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Abstract

Biological sequences encode fundamental instructions for the building blocks of
life, in the form of DNA, RNA, and proteins. Modeling these sequences is key to
understand disease mechanisms and is an active research area in computational
biology. Recently, Large Language Models have shown great promise in solving
certain biological tasks but current approaches are limited to a single sequence
modality (DNA, RNA, or protein). Key problems in genomics intrinsically involve
multiple modalities, but it remains unclear how to adapt general-purpose sequence
models to those cases. In this work we propose a multi-modal model that con-
nects DNA, RNA, and proteins by leveraging information from different pre-trained
modality-specific encoders. We demonstrate its capabilities by applying it to the
largely unsolved problem of predicting how multiple RNA transcript isoforms
originate from the same gene (i.e. same DNA sequence) and map to different tran-
scription expression levels across various human tissues. We show that our model,
dubbed IsoFormer, is able to accurately predict differential transcript expression,
outperforming existing methods and leveraging the use of multiple modalities.
Our framework also achieves efficient transfer knowledge from the encoders pre-
training as well as in between modalities. We open-source our model, paving the
way for new multi-modal gene expression approaches.

1 Introduction

Foundation models have ignited a revolution in numerous scientific fields, starting in NLP and
computer vision, and more recently in several domains within the life sciences. Within the biological
sciences, these models have enabled predicting protein structures from sequences [1, 2], deciphering
the genome functions [3, 4, 5, 6] and interactions of biomolecules [7], and crafting new molecules
not found in nature [8]. Specifically, significant progress has been made with foundation models
tailored to DNA [3, 4, 5, 9], RNA [10, 11, 12, 13], and protein [2] sequences. These foundation models
have typically been developed and trained separately, using either self-supervised learning techniques
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such as Masked Language Modeling (MLM), as seen in models like ESM [2] and the Nucleotide
Transformer (NT) [3], or supervised learning approaches on large datasets, as in AlphaFold [1] and
Enformer [14]. These models have been instrumental in advancing our understanding of biology by
accurately predicting the structures and functions of biological sequences.

While existing methods provide relevant insights, they are still limited by the fact that they only
consider a single sequence modality. In biology, the central dogma describes the flow of genetic
information from DNA to RNA to proteins [15]. This fundamental concept underscores the intercon-
nectedness of these three types of biological sequences and highlights the potential for a unified
modeling approach. An architecture that integrates DNA, RNA, and protein modalities should provide
a comprehensive model for biology that mirrors the natural processes within cells. Furthermore,
by enabling transfer learning across modalities, the model can capitalize on the vast amounts of
pre-training already performed on individual DNA, RNA, and protein datasets.

Developing deep learning models using multiple biological sequence modalities has been mainly
limited by the lack of matched available data; existing databases usually isolate a specific modality
and thus relationships between modalities are not easily obtainable. As more multi-modal datasets
are made available [16, 17], it is becoming possible to develop models that extract and combine the
information from DNA, RNA, and protein sequences to better model the different cellular processes.
Such multi-modal models have already been successful in other domains, such as mixing language
and visual inputs [18, 19, 20, 21, 22, 23, 24, 25], but until now there are no models that can handle
multiple biological sequence modalities.

In our work, we propose the first multi-modal architecture to connect DNA, RNA, and proteins (Fig.
1). Our approach is based on three main components: (i) pre-trained modality-specific encoders that
produce one embedding per modality, (ii) aggregation layers that combine information from the
encoders and create a multi-modal representation, and (iii) a task-specific head that predicts the desired
output. We show that our multi-modal approach transfers and aggregates knowledge of pre-trained
mono-modal encoders and outperforms previous single-modality baselines (Enformer [14], NT [3],
and ESM [2]). We also demonstrate the flexibility of our approach by comparing different encoders
for a specific modality and different aggregation techniques. While some previous approaches have
modeled specific interactions between modalities, such as protein-to-DNA interaction using structure
information and modules [26], our approach is general-purpose and can be adapted to any task
involving one or more biological sequence types.

Cross-attention

+

Uni-modal
DNA embeddings

Uni-modal
RNA embeddings

Uni-modal
Protein embeddings

Multi-modal
DNA embeddings

Multi-modal
RNA embeddings

Multi-modal
Protein embeddings

Use color scheme from ChatNT

Cross-attention

+

Cross-attention

+
Cross-attention

+
Cross-attention

+
Cross-attention

+

Task head 
Isoform expression prediction

Figure 1: Our aggregation module compiles information from the different biological sequence modalities of
DNA, RNA, and proteins by using successive cross-attention layers and residual connections.

