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Abstract

Gradient Noise Scale (GNS) is valuable to compute because it provides a suggestion
for a compute efficient batch size during training: small enough to be compute
efficient and large enough to take advantage of parallelism. While it can be
a valuable tool, computing GNS is often cumbersome or expensive due to the
difficulty of obtaining gradient norms over a small batch of examples (smaller than
the training batch used). An existing trick for collecting “efficient” per-example
gradient norms is inefficient in transformer or convolutional models. By assuming
activations are normally distributed, we compute an approximate per-example
gradient norm that tracks the true per-example gradient norm in practical settings.
Using this approximation, we construct a Scaled Output Gradient Noise Scale
(SOGNS) that is generally applicable at negligible cost and provides additional
feedback to the practitioner during training.

1 Introduction
Gradient Noise Scale (GNS) correlates with the critical batch size, which is the point below which
one may expect to linearly accelerate training by adding examples to the batch (McCandlish et al.,
2018). For this reason, the batch size prescribed by GNS has been demonstrated to be useful while
training GPT-3 (Brown et al., 2020).

Computing the GNS requires gradent norms from small and large batches (described in Section 2).
However, in settings where we desire high performance compute, batch sizes typically need to be
large, making it difficult or costly to sample small batch gradients. Goodfellow (2015) introduces
a trick to access per-example gradient norms efficiently, but this trick cannot be applied in settings
with tensor rank larger than 2. In particular, transformer language models have rank-3 tensor with
batch, sequence and hidden dimensions. To address this problem, we construct an approximation
that assumes normally distributed activations at layer inputs, which allows us to access per-example
norms efficiently (described in Section 3.1), and provide a reference implementation: https://
github.com/CerebrasResearch/nanoGNS.

2 Background

McCandlish et al. (2018) suggest using the “simple” GNS, Bsimple
1, as a metric to inform the

practitioner while training a model,

Bsimple =
tr(Σ)

GTG

1This approximation is denoted as “simple” because it assumes that the Hessian is diagonal in the Taylor
expansion of the loss.

Workshop on Advancing Neural Network Training at 37th Conference on Neural Information Processing Systems
(WANT@NeurIPS 2023).
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Figure 1: The variance of the GNS estimator for different Bbig (left) and Bsmall (right) sizes. Bbig = l
and Bsmall = s in legends.

where G are the gradients and Σ is their associated covariance matrix. To compute Bsimple McCandlish
et al. (2018) further define the unbiased estimators S and |G|2 shown in Equations 1 and 2, where
Bbig and Bsmall are the batch sizes used to compute the gradients.

|G|2 :=
1

Bbig −Bsmall

(
Bbig|GBbig |2 −Bsmall|GBsmall |2

)
≈ GTG (1)

S :=
1

1/Bsmall − 1/Bbig

(
|GBsmall |2 − |GBbig |2

)
≈ tr(Σ). (2)

We can easily compute |GBbig | using the accumulated gradients immediately after the backward pass.
However, the challenge in computing |GBsmall | is that it requires the gradients for a batch size that
is smaller than the batch size used for the optimizer step. McCandlish et al. (2018) propose using
the gradients communicated between Distributed Data Parallel (DDP) nodes but this means that the
variance of the resulting GNS estimate is tied to that DDP configuration. A taxonomy of the options
for computing |GBsmall | is presented in Appendix A.

As |GBsmall | may be estimated as the mean over samples within the minibatch, in accordance with the
law of large numbers, the variance of the estimate decreases with the number of observations of the
gradient norm. As shown in Figure 1, this implies the small batch size should be as small as possible
to obtain an estimate of |GBsmall |, and thus the GNS, with minimal variance. Further discussion of this
result may be found in Appendix B and code in Appendix B.1.

3 Efficient Per-example Gradient Norms

Goodfellow (2015) proposes a trick to compute gradient norms for individual examples in a minibatch,
which would provide the minimum variance estimate of the GNS as described in Section 2. He
observes that the squared norm of the gradient is a sum of elements in an outer product that can be
factored into two smaller sums on the input vectors, eliminating the need to calculate the full outer
product. It may be stated as follows using Einstein and Lagrange notation2,

n2
b = (w′)2bik = xbixbiy

′
bky

′
bk,

where x are the activations prior to a linear layer, y′ are the gradients of the loss with respect to the
outputs of the linear layer and w′ are the gradients of the loss with respect to the weights of the linear
layer.

