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Abstract
Convolutional Kernel Networks (CKNs) were
proposed as multilayered representation learning
models that are based on stacking multiple Re-
producing Kernel Hilbert Spaces (RKHSs) in a
hierarchical manner. CKN has been studied to
understand the (near) group invariance and (geo-
metric) deformation stability properties of deep
convolutional representations by exploiting the
geometry of corresponding RKHSs. The objec-
tive of this paper is two-fold: (1) Analyzing the
construction of group equivariant Convolutional
Kernel Networks (equiv-CKNs) that induce in
the model symmetries like translation, rotation
etc., (2) Understanding the deformation stability
of equiv-CKNs that takes into account the ge-
ometry of inductive biases and that of RKHSs.
Multiple kernel based construction of equivariant
representations might be helpful in understanding
the geometric model complexity of equivariant
CNNs as well as shed lights on the construction
practicalities of robust equivariant networks.

1. Introduction
In the past decade deep neural networks, especially convo-
lutional neural networks (CNNs) (LeCun et al., 1989) have
achieved impressive results for various predictive tasks, no-
tably in the domains of computer vision (Krizhevsky et al.,
2017) and natural language processing. Much success of
CNNs in these domains relies on (1) the availability of large
scaled labeled and structured data which allow the model
to learn huge number of parameters without worrying too
much of overfitting, and (2) the ability to model local in-
formation of signals (e.g., images) at multiple scales, while
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also representing the signals with some invariance through
pooling operations. The latter property of CNNs have dis-
tinguished them from fully-connected networks (Li et al.,
2021) in terms of sample efficiency, generalization ability
and computational speed, much through its elegant model
design. Still, understanding the exact mathematical nature
of this invariance as well as the characteristics of the func-
tional spaces where CNNs live are indeed open problems
for which multiple constructions and analyses have been
provided in past years.

One such construction is of group equivariant CNNs (Cohen
& Welling, 2016a) where the translation equivariance of
convolutional layers has been generalized to other kinds of
symmetries, for e.g., rotations, reflections, etc., thus making
CNNs equivariant to more general transformations, where
such transformations and corresponding equivariant maps
for learning layerwise features are encoded by the repre-
sentation theory of finite symmetric groups, an important
tool used by mathematicians and physicists for centuries.
Despite different elegant constructions of group equivariant
CNNs, for e.g. (Cohen & Welling, 2016b; Weiler et al.,
2018; Weiler & Cesa, 2019) there exists only a few works,
e.g., (Cohen et al., 2019b; Kondor & Trivedi, 2018) focusing
on the theoretical analysis of such networks, which might
be beneficial to understand the geometry of these inductive
biases in the model that plays pivotal role in the enhanced
expressive power of the equivariant convolutional networks.

Another construction is of Convolutional Kernel Networks
(CKNs) (Mairal et al., 2014; Mairal, 2016) where local sig-
nal neighbourhoods are mapped to points in a reproducing
kernel hilbert space (RKHS) through the kernel trick and
then hierarchical representations are built by composing
kernels with corresponding RKHSs (patch extraction + ker-
nel mapping + pooling operations in each layer) which is
equivalent to construction of a sequence of feature maps
in conventional CNNs, but of infinite dimension. A wider
functional space approach (Bietti & Mairal, 2019) of CKNs
has been proposed for multi-dimensional signals which also
admits multilayered and convolutional kernel structure. This
functional space also contains a large class of CNNs with ho-
mogeneous activation functions, thus showing such CNNs
can also enjoy same theoretical properties that of CKNs,
therefore highlighting on the geometry of the functional
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spaces in which CNNs lie. Furthermore, an analysis of
approximation and generalization capabilities of deep con-
volutional networks through the lens of CKNs has been
performed in (Bietti, 2022). Despite such mathematical
analysis, exploring the equivariance properties of CKNs as
well as generalization capabilities and robustness of equiv-
CKNs have not been performed in details.

In this paper1 we first study how to make convolutional
kernel layers and hence CKNs equivariant to actions by a
locally compact group G. Following the notations of diffeo-
morphism stability (Mallat, 2012) we analyse the stability
bounds of equiv-CKNs which depends upon the equivariant
architecture of CKNs and corresponding RKHSs norms,
thus providing a notion of robustness of equiv-CKNs. We
then give an intuition on the (geometric) complexity of
equivariant CNNs (equiv-CNNs) by giving a rough outline
on how to construct equiv-CNNs in RKHSs, that might be
helpful in studying stability and generalization properties of
equiv-CNNs by bounding their corresponding RKHS norm.

2. Group Equivariant Convolutional Kernel
Networks

The construction of a multilayered CKN involves transform-
ing an input signal x0 ∈ L2(Rd,H0) (for e.g., H0 = Rp0 ,
where for a 2D RGB image p0 = 3 and d = 1 and x0(u)
in R2 represents the RGB pixel value at location u ∈ R2)
into a sequence of feature maps, xk’s in L2(Rd,Hk), by
building a sequence of RKHSs Hk’s, for each k, where a
new feature map xk is built from the previous one xk−1

by consecutive application of patch extraction Pk, kernel
mapping Mk and linear pooling Ak operators, as shown in
Figure 1. For a detailed construction of multilayered CKNs
on continuous and discrete signal2 domains we refer readers
to (Bietti & Mairal, 2019; Mairal, 2016).