Significant problems in genomics intrinsically involve multiple sequence modalities [27, 26], and
it is still unclear how to adapt general-purpose sequence models to those cases. In order to validate
our multi-modal approach, we focused on the study of a crucial task in genomics that has been
challenging to tackle using a single sequence modality - namely the prediction of RNA transcript
isoform expression across different tissues [28]. When gene DNA sequences are transcribed into mRNA
molecules to produce proteins, they generally do not express it in just a single way producing a single
protein isoform. After DNA sequences are transcribed, pre-mRNA transcripts undergo a process called
RNA alternative splicing where they are cut and re-assembled to form different variants of mature
mRNA molecules that can be translated into proteins. This process allows for the generation of multiple
RNA and protein isoforms from a single gene DNA sequence, that can differ in structure, function,
localization, or other properties (Fig. 2a). Therefore, predicting which isoforms are expressed in a
given cell or under specific conditions is key to understand gene regulation and disease mechanisms.
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This task is multi-modal in nature, since only looking at the DNA sequence present in the cell does not
provide a complete picture of the different RNA isoform landscape. Focusing on this single important
task in opposition to tackling more but less challenging tasks should provide a stronger evidence for
the effectiveness of our approach to advance biological knowledge.

In summary, our contributions are the following: (i) We built the first multi-modal model for the
integration of DNA, RNA, and protein sequences. (ii) We show that our model achieves efficient
transfer learning between the three modalities, not only leveraging intra-modalities pre-training but
also inter-modalities transfer. (iii) We use our architecture to tackle a new central task in biology that
requires a multi-modal approach, namely RNA transcript isoform expression prediction, and obtain
state-of-the-art results, overcoming limitations of existing gene expression models such as Enformer.
(iv) Finally, we performed ablation studies to validate our different architectural choices and release
our trained isoform expression prediction model IsoFormer, providing a new framework and baseline
to the community and opening the door to future research on multi-modal sequence modeling and
multi-modal biological problems.

2 Related Work

Biological sequence modeling Researchers have explored different ways to process DNA, RNA, and
protein sequences for multiple applications. Initial approaches included dynamic programming [29],
hidden Markov models [30], and genomic hash tables [31]. Recently, deep learning, via supervised
[1] and unsupervised frameworks [3, 4, 13, 2], has gained thrust in the community. These methods,
influenced by advancements in Large Language Models [32, 33], have focused on DNA [3, 4, 5, 9],
RNA [10, 11, 12, 13], and protein sequences [2]. They capture complex biological patterns and
perform tasks like protein structure prediction [2] and variant effect prediction [34]. These efforts
have become more targeted given the different challenges of each sequence modality. For instance,
models like HyenaDNA [5, 9] or Caduceus [35] tackled the long-range dependencies in DNA. Few
models consider multiple modalities, mainly focusing on structural information (e.g. predicting
DNA interacting residues in proteins [26]). Our work, IsoFormer, is the first general-purpose model
integrating three biological sequence modalities.

Multi-Modal Integration Efforts to address multi-modality in deep learning models have been
prominent in NLP [36, 37, 38, 39, 40] and computer vision [41, 42, 43, 44, 45]. In computer vision,
integrating image and audio for video classification [46] or audio-visual segmentation [47] is common,
often using cross-attention [48]. Unsupervised approaches using contrastive learning also integrate
image, audio, and other modalities [49]. Large Language Models have driven multi-modal efforts
for text and image with methods like Flamingo [19] and CLIP [18], leading to various integration
architectures, including the Perceiver Resampler [50, 19] and C-Abstractor [51, 52]. IsoFormer
integrates DNA, RNA, and protein sequences, leveraging past integration architectures.

Gene Expression Prediction Transcript isoform expression prediction is a more refined and
challenging task within gene expression prediction. Traditionally, gene expression has been addressed
through tailored approaches and experimental annotations [53, 54]. Recently, deep learning models
have demonstrated improved results by predicting gene expression directly from DNA sequence
[55, 56]. Enformer [14] leveraged dilated convolutions and attention layers to extend the context
window to 190 kilo base pairs (kbp), achieving new state-of-the-art results on gene expression.
However, these models are limited to gene-level expression levels and cannot predict isoform-specific
expression as DNA sequence information is not sufficient to solve this task. We introduce IsoFormer,
the first multi-modal model that is able to predict transcript isoform expression.

3 Background

Central dogma of biology In this work, we consider three biological sequence types: DNA, RNA,
and proteins. These sequences (composed of nucleotides or amino-acids) are fundamental to biological
processes in living organisms. They are also intricately intertwined: DNA dictates RNA synthesis
during transcription, and RNA guides protein synthesis through translation (see Fig. 2; [15]). Thus,
changes in DNA can alter RNA and protein sequences, impacting an organism’s phenotype (i.e.
function). DNA and RNA sequences consist of four nucleotides (ACGT and ACGU, respectively), while
proteins are made of 20 amino-acids. Thus, these sequences are commonly modelled as linear strings.
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Obtaining data in this format is becoming more available thanks to recent advances in high-throughput
sequencing technologies.

