
Aggregate Representation Measure for
Predictive Model Reusability

Vishwesh Sangarya
North Carolina State University

Richard Bradford
Collins Aerospace

Jung-Eun Kim
North Carolina State University

Abstract

In this paper, we propose a predictive quantifier to estimate the retraining cost of
a trained model in distribution shifts. The proposed Aggregated Representation
Measure (ARM) quantifies the change in the model’s representation from the old
to new data distribution. It provides, before actually retraining the model, a sin-
gle concise index of resources - epochs, energy, and carbon emissions - required
for the retraining. This enables reuse of a model with a much lower cost than
training a new model from scratch. The experimental results indicate that ARM
reasonably predicts retraining costs for varying noise intensities and enables com-
parisons among multiple model architectures to determine the most cost-effective
and sustainable option.

1 Introduction

As deep neural networks are becoming increasingly prevalent in everyday applications and deploy-
ments, involving ever larger datasets, the compute requirements keep increasing with larger models,
and their energy consumption becomes an issue. Recent research [24, 21, 23, 7, 25, 9] have ad-
dressed the energy efficiency of diverse neural network methods, as well as the issue of carbon
emissions [19, 3, 14]. At the same time, there is an ongoing need for deployed neural networks to
respond to changes in their environment. When a deep learning model sees distributional shifts in
data, it is desirable to adapt itself to the change. To develop models robust to such distributional
shifts, existing solutions [4, 2] train the model from scratch with larger models, larger training data,
and longer training duration. However, in such approaches, the resource requirements are costly.

One of the sustainable solutions to this problem is reusing an existing model to adapt to the new
environment. By retraining previously-trained models on the new distributions, energy consumption
and carbon emissions will be significantly reduced. Then there are potential questions to consider:
(i) How do different models adapt to a certain distributional shift? (ii) How does a given model
adapt to different levels of noise or corruption? (iii) Is it possible to predict the behavior of a model
before expending the cost of retraining and adapting it?

In order to quantitatively answer those questions, we propose a predictive reusability quantifier, Ag-
gregate Representation Measure (ARM). ARM works by quantifying the change in a model’s repre-
sentation for new distributional shifts. In particular, ARM quantifies the change in representation for
each layer and then aggregates it for the entire model. It provides a single concise value that can pre-
dict the retraining efforts required to adapt a model to a distributional shift. Using ARM, the energy
consumption and carbon emission can be predicted before expending the retraining costs. We show
that ARM requires only one forward pass through the model, and we provide evidence of how it
strongly correlates to retraining measures, training epochs, energy, and carbon emissions. ARM not
only helps predict the behavior of a model for different levels of noise but also allows comparisons
among different models, thus enabling better decisions on the model type to be deployed.
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2 Related work

Since [11], several techniques, architectures and training methodologies have emerged to improve
model robustness. While certain models architectures and training methods do generate robust mod-
els, there is a tradeoff with regard to model size or the size of training data used as shown by [4, 2].
The use of large models for real-world deployments and the hyperparameter search involved with
training these large models, with the increased dataset size is a resource-exhaustive process. Several
research works [8, 26, 6] have shown that there is a non-uniform improvement in robustness to the
different distribution shifts, in some cases improvement on one type of noise or corruption results
in decreased performance on a distributional shift. In general, even with uneven, non-uniform gains
on certain distributions, with decreased improvements on other distributions, the training and aug-
mentation techniques [5, 12, 17, 27, 13, 15] are computationally heavy and require training a model
from scratch. Methods which using test time adaptation [16, 18, 10, 22] exhibit only marginal im-
provements in model robustness and fail to provide substantial benefits in scenarios with elevated
noise levels. If the test time information is insufficient for adapting the model’s prediction, these
methods fail to provide accurate and confident outputs during inference.

With the pressing need for sustainable development of deep learning networks, several works have
focused on monitoring the energy and carbon emissions of neural network training. Several works
[19, 14, 7, 3] focus on neural network energy consumption and carbon emissions. [21, 23, 24]
highlight the need for measuring energy and carbon emissions of neural network training and de-
ployment. They call attention to the significantly high energy usage and carbon emissions that are
a part of neural network training and hyper parameter search mechanisms involved. Works such as
[20] use the change in layer representation to study pathology data and focus their work to individual
layers of a model to show it correlates to accuracy loss on domain shifts.