In (section 3.1, (Bietti & Mairal, 2019)) it is shown that
CKNs are equivariant to the translations as the layers com-
mute with the action of translations, much like its classical
CNNs counterpart. Following the general notations of group
equivariance in CNNs (Kondor & Trivedi, 2018) through
the notion of locally compact group actions, it is possible
to encode other kind of equivariance to group transforma-
tions (e.g., rotations, reflections) in CKN layers by con-
structing equivariant Pk’s, Mk’s and Ak’s for each k that
commutes with the action of a group of transformation G.
We assume G is locally compact so that we can define a
Haar measure µ on it.3 The action of an element g ∈ G

1Ongoing work.
2Note that though here in our construction signals are con-

sidered continuous for a better theoretical analysis, however for
practical purposes one needs to discretize the feature maps.

3µ satisfies µ(gS) = µ(S) for any Borel set S ⊆ G and
g ∈ G. Considering a Haar measure on G, which always exists for

Figure 1. A schematic diagram of 1-layer of a CKN where one
constructs k-th signal representation from the k−1-th one in a
RKHS Hk through patch extraction, kernel mapping and pooling
operators, as similarly shown in (Bietti & Mairal, 2019). Signal
domain Ω = Rd (in this figure d = 2) on which locally compact
group G acts. One can construct a multilayered CKN by stacking
these layers in a hierarchical manner and make the entire network
equivariant by making each layers equivariant to the action of G.

is denoted by operator Lg where Lgx(u) = x(g−1u). We
also assume that every element x(u) ∈ Rd can be reached
with a transformation uω ∈ G from a neutral element, say
x̂0(u) ∈ Rd. One can then extend the original signal x̂
by defining x(u) = x̂(uω · x̂0(u)), as similarly shown in
(Kondor & Trivedi, 2018; Bietti & Mairal, 2019). Then one
has

Lgx(uω) = x(g−1uω)

= x̂((g−1uω) · x̂0(u)) = x̂(g−1 · x(u)),
(1)

where · denotes the group action and hence transformed
signals preserve the structure of x̂. With the input signals
now defined on the locally compact group G, one can define
layerwise equivariant patch extraction, kernel mapping and
pooling operators at each layer k which are outlined below.

Patch extraction operator. Patch extraction operator Pk :
L2(G,Hk−1) → L2(G,Pk) is defined for all u ∈ G as

Pkxk−1(u) := (xk−1(uv))v∈Sk
, (2)

where Sk ⊂ G is a patch shape centered at the iden-
tity element of G and Pk := L2(Sk,Hk−1) is a Hilbert
space equipped with the norm ||x||2 =

∫
Sk

||x(u)||2dµk(u),
where dµk is the normalized Haar measure on Sk’s. Pk com-
mutes with Lg as one can show

PkLgxk−1(u) = (Lgxk−1(uv))v∈Sk
= (x(g−1uv))v∈Sk

= Pkxk−1(g
−1u) = LgPkxk−1(u)

locally compact groups, the integration at pooling layers become
invariant to group actions, as discussed briefly in appendix A.3 in
(Cohen et al., 2019b).
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Kernel mapping operator. Kernel operator Mk :
L2(G,Pk) → L2(G,Hk), for all u ∈ G, is defined as

MkPkxk−1(u) := φk(Pkxk−1(u)), (3)

where φk : Pk → Hk is the kernel mapping associated to a
positive definite kernel Kk operating on the patches. Like
(Mairal, 2016), we define the dot product kernel Kk as

Kk(x, x
′) = ||x||||x′||kk

(
⟨x, x′⟩
||x||||x′||

)
, x, x′ ̸= 0,

which is positive definite because a Maclaurin expansion
with only non-negative coefficients (Schölkopf & Smola,
2018) can be constructed from kk. A choice of dot product
kernels are listed in (Bietti & Mairal, 2019). As Mk is a
pointwise operator, thus it commutes with Lg .

Pooling operator. Pooling operator Ak : L2(G,Hk) →
L2(G,Hk), for all u ∈ G, is defined as

Akxk(u) :=

∫
G

xk(uv)hk(v)dµ(v)

=

∫
G

xk(v)hk(u
−1v)dµ(v),

(4)

where hk is the pooling filter at layer k4 (for e.g., a Gaus-
sian pooling filter), following similar construction from
(Raj et al., 2017). Following it’s definition it is easy to
show that Ak commutes with Lg, i.e., one can show that
AkLgxk(u) = LgAkxk(u) for all g ∈ G and therefore at
each layer, all operators are equivariant to the action of G.

Note that the definitions of equivariant operators at each
layers follow the similar construction of G-convolution with
respect to a locally compact group (section 4, (Kondor &
Trivedi, 2018)), thus we anticipate that we can also do the
same analysis (for e.g., proposition 1, 2 and theorem 1
proved in (Kondor & Trivedi, 2018)), as discussed in The-
orem B.5 in Appendix B. Here the subgroups Hk are the
patches Sk, which are Borel sets, according to our assump-
tions.

