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ABSTRACT

Adversarial attack serves as a major challenge for neural network models in NLP,
which precludes the model’s deployment in safety-critical applications. A recent
line of work, detection-based defense, aims to distinguish adversarial sentences
from benign ones. However, the core limitation of previous detection methods is
being incapable of giving correct predictions on adversarial sentences unlike de-
fense methods from other paradigms. To solve this issue, this paper proposes
TextShield: (1) we discover a link between text attack and saliency informa-
tion, and then we propose a saliency-based detector, which can effectively de-
tect whether an input sentence is adversarial or not. (2) We design a saliency-
based corrector, which converts the detected adversary sentences to benign ones.
By combining the saliency-based detector and corrector, TextShield extends the
detection-only paradigm to a detection-correction paradigm, thus filling the gap in
the existing detection-based defense. Comprehensive experiments show that (a)
TextShield consistently achieves higher or comparable performance than state-of-
the-art defense methods across various attacks on different benchmarks. (b) our
saliency-based detector outperforms existing detectors for detecting adversary.

1 INTRODUCTION

Deep Neural Networks (DNNs) have obtained great progress in the field of natural language pro-
cessing (NLP) but are vulnerable to adversarial attacks, leading to security and safety concerns, and
research on defense algorithms against such attacks is urgently needed. Specifically, the most com-
mon attack for NLP is word-level attack (Wang et al., 2019b; Garg & Ramakrishnan, 2020; Zang
et al., 2020; Li et al., 2021), which is usually implemented by adding, deleting or substituting words
within a sentence. Such an attack often brings catastrophic performance degradation to DNN-based
models. Therefore, we choose to study defending against word-level attacks1 in this paper.

Although a number of defense methods can be found in the literature of NLP (Jia et al., 2019; Ko
et al., 2019; Jones et al., 2020; Wang et al., 2020b; Zhou et al., 2021; Dong et al., 2021; Bao et al.,
2021), there are remaining several unsolved research problems. One problem lies in the ineffective
application of the existing detection-based defense paradigm to the adversarial defense scenario,
which consists of two steps: adversarial detection that detects whether an input sentence is adversar-
ial or not, and a model prediction that predicts a label for the input. Notice that the model prediction
is usually specific for a practical application, e.g., different text classification tasks used in this paper.
However, the detection-based defense paradigm only focuses on adversarial detection and does not
make efforts to adversarial sentence prediction. That is, even if adversarial detection can successfully
detect adversarial sentences, correctly predicting such adversaries remains incapable. Considering
that an adversarial sentence is usually generated through adding an imperceptible perturbation into
a benign sentence, we believe a practical defense paradigm should have another operation, a correc-
tion that transforms the adversarial sentence into the benign sentence as much as possible, and then

∗This work is done during Lingfeng’s internship at Tencent AI Lab, †refers to the corresponding authors.
1Through the rest of the paper, text attack specifically refers to word-level text attacks.
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use the corrected adversarial sentence for the model prediction. Therefore, considering the paradigm
problem, we propose a detection-correction defense method in this paper.

Another problem is that most existing defense methods rely either on word frequency or on pre-
diction logits to detect adversarial sentences (Mozes et al., 2021; Mosca et al., 2022). One may
wonder whether any other information can be leveraged for adversarial detection. In this paper, we
discover that the mechanism of text attack is related to saliency, a measure used in the explainability
of DNNs (Simonyan et al., 2013). Based on such discovery, we propose the saliency-based detector
to enhance adversarial detection.

Overall, to address the two issues, in this paper, we build our TextShield, a defense method consist-
ing of a detector and a corrector. Motivated by the link between adversarial sentence and saliency, we
define a metric called adaptive word importance (AWI) based on saliency computation (Simonyan
et al., 2013), and then design the detector and corrector based on AWI. Specifically, the detector com-
bines four saliency-based sub-detectors to inform whether an input sentence is adversarial, where the
four sub-detector utilize four saliency computation methods (Simonyan et al., 2013; Springenberg
et al., 2015; Bach et al., 2015; Sundararajan et al., 2017) to calculate AWI, respectively. Then, if the
detector recognizes the input as adversarial, the corrector rectifies the words with high adversarial
probabilities in the sentence by their high-frequency synonyms, where the adversarial probability is
determined by AWI. Finally, the corrected sentence is used for model prediction. Our extensive ex-
periments demonstrate that TextShield can effectively defend against adversarial attacks on several
text classification benchmarks.

Our main contribution are listed as follows:

• We design a defense method, TextShield, which extends the existing detection-based de-
fense paradigm to detection-correction paradigm. The incorporation of a corrector in
TextShield resolves the model prediction incapability problem in detection-based defense.

• We discover another word-level information for detecting adversarial sentences, saliency,
and then design a detector based on adaptive word importance (AWI), a novel metric based
on saliency computation. Furthermore, AWI is also used to design the corrector.

• Comprehensive experiments demonstrate that our TextShield performs comparably or bet-
ter than SoTA defense methods under various victim classifiers on several text classification
benchmarks.

2 RELATED WORK

In recent years, many adversarial attack methods have been proposed for NLP, different from back-
door attacks Chen et al. (2017); Liu et al. (2017); Wang et al. (2019a); Li et al. (2020c); Shen et al.
(2022a), adversarial attacks try to modify the text data while making them less perceptible by hu-
mans. Coarsely, these attacks modifies the text data at character level (Belinkov & Bisk, 2018; Eger
et al., 2019; He et al., 2021), word level (Alzantot et al., 2018; Zhang et al., 2021; Wang et al., 2022)
or sentence level (Jia & Liang, 2017; Ribeiro et al., 2018; Zhang et al., 2019b; Lin et al., 2021). Since
word-level text attack is the most common and effective attack for text classification, in this paper,
we focus on defense methods against word-level text attacks, which can be categorized into three
paradigms: (1) model-enhancement-based, (2) certified-robustness-based, and (3) detection-based.

Model enhancement is a common way to improve model’s robustness against text attacks, and one
popular way is adversarial training which re-trains a victim model with extra adversarial examples
to obtain an enhanced model. Alzantot et al. (2018); Ren et al. (2019) generated adversarial ex-
amples by an attack method and re-trained models more robust against the attack. More successful
defense based on model enhancement can be regarded as synonym encoding (Le et al., 2021; Dong
et al., 2021; Wang et al., 2021a), a series of methods defend text attacks through setting the same
embedding for different synonyms. Unfortunately, the robustness of re-trained models is often deter-
mined by the diversity of adversarial examples used in re-training (Shen et al., 2022b). As a result,
adversarial training is vulnerable to unknown attacks.