Gene expression and isoforms Gene expression is the process by which a gene’s DNA sequence
is transcribed into various RNA molecules that code for specific proteins. This process is complex,
as a single gene can produce different RNA and protein isoforms with varying abundances across
tissues (Fig. 2a). RNA isoforms are mRNA molecules of different exon compositions derived from the
same gene, produced via processes like alternative splicing. The expression level of each isoform
is commonly measured by counting the amount of its RNA molecules in cells. Accurate isoform
expression prediction across tissues can aid in understanding genetic variants’ effects on cellular
processes and phenotypes. However, this task cannot be tackled solely using DNA sequences as the
same DNA sequence produces different isoforms in different cellular contexts and types. In addition,
both DNA and RNA sequence features are crucial as DNA sequences contain regulatory elements that
control transcription levels, while RNA isoform sequences have features affecting their stability and
degradation.

4 Method

4.1 Multi-modal framework

We consider respectively DNA, RNA, and protein sequences xdna ∈ Adna, xrna ∈ Arna and xprot ∈ Aprot
where Adna is the DNA base alphabet ACGT, Arna is the RNA base alphabet ACGU, and Aprot is the set
of 20 amino-acids. We then consider three associated modality-encoders f with respective weights
(θdna, θrna, θprot) that encode sequences x into corresponding embeddings h:

h′
dna = f agg

ϕ (hdna,hrna,hprot) , h′
rna = f agg

ϕ (hrna,hdna,hprot) , h′
prot = f agg

ϕ (hprot,hdna,hrna) (1)

We assume that the weights (θdna, θrna, θprot) have been obtained through independent pre-training
processes that can involve supervised or self-supervised training techniques over large corpus of
biological data. Note that in practice, as commonly used in recent works [57], models pre-trained over
DNA sequences can be re-used to produce embeddings for RNA sequences, replacing artificially the
uracil base (U) by thymine (T) in the input. In this work, we aim to connect these encoders and train
them jointly to learn a multi-modal embedding hmulti. We start by learning a multi-modal embedding
per modality defined as

h′
dna = f agg

ϕ (hdna,hrna,hprot) , h′
rna = f agg

ϕ (hrna,hdna,hprot) , h′
prot = f agg

ϕ (hprot,hdna,hrna) (2)

where f agg
ϕ is an aggregation function with weights ϕ. Then, we define the multi-modal embedding as

the concatenation of the per modality multi-modal embeddings:

hmulti =
[
h′

dna,h
′
rna,h

′
prot

]
. (3)

Note that this definition is general as it allows the use of any aggregation function over the modality
embeddings h. The multi-modality embeddings per modality h′ are introduced to solve tasks that are
"modality-centered". For instance, h′

dna could be used to solve a task that involves nucleotide-level
annotation over a DNA sequence while requiring other modalities as input. We rely otherwise on the
concatenated multi-modal embedding hmulti to solve any other task.

4.2 Genes and isoforms expression

We now introduce our notations specific to the task of RNA isoform expression prediction (Fig. 2a).
We consider a DNA sequence xdna of length L to contain a gene g. In practice, given the input size
limitation of the existing foundation models, the sequence length L might be shorter than the full
length of the gene. In this case, we choose the DNA sequence xdna to be centered on the start of
the gene, i.e., where transcription begins, which also surrounds the promoter regions known to be
important for transcription. This way, we also capture all the enhancer regulatory elements upstream
of the transcription site.

We denote by x
(1)
rna , ..., x(n)

rna the n existing transcripts for gene g across all tissues. Coding transcripts
are translated into proteins and we denote by x

(i)
prot the amino-acid sequence of the protein associated
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to the transcript x(i)
rna. We define the expression e of genes and transcripts across tissues T as:

∀T, e (xdna, T ) =

n∑
i=1

e
(
x(i)

rna, T
)
∈ R. (4)

While deep learning models have been trained to predict the overall expression of genes across tissues
with great accuracy [55, 56, 14, 58], to our knowledge no model can predict the expression of the
different RNA transcripts across tissues directly from the sequence. In this work, we leverage our
multi-modal framework to train a transcript expression level prediction model, dubbed IsoFormer,
that takes as input a DNA sequence, an RNA transcript sequence, and its matching protein sequence to
predict the expression of that transcript across tissues as measured by bulk RNA-seq (Fig. 2).
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Figure 2: a) Three types of biological sequences are considered in this work: DNA, RNA, and proteins. These
sequences are composed of nucleotides (DNA and RNA) or amino-acids (protein). In a single gene, several coding
regions or exons can be used to create different RNA transcript isoforms and proteins. The abundance of each
isoform is tissue-dependent and its measurement is called expression level. b) IsoFormer leverages pre-trained
encoders that produce modality-specific embeddings, which are then aggregated into multi-modal embeddings.
These are used to predict the expression of a given RNA transcript isoform across multiple tissues.

Aggregation module To capture the local patterns and their relationship across modalities, we
introduce an embedding aggregation method based on cross-attention with residual connections
(Fig. 1). The module is applied to each modality, performing cross-attention successively to the other
modalities to produce multi-modal embeddings that are specific to each modality by keeping their
dimensionality and which can be also stacked. Note that this aggregation method is robust to the
absence of a specific modality as the cross-attention term will be zeroed out. The final multi-modal
embedding hmulti can then be used to solve any task. Our model can be trained end-to-end and it
could be applied to different tasks by changing the prediction head.