A general theory of equiv-CNNs on homogeneous space
is given through the notions of vector bundles, fiber space,
induced representations, and equivariant kernels in (Co-
hen et al., 2019b) where equivariant maps between feature
spaces are shown to be in one-to-one correspondence with
equivariant convolutions, obtained by the space of equiv-
ariant kernels (convolution is all you need). As one can
define vector bundles and fibers on Hilbert space (Bertram
& Hilgert, 1998; Takesaki et al., 2003) we believe that sim-
ilar notions of equivariant convolution maps can also be

4Note that Equation (4) is a type of Bochner integral when
H is infinite dimensional. We provide further construction de-
tails of pooling filter as well as of kernel and patch operators in
Appendix B.

deducted for equiv-CKNs, though the latter already contains
notion of equivariant kernels through the definitions of Mk’s
and Ak’s. We will work on these in our follow-up studies.

3. Stability Analysis of Equivariant CKNs
Following our construction of equiv-CKNs in the previous
section we now proceed to understand the stability of the
equivariant kernel representations under the action of dif-
feomorphisms, which might be beneficial to get robustness
of equiv-CKNs against adversarial examples. We follow
the notion of deformation and stability from (Mallat, 2012)
which is defined as a C1-diffeomorphism τ : Rd → Rd

through a linear operator Lτ as Lτx(u) = x(u− τ(u)) and
we say that a representation Φ(·) is stable under the actions
of τ if there exist non-negative constants C1 and C2 such
that

||Φ(Lτx)− Φ(x)|| ≤ (C1||∇τ ||∞ + C2||τ ||∞)||x||, (5)

where ∇τ is the Jacobian of τ and || · || is the L2-operator
norm and ||∇τ ||∞ := supu∈Rd ||∇τ(u))) and ||τ ||∞ :=
supu∈Rd |τ(u)|, where | · | is the standard Euclidean norm
on Rd. We also assume ||∇τ ||∞ ≤ 1/2 in order to keep
the deformation invertible and avoid degenerate situations,
as assumed in (Mallat, 2012). Note that our representa-
tion xk(u) for each layer k can be stacked into a full rep-
resentation of a N -layer CKN as xN (u) = ΦN (x) :=
ANMNPNAN−1MN−1PN−1 · · ·A1M1P1x0(u). We are
interested in the stability of these convolutional kernel rep-
resentations. For a semi-direct product group G := R2 ⋊H
(Weiler & Cesa, 2019), where H := SO(2), a stability
bound with roto-translation patches is given in lemma 9 of
(Bietti & Mairal, 2019) which matches the stability form
given by Equation (5). For any compact group H the
analysis still stands. For the sake of completeness here
we state the stability bound of kernel representations for
G := R2 ⋊H , where each g ∈ G is given by g = (u, ĥ),
where u ∈ R2 and ĥ ∈ H and the group action Lg

on the signals are given by Lgx(u) = x(g−1 · u) =

x((g−1 · u, ĥ(ĥ′)−1)) = x(g−1(u, ĥ)), where ĥ′ in an ele-
ment of subgroup H .

Lemma 3.1. If ||∇τ ||∞ ≤ 1/2 and supc∈Ŝk
|c| ≤ κσk−1,

where patch shape Sk = {(u, 0)}u∈Ŝk
⊂ G with Ŝk ⊂ R2,

σk−1, the scale of pooling filter hk−1 at layer k−1, and κ is
the patch size, and 0 is the identity element of the subgroup
H ⊂ G. Then we have

||[PkAk−1, Lτ ]|| ≤ C1||∇τ ||∞, (6)

where C1 depends upon hk−1 and κ and Lτx((u, ĥ)) =

x((τ(u), 0)−1(u, ĥ)). Similarly we have

||LτAN −AN || ≤ C2

σN
||τ ||∞, (7)
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where C2 = 22 · ||∇hN || and ∇hN is the gradient of the
last pooling filter hN .

Here while studying the bounds on operator norm, Equa-
tion (6) of Lemma 3.1 is stated on the norm of the commu-
tators of operators, given by [A,B] = AB −BA. It shows
that commutators are stable to diffeomorphism τ , as the
norm is controlled by ||∇τ ||∞, whereas the second norm
in Equation (7) decays with the last pooling bandwidth σN .
Note that for the semi-direct group G we restrict the dif-
feomorphism on R2 with the assumption that the elements
of subgroup H remains unaffected by the deformation τ ,
which in practice may not be true. We anticipate that includ-
ing H in deformation would give stability bounds that also
depend upon the patch sizes controlled by the elements of
H , more precisely through the irreducible representations
of H .

Theorem 3.2 (Stability bound). Subsequently we have

||ΦN (Lτx)− ΦN (x)|| ≤(
C1(1 +N)||∇τ ||∞ +

C2

σN
||τ ||∞

)
||x||. (8)

From Theorem 3.2 and Lemma 3.1 we understand that stabil-
ity to deformation of a CKN representation depends linearly
on the depth of network, the patch size (smaller the better)
and pooling filter whereas C2 controls the global invariance
of network under deformation and is inversely proportional
to last layer’s pooling filter bandwidth, σN . One needs to
have small C2 in order to have global equivariant repre-
sentation and indeed it’s small as σN typically increases
exponentially with the number of layers N . A further anal-
ysis of stability of equiv-CKNs and proofs of Lemma 3.1
and Theorem 3.2 are given in Appendix C. In the follow-up
study we will analyse stability bounds for different G and
H as listed in appendix D of (Cohen et al., 2019b).