For networks of only linear layers acting on 2D inputs, this trick is sufficient to provide accurate
GNS estimates3. However, for networks with convolutional or 3D inputs to linear layers, such as

2Further explanation of this notation may be found in Appendix C.
3As far as we are aware, this observation has not been made in prior work.
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transformers, this trick is no longer efficient. For three dimensions, inputs X ∈ RB×T×I and outputs
Y ∈ RB×T×K (Li et al., 2022), the per-example gradient norm nb is,

n2
b = (w′)2bik = (

∑
t

xbtiy
′
btk)

2 = xbtiy
′
btkxbuiy

′
buk,

which has O(T 2) complexity in the sequence length T . In these cases, computing the w′ explicitly,
as the per-example gradient trick avoids, is more efficient. More details on this case are provided in
Appendix C.1.

3.1 Proposed Approximation

Assuming all entries of X are IID Gaussian with a batch-dependent standard deviation σb and mean
zero allows us to compute the following expectation in closed form:

E[
∑
i

xbixbi] =
∑
i

E[xbixbi] =
∑
i

σ2(xbi) = Iσ2(xbi).

Appying this in the 3D case,

E[n2
b ] = E [y′btky

′
bukxbtixbui] = y′btky

′
bukE [xbtixbui] =

∑
t,k

y′btky
′
buk

∑
i

σ2
b = Iσ2

b

∑
t,k

y′btky
′
buk

and we know σ2
b = 1

TI

∑
t,i xbtixbti in line with our assumptions above, assuming xbti is zero-mean.

Factorizing the quadratic in the t, u dimension produces

E[n2
b ] = Iσ2

b

∑
k

(∑
t

y′btk

)2

.

In practice, this says we can approximate nb as follows to construct ηb, the approximate per-example
gradient norm,

n2
b ≈ η2b = Iσ2

b

∑
k

(∑
t

y′btk

)2

=

 1

T

∑
t,i

xbtixbti

∑
k

(∑
t

y′btk

)2

,

and we can see that this is equal to the exact per-example gradient when T = 1:

η2b = Iσ2
b

∑
k

(∑
t

y′btk

)2

= I
1

I

∑
i

xbixbi

∑
k

(y′bk)
2
= xbixbiy

′
bky

′
bk = n2

b

Experiments in Section 4, along with simulations in Appendix D, confirm that this approximation is
accurate. This approximation may also be extended to |GBbig | as described in Appendix E, but this
observation is unnecessary for the results presented here, as we assume the exact |GBbig | is easy to
access.

Substituting η2b into Equations 1 and 2 yields BSOsimple, the Scaled Output Gradient Noise Scale
(SOGNS). The analogous metric using the exact per-example norm is BPEPsimple the Per-Example
Parameter Gradient Noise Scale (PEPGNS) (see Appendix C.2 for index of terms).

4 Experiments

4.1 Approximate Per-Example Gradient Noise Scale

We investigate how well SOGNS correlates with the observed GNS by training a 1M parameter
Convolutional Neural Network (CNN) on MNIST (code linked in Appendix F). Figure 2a shows the
overall fit of SOGNS to PEPGNS at all points throughout training for only the convolutional layers
(the remaining linear layers only process 2D tensors so the estimate is exact). Throughout training,
the relationship between SOGNS and PEPGNS is extremely regular at different orders of magnitude.

We also demonstrate the overall performance of the approximation by comparing the relationship
between observed GNS and training loss. In Figure 2b, we replicate McCandlish et al. (2018) and
plot Bcrit as the authors measured. We see that the correlation to the critical batch size is similar for
both SOGNS and PEPGNS. Additional statistics are plotted in Appendix F.
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(a) Scatter plot comparing the exact and approximate
GNS estimators BPEPsimple and BSOsimple.
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(b) Replication of GNS vs. loss plot from McCandlish
et al. (2018), including their results for Bcrit and both
BPEPsimple and BSOsimple.