Besides, a stream of recent popular defense methods (Huang et al., 2019; Jia et al., 2019) concen-
trates on certified robustness, which ensures models are robust to all potential word perturbations
within the constraints. However, because of the extreme time cost in the training stage, certified ro-
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bustness is more difficult to be applied to complex models compared to other paradigms of defenses.
For example, IBP (Jia et al., 2019) performed catastrophically on large pre-trained language models.

Recently, some excellent works have designed detection-based defense methods. For example,
Mozes et al. (2021) used the word frequency difference to design detectors; Le et al. (2021) designed
a detector specific for the ‘Universal trigger’; Mosca et al. (2022) proposed a detection method by
leveraging prediction logits. Despite their success, such detection-based defense methods own a
key issue: the incapability of correctly classifying adversarial sentences. An intuitive and straight-
forward idea is to design a corrector to convert adversarial sentences to their original benign ones,
which has proved effective in the the field of computer vision (CV) (Liu et al., 2019; Qin et al.,
2019; Li et al., 2020b; Deng et al., 2021). However, the different essence between languages and
pixels makes correctors used in CV not transferable in NLP. In this paper, based on the generation
mechanism of adversarial sentences, we design a proper detector and corrector for text attacks.

3 BACKGROUND

In this section, we present basic definitions used in adversarial text attack and saliency computation.

Adversarial text attack In a text classification scenario, X = {w1, . . . , wd} is a sentence with d
words, and w1, . . . ,wd are the corresponding embeddings. Given a text classifier F , F (X) denotes
the probability distribution over the class set Y for input sentence X . Then, class yj with the largest
probability in F (X) is selected as the prediction of X . Furthermore, in a word-level text attack for
a text classification scenario, there is a victim classifier F and a text attack G.

• Victim Classifier: Given a set of benign sentences in a text classification benchmark, the
victim classifier F can be trained with the benign sentences, where the sentence encoder
is usually selected as TextCNN (Kim, 2014), LSTM (Hochreiter & Schmidhuber, 1997) or
BERT (Devlin et al., 2019).

• Text Attack: For a benign sentence X with true label yj , the text attack G generates an
adversarial sentence X∗ = G (X) by substituting words wi in X with w∗

i , satisfying:
(1) F (X∗) and F (X) output different predicted labels; (2) Dist (wi,w

∗
i ) < δ, where

Dist(·, ·) is a distance metric and δ is a threshold to limit the distance.

Saliency computation In the field of explainability of DNNs, saliency map is a common technique
to identify input features that are most salient. In other words, these input features cause a maximum
influence on the model’s output. Specifically, saliency is a measure that quantifies the sensitivity of
an output class for an input feature in a DNN-based model, and a saliency map is a transparent
colored heatmap overlaid on the input features.

Furthermore, back-propagation-based methods, which have been widely used to compute saliency
in the explainability of DNNs, treat saliency as the gradient of a DNN-based model. There are
different ways to calculate gradients based on gradient signals passed from output to input during
model training, which leads to different saliency computation methods. For example, in the vanilla
gradient (VG) method (Simonyan et al., 2013), saliency is directly defined as the partial derivative
of the network output concerning each input feature scaled by its value. Formally, given a classifier
F and a sentence X containing words wi, the saliency of wi to prediction yj is defined as follows:

rij =
∂Fyj

(X)

∂wi
(1)

where Fyj (X) is the prediction confidence for yj when applying F on X .

4 MOTIVATION AND INTUITION

This section illustrates intuitions that motivate us to design TextShield. Firstly, we present our basic
derivations to show a cross-cutting connection between adversarial robustness and saliency. Then,
we define adaptive word importance (AWI), a metric that helps us to detect adversarial sentences.
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4.1 THE CONNECTION BETWEEN ADVERSARIAL ROBUSTNESS AND SALIENCY

In this part, we explain why saliency is highly related to adversarial robustness, indicating there is
a connection between adversarial robustness and saliency. Given a victim classifier F and a benign
sentence X with label yj predicted by F , the objective of a text attack that generates an adversarial
sentence X∗ with a wrong predicted label (namely yk) is defined as follows:

argminL
(
Fyj (X

∗) , yk
)

(2)

where L is a loss function (e.g., cross-entropy loss). In a vanilla gradient-based attack (Goodfellow
et al., 2014), Eq 2 is optimized by a gradient descent method. Specifically, in each iteration of the
attack, word wi is substituted with a word whose embedding is closest to wi. In other words, word
embedding wi is perturbed with a step rate r1 by the attack, which is defined as follows:

w
′

i = wi − r1
∂L(Fyj

(X), yk)

∂wi
(3)

In ease of clarification, we regard the word embeddings as continuous variables. Then, based on

Eq 1, we can further derive the term wi − r1
∂L(Fyj

(X),yk)

∂wi
, and rewrite it as follows:

wi − r1
∂L(Fyj

(X), yk)

∂Fyj
(X)

· |rij | (4)

As shown in Eq 4, words with larger |rij | are perturbed more severely by the attack, indicating that
saliency |rij | may serve as a key for adversary detection.

4.2 ADAPTIVE WORD IMPORTANCE

Inspired from previous analysis and finding, we design a novel metric called adaptive word impor-
tance (AWI) based on saliency.
Definition 1. Given sentence X with label yj predicted by text classifier F , the adaptive word
importance (AWI) of word wi in the sentence, Rij , is defined as follows:

Rij = |∆(F,wi, yj)| (5)

∆ is a saliency computation method, e.g., VG.

Given sentence X , the (i, j)-th element Rij reflects the importance of word wi towards prediction
yj in victim classifier F . Thus, AWI can reflect the importance of a word, and a larger AWI value
indicates higher importance.

5 TEXTSHIELD

5.1 OVERVIEW

Based on previous analysis, we present TextShield, which is like a shield in front of the victim
classifier, as shown in Figure 1. Generally, TextShield has two principal components: a detector
and a corrector. The detector is a learning-based binary classifier that takes a sentence as input
and outputs whether the input is adversarial or not. The corrector continues to correct adversarial
sentences to benign ones, which makes up the blank of previous detection-based defense methods.