4. Equiv-CNNs in RKHSs: An Outline
In this section we give a brief outline on how to construct an
equivariant G-CNN f (Cohen & Welling, 2016a) recursively
from intermediate functions f̂ i

k that lie in the RKHSs Hk

which is of the form,

f̂ i
k(x) = ||x||σ(⟨wi

k, x⟩/||x||), (9)

which closely resembles with the ideas from section 4
(lemma 11) of (Bietti & Mairal, 2019), primarily used to
study embedding of CNNs5 in RKHSs and thus extend-
ing theoretical results of CKNs to CNNs. Here wi

k’s are
convolutional filters used to obtain intermediate feature
maps f̂ i

k’s followed by non-linear activation maps (σ’s)

5CNNs with homogeneous activation function σ’s are consid-
ered. For e.g., smoothed-ReLU function.

and linear pooling, similarly as defined in Section 2. Note
that to build a group equiv-CNN one needs equivariant fil-
ter bank (obtained through G-convolution), pointwise non-
linearities and a G-pooling which closely resembles with
that of pooling operator defined for equiv-CKNs. The con-
struction (with some mild assumptions on homogeneous
non-linearity) of G-CNN f then resembles with that of
Equation (9). More details are given in Appendix D.

Following proposition 13 and proposition 14 of (Bietti &
Mairal, 2019) one get upper bounds on the RKHS norm
of classical CNNs fσ which is given by the parameter of
the final linear fully connected layer, the spectral norm of
the convolutional filter parameters at each layers and the
choice of the activation function. One can think of similar
bounds for equiv-CNNs through it’s RKHSs norm given by
the final pooling layer (or the norm of the global pooling
operator Ac : L2(G) → L2(R) defined for x ∈ L2(G) as
Acx(u) =

∫
G
x(g−1u)dµc(g)), equivariant filters and the

choice of non-linearities. One can use spectral norms to
study generalization, for e.g., done in (Bartlett et al., 2017),
of equiv-CNNs. Similarly as one can do stability analysis of
CNNs through the Lipschitz smoothness and given by the
relation through Cauchy-Schwarz’s inequality,

|fσ(Lτx)−fσ(x)| ≤ ||fσ||HN
||ΦN (Lτx)−ΦN (x)||L2(G),

(10)
where || · ||H is the standard Hilbert norm, one can then
extend the same for equiv-CNNs, outlined in Equation (9),
and supported by Theorem 3.2.

5. Conclusion
We have shown how to construct a hierarchical kernel net-
work for multilayered equivariant representation learning by
constructing the equivariant feature maps in RKHSs. Then
we studied the stability bounds of equiv-CKNs under some
mild assumptions and through the Lipschitz stability which
shows the stability with respect to a deformation depends
upon the specific architecture of equiv-CKNs including the
depth of the network and most importantly of the RKHS
norm, which acts as an implicit regularizer in our model and
controlling the norm leads to better stable model, as shown
in (Bietti et al., 2019). Finally we outlined the possibility
of embedding a group equiv-CNN into a RKHS and thus
extending the studies of equivariant convolutional networks
through the lens of equiv-CKNs that might provide novel
insights on equivariant convolutions as well as on deep mul-
tilayered equivariant kernel networks, for e.g., shown in
context of classical CNNs in (Anselmi et al., 2015).

Despite we follow the common framework of (Kondor &
Trivedi, 2018) and expect such equiv-CKNs can also be
defined on spherical domain (Cohen et al., 2018) it may
not be possible to define the same framework on a general
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manifold. One needs careful construction of gauge equivari-
ant CKNs, following similar works on gauge equiv-CNNs
(Cohen et al., 2019a; De Haan et al., 2020) which might be
possible as one can define manifold on Hilbert spaces. This
is a future work we are interested to work on.

We are also interested to do a thorough analysis of general-
ization capability of equivariant networks through analysing
the generalization bounds of equiv-CKNs. A PAC-Bayesian
generalization analysis has been performed recently on
equivariant networks (Behboodi et al., 2022), whereas (Bi-
etti, 2022) has studied generalization of 2-layers CKNs by
bounding the excessive risk for the kernel ridge regression
(KRR) estimator. Analyzing the generalization bounds of
the equiv-CKNs with these approaches is indeed a promis-
ing direction of research.
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A. Some Useful Mathematical Tools
We state the classical result of characterizing a Reproducing Kernel Hilbert Space (RKHS) of functions defined from Hilbert
space mappings.
Theorem A.1. Let ϕ : X → H be a feature map to a Hilbert space H , and let K(x, x′) := ⟨ϕ(x), ϕ(x′)⟩H for x, x′ ∈ X .
Let H be the linear subspace defined by H := {fw, w ∈ H} such that fw : x 7→ ⟨w, ϕ(x)⟩H , and we consider the norm
||fw||2H := infw′∈H{||w′||2H such that fw = fw′}. Then H is the RKHS associated to the kernel K.