Figure 2: Investigation of the accuracy of the approximation from Section 3.1 on MNIST.
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Figure 3: Results of a 111M parameter language model experiment measuring GNS on a fixed
checkpoint. On the left, the approximate small batch gradient norm is compared to the exact and on
right, the approximate SOGNS is compared to the exact PEPGNS.

4.2 Large Scale Gradient Noise Scale

To verify that this method is useful in practice, a checkpoint from a 111M parameter language
model (Dey et al., 2023) was tested. In Figure 3, SOGNS and PEPGNS are compared, showing that
the approximation tracks the exact case but diverges for some layers in the network. McCandlish
et al. (2018) observes that the GNS may diverge by an order of magnitude from the measured critical
batch size so the relationship we observe is within the margin of error.

5 Conclusion

Choosing a batch size is often achieved with reference to previous experiments or by hyperparameter
search, which can be especially onerous in novel settings where a reasonable choice for batch size
is not obvious. The GNS is a useful metric to navigate in such circumstances. In this paper, we
observe that the per-example gradient norm trick (Goodfellow, 2015) could provide a useful shortcut
for a minimal variance estimate of the GNS but it is inefficient in practical settings involving large
transformer models (Li et al., 2022), requiring O(T 2) operations in sequence length T . To address
this, we propose SOGNS, an approximation that operates in O(T ), while correlating closely with the
exact GNS. As practitioners now know that it is critical to log the gradient norms during training, we
hope that this work can make GNS an accessible metric for large scale experiments.
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A Taxonomy

The following taxonomy describes the different methods available to compute GNS. Each computes
|GBsmall |2 in a different way:

• Microbatch: multiple GBsmall are computed over a set of microbatches
– DDP: Each GBsmall are gradients communicated between DDP nodes (McCandlish et al.,

2018)
– Sequential: Each GBsmall are computed sequentially during gradient accumulation

• Subbatch: During gradient accumulation, select GBsmall partway through
• Per-example:

– Exact: |GBsmall |2 is computed directly by the per-example gradient trick (Goodfellow,
2015; Li et al., 2022)

– Approximation: |GBsmall |2 is approximated by assuming input activations are normally
distributed with mean zero; the focus of this work

The choice of which method to use may be dictated by the hardware available.
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B Variance of GNS Measurements

The GNS is a ratio estimator (Graunt, 1676), it is of the form r = x̄
ȳ , where x̄ and ȳ are the sample

means of two random variables, in this case |G|2 and S.

To estimate the variance of this estimator we chose a Jackknife estimator (Choquet et al., 1999),

var(r) =
n− 1

n

n∑
i=1

(ri − rJ)
2
,

where ri is the ratio estimator computed with the ith sample removed and rJ is the jackknife estimate
of the ratio. Performing a simulation with this estimator it is possible to estimate the effect of the
Bsmall and Bbig on the variance of the estimator. These two cases are illustrated in Figures 1. We
can see that the size of Bbig is not important because the decrease in the variance as the number
of samples increases is constant for all Bbig. However, the size of Bsmall is important because the
variance decreases as Bsmall increases, regardless of the samples processed.

This reinforces the intuition that the lowest variance estimate of the GNS should use the smallest
Bsmall possible. The smallest choice is Bsmall = 1, therefore obtaining the per-example gradient norm
is valuable.