4.3 Transferring from pre-trained biological encoders

Table 1: Characteristics of single-modality encoders considered in IsoFormer. † This column indicates the
tokenization scheme (e.g., 1 token corresponds to 6 nucleotides).

Modality Model Pre-training Num. Params. Tokens† Sequence Length
DNA Enformer [14] Supervised 110M 1 Nucleotide 190,000
DNA NT (v2) [3] Self-Supervised 250M 6 Nucleotides 12,282
RNA NT (v2) [3] Self-Supervised 250M 6 Nucleotides 12,282

Protein ESM2 [2] Self-Supervised 150M 1 Amino-acid 2,047
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Encoders We describe here the encoders used to process each sequence modality (see also Table 1
and Fig. 2b). For protein sequences, we used ESM (ESM2-150M) [2], which handles any protein up to
2,048 amino-acids. The ESM models have been pre-trained through MLM on large corpuses of protein
sequences and are considered state-of-the-art on multiple tasks including folding. Protein sequences
were all within ESM input length, so no additional processing was required. For DNA sequences, we
used the NT model [3], which has also been trained through self-supervision to reconstruct masked
6-mers within 12 kbp genomic regions from 850 species. Additionally to the NT, we also considered
the Enformer model as DNA encoder. The Enformer is a different type of model that has been pre-
trained through full supervision to predict multiple experiments related to chromatin accessibility
and modifications, transcription factor binding, and more importantly gene expression. Enformer
is a strong candidate for our architecture’s DNA encoder module as it can process sequences up to
200kbp as well as one can expect to obtain transfer from its gene expression capabilities. Finally,
while foundation models have been reported to be pre-trained on RNA sequences, none of them has
been made publicly available at the moment and pre-training a foundation model from scratch is out
of the scope of this study. As such, we re-used the NT model [3] to compute embeddings for RNA
sequences as this model has been reported recently to also be able to solve RNA [57] and protein [59]
tasks with simple adaptations, using the trick described in section 4.1. RNA transcripts longer than
12kb were left-cropped to 12kb to conserve the 3’UTR regions, which are crucial for mRNA stability
and polyadenylation, impacting isoform abundance. This adjustment affected only a small portion of
the dataset.

Architecture Our architecture leverages three pre-trained encoders, one per bio-modality, as well
as the aggregation function defined above, to generate a multi-modality embedding hmulti (Fig. 2b).
That embedding is finally transformed by an expression head f exp

ψ with weights ψ to make isoform
expression level predictions across tissues. As the shape of the network output must be independent
from the dimension of its inputs, we used a global average pooling over the length of the embedding.
A linear layer then outputs one value per tissue. As long as the encoders can take in a biological
sequence to produce an embedding, our method can function with different types of general-purpose
encoders. While this flexibility allows us to leverage a big part of the landscape of biological sequence
encoders, for this work we chose the specific models described in the section below.

4.4 Training

Objective We denote the IsoFormer model by fθ,ϕ,ψ where θ is the concatenation of the weights
of the encoder models. These weights are initialized to the values obtained after pre-training of
the different encoders. Respectively ϕ and ψ denote the weights of the aggregation module and
expression prediction head. The IsoFormer is trained to minimize the following objective

LMSE =
∑
T

(
f exp
ψ (hmulti, T )− e

(
x(i)

rna, T
))2

,wherfe hmulti = f enc
θ,ϕ

(
xdna,x

(i)
rna,x

(i)
prot

)
(5)

where the summation is performed over a set of available tissues. Note that this framework can also
accept only one or two of the three modalities as input. This is the case for instance when predicting
expression of non-coding transcripts that do not translate into proteins.

Dataset We conducted our analysis of IsoFormer on RNA transcript expression data obtained from
the GTEx3 portal. We used Transcript TPMs measurements across 30 tissues, which come from more
than 5,000 individuals. We followed a common process in gene expression datasets [56]: we averaged
the expression levels for a given tissue across individuals, and used the reference genome sequence
as input. We mapped transcripts to their original genes and associated proteins using the Ensembl
database [60]. Our resulting dataset is made of triplets of RNA transcript sequences, DNA sequences
(centered on the Transcription Start Site (TSS) of the transcript), and proteins. In total, the dataset is
made of ∼170k unique transcripts, of which 90k are protein-coding and correspond to ∼20k unique
genes. Our dataset has a fixed train and test set, divided by genes; all presented results correspond to
the performance on the test set. We provide more details on the dataset in Appendix A.

Hyperparameters We used the Adam optimizer with a learning rate of 3 · 10−5 and batch size of
64, and used early stopping on a validation set comprised of 5% of the train set to reduce training
time. We also made our baseline model’s weights available4. More details in Appendix B.

3https://www.gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression
4https://huggingface.co/InstaDeepAI/isoformer
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5 Experiments

We present extensive experiments to assess the performance of our multi-modal approach on the
transcript isoform expression prediction task and compare it with existing single-modality approaches.
We show that (i) our architecture efficiently aggregates modalities to improve its performance on this
task; (ii) by using a tailored model for expression prediction as a base DNA encoder, IsoFormer reaches
state-of-the-art performance; (iii) we provide an extensive ablation study on different aggregation
approaches; (iv) we demonstrate that our approach achieves transfer learning both intra-modalities
from their independent pre-training as well as inter-modalities.