We now state another classical result, from harmonic analysis that is used to prove stability results of equiv-CKNs.
Lemma A.2 (Schur’s test). Let H be a Hilbert space and Ω a subset of Rd. Consider T an integral operator with kernel6

k : Ω× Ω → R such that for all u ∈ Ω and x ∈ L2(Ω,H),

Tx(u) =

∫
Ω

k(u, v)x(v)dv. (11)

If
∫
|K(u, v)|dv ≤ C and

∫
|K(u, v)|du ≤ C for all u ∈ Ω and v ∈ Ω respectively, for some constant C, then for all

x ∈ L2(Ω,H), we have Tx ∈ L2(Ω,H) and ||T || ≤ C.

For an operator T : L2(Rd,H) → L2(Rd,H′), the norm is defined as ||T || := sup||x||
L2(Rd,H)

≤1||Tx||L2(Rd,H′). One can
extend this definition of operator norm on L2(G), as the latter is the base of our signals defined on the group G, rather than
on Rd. With the support of Haar measure on locally compact group G which supports the signal domain the structure of
norm is similar to that of on L2(Rd) (with a Lebesgue measure support).

B. Further Details on Group Equivariant CKNs on Euclidean Domain
Patch extraction operator Pk’s, given by Equation (2) which is encoded in a Hilbert space Pk, preserves the norm, i.e.,
||Pkxk−1|| = ||xk−1||, because of Pk’s are supported by normalized Haar measure. Hence Pkxk−1 ∈ L2(G,Pk).

Kernel mapping operator Mk’s. Here we give a detailed description of the operator defined in Equation (3) and the
choice of dot-product kernels. As defining a homogeneous dot-product kernel yields Mk’s as point-wise operator and hence
commutes well with the group action Lg’s for g ∈ G, we stick to the definition of kernel mapping operators given by (Bietti
& Mairal, 2019).

We define a function kk : [−1,+1] → R such that kk(u) =
∑∞

i=0 biu
i such that bi ≥ 0 for all i and kk(1) = 1 and

0 ≤ k′k(1) ≤ 1, where k′k is the first order derivative of kk. Then we define the kernel Kk on Pk as

Kk(x, x
′) := ||x||||x′||kk

(
⟨x, x′⟩

||x||||x′||

)
, (12)

when x, x′ ∈ Pk\{0}, and Kk(x, x
′) = 0 if either of x and x′ is 0. Note that Kk is positive definite as kk admits a

Maulaurin series with only non-negative coefficients (Schölkopf & Smola, 2018). Then the kernel mapping φk(·), associated
to the positive definite kernel Kk is denoted by Kk(x, x

′) = ⟨φk(x), φk(x
′)⟩.

Norm preservation of operator Mk. The constraint kk(1) = 1 ensures that Mk preserves the norm, as, ||φk(x)|| =
Kk(x, x)

1/2 = ||x|| leads us to ||MkPkxk−1|| = ||Pkxk−1|| for any k, and therefore MkPkxk−1 ∈ L2(G,Hk).

Non-expansiveness of φk(·)’s. In order to study the stability results we need our kernel mapping non-expansive, i.e.,
||φk(x) − φk(x

′)|| ≤ ||x − x′||, for x, x′ ∈ Pk, and the constraint on the derivative of kk’s, i.e., 0 ≤ k′k(1) ≤ 1 ensures
that it is always going to hold. The following lemma states the non-expansivess of the kernel mapping.
Lemma B.1 (Lemma 1, (Bietti & Mairal, 2019)). Let Kk be a positive-definite kernel given by Equation (12) which satisfies
the constraints given by kk’s. Then the RKHS mapping φk : Pk → Hk, for all x, x′ ∈ Pk satisfies ||φk(x)− φk(x

′)|| ≤
||x− x′||. Moreover Kk(x, x

′) ≥ ⟨x, x′⟩, i.e., the kernel Kk’s are lower bounded by the linear kernels.

Proof. For the proof we make use of the fact from the Maclaurin expansion7 of kk’s that

kk(u) = kk(1)−
∫ 1

u

k′k(t)dt ≥ kk(1)− k′k(1)(1− u), (13)

6This type of kernel is known as Schwartz kernel.
7We also assume that the series

∑
i bi and

∑
i ibi’s are convergent.
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for all u ∈ [−1,+1]. Then for x, x′ ̸= 0 we have

||φk(x)− φk(x
′)||2 = ||x||2 + ||x′||2 − 2||x||||x′||kk(u),

with u = ⟨x, x′⟩/(||x||||x′||). Using the above inequality and the constraint kk(1) = 1 we have

||φk(x)− φk(x
′)||2 ≤ ||x||2 + ||x′||2 − 2||x|||x′||(1− k′k(1) + k′k(1)u)

= (1− k′k(1))(||x||2 + ||x′||2 − 2||x|||x′||) + k′k(1)(||x||2 + ||x′||2 − 2⟨x, x′⟩)
= (1− k′k(1))|||x|| − ||x′|||2 + k′k(1)||x− x′||2

≤ ||x− x′||2.

For the last inequality we use the fact that 0 ≤ k′k(1) ≤ 1.

Remark B.2. One can extend the above lemma for any Lipschitz continuous mapping with φk(·) being ρ-Lipschitz with
ρ = max(1,

√
k′k(1)), for any value of k′k(1). Then similarly the above inequality will hold and more generally we’ll

also have ||φk(x) − φk(x
′)||2 ≤ k′k(1)||x − x′||2 when k′k(1) ≥ 1. This together with the above inequality gives us

||φk(x)− φk(x
′)||2 ≤ ρ2||x− x′||2, and yields the result. However for the sake of simplicity we just avoid using Lipschitz

continuous kernel mapping as otherwise the stability constants would also depend upon ρ which would increase exponentially
with the number of layers that one wants to avoid.