B.1 Variance of the Gradient Noise Scale

The following code was used to produce Figure 1.
i m p o r t numpy as np
i m p o r t m a t p l o t l i b . p y p l o t a s p l t
i m p o r t h a s h l i b

from d a t a c l a s s e s i m p o r t d a t a c l a s s

N = 1000
s c a l e = 1 .
# use e x p l i c i t random s t a t e , b u t s e t i t t o be random by d e f a u l t
rng = np . random . RandomState ( np . random . r a n d i n t ( 1 ) )
t rue_G = rng . r andn (N)
t rue_G = np . s q r t (N) * ( t rue_G / np . l i n a l g . norm ( t rue_G ) ) # n o r m a l i s e t o have e x a c t l y norm N

d e f draw_G (B ) :
r e t u r n ( s c a l e / np . s q r t (B ) ) * rng . r andn (N) + t rue_G

d e f m e a n _ o f _ m i c r o b a t c h e s ( s m a l l _ b a t c h , l a r g e _ b a t c h ) :
# t h i s i s t h e normal s e t t i n g , where you have a l a r g e b a t c h and you s p l i t i t
# i n t o s m a l l b a t c h e s , comput ing t h e norm of each and t h e norm of t h e whole
a s s e r t l a r g e _ b a t c h % s m a l l _ b a t c h == 0
r = l a r g e _ b a t c h / / s m a l l _ b a t c h
G = np . a r r a y ( [ draw_G ( s m a l l _ b a t c h ) f o r _ i n r a n g e ( r ) ] )
r e t u r n np . mean ( np . l i n a l g . norm (G, a x i s = 1 ) ) * * 2 , np . l i n a l g . norm (G. mean ( 0 ) ) * * 2

f u n c s = { ’ mean_of_mic roba t ches ’ : m e a n _ o f _ m i c r o b a t c h e s }

d e f j a c k k n i f e ( x , y ) :
n = l e n ( x )
i f n == 1 :

r e t u r n x [ 0 ] / y [ 0 ] , np . nan
x , y = np . a r r a y ( x ) , np . a r r a y ( y )
r = np . mean ( x ) / np . mean ( y )
x = x . r e s h a p e ( −1 , 1 ) . r e p e a t ( n , a x i s =1) * ~np . eye ( n , d t y p e = boo l )
y = y . r e s h a p e ( −1 , 1 ) . r e p e a t ( n , a x i s =1) * ~np . eye ( n , d t y p e = boo l )
r _ i = np . mean ( x , a x i s =0) / np . mean ( y , a x i s =0) # v e c t o r i s e d j a c k k n i f e
r _ j = n * r − ( ( ( n − 1) / n ) * r _ i . sum ( ) )
# v a r i a n c e
v a r _ r = ( ( n − 1 ) / n ) * np . sum ( ( r _ i − r _ j ) * * 2 )
r e t u r n r _ j , np . s q r t ( v a r _ r )

d e f r u n _ r e p l i c a t e s ( l a r g e _ b a t c h , s m a l l _ b a t c h , r e p l i c a t e s , f u n c _ t y p e = ’ s imple_norms ’ ) :
f o r _ i n r a n g e ( r e p l i c a t e s ) :

G_small , G_ la rge = f u n c s [ f u n c _ t y p e ] ( s m a l l _ b a t c h , l a r g e _ b a t c h )
G_es t = ( l a r g e _ b a t c h * G_la rge − s m a l l _ b a t c h * G_small ) / ( l a r g e _ b a t c h − s m a l l _ b a t c h )
S _ e s t = ( G_small − G_la rge ) / ( 1 . / s m a l l _ b a t c h − 1 . / l a r g e _ b a t c h )
y i e l d S_es t , G_es t

@ d a t a c l a s s
c l a s s Expe r imen t :

s a m p l e s _ p r o c e s s e d : l i s t
B_es t : l i s t
sigmaB : l i s t
S _ e s t : l i s t
G_es t : l i s t
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@ s t a t i c m e t h o d
d e f mean ( e x p e r i m e n t s ) :

s a m p l e s _ p r o c e s s e d = e x p e r i m e n t s [ 0 ] . s a m p l e s _ p r o c e s s e d
B_es t = np . mean ( [ e . B_es t f o r e i n e x p e r i m e n t s ] , a x i s =0)
sigmaB = np . mean ( [ e . sigmaB f o r e i n e x p e r i m e n t s ] , a x i s =0)
S _ e s t = np . mean ( [ e . S _ e s t f o r e i n e x p e r i m e n t s ] , a x i s =0)
G_es t = np . mean ( [ e . G_es t f o r e i n e x p e r i m e n t s ] , a x i s =0)
r e t u r n Exper imen t ( s a m p l e s _ p r o c e s s e d , B_est , sigmaB , S_es t , G_es t )