3 Aggregate representation measure

Algorithm 1 Calculate fl,k

1: Fl,k ← {}
2: for x← 1 to n do
3: avg activation← 1

h·w
∑h,w

i=1,j=1 Ixi,j

4: Fl,k ← Fl,k ∪ avg activation
5: end for
6: fl,k ← PF (Fl,k)

Aggregated representation measure (ARM)
makes use of the model’s change in representa-
tion between the data it was trained on and the
new distribution. ARM is calculated per layer
of the model and then averaged to give a sin-
gle scalar value that describes how much the
shift is in the model’s representation. To be able
to capture the representation for each data, we
perform one forward pass of the entire dataset
through the model. During the forward pass,
the activation outputs of each filter or neuron are collected. For convolutional layers, to reduce the
memory requirements, the activation output is averaged. For each layer l with k filters, the proba-
bility function of a given filter fl,k is obtained by iterating over the dataset of size n. We introduce
the filter probability distribution, fl,k in Algorithm 1, where Fl,k is a set containing the averaged
activation values for the dataset. PF represents the probability distribution function computed on
the complete set of activation data. For each filter/neuron in a given layer, the activation outputs for
the entire dataset are collected, as shown in Algorithm 1. For each data sample Ix, the activation for
the sample is summed and averaged, where h and w represent the height and width of the activation.

For each layer l, the layer probability Pl is obtained by:

Pl =
1

nl

nl∑
k=1

fl,k (1)

where nl represents the number of filters/neurons in a given layer l. For each layer, the filter/neuron
probability distributions are summed and averaged to produce a layer probability distribution as
shown in (1), where Pl is the averaged layer probability distribution for layer l. This operation is
performed for the second distribution shifted dataset.

The Aggregate Representation Measure, ARM, is obtained as follows:

ARM =
1

L

L∑
l=1

WD(Pl,d1, Pl,d2) (2)
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(a) Predicting MobileNet for 6 noise levels (b) Predicting all models for 3 noise levels

Figure 1: Representation measure as a predictive metric

WD represents Wasserstein distance between the two probability distributions. The final result -
ARM is calculated by finding the average of the Wasserstein distance between each layer’s corre-
sponding probability distribution for the entire model. As the layer probability distribution may
have small differences, the Wasserstein metric, with its displacement-based measurement, offers a
fine-grained and more sensitive measure, making it preferable over other measures such as Jensen-
Shannon divergence for capturing subtle distinctions. (2) provides the final aggregated measure for
a given model with L layers, where Pl,d1 and Pl,d2 represent the probability distributions for a given
layer l over the original data d1 and new data d2 by distributional shift, respectively.

4 Retraining measures

Retraining measures quantify the effort and resources required to adapt a model to a new distribution.
The retraining measures used are epochs, energy consumption, and carbon emissions which help
quantify the sustainability of adapting a model. To measure the number of epochs required for
retraining a model, we set a minimum required accuracy for each dataset and train the model until
it reaches the accuracy level. To measure carbon emission and energy consumption, we use [19],
which makes use of the energy consumed for the retraining and the location of the energy generated
to calculate the likely weight of carbon compounds emitted into the atmosphere. For a coarse-
grained analysis, ARM is capable of predicting the overall global gradient norm of a model during
retraining. [1] shows that gradients represent the difficulty of samples. This is useful, as the gradient
norm as a retraining measure helps understand the depth and path of the loss landscape for each
model, with a lower overall gradient norm resulting in faster convergence, as the model is able to
adapt to the new distribution faster. A lower overall gradient norm also represents that the model’s
current parameter space is closer to the new parameter space post retraining. We reserve gradient
norm and standard learning rate experiment analysis for future work.

5 Experiments and Results

In the experiments, three datasets are used, CIFAR10, CIFAR100, and SVHN, with 3 noise types -
Image Blur, Gaussian noise, and Salt-Pepper noise. For each noise type, 7-9 different noise levels
are employed. In the charts, Noise 1 represents the lowest noise level (intensity). The highest
level of noise is comparable to severity level 4 in [11]. The large number of noise intervals is
to provide detailed working evidence of ARM and its correlation to the retraining measures. We
explore different model architectures, ResNet, VGG, GoogLeNet, and MobileNetV2. To reuse an
existing model, we train a randomly initialized model on the original data distribution until it reaches
the required accuracy for each dataset. All experiment results are an average of three runs.

