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Abstract

Accurate prediction of wind loading on buildings is crucial for structural safety
and sustainable design, yet conventional approaches such as wind tunnel testing
and large-eddy simulation (LES) are prohibitively expensive for large-scale explo-
ration. Each LES case typically requires at least 24 hours of computation, making
comprehensive parametric studies infeasible. We introduce WINDMIL, a new
machine learning framework that combines systematic dataset generation with
symmetry-aware graph neural networks (GNNs). First, we introduce a large-scale
dataset of wind loads on low-rise buildings by applying signed distance function
interpolation to roof geometries and simulating 462 cases with LES across varying
shapes and wind directions. Second, we develop a reflection-equivariant GNN that
guarantees physically consistent predictions under mirrored geometries. Across
interpolation and extrapolation evaluations, WINDMIL achieves high accuracy
for both the mean and the standard deviation of surface pressure coefficients (e.g.,
RMSE < 0.02 for mean C}) and remains accurate under reflected-test evaluation,
maintaining hit rates above 96% where the non-equivariant baseline model drops
by more than 10%. By pairing a systematic dataset with an equivariant surrogate,
WINDMIL enables efficient, scalable, and accurate predictions of wind loads on
buildings.

1 Introduction

Wind loading on buildings is crucial for structural engineering and resilient urban planning. Accurate
predictions of surface pressure loads and integrated loads guide both safety codes and sustainable
building practices. Yet, traditional approaches such as wind tunnel testing and full-scale experiments
are costly and time-consuming [[Alrawashdeh and Stathopoulos, 2015, Richards and Hoxeyl, 2012,
Vargiemezis and Gorlel 2024, while high-fidelity CFD simulations, such as large-eddy simulation
(LES), though accurate, remain prohibitively expensive for large-scale design exploration [Potsis
et al.,|2023] [Blocken, 2015} |Vargiemezis and Gorlé} 2025bjal]. These limitations highlight the need
for efficient and accurate surrogates that can operate at scale.

Recent advances in geometric deep learning provide a powerful foundation for such surrogates. Graph
neural networks (GNNs) naturally represent the irregular meshes common in CFD, with nodes as
mesh points and edges as connectivity. Models such as MeshGraphNets [Pfaff et al.,[2020]] and Graph
Network Simulators [Sanchez-Gonzalez et al.,|2020] show the potential of graph-based learning for
fluid and structural dynamics, while PolyGNN [Chen et al., [2024] highlights their use in building
geometry reconstruction. These works highlight that graph learning can bridge building geometry,
flow physics, and predictive modeling.
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To fully realize the potential of graph learning in wind engineering, surrogate models must incorporate
the physical symmetries that govern flows around buildings. Reflectional and rotational invariances
are fundamental for ensuring consistent and reliable predictions. For example, when the flow is
aligned with z—direction, y is the vertical, and z is the spanwise, the pressure distribution of a
building at +45° wind incidence should be the reflected version of a building at —45° wind incidence
with respect to the 2y—plane, as shown in Fig. [T}

Equivariant graph learning embeds these symmetry constraints
directly into the model, ensuring that its predictions transform -45°
consistently under reflections and rotations. Approaches such as
group-equivariant CNNs [Cohen and Welling| 2016] and E(3)- ¢
equivariant GNNs like NequlP [Batzner et al.,[2022] have already /
demonstrated substantial gains in efficiency and generalization in
physical sciences. These advantages make equivariant GNNs a
suitable modeling choice for wind loading surrogates.
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Progress in this direction has been hindered by the lack of sys- -1
tematic datasets. While benchmark experiments such as the TPU Figure 1: Contour plots of mean
database remain invaluable, they cover only a C), at —45° and —45° wind inci-
small number of canonical building geometries. By contrast, other ~dence.

areas such as automotive aerodynamics have advanced through

parametric dataset generation paired with CFD [Benjamin and Taccarinol [2025]]. No comparable
dataset exists for wind loading on low-rise buildings, despite their importance to building safety.

Our contribution: We introduce WINDMIL, a new machine learning paradigm for wind loading
prediction that combines systematic datasets with symmetry-aware graph learning. Specifically:

1. Dataset. We generate a large-scale dataset of wind loading on low-rise buildings, with
systematically varying roof morphologies and wind directions, using LES. This extends
databases such as the TPU database through controlled geometric interpolation.