Specifically, given an input sentence X , X is fed to the victim classifier F to get prediction yj . Then
the detector is used to judge whether X is adversarial based on prediction yj . If X is benign, the
final prediction for X will be yj (i.e., F (X)). Otherwise, a corrector is used to transform X to X ′,
and the final prediction for X will be F (X ′).

5.2 DETECTOR

As shown in Figure 2, the detector consists of four sub-detectors and one combiner. A sub-detector is
a binary classifier that utilizes a saliency computation method and a LSTM layer to predict whether
input sentence X is adversarial or not. In this paper, four saliency computation methods, vanilla
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Figure 1: The overview of TextShield. During inference, a sentence X is firstly fed to the classifier
F . Then the detector judges whether X is adversarial. If not, F (X) will be the final prediction. On
the contrary, X will be transformed to X ′ by a corrector, and the final prediction for X is F (X ′).

Figure 2: The overview of the detector. The detection can be summarized into three stages: (I): AWI
matrices are generated by specific saliency computation methods based on F (X) and the classifier
F . (II): AWI matrices are fed to LSTMs to obtain predictions, e.g., z(V G), z(GBP ), z(LRP ) and
z(IG). (III): The predictions are fed to a combiner (a linear layer) to produce a final prediction z.

gradient (VG), guided backpropagation (GBP), layerwise relevance propagation (LRP), and integra-
tion gradient (IG), are chosen, which correspond to the four sub-detectors, respectively. Then, the
combiner uses a linear layer to combine four predictions from the four sub-detectors, respectively.

Specifically, for a sub-detector based on a saliency computation method I, given an input sentence
X , one AWI matrix is calculated for X using I, and then the AWI matrix is fed to an LSTM to
obtain a prediction. Takings VG as an example, the VG-based sub-detector is calculated as follows.

z(V G) = LSTM1

(
R(V G)

·j

)
(6)

where R·j is a column of AWI matrix R, and z(V G) is a binary prediction from VG-based sub-
detector. Similarly, z(GBP ), z(LRP ) and z(IG) are predictions from GBP-based, LRP-based, and
IG-based sub-detectors, respectively. Finally, through a linear combiner, the four binary predictions
are combined to give the prediction z:

z = argmax(L([z(V G), z(GBP ), z(LRP ), z(IG)]))

where L is the linear layer and z is the label reflecting whether X is adversarial.

In the following section, we will present the four saliency computation methods and then give the
details of the detector’s training.

Vanilla Gradient (VG) For text classifier F , the AWI value of word wi in sentence X to prediction
yj is calculated by the vanilla gradient method (Simonyan et al., 2013) as follows:

R(V G)
ij =

∂Fyj
(X)

∂wi
(7)
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where R(V G)
ij , the (i, j)-th element of AWI matrix R(V G), is the AWI value of word wi to prediction

yj , Fyj
is the prediction confidence for yj from F , and wi is the word embedding for word wi. In

fact, when calculating R(V G)
ij , Fyj

is a scalar and wi ∈ R1×k is a vector, where k is the dimension

of the word embedding. Thus,
∂Fyj

(X)

∂wi
is a vector with the form R1×k, and an average operation is

made to obtain R(V G)
ij . For brevity, we omit the operation in the paper.

Guided Backpropagation (GBP) Following the idea of the vanilla gradient, GBP (Springenberg
et al., 2015) chooses only ‘positive’ (> 0) gradients and discards ‘negative’ (< 0) gradients. Positive
gradients indicate supporting the prediction, while negative ones mean the opposite. Such a choice
enables us to capture what text classifier F learns and yet discard anything that F does not learn.
We take the final outputs of GBP as AWI matrix RGBP .

Layerwise Relevance Propagation (LRP) GBP owns an obvious drawback called gradient satu-
ration (Bach et al., 2015; Binder et al., 2016) that gradients computed by GBP are always zeros un-
der some cases. Therefore, Layerwise Relevance Propagation (LRP) (Bach et al., 2015) is proposed,
which tackles the problem using a reference input besides the target input to calculate gradients. The
LRP method calculates a weight for each connection in the gradient chain and uses a reference input
instead of roughly setting the weights as 0 or 1 like GBP. The reference input is a ‘neutral’ input and
will be different in different tasks (e.g., blank images in the CV field or zero embeddings in the NLP
field). Finally, such gradients compose AWI matrix RLRP .

Integrated Gradient (IG) LRP is calculating discrete gradients. However, the chain rule does not
hold for discrete gradients so that LRP has essential drawbacks. Thus, the integrated gradient (IG)
(Sundararajan et al., 2017) is proposed, which calculates the influence of word wi to prediction yj
by integrating vanilla gradient, which is defined as follows:

R(IG)
ij =

(
wi − wi

′
)
×

∫ 1

0

∂Fyj

(
X,wi

′ + α
(
wi − wi

′))
∂wi

dα (8)

where w′
i is a zero embedding and Fyj (X,wi

′ + α(wi − wi
′) means that the embedding of word

wi, wi, is replaced with wi
′ + α(wi −wi

′). The final outputs of IG is AWI matrix RIG.

Training of detector Generally, training the detector consists of the following three steps, where
both the adversarial data setup and the balanced data setup prepare data for the model’s training.
More training details are deferred to Appendix A.

• Adversarial data setup: Given benign data, the victim classifier F is fine-tuned by the
data. Then the adversarial attacks are used to generate adversarial sentences and 2,000
adversarial sentences per class that successfully attacks are selected. Moreover, the adver-
sarial sentences are equally generated by attacks.2

• Balanced data setup: The adversarial data and the same-size benign data are mixed as bal-
anced data. Then, the balanced data is split into train-dev-test sets with a 7:2:1 proportion.

• Model training: The training data set is fed to train the detector, and the best-performance
checkpoint is selected according to performance on the dev data set.

5.3 CORRECTOR

As mentioned in Sec 5.1, if the detector recognizes the input sentence X as an adversarial one,
then the prediction yj for X is possibly inaccurate. Furthermore, as discussed in Sec 4.1, given
an AWI matrix R, larger Rij means word wi is more important for classifying the sentence as yj .
In other words, words with large AWI values are more likely to be perturbed by attacks to fool the
victim classifier. Therefore, the corrector corrects the words with large AWI values in the adversarial
sentence. In addition, the corrector chooses RV G

ij as Rij .