5.1 Bridging three foundational models outperforms mono-modal approaches

Experiment We investigated the effect of adding the different modalities within our multi-modal
framework for the prediction of expression of each RNA transcript across different human tissues.
We used NT as the foundation model for both DNA and RNA and ESM as the protein encoder. We
compared our multi-modal approach (DNA + RNA + protein) with models trained with different
combinations of modalities as input: DNA only, RNA only, protein only, DNA + protein and DNA +
RNA. Results were obtained over 5 random seeds; for each random seed we change the validation set
and randomly initialize the non pre-trained parameters (ϕ, ψ) of our model. We report bothR2, which
measures how well each model predicts the actual values of expression, and Spearman correlation
across tissues, which is a metric for ranking transcripts based on their expression in each tissue.

Table 2: Performance of different variants of IsoFormer for the prediction of transcript isoform expression. R2

and Spearman correlation across tissues for 5 different random seeds is reported. NT is used as both DNA and
RNA encoder while ESM is used to process protein sequences.

Model Input R2 Spearman
DNA only 0.13± 0.02 0.43± 0.01
RNA only 0.36± 0.03 0.61± 0.01
Protein only 0.20± 0.01 0.46± 0.01
DNA + Protein 0.28± 0.01 0.52± 0.01
DNA + RNA 0.39± 0.01 0.64± 0.01
DNA + RNA + Protein 0.43± 0.01 0.65± 0.01

Results We observed that our approach benefits from adding more modalities as the performance
increases from one modality alone to having two combined, and the best performance is achieved
with the three (DNA, RNA, and protein) modalities together (Table 2). This is true for both Spearman
correlation and R2 metrics, with stronger improvement for the latter reflecting a more accurate
prediction of the actual values of expression and not just the ranking of transcripts. This is a strong
demonstration that our model can aggregate information across modalities to improve performance on
this isoform expression task. In addition, we observe increased performance by using DNA together
with RNA compared with DNA and protein information. This can be related to the strong importance
of the UTR regions of the RNA sequence in the regulation of its degradation and stability [61], which
affect its final expression level in the cells, that are not captured at the protein level.

5.2 Enformer as DNA encoder module to obtain transfer between expression prediction tasks

Experiment To showcase the flexibility of IsoFormer towards different modality-specific encoders,
we tested replacing NT by the Enformer model [14] as DNA encoder. Enformer has been trained over
gene-level expression data obtained from CAGE assays (one value of expression per gene per tissue),
while our model is trained to predict RNA transcript expression data obtained from bulk RNA-seq
assay (one value of expression for each isoform of a given gene per tissue) and therefore represents a
different challenge that cannot be tackled from the DNA sequence alone. Still, as the Enformer has
been trained to predict gene-level expression across tissues directly from DNA sequences, a related
task to predicting RNA isoform expression, one might expect to obtain transfer by using it as DNA
encoder. We give full details of this experiment in Appendix D.

Results We obtained superior performance using the Enformer instead of NT as a pre-trained DNA
encoder both as DNA-only but also when we combined with the RNA and protein encoders (Table 3).
Importantly, also with the Enformer our framework benefits from bridging modalities. This improved
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Table 3: Comparison of Enformer and NT DNA encoders used in IsoFormer. R2 and Spearman correlation
across tissues on the transcript isoform expression prediction task. Standard deviation across 5 seeds is reported.

Model R2 Spearman
Enformer 0.21± 0.01 0.46± 0.00
IsoFormer (NT) 0.43± 0.01 0.65± 0.01
IsoFormer (Enformer) 0.53± 0.01 0.72± 0.00
IsoFormer (Borzoi) 0.48± 0.01 0.69± 0.00
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Figure 3: Left: Performance of IsoFormer and Enformer [14] per tissue on a selected subset of tissues. Right:
Changes in attention in the RNA encoder during fine-tuning. These scores are reported for three genomics
elements of interest for all heads and layers of the RNA encoder.

performance can be explained by the fact that Enformer has been pre-trained on the related task of
gene expression prediction and thus its embeddings are better aligned with the isoform prediction
task. Moreover, the Enformer is a model that can handle sequences of large context (up to 196k
nucleotides), enabling it to capture long-range dependencies, known to be relevant for expression.
We also tried the Borzoi model [] as an enocder for DNA model. Borzoi is a model pre-trained
on sequences up to 512kb nucleotides to predict RNA-seq coverage which directly relates to RNA
transcript isoform exression. These results demonstrate that our multi-modal framework can be
improved by leveraging more domain-specific encoders. As our best model for isoform prediction is
achieved using the Enformer as DNA encoder, we will use it as DNA encoder by default for all the
following experiments. We make the weights of this IsoFormer model available on HuggingFace5.