2. Model. We develop a reflection-equivariant GNN that respects reflectional invariances,
providing physically consistent surrogates. Our approach achieves error reduction by more
than 10% on the symmetrical geometries compared to the non-equivariant baseline.

By releasing both the dataset and the model, we establish an ML paradigm for wind engineering that
is data-driven, symmetry-aware, and scalable. This paradigm opens new opportunities for accurate,

efficient, and physically consistent prediction of wind loads, advancing resilient and sustainable urban
design.

2 Dataset generation

2.1 Geometry parameterization

Flat roof

In this work, we adapt the Signed Distance Function
(SDF)-based interpolation method, originally developed
for automotive geometries by Benjamin and Iaccarino|
[2025],, to systematically generate diverse building shapes
for wind loading analysis. We begin with three basis ge-
ometries derived from the TPU dataset [2007]:
a flat roof, a gable roof, and a hip roof. All buildings share
the same footprint of 18 m length x 12 m width in full
scale, while their heights differ: 8 m for the flat roof, 16
m for the gable roof, and 24 m for the hip roof.

Each geometry is first converted into a binary grid using P .

ray-tracing, where cells are marked as occupied or empty ‘ ‘ ‘
based on ray—surface intersections. The binary grids are  Gable roof Hip roof
then transformed into signed distance functions (SDFs),

which assign to each grid point the signed distance to the Figure 2: Convex hull of the three basis
building surface. By convention, the SDF equals zero on  geometries. Points inside the convex hull
the surface, is positive outside, and negative inside. This correspond to interpolated buildings.




continuous representation enables smooth and consistent interpolation of shapes. To generate new
buildings, we construct a convex hull in the SDF space spanned by the three basis geometries, as
shown in Fig. [2] Barycentric interpolation within this convex hull produces intermediate SDFs that
smoothly transition between the flat, gable, and hip roof cases. For the wind incidence at 0°, this
yields 66 unique interpolated buildings. To build a complete database, each interpolated building
is rotated in 15° increments from 0° to 90°, resulting in 66 x 7 = 462 cases, with one convex hull
generated for each wind direction.

Formally, interpolation between two SDFs ¢ () and ¢2(;) on a structured grid, where () are
spatial coordinates on a discrete grid, can be written as

¢3((73)) = agr((#7)) + (1 — a)da((77)), (M
where « is a scalar weight. Varying « yields intermediate geometries between the basis cases.

Applying Eq. (1) to a unit sphere and unit cube, one can produce intermediate shapes by varying «,
an example of which is shown in Fig. 3|
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Figure 3: SDF interpolation between a sphere and a cube, per Eq. (1) for different a.

Distance (SDF)

Finally, the interpolated SDFs are reconstructed into surface meshes using the marching cubes
algorithm [Benjamin and Iaccarinoj, 2025], followed by Laplacian smoothing to refine geometry
quality. This ensures the resulting buildings are physically suitable for downstream tasks such as
CFD simulations or data-driven surrogate modeling. By combining convex-hull interpolation with
systematic rotations, the method enables the creation of a large dataset of building geometries.

2.2 Large-eddy Simulations

To generate the dataset, LES simulations are performed using the CharLES code, a low-Mach,
isentropic solver developed by |Cadence Design Systems| [2022]]. CharLES implements a finite
volume approach with an automated body-fitted meshing technique based on 3D-clipped Voronoi
diagrams, and uses numerical schemes with second-order accuracy in space and time to solve the
governing equations [Ambo et al.| 2020]. In addition, the Vreman turbulence model is used to model
the unresolved part of the stress tensor [Vreman, [2004]]. CharLES has been extensively validated
against experimental data in a range of wind engineering applications. For instance, it has been
validated against wind tunnel measurements of wind-induced pressure loads on high- and low-rise
buildings [[Ciarlatani et al., [2023| |Vargiemezis and Gorlél [2025alb], as well as against measurements
of wind-driven natural ventilation [Hwang and Gorlé||2022]]. Comparisons against field measurements
have also been performed for wind pressures on the Space Needle [Hochschild and Gorlé| [2024] and
for natural ventilation flow in a dense urban environment [Hwang and Gorlé, [2023].