2We do not train detector with the attack for evaluation. For example, if we evaluate the defense
capacity against GA, then it is trained with IGA, PWWS, and TextFooler.
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Specifically, for an adversarial sentence X∗ with prediction yj , the corrector regards a word wi as a
suspect when its Rij exceeds a threshold, which is defined as follows:

Rij > β · (Rmax −Rmin) +Rmin (9)

where Rmax and Rmin are the largest and smallest values in R, and β is a hyper-parameter to
control the ratio of suspects. For a suspect wi, the corrector substitutes wi with the most frequent
word w′ ∈ S(wi), where S(wi) is wi’s synonyms, extracted by NLTK (Loper & Bird, 2002).

6 EXPERIMENTS ON ADVERSARIAL DEFENSE

In this section, we conduct comprehensive experiments to compare TextShield to baselines.

6.1 EXPERIMENTAL SETTINGS

Firstly, we use TextCNN (Kim, 2014), LSTM (Hochreiter & Schmidhuber, 1997) and BERT (De-
vlin et al., 2019) as victim classifiers, and select four widely-used text attacks in the NLP field:
TL (TextFooler, (Kuleshov et al., 2018)), PWWS (Probability Weighted Word Saliency, Ren et al.,
2019) , GA (Genetic Algorithm, Alzantot et al., 2018) and IGA (Improved Genetic Algorithm,
Wang et al., 2019c). Moreover, we choose three popular benchmarks in text classification: IMDB
(Potts, 2010), AG’s News (Zhang et al., 2015) and Yahoo! Answers (Zhang et al., 2015).

Then, given a victim classifier, an attack and a benchmark, we generate test data consisting of a
benign dataset and an adversarial dataset, which are used to evaluate the generalization and robust-
ness of defense methods. Specifically, the benign dataset includes 1,000 benign sentences sampled
from the benchmark, and the adversarial dataset includes 1,000 adversarial sentences generated by
the attack based on the benchmark. Please note that there is no overlap between the test data and
the training data used for the detector’s training. Finally, we evaluate the performance of the victim
models with or without defense methods.

Moreover, we compare TextShield with four state-of-the-art defense methods: (1) IBP (Jia et al.,
2019): the most representative method in the certified robustness paradigm. (2) Adversarial Sparse
Convex Combination (ASCC) (Dong et al., 2021): a model-enhancement-based defense method
which leverages convex hull to defend against adversarial word substitutions. (3) Synonym En-
coding Method (SEM) (Wang et al., 2021a): a model-enhancement-based defense method based
on synonym encoding. (4) Frequency-based Word Substitution (FGWS) (Mozes et al., 2021):
a detection-based method which leverages word frequency. (5) Word-level Differential Reaction
(WDR) (Mosca et al., 2022): a detection-based method which utilizes prediction logits. Specif-
ically, considering that FGWS and WDR are detection-only methods and cannot correctly
classify adversarial sentences, we combine our corrector to them. The baselines’ settings are
kept the same with corresponding papers.

6.2 PERFORMANCE

Table 1 lists the performances of various defense models under different scenarios, which demon-
strates both the generalization and the robustness of these defense models.

Effect on generalization When evaluated on benign sentences (see Column ’No’ in Table 1), nor-
mal training (NT) achieves the best results, and our proposed method, TextShield, achieves accuracy
performance close to normal training (NT), indicating a good trade-off between robustness and gen-
eralization. By the way, such a trade-off is common for attack/defense, which has been theoretically
investigated in the CV field (Zhang et al., 2019a). In addition, generalization can be seen as a proper
upper bound for accuracy performance on adversarial sentences.

Moreover, among baselines, ASCC performs best, and IBP has lowest accuracy due to its relatively
loose bounds. Besides, combined with our corrector, PGWS and WDR obtain comparable per-
formances towards ASCC, which indicates that our corrector is effective across different detectors
concerning model’s generalization.
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Victim Defense IMDB AGNews Yahoo

No IGA PWWS GA TL No IGA PWWS GA TL No IGA PWWS GA TL

Text
CNN

NT 88.7 13.3 4.4 7.1 2.3 92.3 45.5 37.5 36.0 30.0 68.4 19.6 10.3 13.7 8.5
IBP 78.6 72.5 72.5 71.5 65.0 89.4 80.0 80.5 80.5 80.0 64.2 49.4 52.6 59.2 61.0

FGWS 84.7 70.4 68.0 70.2 64.0 84.7 82.0 83.5 82.2 83.4 65.0 57.0 58.0 57.5 60.8
WDR 85.4 72.5 70.5 71.0 66.5 85.5 84.2 84.4 83.4 83.5 66.0 60.0 60.0 61.5 61.5
ASCC 87.8 68.4 69.1 70.5 69.4 86.7 85.0 83.0 84.0 83.0 64.8 60.7 60.3 62.2 62.4
SEM 86.8 66.4 71.1 72.5 72.4 89.7 86.0 86.0 85.0 86.0 65.8 61.0 60.5 63.0 63.0

TS(Ours) 87.0 74.0 74.2 75.0 74.0 90.8 87.4 87.8 86.8 86.8 67.7 62.0 59.0 63.0 62.0

LSTM

NT 87.3 8.3 2.2 5.0 3.0 92.6 35.0 30.0 29.0 26.5 71.6 27.6 21.1 15.8 5.5
IBP 79.5 70.0 70.0 69.0 64.5 86.3 79.5 79.5 76.5 79.5 60.2 35.0 33.5 30.0 31.5

FGWS 80.9 70.4 71.1 72.9 70.0 87.5 82.5 82.0 82.0 82.0 68.0 58.0 58.2 58.5 58.5
WDR 80.3 70.5 75.0 75.0 71.0 88.0 83.5 84.0 82.0 83.4 66.5 60.0 58.0 60.0 59.5
ASCC 82.8 70.2 75.0 74.0 70.8 88.9 84.6 85.0 82.7 84.0 68.0 58.6 57.9 58.2 55.5
SEM 86.8 72.2 77.0 77.0 73.8 90.9 85.5 86.5 85.0 85.5 69.0 60.6 59.9 60.2 62.5

TS(Ours) 86.0 74.0 79.4 78.6 76.4 91.4 86.6 87.2 87.6 87.0 69.6 62.0 62.6 65.2 65.0