For example, homogeneous Gaussian kernel defined as, KRBF (x, x
′) = exp(−α||x− x′||2) is non-expansive only when

α ≤ 1 but is still Lipschitz for any values of α.

Pooling operator Ak’s. From Equation (4) we have noted the involvement of a pooling filter hk’s. One typical example
of such pooling filter is Gaussian pooling filter which is given by hσk

(u) := σ−d
k hk(u/σk), where σk is the scale of the

pooling filter and hk(u) = (2π)−d/2exp(−|u|2/2).

In the definition of Ak in Equation (4) the pooling filter hk is typically localized around the identity element of G. By
applying Schur’s test on the operator Ak one obtains that ||Ak|| ≤ 1 and hence xk(u) ∈ L2(G,Hk).
Remark B.3. Unlike the operators Pk and Mk, Ak doesn’t preserve the norm (which is in contrary to the setting of (Mallat,
2012)) as ||Akxk(u)|| ≤ ||xk(u)||. As we are using a pooling filter with a scale of σk, therefore Ak’s may reduce frequencies
of signals that are larger than 1/σk. However norm preservation is less relevant in the kernel based setting as discussed in
(Bietti & Mairal, 2019), as if one picks a Gaussian kernel mapping on top of the last feature map instead of a linear layer as
prediction layer then the final feature representation preserves stability as well as have a unit norm.
Remark B.4. One can also pool on subset H ⊆ G by only integrating on H , much like the subgroup pooling described in
(Cohen & Welling, 2016a) for group equiv-CNNs. This subsampling on a subgroup H ⊆ G, though gives the subsampled
feature map H-equivariant but one can obtain the full group G-equivariance by performing the pooling on the entire H .
Moreover from the first expression of Ak in Equation (4) it is easy to see that the pooling operator commutes with Lg .

Some notes on discretization and kernel approximation. Though for our theoretical analysis purposes we have defined
signals on L2(G,Hk) but for practical implementation one needs to discretize the signals as in practice, signals are discrete.
For group equiv-CNNs it is nicely discussed in (Cohen & Welling, 2016b; Cohen et al., 2019b) through the notion of fiber
space (bundles), making each discrete feature maps equivariant and hence the entire network equivariant, through the efficient
implementation of G-equivariant layers. For our construction it is possible to sample each feature map Φk(x) := xk(u) on a
discrete set with no loss of information. For the classical CKNs an in-depth discussion on discretization is available through
section 2.1 of (Bietti & Mairal, 2019) or by simply following the construction of hierarchical CKN layers from (Mairal,
2016).

In (Mairal, 2016) a finite dimensional subspace projection of RKHS mappings φk(·) are discussed through an adapted
Nyström method (Zhang et al., 2008) which is essential in the construction of CKNs. However this is not a drawback as
such finite dimensional approximation of RKHS mappings still live in the corresponding RKHSs as well as it won’t hurt
the stability results due to the non-expansiveness of the projection. However in this case some signal information is lost as
through projection we can no longer maintain the norm preservence of the kernel mapping operator Mk.

Equivariant convolutional kernel representations. Note the term ‘convolution’ in equiv-CKNs come from the definition of
pooling filter which resembles with the definition of classical convolutional mapping and in line with the generalized convolu-
tional operator8 defined on compact groups by (Kondor & Trivedi, 2018) which is given by (f ∗h) =

∫
G
f(uv−1)h(v)dµ(v),

8Unlike the classical convolution u− v is replaced with uv−1.
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where f and h are functions defined on G and the integration is with respect to the Haar measure µ. Note how our pooling
filter is in a convolution with the feature map xk(·)’s. We state the following theorem without a proof which establish the
group equivariance of the CKNs, omitting some practicalities on which we’ll work in details in our follow-up paper.
Theorem B.5 (Equivariance of an entire CKN). Let G be a locally compact group and ΦN be a (N+1)-layered CKN9,
following the standard construction of a CKN. If the pooling operators Ak are in cross-correlation with the feature maps xk

for each k ∈ 1, .., N , i.e., Ak(xk) = xk ∗hk, where hk is the pooling filter associated to Ak’s and the patches Sk ⊂ G form
the index sets χk = G/Sk on which one can define a generalized convolution defined in the previous paragraph following
(Kondor & Trivedi, 2018), then the CKN ΦN is equivariant with respect to locally compact group G’s action on it’s inputs.
The converse also holds if the index sets χk covers the entire G.

Note that, one can always write an equivariant map in an convolution-like integral (theorem 3.1, (Cohen et al., 2019b))
which also supports our construction of group equiv-CKNs on homogeneous space. A direct consequence of Theorem B.5 is
the following.
Corollary B.6 (Equivariant kernels). Equation (4) can always be written as cross-correlation between the feature map and
the pooling filter. Moreover in equiv-CKNs, representation, ΦN (x) ∈ L2(G,HN ) is equivariant (with respect to G) if and
only if each φk’s are in cross-correlation with an equivariant pooling filter.