The mesh uses 2.1 x 10° control volumes, with refinement near the no-slip surfaces of the building,
as shown in Fig. E} The resolution on the building surfaces is A/H,.; = 0.0098, where A is
the mesh size locally, and H,..¢ is the characteristic height of the building. The domain extents
5H,.y upstream, 15H,.y downstream, and 5H,..y in the lateral and vertical directions, following
the proposed guidelines [Franke et al.| 2011]]. At the inlet, a logarithmic mean velocity profile is
prescribed, and artificially generated turbulent fluctuations are superimposed. The turbulent velocity
field is generated using the divergence-free digital filter method proposed by [Kim et al., [2013]. At
the outlet, a zero gradient condition is applied, while the two lateral boundaries are periodic, and
a slip condition is applied at the top boundary. Finally, at the ground, a rough wall function for a
neutral atmospheric boundary layer with a fixed roughness of 0.0027 m is specified. More details
regarding the setup can be found in the study of a different isolated building, since the same setup is
used [Vargiemezis and Gorlé, [2025b].

The simulation is run for a total time of 20 seconds, and statistics are collected for the last 15 seconds,
after the initial burn-in period of 5 seconds. The total time for one simulation on 64 CPUs requires
24 hours. The quantities of interest (Qols) of the simulation are the time-averaged (mean) and the
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Figure 4: View of the mesh used for the large-eddy simulations, with side views of refinement zones
shown: (left) near the building and (middle) in the surrounding area. (right) Top view of instantaneous
velocity magnitude contours showing the turbulent flow around the building.

standard deviation (std) of the pressure coefficient. The pressure coefficient at a surface node 7 is
defined as
bi — D
Cpi = T3 @
§on<>
where p; is the local surface pressure at location ¢ on the building surface ,p, is the freestream
pressure, p is the density of air, and U, is the reference velocity.

3 Model architecture

We represent each building surface as a point cloud, from which we construct a graph G = (V, £),
where nodes v € V correspond to sampled surface points and edges e € £ are defined based on spatial
proximity. Each node is associated with a set of geometric features X € RIVI*<, In particular, each
node v has features x,, € R?, with d = 6: normalized coordinates (z,y, z) with respect to building
height H,.; and surface normal components (74, ny, n. ), which are unit vectors oriented outward
of building surface. The learning task is to predict the per-node mean or std pressure coefficients
Cp. To process the graph structure and the geometrical features of each building, we employ a
message-passing GNN fy (G, X), [Kipf and Welling| 2016, Xu et al.| 2019} Hamilton et al., 2017],
defined by the following recursive formula:

) D (D g (e 0).

where A/ (v) represents the 1-hop neighborhood of vertex v, and g, h are permutation equivariant
operators. In our implementation, fy (G, X) is modeled as a stack of GraphSAGE layers [Hamil;
with residual connections, layer normalization, and a global skip from the input
projection.

Wind loading exhibits a reflection symmetry with respect to the horizontal (xy) plane, as shown in Fig.
[1] For instance, the surface pressure distribution at a wind incidence angle of +45° is the reflected
version of that at —45°, when the reflected building is taken across the zy plane. To encode this
invariance, we define a reflection operator R that flips the vertical coordinate and normal component:

R: (z,n.) — (—2,—n.),

while leaving (z, y, n,, n,) unchanged. The model is designed such that predictions are invariant
under this transformation. To enforce symmetry, both the original and reflected features are passed
through the same encoder fy. The resulting embeddings are then averaged:

2, = 3(f2(9, X)) + fo(G. RIX))]).

The overall model F'(-), which maps inputs to predictions, then satisfies the reflection-equivariant
property F(R(x)) = F(x). Finally, embeddings z,, are passed through a feed-forward predictor gy,
yielding the node-level outputs C}, ,, = g4 (2, ). This architecture ensures predictions that respect the
underlying physical symmetry of wind loading on buildings.