BERT

NT 92.3 24.5 40.7 40.0 28.0 94.6 66.5 68.0 58.5 45.5 77.7 31.3 34.3 15.7 10.0
IBP - - - - - - - - - - - - - - -

FGWS 88.7 79.2 80.9 78.0 79.0 93.5 80.2 79.3 85.0 80.0 75.8 58.5 57.6 59.5 58.0
WDR 88.5 82.0 82.0 82.5 81.5 93.0 82.5 84.0 86.5 83.5 76.5 61.8 60.8 62.4 60.6
ASCC 88.2 84.3 84.2 84.2 82.0 90.1 83.5 83.5 87.7 87.6 74.5 60.7 62.5 63.5 61.1
SEM 89.5 87.5 88.4 87.3 85.5 94.1 88.5 88.5 88.5 88.5 76.2 66.8 66.8 66.4 62.0

TS(Ours) 88.3 88.4 88.6 90.5 86.5 94.0 90.2 90.0 90.0 89.5 76.0 70.5 69.0 70.0 64.5

Table 1: The accuracy (%) of various defense methods on benign and adversarial sentences. Rows
(e.g., NT) represent the defense methods; Columns (e.g., No) represent the attacks that generate
adversarial test sentences; No: no attack, NT: Normal Training, TS: TextShield, TL: TextFooler;
BLUE is the best performance. Moreover, for a fair comparison, as the previous work (Shi et al.,
2019) reported that BERT is too difficult to be tightly verified by IBP, we do not use IBP on BERT.

Effect on robustness When evaluated on adversarial sentences, TextShield performs best in most
cases, demonstrating that TextShield can effectively improve the model’s robustness. Furthermore,
the enhancement of model’s robustness is derived from the leveraging a cross-cutting link between
adversarial robustness and saliency, which is complementary to the conventional opinion (Zhang
et al., 2020; Goyal et al., 2022) that text attacks should be better defended using discrete information
instead of continuous information.

Moreover, among the baselines, SEM, the state-of-the-art defense method against word-level at-
tacks, achieves the best performance. IBP, which was first proposed in the CV domain, is more
suitable for TextCNN and does not perform excellently on other victim classifiers. FGWS focuses
only on word frequencies, so it is not sufficient to detect adversarial sentences when word frequency
is not distinct. Moreover, after combining with our corrector, WDR can yield a comparable perfor-
mance towards ASCC, a competitive baseline using the model-enhancement-based paradigm, which
indicates our corrector can combine well with existing detectors concerning model’s robustness.

7 EXPERIMENTS ON ADVERSARIAL DETECTION

This section compares our saliency-based detector to current SoTA adversarial detectors in several
configurations involving datasets and attacks.

7.1 EXPERIMENTAL SETTINGS

In the experiments, only BERT (Devlin et al., 2019) is used as victim classifier. Then, four widely
used adversarial attacks are selected: GA (Alzantot et al., 2018), PWWS (Ren et al., 2019), IGA
(Wang et al., 2019c) and TextFooler (Jin et al., 2020). Next, three popular benchmarks in text
classification are selected: IMDB (Potts, 2010), AG’s News (Zhang et al., 2015) and Yelp (Zhang
et al., 2015). Similar to the experiments on adversarial defense, given a victim classifier, an attack,
and a benchmark, we generate test data which include 1,000 adversarial sentences generated by the
attack based on the benchmark. Finally, we evaluate the performance of the victim models on the
test data. Following previous works (Mosca et al., 2022), the performance of adversarial detection
is evaluated by F1-score and recall.
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Dataset Attack Saliency WDR FGWS

F1-score Recall F1-score Recall F1-score Recall

AGNews

PWWS 92.2 ± 1.1 93.4 ± 0.4 90.1 ± 1.1 89.1 ± 1.4 88.4 80.1
IGA 89.9 ± 1.2 90.4 ± 0.9 85.7 ± 1.3 86.6 ± 1.8 68.6 58.3
GA 92.9 ± 1.0 91.4 ± 1.3 88.4 ± 0.9 87.2 ± 1.1 70.3 60.1

TextFooler 95.1 ± 0.4 96.6 ± 0.7 94.0 ± 0.8 97.0 ± 0.9 86.0 77.6

IMDB

PWWS 92.7 ± 0.8 90.8 ± 1.0 89.2 ± 0.7 87.5 ± 1.8 80.8 76.7
IGA 92.0 ± 1.2 93.2 ± 1.1 87.5 ± 0.9 90.5 ± 1.3 79.5 70.1
GA 91.8 ± 0.9 92.1 ± 1.5 88.0 ± 1.1 89.6 ± 1.1 79.0 74.2

TextFooler 96.6 ± 0.4 98.0 ± 0.6 95.0 ± 0.8 96.0 ± 0.9 86.0 77.6

YELP

PWWS 91.8 ± 1.5 90.1 ± 1.6 89.2 ± 1.4 86.2 ± 3.1 91.2 85.6
IGA 91.0 ± 0.8 90.7 ± 1.0 87.1 ± 0.5 88.1 ± 1.9 85.4 82.8
GA 91.2 ± 0.8 90.0 ± 0.8 87.2 ± 0.4 88.7 ± 1.4 85.9 83.3

TextFooler 97.5 ± 0.3 98.3 ± 0.5 95.9 ± 0.3 97.5 ± 0.9 90.5 84.2

Table 2: The performances of adversarial detection under various attacks on BERT-based victim
classifier. The performances of WDR and FGWS are from the corresponding paper; BLUE is the
best performance. ‘Saliency’ represents our saliency-based detector.

Moreover, in order to examine the performance of our detector, two state-of-the-art detectors are
chosen as baselines, FGWS (Mozes et al., 2021) and WDR (Mosca et al., 2022), where FGWS
leverages word frequency to detect adversarial sentences, and WDR uses prediction logit informa-
tion for adversarial detection.

7.2 PERFORMANCE

Table 2 shows the performance of the detectors in various configurations. In Table 2, our proposed
detector consistently shows better results in terms of F1-score and recall. Specifically, our detector
outperforms the best baseline in 11 configurations out of 12, and on average achieves 3.74% gain on
F1-score. Such results show that the saliency-based detector reacts well to all selected attacks.

Moreover, we can also observe that TextFooler is easier to be detected than other attacks. Consid-
ering that TextFooler is much stronger than the attacks like GA and IGA, we can claim that there is
no positive relation between attack’s attack power and detection difficulty.