Interpretation We report the performance of IsoFormer across selected tissues in Fig. 3-left (results
across all tissues are presented in Appendix D). IsoFormer obtains similar performance across tissues
despite tissues having different distributions of expression levels. To gain additional insights about the
representations learned by IsoFormer, we analysed the attention layers inside the RNA encoder as it is
the one providing stronger improvement on this task. Specifically, we compared how the attention
distribution within each layer and head changes when we finetune the RNA encoder alone versus
finetuning IsoFormer altogether. We report changes in attention scores at each layer and head of the
RNA encoder for three genomics elements known to have a strong effect on the isoform splicing and
gene expression processes, namely the 3UTR, 5UTR and CDS sequence, see Fig. 3-right (additional
details on these scores are in Appendix Section C.1). The results show that, when finetuning using the
three modalities, different layers specialize to capture specific features relative to isoform splicing and
expression. Notably, the middle set of layers put higher attention weights to 3UTR regions whereas
the top layers of NT attributes higher attention weights on CDS and 5UTR. We assume that this
RNA encoder specialization during finetuning is key to achieve a strong representation towards the
prediction of its tissue-specific expression.

5.3 Ablation studies on the aggregation strategy

Experiment We compared the IsoFormer’s aggregation module with alternative strategies from
recent multi-modal literature (Fig. 4). Inspired by recent vision-text models [20, 52, 62, 63], we
considered these three approaches: (i) Perceiver Resampler [50]: a variant of our cross-attention
method using a Perceiver Resampler module. This block learns a fixed number of tokens for each
modality, thus reducing the cost of the subsequent cross-attention layer. (ii) Linear Projection: a
strategy that linearly projects the embeddings of the three modalities into a common representation
space and concatenates all tokens. This concatenated sequence is fed to a Perceiver Resampler to

5https://huggingface.co/InstaDeepAI/isoformer.
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learn a fixed number of tokens which are then used in the head of the model. (iii) C-Abstractor a
1-dimensional version of the C-abstractor architecture that provides a compromise between flexibility
–choosing an arbitrary number of resampled tokens– and locality preservation [20].

Table 4: Ablation study of different aggregation strategies when considering the three modalities together. All
experiments were run using Enformer as the DNA encoder. PR = Perceiver Resampler.

Aggregation Method R2 Spearman
Ours 0.53± 0.01 0.72± 0.00
PR + Cross-Attn 0.49± 0.04 0.69± 0.02
Linear Proj. + PR 0.49± 0.02 0.69± 0.01
C-Abstractor 0.53± 0.01 0.72± 0.01

Results We performed hyperparameters search with the same budget used for the IsoFormer
aggregation module for all ablations methods. We report in Table 4 the results obtained with the
best set of hyperparameters for each method. We observe that, using an additional step of Perceiver
Resampler always performs worse than only cross-attention –even after optimizing hyperparameters.
Similarly, C-Abstractor does not confer any benefit over cross-attention; therefore we consider this
latter strategy as the optimal aggregation strategy for our method. One advantage of the cross-attention
mechanism we use is its interpretability, since it helps understanding which regions of the different
modalities are being leveraged to make predictions. These conclusions align with recent multi-modal
studies for other modalities [64].

5.4 IsoFormer leverages knowledge of pre-trained encoders

Experiment We showed in previous sections that IsoFormer is able to aggregate information from
different biological sequence modalities to formulate high-quality predictions. Here, we investigated
to which extent IsoFormer’s performance can be attributed to the transfer from each modality-specific
encoders’ pre-training. We conduct extensive experiment where we compared the performance of
IsoFormer trained using all three encoders pre-trained on their respective domains with different
IsoFormer model variants with all possible combinations of pre-trained / non-pretrained modality-
specific encoder.

Results Our results demonstrate that using pre-trained encoders confers a substantial advantage to
IsoFormer, as the R2 is substantially larger (0.53) when compared with IsoFormer with none of the
encoders pre-trained (0.10; Table 5). This demonstrates that IsoFormer is leveraging the knowledge
acquired by each foundation model in the respective domains. However, we observed that when we
randomly initialized only the DNA or RNA encoders, the drop in performance is smaller (0.41 for DNA
and 0.48 for RNA). This suggests that IsoFormer not only leverages intra-modalities pre-training but
also inter-modalities transfer. Altogether, these results underpin our approach of relying on initializing
IsoFormer with pre-trained encoders, as the information learned during pre-training is transferred and
leveraged when considering multi-modal tasks.
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Table 5: Comparing the use of pre-trained and non-pre-trained encoders within IsoFormer. For this set
of experiments the considered encoders are the Enformer for DNA, NT for RNA and ESM for proteins.
✓ indicates the use of a pre-trained encoder whereas ✗ indicates the encoder is trained from scratch
(random initialization).