4 Experiments

We compare the reflection-equivariant GNN, WINDMIL, with the baseline model GRAPHSAGE,
which does not incorporate geometric symmetries. Both models are evaluated in two cases: (a)



interpolation and (b) extrapolation in the shape space, see also Fig.[5] Interpolation corresponds to a
random train/dev/test split of the points in the convex hull, while extrapolation is assessed on unseen
building configurations. In extrapolation, geometries located on the convex hull boundary of the
shape space are left out for testing, while the remaining points are randomly divided into train/dev.
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o Validation o Validation
o Test

Test

(a) Random interpolation split. Train/dev/test are (b) Extrapolation split. Geometries on the convex
assigned randomly. hull boundary are held out for testing.

Figure 5: Visualization of dataset splits in the barycentric shape space. The convex hull is spanned
by the three basis roof geometries (flat, gable, hip), and each point corresponds to one interpolated
building.

For both split methods, we report results with and without including reflected data in the test set. It is
important to note that training is always performed using only the original (non-reflected) geometries.
In the “+Sym” evaluation setting (see also Table |I[), we extend the test set to include the reflections
of the held-out test geometries. This setup evaluates whether the models generalize correctly to
symmetrical geometries, without having seen them during training. We evaluate the predictive
accuracy using five metrics: root mean square error (RMSE), mean squared error (MSE), mean
absolute error (MAE), coefficient of determination (R?), and hitrate (%). The hitrate is defined as
the percentage of predictions within a tolerance of £0.10 for mean C, and £0.05 for std C',,, which
correspond to the 10% of their maximum values observed on the buildings.

4.1 Interpolation performance

Table |I| summarizes the interpolation results. When evaluated on the non-reflected test set, both
GRAPHSAGE and WINDMIL achieve high predictive accuracy for the mean and std C,,. Errors
remain small, with RMSEs below 0.02 for mean C;, and 0.003 for std C, and hit rates exceeding 95%
and 97%, respectively. This confirms that both models successfully capture the pressure variations
within the interpolation regime.

Method RMSE MSE MAE R? Hitrate (%)

& GRAPHSAGE 0.019 0211 0.032 0980  95.95

>  GRAPHSAGE+Sym 0.055 0273 0.053 0943 8541

§  WINDMIL 0.020 0213 0.033 0979  95.80
=  WINDMIL +Sym 0019 0207 0.031 0981  96.53

. GRAPHSAGE 0.003 0.130 0.012 0958  97.98
U GRAPHSAGE +Sym  0.008 0.169 0.020 0.882  91.63
2  WINDMIL 0.003 0.137 0013 0949  97.62

WINDMIL + Sym 0.003 0.135 0.013 0.953 97.86

Table 1: Interpolation performance on mean and std Cy,. +Sym indicates that the test set additionally
includes the reflections of the test set geometries.

When the test set is extended with reflected geometries (+Sym), however, clear differences are
observed. The baseline GRAPHSAGE shows a substantial drop in performance, with the hitrate
decreasing from 95.95% to 85.41% for mean C), and from 97.98% to 91.63% for std C,. This



indicates that the non-equivariant model does not generalize consistently to symmetry-transformed
cases and effectively treats reflections as unseen geometries. In contrast, WINDMIL maintains high
accuracy under reflection, achieving 96.53% and 97.86% hitrates for mean and std C), respectively,
with similar RMSE and R? values to the original test set. These results show that explicitly encoding
reflection symmetry not only enforces physically consistent predictions but also improves robustness
to unseen symmetric transformations.

4.2 Extrapolation performance

Table 2] reports results for extrapolation, where building geometries on the convex hull boundary of
the shape space are held out for testing. As expected, errors increase compared to interpolation since
the models are evaluated on unseen geometries outside the training distribution. For the non-reflected
test set, RMSE increases to ~ 0.05 for mean C, and ~ 0.019 for std C, yet both GRAPHSAGE and
WINDMIL maintain high predictive accuracy with R? values between 0.94-0.98 and hitrates above
94% and 97% for mean and std C,, respectively. These results indicate that both models preserve
their accuracy in the more challenging extrapolation task.