8 FURTHER RESULTS

We also illustrate the details or discussion towards critical designs of TextShield with additional
experiments. We defer them to Appendix due to limited space. The outline is as follows: the anal-
yses of hyper-parameters are shown in Appendix B. Performance against extra word-level attacks
is shown in Appendix C. Also, human evaluation towards attack quality is shown in Appendix D.
Besides, computational cost and corrector design discussions are shown in Appendix E and F. Ad-
versarial detection performance of TextShield against other levels of attacks (e.g., sentence-level
attack) is shown in Appendix G.

9 CONCLUSION

This paper proposes TextShield, a detect-correct pipelined defense method against word-level text
attacks. Based on basic derivations, we find a cross-cutting connection between adversarial ro-
bustness and saliency, and then we propose the adaptive word importance (AWI) metric based on
saliency computation. Based on AWI, we design a saliency-based detector, which achieves bet-
ter performance than previous detectors. Then, we design a saliency-based corrector, which cor-
rects adversarial sentences to benign ones using AWI. Comprehensive experiments demonstrate that
TextShield is superior to previous defense methods for generalization and robustness.
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Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, Klaus-Robert Müller, and Wojciech
Samek. Layer-wise relevance propagation for neural networks with local renormalization layers.
In International Conference on Artificial Neural Networks, pp. 63–71. Springer, 2016.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Zhijie Deng, Xiao Yang, Shizhen Xu, Hang Su, and Jun Zhu. Libre: A practical bayesian approach
to adversarial detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 972–982, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, pp. 4171–4186, 2019.

Xinshuai Dong, Anh Tuan Luu, Rongrong Ji, and Hong Liu. Towards robustness against natural
language word substitutions. ICLR, 2021.

Steffen Eger, Gözde Gül Şahin, Andreas Rücklé, Ji-Ung Lee, Claudia Schulz, Mohsen Mesgar,
Krishnkant Swarnkar, Edwin Simpson, and Iryna Gurevych. Text processing like humans do:
Visually attacking and shielding nlp systems. In Proceedings of NAACL-HLT, pp. 1634–1647,
2019.

Siddhant Garg and Goutham Ramakrishnan. Bae: Bert-based adversarial examples for text classifi-
cation. In EMNLP, pp. 6174–6181, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Shreya Goyal, Sumanth Doddapaneni, Mitesh M Khapra, and Balaraman Ravindran. A survey in
adversarial defences and robustness in nlp. arXiv preprint arXiv:2203.06414, 2022.

Xuanli He, Lingjuan Lyu, Lichao Sun, and Qiongkai Xu. Model extraction and adversarial trans-
ferability, your bert is vulnerable! In Proceedings of the 2021 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, pp.
2006–2012, 2021.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

10



Published as a conference paper at ICLR 2023

Po-Sen Huang, Robert Stanforth, Johannes Welbl, Chris Dyer, Dani Yogatama, Sven Gowal, Krish-
namurthy Dvijotham, and Pushmeet Kohli. Achieving verified robustness to symbol substitutions
via interval bound propagation. In EMNLP, pp. 4083–4093, 2019.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems.
In EMNLP, pp. 2021–2031, 2017.
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A DETAILS OF DETECTOR’S TRAINING

The learnable parameters in our saliency-based detectors are the ones in the four LSTMs of the
detector and the two-layer MLP of the combiner. After tokenization, we either conduct padding with
‘max length=128’ or do a truncation for each input sentence. Then after saliency computation, we
obtain the AWI matrix with a form (128, |Y|), where |Y| is the size of the label set used in the focused
text classification. Thus, the four LSTMs take the four AWI matrices as input correspondingly and
output their hidden states (hidden size = 128). Finally, the hidden states are concatenated to feed
to the combiner, which is a two-layer MLP + softmax function, with input dim = 128, intermediate
layer dim = 64 and out dim = 2. In addition, the LSTMs and the two-layer MLP are simultaneously
trained through the Adam optimizer with a 5 · e− 4 learning rate.

B ABLATION STUDY

This section conducts ablation studies of TextShield to answer the following three questions: Q1)
What is the impact of β, the hyper-parameters of the corrector? Q2) What is the impact of multiple
sub-detectors? Q3) What is the impact of the number of adversarial sentences used to train detectors?
The experimental settings are similar to the ones used in Sec 6.
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B.1 ANALYSIS OF HYPER-PARAMETER β

We study the impact of β, the hyper-parameters of our corrector. As shown in Figure 3, the best
performance achieves when β is 0.4, and either a small or large β will cause a significant perfor-
mance drop, especially when β is large. This is because β serves to control the ratio of suspects in
a sentence: when β is 0, only the most important word is considered as a suspect, which may be
inadequate; on the contrary, when β is 1.0, every word is viewed as a suspect, which is inappropriate.

(a) TextCNN (b) LSTM (c) BERT

Figure 3: The accuracy (%) of TextShield towards different text attacks when β varies from 0.1 to
1.0. Specifically, the performance of the three victim classifiers on AGNews is presented.

(a) TL (b) PWWS

(c) GA (d) IGA

Figure 4: Accuracy (%) of TextShield on adversarial sentences generated by four attacks (TL,
PWWS, GA and IGA) as K changes.

B.2 ANALYSIS OF THE COMBINING OF MULTIPLE SUB-DETECTORS

Since a crucial design of TextShield is the ensembling of the four sub-detectors with a combiner, we
investigate the impact of such an ensembling strategy. Specifically, we verify the performance after
removing some sub-detectors, and the evaluation is launched using TextCNN on AGNews.

As shown in Table 3, removing any sub-detector will cause a performance drop, demonstrating
the effectiveness of each sub-detector. Based on the results, the importance of sub-detectors can
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be ranked as follows: VG>LRP>IG>GBP. Furthermore, removing all the sub-detectors shows a
catastrophic performance drop, which confirms our arguments that different sub-detectors can com-
plement well with each other and also shows the importance of integrating the four sub-detectors.

Please note that neither the saliency computation methods nor the ensembling strategy of various
sub-detectors are our paper’s focus. There are more sophisticated methods for saliency computation
and sub-detector combination, and such methods can also be applied to TextShield.