DNA RNA Protein R2 Spearman
✗ ✗ ✗ 0.10 ± 0.03 0.31 ± 0.01
✓ ✗ ✗ 0.45 ± 0.01 0.67 ± 0.00
✗ ✓ ✗ 0.39 ± 0.01 0.61 ± 0.00
✗ ✗ ✓ 0.34 ± 0.01 0.59 ± 0.01
✓ ✓ ✗ 0.52 ± 0.01 0.71 ± 0.00
✓ ✗ ✓ 0.48 ± 0.01 0.69 ± 0.00
✗ ✓ ✓ 0.41 ± 0.01 0.64 ± 0.01
✓ ✓ ✓ 0.53 ± 0.01 0.72 ± 0.00

6 Conclusion

IsoFormer is the first model designed for multi-modal biological sequence modeling connecting DNA,
RNA, and protein sequences. IsoFormer achieves state-of-the-art results by effectively leveraging and
transferring knowledge from pre-trained DNA-, RNA-, and protein-specific encoders on one of the
significant multi-modal problems in genomics: RNA transcript isoform expression prediction. As
part of our efforts, we are are open-sourcing our model, and hope IsoFormer paves the way to new
milestones in building multi-modal models for biology.

10



References
[1] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-

neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[2] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

[3] Hugo Dalla-Torre, Liam Gonzalez, Javier Mendoza Revilla, Nicolas Lopez Carranza, Adam Hen-
ryk Grzywaczewski, Francesco Oteri, Christian Dallago, Evan Trop, Hassan Sirelkhatim, Guil-
laume Richard, Marcin Skwark, Karim Beguir, Marie Lopez, and Thomas Pierrot. The nu-
cleotide transformer: Building and evaluating robust foundation models for human genomics.
bioRxiv, 2023.

[4] Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-
2: Efficient foundation model and benchmark for multi-species genome. arXiv preprint
arXiv:2306.15006, 2023.

[5] Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-
Sykes, Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna:
Long-range genomic sequence modeling at single nucleotide resolution. Advances in neural
information processing systems, 36, 2024.

[6] Jun Cheng, Guido Novati, Joshua Pan, Clare Bycroft, Akvilė Žemgulytė, Taylor Applebaum,
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A Dataset details

We based our dataset on the Genotype-Tissue Expression (GTEx) portal. Specifically, we use the
8th release of the Transcript TPMs table6. This table is made of expression measurements of 170k
transcripts across 30 different tissues from 5, 000 individuals. As the goal is to build a general model
for expression prediction from biological sequences, we averaged measurements across individuals
to get an average expression value for each transcript in each tissue.

We mapped each transcript to its corresponding gene and protein using the Ensembl7 database.
Using this database, we were able to retrieve associated DNA, RNA, and protein sequences. For DNA
sequences, we used the latest release of the human reference genome GRCh388.

To summarize, the steps to re-create our training dataset are the following:

1. Download Transcript TPMs table from GTEx portal9

2. Compute average measurement per transcript ID and tissue

3. Map RNA transcript isoform ID to its corresponding RNA sequence using Ensembl

4. Get associated protein isoform using Ensembl

5. Get chromosome and transcription start site position on the DNA sequence
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Figure 5: Average and standard deviation of expression values across transcripts per tissue.

B Training and architecture details

All experiments were carried out with 5 seeds on 4 A100 GPUs (80GB RAM). Depending on the
model, a training run lasts between 1 and 5 hours. We provide model hyper-parameters in Table 6
and the hyper-parameters of the encoders in Table 7.

In order to stabilize our training procedure, expression values were processed in two steps: first, we
use a log-transform (val = log(1 + val)) to minimize the effect of outliers; secondly, we normalized
expression values per tissue as it has been shown to stabilize training when using mean squared error
loss.

C Experimental details

C.1 Attention maps analysis

Section 5.2 introduces significant results on IsoFormer’s ability to leverage pre-trained modality-
specific encoders. When finetuning the pre-trained encoders together, there is specialization on
specific elements of the sequence, as observed in the RNA attention maps in Figure 3-right. These
maps have been obtained through the following process:

6https://www.gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression
7https://www.ensembl.org/index.html
8https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001405.26/
9https://www.gtexportal.org/home/downloads/adult-gtex/bulk_tissue_expression
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Table 6: Model hyper-parameters
Hyper-parameter Value
Cross-Attn: number of heads 8
Perceiver Resampler: number of layers 1
Perceiver Resampler: number of resampled tokens 8
C-abstractor: kernel size 3
C-abstractor: number of residual layers 2
C-abstractor: number of resampled tokens 8
Maximum number of nucleotides in DNA sequences (Enformer) 196,608
Maximum number of nucleotides in DNA sequences (NT-v2) 12,288
Maximum number of nucleotides in RNA sequences 12,288
Maximum number of amino-acids in protein sequences 1,200

Table 7: Encoder hyper-parameters
Hyper-parameter Value
NT: maximum number of tokens 2,048
NT: number of attention heads 16
NT: embedding dimension 768
NT: number of layers 24
NT: activation swish
Enformer: number of parameters 110M
Enformer: embedding dimension 1,536
Enformer: number of Transformer layers 8
ESM-2-150M: number of attention heads 20
ESM-2-150M: embedding dimension 640
ESM-2-150M: number of layers 30