d e f g a t h e r _ d a t a ( l a r g e _ b a t c h , s m a l l _ b a t c h ) :
S_es t , G_es t = [ ] , [ ]
s a m p l e s _ p r o c e s s e d , B_est , sigmaB = [ ] , [ ] , [ ]
f o r i , ( s , g ) i n enumera t e ( r u n _ r e p l i c a t e s (

l a r g e _ b a t c h , s m a l l _ b a t c h , 100 , f u n c _ t y p e = ’ mean_of_mic roba t ches ’
) ) :

S _ e s t . append ( s )
G_es t . append ( g )
b , s igma = j a c k k n i f e ( S_es t , G_es t )
s a m p l e s _ p r o c e s s e d . append ( ( i +1) * l a r g e _ b a t c h )
B_es t . append ( b )
sigmaB . append ( s igma )

r e t u r n Exper imen t ( s a m p l e s _ p r o c e s s e d , B_est , sigmaB , S_es t , G_es t )

d e f g a t h e r _ c a c h e d _ d a t a ( l a r g e _ b a t c h , s m a l l _ b a t c h ) :
d e f g e n e r a t e _ h a s h ( l a r g e _ b a t c h , s m a l l _ b a t c h ) :

b a t c h _ s t r = s t r ( l a r g e _ b a t c h ) + " _ " + s t r ( s m a l l _ b a t c h )
h a s h _ o b j = h a s h l i b . sha256 ( b a t c h _ s t r . encode ( ) )
s m a l l _ h a s h = h a s h _ o b j . h e x d i g e s t ( ) [ : 8 ]
r e t u r n s m a l l _ h a s h

# r e p e a t e d l y c a l l g a t h e r _ d a t a and cache t h e r e s u l t s t o f i l e
from p a t h l i b i m p o r t Pa th
i m p o r t p i c k l e
# check i f c a c h e _ d i r e x i s t s
c a c h e _ d i r = Pa th ( ’ gns_va r_cache ’ )
c a c h e _ d i r . mkdir ( e x i s t _ o k =True )
g n s _ v a r _ f p a t h = c a c h e _ d i r / f " g n s _ v a r _ c a c h e _ { g e n e r a t e _ h a s h ( l a r g e _ b a t c h , s m a l l _ b a t c h ) } . p k l "
# l o a d d a t a i f we have any
i f g n s _ v a r _ f p a t h . e x i s t s ( ) :

w i th open ( g n s _ v a r _ f p a t h , ’ rb ’ ) a s f :
c a c h e d _ e x p e r i m e n t s = p i c k l e . l o a d ( f )

e l s e :
c a c h e d _ e x p e r i m e n t s = [ ]

# and t h e n compute more anyway
e x p e r i m e n t = g a t h e r _ d a t a ( l a r g e _ b a t c h , s m a l l _ b a t c h )
# append t h i s t o t h e d a t a we have
c a c h e d _ e x p e r i m e n t s . append ( e x p e r i m e n t )
# save t h e d a t a
wi th open ( g n s _ v a r _ f p a t h , ’wb ’ ) a s f :

p i c k l e . dump ( c a c h e d _ e x p e r i m e n t s , f )
r e t u r n Exper imen t . mean ( c a c h e d _ e x p e r i m e n t s )

d e f p l o t _ g n s _ v a r ( l a r g e _ b a t c h e s , s m a l l _ b a t c h e s ) :
# t h i s f u n c t i o n can be run r e p e a t e d l y t o improve t h e e s t i m a t e o f t h e s t d e r r
p r o p _ c y c l e = p l t . r cPa rams [ ’ axes . p r o p _ c y c l e ’ ]
c o l o r s = p r o p _ c y c l e . by_key ( ) [ ’ c o l o r ’ ]
f i g , ax1a = p l t . s u b p l o t s ( 1 , 1 )
f i g . s e t _ f i g h e i g h t ( 6 )
ax1b = ax1a . tw inx ( )
f o r i , ( l a r g e _ b a t c h , s m a l l _ b a t c h ) i n enumera t e ( z i p ( l a r g e _ b a t c h e s , s m a l l _ b a t c h e s ) ) :