Method RMSE MSE MAE R? Hitrate (%)
<> GRAPHSAGE 0.047 0.227 0.033 0.976 94.98
—~ GRAPHSAGE+Sym 0076 0.581 0.054 0.939 84.67
§ WINDMIL 0.050 0.251 0.035 0.974 94.16
= WINDMIL + Sym 0.049 0242 0.034 0.974 94.69
~ GRAPHSAGE 0.019 0.0365 0.012 0.944 97.35
O GRAPHSAGE +Sym 0.029 0.086 0.020 0.870 91.57
2 WINDMIL 0.019 0.037 0.013 0.942 97.30

WINDMIL + Sym 0.019  0.037 0.012 0.944 97.33

Table 2: Extrapolation performance on mean and std C,,. +Sym indicates that the test set additionally
includes the reflections of the test set geometries.

When the test set is extended with reflected geometries (+Sym), differences between the models
are observed. The baseline GRAPHSAGE shows a clear decrease in performance, with hitrates
dropping from 94.98% to 84.67% for mean C,, and from 97.35% to 91.57% for std C,, along
with corresponding reductions in R2. In contrast, WINDMIL remains accurate under symmetry
transformations, maintaining hit rates of 94.69% for mean C), and 97.33% for std C,, with nearly
unchanged RMSE values. This consistency highlights the benefit of explicit reflection equivariance;
the model generalizes more accurately to unseen symmetric configurations, avoiding the errors
observed in the non-equivariant baseline.

4.3 Qualitative Analysis

To further assess predictive performance, we present contour plots of mean and std C), on the building
surfaces for the interpolation and extrapolation cases in Fig.[6]and Fig.[7] respectively. Predictions
from the baseline GRAPHS AGE and our proposed WINDMIL are compared against the LES targets.

For the standard interpolation test set in Fig. [6] both models capture the main spatial patterns of
Cp. They correctly reproduce high- and low-pressure regions across roof and wall surfaces. The
close visual agreement with LES is consistent with the quantitative metrics in Table[I} where both
models achieve low errors and hitrates above 95%. When the reflected geometries +Sym are included,
differences become more visible; the GRAPHSAGE tends to overpredict both mean and std C, on
roof surfaces, while WINDMIL maintains close agreement with the LES ground truth.

For the extrapolation split in Fig. [7] both models remain accurate for the mean C), and std C}, which
is confirmed with the quantitative analysis of Table[2] where both models achieved hitrates of more
than 94%. When the +Sym extrapolation is considered, both models remain accurate for mean C,,,
but differences are visible for std C,,. The GRAPHSAGE significantly underpredicts the variability at
the building corners, specifically where the ground truth indicates high std values. WINDMIL, by
comparison, captures these regions much more closely. These qualitative observations show that that
reflection symmetry is particularly important for predicting higher-order statistics of pressure loads.
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Figure 6: Contour plots of mean and std C, for the interpolation split. Columns show GRAPHSAGE,
WINDMIL, and LES ground truth; rows correspond to mean C), and std C,.
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Figure 7: Contour plots of mean and std C), for the interpolation split. Columns show GRAPHSAGE,
WINDMIL, and LES ground truth; rows correspond to mean C), and std C,.

5 Conclusions

We introduced WINDMIL, a symmetry-aware graph learning framework for predicting wind loading
on low-rise buildings, together with a systematically generated LES dataset of 462 buildings with
varying roof types and wind directions. The dataset is built by interpolating between canonical roof
geometries using signed distance functions and running high-fidelity LES for each configuration. A
single LES simulation requires on the order of 24 hours on 64 CPU cores. On top of this dataset,
we proposed a reflection-equivariant GNN surrogate that encodes the physical symmetry, such that
pressures at +45° wind incidence should mirror those at —45°. WINDMIL achieves high accuracy
for both mean and standard deviation of the surface pressure coefficient C), in both interpolation
and extrapolation settings with hitrates above 95%. WINDMIL achieves similar accuracy when the
reflected (+Sym) geometries are included in the test set, while the standard GRAPHS AGE degrades
by more than 10 percentage points in hitrate. These results show that explicitly enforcing symmetry
in the model architecture improves physical consistency without sacrificing accuracy, and enables
reliable surrogate predictions at a fraction of LES cost. Future work will extend this framework to
multi-building urban areas, additional inflow conditions, and the prediction of integrated loads for
structural design.
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