Proof. The proof is straight-forward and immediately follows from the definition of cross-correlation, i.e., [hk ∗ xk](u) :=∫
G
hk(u

−1v)xk(v)dµk(v) = Akxk(u). For the second part, note that Akxk(u) can be written as AkMkPkxk−1(u) as one
can see it from Figure 1. Then establishing link with kernel mapping φk with hk’s are staightforward and the equivariance
followed from Theorem B.5.

Remark B.7. Note that through the above corollary we get another equivalent notion of equivariant kernels, as described in
(section 3.1 of (Cohen et al., 2019b)). However note that in equiv-CKNs the kernels are described by kernel mapping φk’s
which is given by the RKHS mapping, giving true flavour of kernel machine, which is missing in group equiv-CNNs. We
note that more recently (Lang & Weiler, 2021) gives a full characterization of group equivariant kernels but it still misses the
notion of RKHSs.

C. Stability Analysis Proofs
Before giving the proofs of Lemma 3.1 and Theorem 3.2 we first dive deep into the stability form and how it is controlled by
the operator norm (and hence of the RKHSs norm) which are motivated by similar notion of diffeomorphism studied in
(Mallat, 2012).

The assumption supc∈Ŝk
|c| ≤ κσk−1 is made to relate the scale of pooling operator at layer k − 1 with the diameter of the

patch Sk. As σk’s increases exponentially with the layers k and characterizes resolution of each feature map, the assumption
helps us to consider such patch sizes that are adapted to those resolutions, and helps us control the stability. Let us first state
the bound on operator norms.
Proposition C.1 (Proposition 4 (Bietti & Mairal, 2019)). For any x ∈ L2(Rd,H0), we have

||ΦN (Lτx)− ΦN (x)|| ≤

(
N∑

k=1

||[PkAk−1, Lτ ]||+ ||[AN , Lτ ]||+ ||LτAN −AN ||

)
||x||. (14)

By expanding ΦN ’s as shown in the multilayered construction of CKNs in Section 3 and using the facts of norm preservence
of Pk and Mk’s, non-expansiveness of Mk’s and ||Ak|| ≤ 1 we can get the above result. Moreover one also uses the fact
that kernel mapping Mk is defined point-wise and thus commutes with the deformation operator Lτ . The result holds even
when x is defined on the locally compact group G, i.e., when x ∈ L2(G,H0).

C.1. Proof of Lemma 3.1.

Proof. Note that for all k we have

Pkxk−1((u, ĥ)) = x((uv, ĥ · 0))v∈ĥŜk

= x((uv, ĥ))v∈ĥŜk
,

9The last layer is a prediction layer.
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where ĥŜk is in Sk ⊆ G/H , and by ĥ · 0, we meant the group composition with the identity element.

Similarly we have Akxk((u, ĥ)) =
∫
G
xk((v, ĥ

′))hk((u, ĥ)
−1v)dµ(v) =

∫
R2 xk((v, ĥ))hk(u

−1v)dµ(v) which follows
from the second term of Equation (4). Moreover as G/H ≃ R2, we can integrate over G/H ≃ R2 by using integral over G,
i.e.,

∫
R2 f(x)dx =

∫
G
f(gH)dg.

For a fixed ĥ ∈ H we can obtain signal x̂ := x(·, ĥ) ∈ L2(R2,H0) from the signal x ∈ L2(G,H0), and we have
corresponding operators P̃k, Ãk and L̃τ now defined on L2(R2), with a transformed patch S̃k = ĥŜk for P̃k.

Then for x ∈ L2(G,H0), we have,

||[PkAk−1, Lτ ]x||2L2(G) =

∫
G

||([PkAk−1, Lτ ]x)(·, ĥ)||2L2(R2)dµ(ĥ)

=

∫
R2

||[P̃kÃk−1, L̃τ ](x̂)||2L2(R2)dµ(ĥ)

≤
∫
R2

||[P̃kÃk−1, L̃τ ]||2||(x̂)||2L2(R2)dµ(ĥ)

≤
(
sup||[P̃kÃk−1, L̃τ ]||2

)
||x||2L2(G),

so that one has ||[PkAk−1, Lτ ]||L2(G) ≤ sup||[P̃kÃk−1, L̃τ ]||L2(R2). As we have assumed that supc∈Ŝk
|c| ≤ κσk−1, so we

can bound each of ||[P̃kÃk−1, L̃τ ]|| as shown in section 3.1 of (Bietti & Mairal, 2019). We refer the readers to that section10

for detailed understanding of deformation stability of classical CKNs by bounding the operator norms when signals are in
L2(R2) which is possible as one can bound ||[P̃kÃk−1, L̃τ ]|| with supc∈Ŝk

||[LcÃk−1, L̃τ ]|| and showing [LcÃk−1, L̃τ ] is
an integral operator, one can bound its norm via Schur’s test. Equation (6) is then obtained by applying the bound derived
for classical CKNs.

Similarly by applying lemma 2.11 from (Mallat, 2012) one obtains upper bound on ||LτAN −AN ||L2(G) by first restricting
it on ||L̃τ ÃN − ÃN ||L2(R2) and then applying the lemma 2.11 get the desired result, given by Equation (7).

Proof of Theorem 3.2 immediately follows by combining Proposition C.1 with Equation (6) and Equation (7) which are
extracted by bounding the corresponding operator norms.