e = g a t h e r _ c a c h e d _ d a t a ( l a r g e _ b a t c h , s m a l l _ b a t c h )
c o l o r = c o l o r s [ i ]
ax1a . p l o t ( e . s a m p l e s _ p r o c e s s e d , e . B_est ,

l a b e l =f ’ l ={ l a r g e _ b a t c h } , s ={ s m a l l _ b a t c h } ’ , a l p h a = 0 . 5 , c o l o r = c o l o r )
ax1b . p l o t ( e . s a m p l e s _ p r o c e s s e d , e . sigmaB ,

l a b e l =f ’ l ={ l a r g e _ b a t c h } , s ={ s m a l l _ b a t c h } ’ , a l p h a = 0 . 5 , c o l o r = c o l o r , l i n e s t y l e = ’ dashed ’ )
ax1a . h l i n e s ( 1 . 0 , 0 , e . s a m p l e s _ p r o c e s s e d [ − 1 ] , l i n e s t y l e s = ’ dashed ’ , a l p h a = 0 . 7 )
ax1a . s e t _ y l i m ( 0 . 9 , 1 . 1 )
ax1a . s e t _ x l a b e l ( ’ Samples p r o c e s s e d ’ )
ax1a . s e t _ y l a b e l ( ’ S o l i d : E s t i m a t e d g r a d i e n t n o i s e s c a l e ’ )
ax1b . s e t _ y l a b e l ( ’ Dashed : S t a n d a r d e r r o r o f e s t i m a t e d g r a d i e n t n o i s e s c a l e ’ )
ax1a . s e t _ x s c a l e ( ’ log ’ )
ax1a . l e g e n d ( )
p l t . show ( )

# example usage
p l o t _ g n s _ v a r ( [ 4 , 8 , 16 , 32 , 64 , 1 2 8 ] , [ 1 ] * 6 )

C Efficient Per-Example Gradient Norm Notation

This is a description of the trick proposed by Goodfellow (2015) using Einstein and Lagrange
notation.
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For the weights W ∈ RI×K of a linear layer, with inputs X ∈ RB×I and outputs Y ∈ RB×K , the
gradient of the loss l is

δl

δW
=

δl

δY

δY

δW
= XT δl

δY
which can be expressed in Einstein4 and Lagrange notation for a batch (left) or per-example (right) as

w′
ik = xbiy

′
bk w′

bij = xbiy
′
bk

with the squared norm in either case being

n2 = (w′)2ik = w′
ikw

′
ik n2

b = (w′)2bik = w′
bikw

′
bik

and the per-example case factorizing as

n2
b = (w′)2bik = xbixbiy

′
bky

′
bk.

So, it is sufficient to computed the squared norm of X and Y′ for each example to obtain exact
per-example gradient norms of linear layer weights.

C.1 Per-Example Gradient Norms in 3D

For three dimensions, X ∈ RB×T×I and Y ∈ RB×T×K , the sums do not factorize because the
per-example gradient must be reduced over the t dimension:

w′
ij = xbtiy

′
btk w′

bij = xbtiy
′
btk.

In this case the resulting per-example norm is (Li et al., 2022)

n2
b = (w′)2bij = (

∑
t

xbtiy
′
btk)

2 = xbtiy
′
btkxbuiy

′
buk.

The contraction order is vital to the efficiency of this computation as

n2
b =

∑
t,u

(∑
i

xbtihbtu

)(∑
k

y′btky
′
buk

)
has quadratic complexity over 1 ≤ u, i ≤ T where T is typically sequence length in language
modeling. In these cases, specifically when 2T 2 > IK (Li et al., 2022), computing the per-example
gradients explicitly before reduction is preferred:

n2
b =

∑
i,k

(∑
t

xbtiy
′
btk

)2

.