Removed sub-detector TL PWWS GA IGA

-VG sub-detector -8.9 -7.9 -6.4 -7.0
-IG sub-detector -6.8 -4.5 -3.0 -4.5

-LRP sub-detector -6.6 -5.0 -2.8 -4.0
-GBP detector -7.4 -2.5 -4.1 -5.1

-All sub-detectors -34.8 -29.6 -40.3 -36.9

Table 3: Accuracy (%) drop on adversarial sentences generated by different attacks after removing
some sub-detectors from TextShield. E.g., ‘-VG’ means removing the VG-based sub-detector in
TextShield.

B.3 ANALYSIS OF THE NUMBER OF ADVERSARIAL SENTENCES USED IN TRAINING
DETECTORS

During the training process, we use the same number K of adversarial sentences per class, where
K = 2000. This experiment illustrates the relation between the performance of TextShield and K.
Notice that, except for K, we keep the same training settings as the experimental setting used in
Sec 6. The performance of TextShield under different K is shown in Figure 4.

As illustrated in Figure 4, the defense capacity of TextShield is enhanced as K continuously in-
creases since more samples used in the training data help the detector better recognize adversarial
sentences. Specifically, when K is larger than 2000, the improvement becomes extremely subtle,
indicating that we have arrived at the upper-bound of TextShield performance under such configu-
rations.

Dataset BERT

NT IBP FGWS WDR ASCC SEM TS

IMDb 10.8 - 50.2 59.0 61.4 61.4 64.5
AGNews 9.6 - 46.7 52.4 60.2 59.6 63.0

Yahoo 6.0 - 40.2 50.1 58.9 60.3 64.2

Table 4: The accuracy (%) of various defense methods towards BERT-Attack (BA).

C PERFORMANCE ON OTHER WORD-LEVEL ATTACKS

Additionally, we add BERT-attack (BA) Li et al. (2020a) to our attack methods. The settings of BA
are the same from its paper Li et al. (2020a). Specifically, please note that we also train our detectors
with adversarial samples generated by BA (same sample size as the experiments in Sec 6). Then,
we measure the defense capacity for each baseline, and the results are shown in Table 4.

D HUMAN EVALUATION FOR THE TEXT ATTACK QUALITY

The quality of text attacks remains a challenge since it is difficult to ensure that text attacks will keep
sentences’ ground truth towards the original label. This is a problem that many SoTA adversarial
defense methods have omitted. Therefore, we conduct a human evaluation by examining the qual-
ity of four attacks selected in Sec 6. Considering there are over one thousand adversarial samples,
which lead to the tremendous manual effort, we thus choose to sample 200 adversarial sentences for
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GA IGA PWWS TextFooler

Quality 96.4 94.3 95.0 93.0

Table 5: The quality of five text attacks selected in our paper. Quality represents the proportion of
adversarial sentences whose ground-truth remain unchanged. We can see, in most cases, text attacks
do not affect the ground-truth.

our selected attacks. Then, we evaluate whether such attacks modify their ground-truth labels, and
the results are illustrated in Table 5. Then, we also present the F1-score on these samples (conducted
human evaluation by us) in Table 6. We can observe that the overall quality of adversarial sentences
is good.

Victim Defense IMDB AGNews Yahoo

No IGA PWWS GA TL No IGA PWWS GA TL No IGA PWWS GA TL

Text
CNN

NT 88.7 12.3 4.5 7.7 3.3 92.0 43.5 35.5 34.5 30.0 67.5 19.0 10.9 14.8 9.5
IBP 76.6 71.2 71.2 70.0 62.5 89.0 79.2 80.2 80.3 79.6 62.4 49.0 51.4 58.2 60.2

FGWS 83.8 70.0 67.2 68.8 63.0 83.5 81.8 83.0 81.2 82.2 64.1 56.1 57.2 56.5 58.7
WDR 85.0 71.4 69.2 70.0 64.4 83.8 82.3 83.1 82.0 82.4 65.0 59.1 58.5 60.0 60.2
ASCC 87.5 66.9 68.2 69.4 68.2 86.7 84.0 81.8 82.2 81.6 63.2 59.8 60.0 60.5 61.0
SEM 87.0 66.8 72.0 71.0 71.6 89.6 85.2 85.0 84.4 85.2 63.9 60.0 60.5 61.0 61.7
TS 87.0 73.2 73.6 74.2 73.5 90.2 87.0 87.5 85.9 86.2 67.0 61.4 58.3 62.2 61.4

LSTM

NT 87.0 8.9 4.8 7.0 4.0 92.4 34.0 30.0 29.8 25.4 71.0 27.2 21.0 15.1 6.5
IBP 78.2 69.0 68.0 65.8 61.5 85.6 78.4 78.6 75.5 78.8 60.0 34.1 32.8 29.1 30.3

FGWS 80.2 69.6 70.3 71.9 69.0 86.8 81.7 81.1 81.2 80.8 66.8 57.0 57.5 57.8 57.4
WDR 80.1 70.1 74.1 73.8 69.7 86.4 82.6 83.5 81.1 82.6 65.2 59.0 57.5 58.9 58.6
ASCC 81.7 69.5 74.0 73.1 70.1 86.9 83.7 84.0 81.4 82.8 67.0 57.8 56.9 57.4 54.7
SEM 85.9 71.4 76.0 75.8 72.9 90.1 84.3 85.8 84.1 84.3 68.2 60.0 58.7 59.4 61.2
TS 85.8 73.2 78.8 78.0 75.8 90.6 85.8 87.2 87.1 86.3 69.2 62.0 61.9 64.7 63.9

BERT

NT 92.0 25.4 36.9 39.1 26.8 94.0 65.7 67.1 57.6 44.8 76.9 30.7 33.6 16.5 11.6
IBP - - - - - - - - - - - - - - -

FGWS 88.8 79.7 80.3 78.7 79.3 93.2 79.6 79.0 84.3 80.5 76.0 56.9 58.0 58.4 58.3
WDR 89.2 81.2 81.0 81.6 81.6 92.7 82.4 84.2 86.1 83.2 76.0 60.3 60.2 61.0 60.0
ASCC 88.0 83.6 83.8 83.5 81.0 90.0 82.7 82.8 87.0 86.3 73.3 60.0 61.6 62.3 60.3
SEM 89.9 86.4 87.5 86.0 85.0 94.1 88.0 87.9 88.5 89.2 75.8 66.2 65.9 66.0 62.2
TS 88.4 87.9 88.0 90.5 85.8 92.0 89.8 89.6 89.3 89.0 75.2 67.6 67.2 69.1 63.7

Table 6: Under human-evaluated adversarial sentences, F1-score (%) of various defense methods on
adversarial sentences.