Since various models are susceptible to different ranges and learning rate schedules, finding the most
optimal learning rate plan will require computationally expensive hyperparameter search and tuning.
The retrieved learning rate schedule may not be the most optimal one as it is difficult to verify how
the learning rate needs to be adapted to the different loss and gradient landscapes for each model. To
provide a fine-grained analysis regarding the number of epochs a model requires to adapt to a new
data distribution, we set the learning rate to be extremely small for all models and experiments, in
the order of 1e− 4 to 1e− 6.
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Model Coefficient p-value Coefficient p-value Coefficient p-value

Salt-Pepper Gaussian Blur

GoogLeNet 0.92 0.00041 0.93 0.002 0.85 0.015
ResNet18 0.93 0.00024 0.94 0.0014 0.92 0.0030

MobileNetV2 0.91 0.00061 0.97 0.00016 0.87 0.0091
VGG16 0.94 0.0014 0.95 0.0008 0.90 0.0051

Table 1: Pearson correlation between epochs and ARM - CIFAR10 Dataset

Figure 2: Energy and Carbon emissions of retraining ResNet18 to different levels of Gaussian noise

We perform experiments on Gaussian noise using ResNet18, GoogLeNet and VGG16 to collect the
data, which exhibits the linear relation between ARM and epochs. We conduct a prediction on a
new model, MobileNetv2, of which data is not used to model a regression predictor. We retrain
MobileNetv2 on the first level of noise and obtain a starting value to model a regression. This
starting value is used with the regression predictor to predict the epochs needed by MobileNetV2 to
adapt to the remaining six levels of noise. The actual and predicted retraining epochs are presented
in Fig. 1 (a) which shows that the predicted values are a fair prediction of a new model’s epochs
required for retraining and the likely behavior to different noise levels.

We perform an experiment to predict additional and unseen noise levels for each of the 4 models.
We use the data collected for the initial two and final two Gaussian noise levels for each model
when modeling the regression predictor. Using this predictor, we predict the retraining epochs of
each model for the three intermediate noise levels - noise levels 3, 4, and 5. Fig. 1 (b) shows the
true and predicted epochs for each model. In all our experiments, the ARM model consistently
over-estimates the retraining cost; we see this as a feature, in that the estimates are conservative
rather than falsely optimistic. The predicted values are fairly close to the actual values considering
that a single regression predictor was used for all models. With pre-existing or additional data of
model’s retraining and ARM values, highly accurate predictors for each individual model can be
devised. Another point to pay attention to in Fig. 1 is the inter-model comparison. For the same
level of noise, GoogLeNet and MobileNetV2 adapt much faster as compared to ResNet18, and
ResNet18 adapts faster than VGG16. This comparison helps predict and compare the adaptability
and reusability among different model architectures and trained models.

Table 1 shows the Pearson correlation coefficient between ARM and epochs. The high Pearson cor-
relation coefficient and low p-value indicate a strong positive relation between ARM and retraining
epochs, suggesting that ARM is a suitable predictive measure to determine retraining costs.

With the main objective being sustainable re-usability, we measure the energy and carbon emissions
which have a strong positive correlation with the measure. Fig. 2 depicts the linear increasing trend
of ARM with retraining energy usage and carbon emissions for ResNet18.

Additional experiment results on CIFAR10, CIFAR100, and SVHN are provided in the Appendix.

6 Conclusion

We have presented a novel metric to predict the cost of retraining a model to new distributional
shifts. Our proposed measure, a predictive quantifier of the reusability of trained models, will help
users make informed decisions. We demonstrated the correlation and predictive ability of ARM
with epochs, energy, and carbon emissions, which indicates the effectiveness of ARM to predict a
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model’s behavior. ARM enables intra-model comparison to different noise levels and inter-model
comparison to select the most adaptable and sustainable model.
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A Appendix: All experiment details - CIFAR10, CIFAR100, SVHN

In this Appendix we provide the Pearson correlation coefficient, associated p-value and ARM vs.
retraining epochs graphs for all models on CIFAR10, CIFAR100 and SVHN.

A.1 CIFAR10 Dataset

This section provides all results for GoogleNet, ResNet18, MobileNetV2 and VGG16 on the CI-
FAR10 dataset. Fig. 3, Fig. 4, and Fig. 5 illustrates the ARM and retraining epochs for different
levels of Gaussian noise, Salt-and-Pepper noise and Image Blur, respectively. Table. 2 provides the
Pearson correlation coefficient and p-values for the 4 models retrained on CIFAR10 for the 3 noise
types.