1. Focusing on the pre-trained RNA encoder, we take the attention weights for each layer and
head after running the IsoFormer finetuning process. For each layer and head, we compute
how much attention (percentage) is directed towards a specific region of interest of the RNA
sequence. The regions we consider are 3UTR, 5UTR, and CDS, and we use the following
equation to compute the exact ratio of attention:

ρ(f) =
1

Xrna

∑
x∈Xrna

∑
i

∑
j f(i)1(α(i, j) > µ)∑

i

∑
j 1(α(i, j) > µ)

(6)

where Xrna is the set of RNA sequences in the test set, α(i, j) is the attention coefficient
between tokens i and j, f(i) is an auxiliary function that equals 1 if token i belongs to the
region of interest in the sequence (e.g. 3UTR), and µ is a threshold value (we choose 0.01).
We denote these attention maps by ρIF.

2. We repeat this process for the finetuning run in which only the RNA encoder is used (RNA
only in Table 2). We denote these attention maps by ρNT.

3. For each layer and head, we compute the ratio ∆ρ = (ρIF − ρNT)/ρNT. For simplicity, we
cap these values to 1 (i.e., attention rate is doubled in the IsoFormer case compared to
finetuning a RNA encoder alone).

4. In addition, for both ρIF and ρNT, we can consider the samples in the test set Xrna and build
a distribution of attention rates per element of interest. Comparing both distributions (the
one coming from ρIF and the one coming from ρNT), we can carry out a t-test per layer and
head. We follow these t-tests and select the combinations of layers and heads in which there
are statistically significant differences (i.e., p < 0.05) between ρIF and ρNT.

5. Figure 3-right shows the ratio ∆ρ for those pairs of layers and heads in which statistically
significant differences are observed. The rest is set to zero.

D Additional results

D.1 Full results over every tissue

Figure 6 shows the performance of IsoFormer using Enformer as DNA encoder for each of the 30
tissues. IsoFormer outperforms the DNA-only Enformer model on every tissue.
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Figure 6: Performance of IsoFormer and Enformer [14] per tissue on all tissues.

D.2 Full ablation studies on modalities

Table 8: Performance of different variants of IsoFormer for the prediction of transcript isoform
expression using three different DNA encoders: Nucleotide Transformer, Enformer, and Borzoi (input
sequence length in parentheses). R2 and Spearman correlation across tissues for 5 different random
seeds is reported. NT is used as RNA encoder while ESM is used to process protein sequences.

Base DNA Model NT (12k) Enformer (196k) Borzoi (512k)
R2 Spearman R2 Spearman R2 Spearman

DNA Only 0.13 ± 0.02 0.43 ± 0.01 0.21 ± 0.02 0.46 ± 0.00 0.12 ± 0.02 0.35 ± 0.01
RNA Only 0.36 ± 0.03 0.61 ± 0.01 0.36 ± 0.03 0.61 ± 0.01 0.36 ± 0.03 0.61 ± 0.01

Protein Only 0.20 ± 0.01 0.46 ± 0.01 0.20 ± 0.01 0.46 ± 0.01 0.20 ± 0.01 0.46 ± 0.01
RNA + Protein 0.40 ± 0.01 0.63 ± 0.01 0.40 ± 0.01 0.63 ± 0.01 0.40 ± 0.01 0.63 ± 0.01
DNA + Protein 0.28 ± 0.01 0.52 ± 0.01 0.39 ± 0.01 0.61 ± 0.01 0.30 ± 0.02 0.56 ± 0.01
DNA + RNA 0.39 ± 0.01 0.64 ± 0.01 0.52 ± 0.01 0.72 ± 0.01 0.47 ± 0.01 0.69 ± 0.00

DNA + RNA + Prot. 0.43 ± 0.01 0.65 ± 0.01 0.53 ± 0.01 0.71 ± 0.00 0.48 ± 0.01 0.69 ± 0.00
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E Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We claim in the abstract that we propose a novel way to integrate different
pre-trained biological sequence encoders to solve the RNA isoform expression task. This is
proven by our experimental results.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: While we do not provide a specific limitations section, we discuss limitations
in the corresponding sections.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not claim novel theoretical results.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide extensive details on the dataset creation and processing as well
as architectural choices and training procedure. We also will open-source our model at
publication.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: At the current stage, we do not provide training data and code but will open-
source our model at publication time. However, we provide extensive details for anyone
willing to gather our training dataset.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We give full details of how we defined our dataset, hyperparameters and
training procedure. We also acknowledge that some of those hyperparameters were taken
arbitrarily.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We ran each experiment over several seeds that account for variability between
different initialization and train/validation splits. While we do not directly report error bars
we report standard deviations of our metrics over those seeds.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?
Answer: [Yes]
Justification: We give those details in the Appendix, where we specify the amount of compute
as well as training times for each experiment.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper is applied to RNA transcript isoform expression, an important
biological process. Our approach can be one of the tools used in a pipeline to accelerate
drug or vaccine design and as such have a positive societal impact.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We used internal reproduction of existing assets but we properly credit authors
for their original work.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We fully detail all architecture choices and experiments and also open-source
our model weights.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
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