E COMPUTATIONAL COST

Concerning the computational cost of our method, we present a case study here. On one RTX3090
GPU, the victim model is selected as BERT-base-uncased. Setting the batch size as 8, each inference
of BERT takes around 20-30ms, TextShield (only detector part) takes around 60ms, and the cost is
acceptable. The corrector + BERT inference takes around 20-30ms, nearly equal to BERT inference
time since the information corrector needed has already been computed in the VG detector. Overall,
it takes around 80-90ms per inference time under the configuration. Considering the training cost
of detectors, since detectors only consist of LSTM and MLP, training them until convergence takes
around 60min (On RTX3090).

F OTHER BASELINES FOR CORRECTOR DESIGN

Since the baselines for our corrector remain blank, we define some intuitive strategies for the correc-
tor as follows: (1) replace words based on their part of speech (POS), (2) we replace words based on
their word frequency in the benchmark (Freq). The only thing that varied in this set of experiments
is: how we select words to be replaced by high-frequency synonyms. Specifically, since different
selection methods have different optimal β, we tune β for these two baselines and report the best
performance. The remaining settings in the corrector are the same to ensure fair comparisons. The
results are shown in Table 7. We can see that all of the methods perform significantly worse than
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our original design - leverage saliency for correction. Specifically, we can see that combining verbs
and nouns outperform merely either of them, which is reasonable. Also, we find that replacing low-
frequency words achieves a not bad performance, which matches the empirical findings in Mozes
et al. (2021). Overall, the results demonstrate the effectiveness of our corrector design.

Detection TL PWWS GA IGA

POS(Verb) -14.9 -13.2 -16.4 -14.7
POS(Noun) -12.8 -10.4 -9.0 -10.3

POS(Noun+Verb) -6.7 -7.0 -5.8 -6.0
Freq(Low) -8.9 -10.6 -7.3 -9.9

Table 7: Accuracy (%) drop on adversarial sentences by setting different replacement strategies
in the corrector. POS(Verb), POS(Noun), POS(Noun+Verb) mean only replace the verbs, nouns,
verb+noun with their high-frequency synonyms. Freq(Low) represent replace low-frequency word
with their high-frequency synonyms.

G LIMITATION AND FUTURE WORKS

TextShield mainly focuses on defending against word-level text attacks, so the main limitation in
TextShield lies in the specificity of word-level attacks. Moreover, this limitation also exists in most
adversarial defenses. To validate the practical application of TextShield, in this section, we conduct
similar experiments as the ones in Sec 7 yet on detecting sentence-level and character-level attacks
(Wang et al., 2021a; Dong et al., 2021; Mozes et al., 2021; Mosca et al., 2022). Specifically, we
select one character-level attack, Visual (Eger et al., 2019), and two sentence-level attacks, PAWS
(Zhang et al., 2019b) and T3 (Wang et al., 2020a), and show the results in Table 8.

Dataset Attack Saliency WDR FGWS

F1-score recall F1-score recall F1-score recall

AGNews PAWS 80.9 ± 1.0 80.5 ± 0.6 73.4 ± 1.0 74.3 ± 1.1 68.7 67.0
T3 76.9 ± 1.2 76.8 ± 0.9 73.0 ± 1.3 71.5 ± 1.2 60.4 60.3

Visual 84.9 ± 1.0 83.8 ± 0.8 80.0 ± 1.1 78.4 ± 0.8 70.1 68.5

IMDB PAWS 80.3 ± 0.6 80.4 ± 1.1 75.3 ± 0.8 72.3 ± 1.0 65.4 63.8
T3 81.4 ± 1.1 80.3 ± 1.4 74.7 ± 0.8 74.4 ± 1.8 68.4 66.0

Visual 84.9 ± 1.0 85.3 ± 0.4 80.6 ± 0.6 79.0 ± 1.1 74.5 71.1

YELP PAWS 80.4 ± 1.0 80.1 ± 0.6 77.2 ± 1.2 74.2 ± 2.1 70.2 71.6
T3 80.1 ± 0.6 81.7 ± 0.6 75.0 ± 0.6 72.5 ± 1.6 70.0 69.7

Visual 85.1 ± 0.4 85.0 ± 0.8 81.7 ± 0.8 80.2 ± 1.1 78.0 74.7

Table 8: The adversarial detection performance of different detectors against sentence-level and
character-level attacks. Generally, all the detectors become less effective when facing sentence-level
attacks, but our saliency-based detector still outperforms the baselines.

First, we can observe that all the detectors have a significant performance drop (about 10%) in
both F1-score and recall when facing sentence-level attacks, compared to the performance on de-
tecting word-level attacks in Table 1. The reason might be that the perturbation in sentence-level
attacks is more complicated and is more likely to influence sentence’ semantics at a level higher than
word-level attacks, which makes sentence-level attacks more difficult to detect. Moreover, the detec-
tion difficulty of character-level attacks lies between word-level attacks and sentence-level attacks.
Therefore, due to its stealthiness, sentence-level attack is a more challenging issue for adversarial
defense in NLP. Yet, most of existing adversarial defenses (Jia et al., 2019; Dong et al., 2021; Wang
et al., 2021a; Mozes et al., 2021; Wang et al., 2021b; Mosca et al., 2022; Le et al., 2022a) focus on
defending word-level attacks, and they will also counter significant performance drop when facing
other text attacks (e.g., sentence-level).
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Second, there seems to be a contradiction between the generality and performance of a defense
method. There are some general defenses (Le et al., 2022b; Liu et al., 2022) that can defend
sentence-level, word-level and character-level attacks. However, their performance is not compa-
rable to state-of-the-art defense methods designed for a specific attack (e.g., word-level attacks).
Meanwhile, the success of state-of-the-art defense against one kind of attacks (e.g., word-level)
can not transfer to another kind of attacks (e.g., sentence-level) (Zhang et al., 2020; Goyal et al.,
2022). Thus, how to tackle such a trade-off between generality and performance remains a valuable
question. We believe that designing more suitable detectors and correctors is a plausible direction
since our saliency-based defense performs properly and shows strong potential to detect each kind
of attacks. Specifically, there are two lines of future work to continue: (1) designing stronger de-
tectors that perform well on three kinds of attacks, and (2) designing better correctors with general
correction schemes.
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