(a) GoogLeNet - Gaussian noise (b) ResNet18 - Gaussian noise

(c) MobileNetv2 - Gaussian noise (d) VGG16 - Gaussian noise

Figure 3: ARM vs Retraining Epochs on CIFAR10 dataset with Gaussian noise

(a) GoogLeNet - Salt-and-Pepper noise (b) ResNet18 - Salt-and-Pepper noise

(c) MobileNetv2 - Salt-and-Pepper noise (d) VGG16 - Salt-and-Pepper noise

Figure 4: ARM vs Retraining Epochs on CIFAR10 dataset with Salt and Pepper noise
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(a) GoogLeNet - Image Blur (b) ResNet18 - Image Blur

(c) MobileNetv2 - Image Blur (d) VGG16 - Image Blur

Figure 5: ARM vs Retraining Epochs on CIFAR10 dataset with Image Blur

Model Coefficient p-value Coefficient p-value Coefficient p-value

Salt-Pepper Gaussian Blur

GoogLeNet 0.92 0.00041 0.93 0.002 0.85 0.015
ResNet18 0.93 0.00024 0.94 0.0014 0.92 0.0030

MobileNetV2 0.91 0.00061 0.97 0.00016 0.87 0.0091
VGG16 0.94 0.0014 0.95 0.0008 0.90 0.0051

Table 2: Pearson correlation between epochs and ARM - CIFAR10 Dataset

A.2 SVHN Dataset

This section provides all results for GoogleNet, ResNet18, MobileNetV2 and VGG16 on the SVHN
dataset. Fig. 6, Fig. 7, and Fig. 8 illustrates the ARM and retraining epoch values for different
levels of Gaussian noise, Salt-and-Pepper noise and Image Blur, respectively. Table. 3 provides the
Pearson correlation coefficient and p-values for the 4 models retrained on SVHN for the 3 noise
types.

Model Coefficient p-value Coefficient p-value Coefficient p-value

Salt-Pepper Gaussian Blur

GoogLeNet 0.94 0.00012 0.95 0.0006 0.84 0.0080
ResNet18 0.88 0.0015 0.88 0.0084 0.811 0.014

MobileNetV2 0.959 0.00041 0.97 0.00025 0.87 0.0047
VGG16 0.91 0.0093 0.97 0.00023 0.99 0.000064

Table 3: Pearson correlation between epochs and ARM - SVHN Dataset
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(a) GoogLeNet - Gaussian noise (b) ResNet18 - Gaussian noise

(c) MobileNetv2 - Gaussian noise (d) VGG16 - Gaussian noise

Figure 6: ARM vs Retraining Epochs on SVHN dataset with Gaussian noise

(a) GoogLeNet - Salt-and-Pepper noise (b) ResNet18 - Salt-and-Pepper noise

(c) MobileNetv2 - Salt-and-Pepper noise (d) VGG16 - Salt-and-Pepper noise

Figure 7: ARM vs Retraining Epochs on SVHN dataset with Salt-and-Pepper noise

A.3 CIFAR100 Dataset

This section provides all results for GoogleNet, ResNet18, MobileNetV2, and ResNet50 on the
CIFAR100 dataset. Fig. 9, Fig. 10 and Fig. 11 illustrates the ARM and retraining epochs for different
levels of Gaussian noise, Salt-and-Pepper noise and Image Blur, respectively. Table. 4 provides the
Pearson correlation coefficient and p-values for the 4 models retrained on CIFAR100 for the 3 noise
types.
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(a) GoogLeNet - Image Blur (b) ResNet18 - Image Blur

(c) MobileNetv2 - Image Blur (d) VGG16 - Image Blur

Figure 8: ARM vs Retraining Epochs on SVHN dataset with Image Blur

(a) GoogLeNet - Gaussian noise (b) ResNet18 - Gaussian noise

(c) MobileNetv2 - Gaussian noise (d) ResNet50 - Gaussian noise

Figure 9: ARM vs Retraining Epochs on CIFAR100 dataset with Gaussian noise

Model Coefficient p-value Coefficient p-value Coefficient p-value

Salt-Pepper Gaussian Blur

GoogLeNet 0.79 0.032 0.97 0.00023 0.78 0.066
ResNet18 0.96 0.0004 0.93 0.0019 0.85 0.030

MobileNetV2 0.90 0.005 0.85 0.014 0.68 0.13
ResNet50 0.93 0.0023 0.82 0.021 0.805 0.53

Table 4: Pearson correlation between epochs and ARM - CIFAR100 Dataset
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(a) GoogLeNet - Salt-and-Pepper noise (b) ResNet18 - Salt-and-Pepper noise

(c) MobileNetv2 - Salt-and-Pepper noise (d) ResNet50 - Salt-and-Pepper noise

Figure 10: ARM vs Retraining Epochs on CIFAR100 dataset with Salt and Pepper noise

(a) GoogLeNet - Image Blur (b) ResNet18 - Image Blur

(c) MobileNetv2 - Image Blur (d) ResNet50 - Image Blur

Figure 11: ARM vs Retraining Epochs on CIFAR100 dataset with Image Blur
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