This operation can also be performed as a grouped convolution (Rochette et al., 2019), but the overall
contractions hit the same complexity limits. In our experiments involving convolutional layers we
unfold using im2col and then apply the method above when computing exact or approximate gradient
norms of convolutional layers.

C.2 Index of symbols

As they appear:

Bsimple The simple gradient noise scale introduced in McCandlish et al. (2018).
Bcrit The critical batch size introduced in McCandlish et al. (2018).
Σ The covariance matrix of the gradients.

G The gradients of the loss L with respect to the parameters of the model δW
δL . When provided

without a subscript this refers to the “true” gradients minus the noise from SGD. When
with subscript, such as GBbig and GBsmall , these are the gradients measured in SGD with the
associated batch size, as described in McCandlish et al. (2018).

4Using this convention sums are omitted, the presence of indexes on the other side of the equation indicates
where sums occur, in other words: w′

ik = xbiy
′
bk ≡ w′

ik =
∑

b xbiy
′
bk (Einstein, 1916). This allows

implementation via einsum functions in many popular frameworks (Rocktäschel, 2018).
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Figure 4: The naive approximation is compared to an exact computation of the per-example norm,
with the ratio of the two shown on the y-axis.

|G|2 The unbiased estimator for the squared gradient norm introduced by McCandlish et al. (2018),
defined in Equation 2.

S The unbiased estimator for the trace of the covariance matrix introduced by McCandlish et al.
(2018), defined in Equation 2.

Bbig and Bsmall The number of examples in the large and small batches, respectively.
GBbig and GBsmall The gradients computed on the large and small batches, respectively.
W ,w The weights of a linear layer.
ω′ Substitute weight gradient described in Appendix E.
nb Per-example norm of the gradient of the weights w′, indexed by the batch index b

X ,x Inputs to a linear layer.
Y ,y Outputs of a linear layer.
ηb Approximation to the per-example norm nb.
BSOsimple The scaled output gradient noise scale as described in Section 3.1. This is computed using

the approximate per-example norm ηb as the small batch norm |GBsmall | in the estimators of
Equations 2.

SOGNS Acronym used to refer to BSOsimple in the text.
BPEPsimple The per-example parameter gradient noise scale, equivalent to Bsimple when Bsmall = 1,

uses the exact per-example gradient norm nb as |GBsmall | in the estimators of Equations 2.
PEPGNS Acronym used to refer to BPEPsimple in the text.

D Output Gradient Scaling Ablation

The approximation in Section 3.1 may either use the unit Gaussian assumption or assume the standard
deviation of the activations is known; these are referred to here as the naive or relaxed assumptions,
respectively. In the first case the output gradients are not scaled, in the second case they are scaled. The
results of a simulation are shown in Figure 5 and Figure 4 for the relaxed and naive approximations.
It can be seen that the relaxed approximation is more accurate than the naive approximation.

E Approximation of Large Batch Gradient Norms

The approximation presented in Section 3.1 may be interpreted as using a scaled version of the output
gradient in place of the gradient with respect to the weights, specifically we can define ω′ as

nb
2 ≈ η2 = Iσb

2
∑
k

(∑
t

y′btk

)2

=
∑
k

ω′
bk

2 where ω′
bk =

√
Iσb

∑
t

y′btk.

The approximation can then also be applied to compute

|GBbig |2 ≈ η2 =
∑
k

(∑
b

ω′
bk

)2

.
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Figure 5: The relaxed approximation is compared to an exact computation of the per-example norm,
with the ratio of the two shown on the y-axis.

The accuracy of this approximation is illustrated in Figure 6b.

F MNIST Approximation Fit

For the remaining quantities not discussed in Section 4.1, Figure 6 describes the small batch
squared gradient norm, the large batch squared gradient norm, the unbiased squared gradi-
ent norm and trace estimators of Equation 2. Code to replicate this experiment may be
found (as linked in the main text), here: https://gist.github.com/gaviag-cerebras/
aa8050a2b4a2f327c83bc7b21f9e8b89.
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Figure 6: Investigation of the accuracy of the approximation for all statistics discussed in Section 3.1
on MNIST, looking at only the convolutional layers.
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