benefit from our approach
and improve the Sentiment140 benchmark further.

5 CONCLUSION AND FUTURE WORK

In conclusion we show modest improvements on BERT and DistilBERT by embedding emotions
in both custom tokens and classification layer inputs. Our best single model with added emotions
achieves 0.87677 F1 using BERT. We see an improvement of 0.264% in BERT using a custom token
range of 20 while DistilBERT improves by 0.400% using the same approach. Using an ensemble
of BERT models using emotion inputs we can achieve an improvement of 0.477% and similarly an
improve of 0.642% for DistilBERT models over the original DistiIBERT model and a 0.092% im-
provement over the original BERT. Finally we get a total improvement of 0.512% over the original
BERT using an ensemble of BERT and DistilBERT models. We additionally test our approach on
the US Airline dataset and show how emotions using the 2-token approach improves F1 by 1.249%
to 0.95079 F1. While the observed improvements are modest, they are systematic, each method
we used to add additional information outperformed the original BERT classifier. However, most
of our model configurations tested shown a statistically significant improvement over a direct clas-
sification without additional information. These results are therefore promising to showing that it
could be possible to improve accuracy of most text classification tasks by adding additional seman-
tic information generated using O-shot learned on pre-trained models. The main interests of our
approach are that it is independent from the model used, simple to apply and systematically improve
the accuracy/F1 scores, even using a small training set. In the future, we plan to continue research
using 0-shot models and the possibility to incorporate more 0-shot information in our classification
models. We plan to try our approach on other sentiment datasets and to expand datasets with addi-
tional data and labels in an automatic system to improve general article classification tasks beyond
sentiment classification.
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