D. Geometric Model Complexity of Deep Equivariant Convolutional Representations
If one can write a group equiv-CNN f in the form f(x) = ⟨f,Φ(x)⟩, where Φ(·) is the equivariant convolutional kernel
representation, then one can extend the stability analysis of equiv-CKNs, Φ(·)’s to the stability analysis of equiv-CNNs.
Moreover computing the RKHS norm of the equiv-CNNs one can also control generalization, so that controlling the RKHS
norm serves as the geometric model complexity of equiv-CNNs, where the term ‘geometric’ refers to the equivariance of
operators and the geometry of RKHSs.

Before outlining the construction of an equiv-CNNs in RKHSs, let’s state a lemma from (Bietti & Mairal, 2019) which
closely follows the results of (Zhang et al., 2017), linking the homogeneous activation function with RKHSs Hk, which we
believe also holds for group equiv-CNNs as the pointwise homogeneous activation maps σ are replaced with pointwise
non-linearity maps ν, as described in (Cohen & Welling, 2016a).

Lemma D.1 (Lemma 11, (Bietti & Mairal, 2019)). If the activation maps σ admits a polynomial expansion and we define
our kernel Kk as given in Equation (12). Then for g ∈ Pk, the RKHS Hk contains the function,

f : x 7→ ||x||σ(⟨g, x⟩/||x||), (15)

which matches the form given by Equation (9).

For our construction of kk’s, the next corollary follows from the above lemma as well as from the Theorem A.1.

Corollary D.2. The RKHSs Hk contain all linear functions of the form x 7→ ⟨g, x⟩, with g ∈ Pk.

10Read appendix C.4. for proof of the lemma.
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Note that RKHS of the kernel KN (x, x′) = ⟨Φ(x),Φ(x′)⟩, defined at the prediction layer as final representation Φ(x) ∈
HN+1 contains functions of the form f : x 7→ ⟨w,Φ(x)⟩, with w ∈ HN+1 and ||f || ≤ ||w||HN+1

. This is a consequence of
Theorem A.1, and also in line with the stated corollary, as in our construction Pk’s are also RKHS.

D.1. Construction of group equiv-CNN f in the RKHS

One defines the k-th layer of equiv-CNN function f in Hk from the (k − 1)-th layer as follows: For an input signal
x0 ∈ L2(G,H0 := Rp0), we build a sequence of feature maps, xk ∈ L2(G,Hk := Rpk) with pk channels. We use the
following intermediate functions gik ∈ Pk and f i

k ∈ Hk, where i = 1, ..., pk and construct it from the (k−1)-th intermediate
function inductively, where the intermediate functions are of form Equation (15).

gik(u) =
∑
h∈Sk

pk−1∑
j=1

wij
k (u−1h)f j

k−1(x(h))

f i
k(x(u)) = ||x(u)||σ

(
⟨gik, x(u)⟩/||x(u)||

)
,

for x(u) ∈ Pk\{0}, u ∈ G, and the filters wi
k(u) = (wij

k (u))j=1,...pk−1
are equivariant through the definition of the

intermediates and also matches the notion of group equivariant correlation of (Cohen & Welling, 2016a).

With this construction one can show that the equivariant feature maps xk are given are xi
k(u) = ⟨f i

k,MkPkxk−1(u)⟩, where
u ∈ G and Pk and Mk’s are our patch and kernel operators, respectively, used to define an equiv-CKN. With a final linear
prediction layer one can immediately show that an equivariant CNN lies in a RKHS, supported by Corollary D.2. We
will work on the detailed construction in our follow-up paper, discussing in depth the generalization bounds and sample
complexity of equiv-CKNs.

D.2. Note on the norm of equiv-CNN f and generalization bounds

We have seen that how the operator norms control the stability of the CKNs and through Equation (10) we get the model
complexity of group equiv-CNNs, where the RKHS norm of f also plays an important role in the stability of the model
as well as understanding the generalization capabilities, and hence of the geometric model complexity of the equivariant
convolutional networks.

One can study generalization bounds through Rademacher complexity and margin bounds, for e.g., as done in (Shalev-
Shwartz & Ben-David, 2014), where one studies the upper bound on the Rademacher complexity of a function class Fλ

with bounded RKHS norm, Fλ = {f ∈ HK : ||f || ≤ λ}, for a dataset {x1, x2, ..., xM}, given by,

RadM (Fλ) ≤
λ
√
1/M

∑M
i=1 K(xi, xi)

√
M

.

The bound remains valid when considering CNN functions of form fσ , given by Equation (15), as such family of functions
fσ contains in the class of Fλ. Generalization bound depends upon the model complexity parameter λ, sample size M and
on the choice of the kernel at the prediction layer. However it doesn’t explicitly yield the layer-wise architectural choices of
CKNs. However in practice, learning with a tight constraint, like ||f || ≤ λ, can be infeasible and thus one needs to replace
λ with a similar bound with ||fM || which can be directly obtained from the training data (Theorem 26.14,(Shalev-Shwartz
& Ben-David, 2014)). This then involves the construction of equiv-CNNs in a RKHS, as seen in Appendix D.1. and the
corresponding RKHS norm, together with the sample size gives the upper bound of Rademacher complexity. Hence this
leads to a way of studying generalization bounds of group equiv-CNNs.


