
ZPI 2024

Genesis
Project Genesis a Platform for

Automating IT Processes 2024

Autors: Dawid Rymarczyk • Jakub Wiraszka • Jakub Andrzejewski • Marek Kędzia
Supervisor: Natalia Piórkowska

Abstract

The Genesis Project was developed as part of a Team Project(aka. ZPI) to simplify and automate the creation
of IT environments for new projects. The goal of the initiative is to reduce the time required to transition from an
idea to the development phase by eliminating repetitive tasks. The project is based on integration with external
APIs and utilizes Terraform to automatically generate infrastructure code.

Key functionalities include cloud environment creation, integration with communication tools, and project
management platforms. The result is a reduction in manual errors and a significant acceleration of project
creation processes, which is particularly beneficial for small businesses and IT enthusiasts.

1 INTRODUCTION
The Genesis project was created in response to the challenges associated with time-consuming and
repetitive processes involved in building IT infrastructure. The traditional approach to starting new
projects, even those with basic complexity, requires numerous manual steps and configurations, signifi-
cantly prolonging the time needed to transition from concept to implementation. This issue particularly
affects small companies and IT teams that aim to launch projects quickly but are constrained by limited
resources.

The goal of the Genesis project was to develop a tool that automates the process of creating a
working environment by integrating with external APIs and using Terraform [3] to generate infrastructure
code [4]. From a business perspective, the project aimed to provide users with a solution that shortens
the time required to launch new projects and reduces the risk of manual errors, ultimately leading to
faster time-to-market and resource optimization.

The objectives set for the team included integrating with key tools (Discord, ClickUp, GitHub, AWS
[6]), building a flexible web application, and ensuring seamless creation of cloud infrastructure. The
expected technical benefits included automated, rapid deployments and improved team efficiency by
eliminating manual, repetitive tasks.

2 RELATED WORK
The project aimed to utilize modern technologies such as React with TypeScript on the frontend and
NodeJS on the backend, hosted in an AWS environment. Key objectives included integration with ex-
ternal APIs, such as Discord, ClickUp, and GitHub, enabling full automation of processes—from creating
communication environments to managing projects.

https://orcid.org/0009-0008-6548-8322
https://orcid.org/0009-0003-6861-0163
https://orcid.org/0009-0009-9489-2276
https://orcid.org/0009-0001-8010-7814


ZPI 2024

Figure 1: Total time spent on implementing project environment - survey

During the project preparation phase, we conducted a survey asking freelancers and small compa-
nies how much time they typically spend creating a working environment for a new project. The results
were surprising. Participants indicated that this process takes from one week to even several weeks to
fully prepare a working environment for a new project.

Before starting the project, we analyzed existing solutions and technologies for automating IT in-
frastructure creation. However, we could not find similar applications. Regarding project infrastructure,
tools like Ansible [1] and Puppet [5] are available on the market to support deployment configuration au-
tomation. Still, they require advanced technical knowledge and are not fully integrated with a no-code
approach. Genesis stands out by using Terraform to automate infrastructure building while offering an
intuitive interface for users with basic technical skills.

Aspect Ansible Puppet Genesis

Technology Base Built using Python, uses
YAML

Built using Ruby, uses Pup-
pet DSL

Built using TypeScript,
uses HCL

Communication Relies on SSH Follows a client-server
model using HTTPS com-
munication

Communicates via REST
APIs

Agent Agentless Requires an agent Agent helps with infras-
tructure management

Ease of Use Limited Windows support,
moderate complexity

Complex syntax and steep
learning curve

Easy to use, minimal tech-
nical knowledge required

Error Potential Prone to errors due to
manual configurations
and playbook syntax
issues

High potential for errors
from complex scripts and
agent dependency

Error-free due to prede-
fined templates

Table 1: Comparison of Ansible, Puppet, and Genesis technologies.

Before creating Genesis, we identified a niche in the market that existing solutions were failing to
address. While tools like Ansible and Puppet are powerful, when it comes to automatization, they come
with significant challenges such as steep learning curves, complex setups, and limited usability for less
technical teams.

Genesis was designed to fill this gap by offering a modern, easy-to-use solution tailored for teams
seeking simplicity. Built using widely adopted technologies like TypeScript and HCL, Genesis provides
seamless communication via REST APIs and an intelligent agent that simplifies infrastructure creation.
Genesis has user-friendly design that minimizes the need for extensive technical expertise, making



ZPI 2024

it accessible and efficient for a broader range of users. By targeting this underserved niche, Genesis
delivers a unique value proposition in the infrastructure creation and automatization landscape.

The project faced constraints of time (limited to one academic semester), a small team of four
members, potential API compatibility issues, the need to learn new technologies, and costs associated
with AWS services.

3 RESULTS

3.1 Implemented Functionalities
The Terraform code generator enables the automatic creation of advanced cloud infrastructure in AWS,
supporting services such as ECS, ELB, ECR, VPC, AWS Cognito, CloudFront, and S3. This generator reduces
manual errors and saves time. The project facilitates repository creation, automatic addition of Ter-
raform configuration files, and CI/CD pipeline setup. Users can manage projects, create tasks, assign
members, and monitor progress through integration with ClickUp. The tool also supports the creation
of Discord servers with predefined channels for team communication.

Figure 2: Ready-to-use and auto-generated infrastructure

Additionally, the project integrates with AWS Lambda, allowing the frontend to retrieve real-time
updates on configured resources. AWS DynamoDB [2] is used as the primary database, and its non-
relational nature and scalability enable fast operations and real-time data storage.

3.2 Business and Technical Objectives
Business Benefits: The implemented solutions have increased operational efficiency by reducing the
time required for key processes, which will enhance the company’s overall performance. The new func-
tionalities enable better alignment of services with customer needs, allowing even users with limited
technical expertise to leverage the application. Additionally, cost optimization was achieved through
the automation of processes in line with best practices, contributing to more efficient resource man-
agement.

Technical Aspects: The use of modern technological solutions ensured the flexibility and generic na-
ture of the system. The application was developed following best programming practices, with a strong
emphasis on the DRY principle. The application is highly generic and presents scenarios where the
frontend is controlled by the backend. This means that adding a new resource to the application would
require changes only on the backend, to be more precise, creating SDKs to facilitate communication
with external API services.

Data protection mechanisms were enhanced through the use of cloud services, contributing to com-
pliance with current security standards. Optimized integration with existing systems enabled seamless
data flow between various applications. The project’s infrastructure was designed to be scalable to
meet the growing demands of the company. The application is highly scalable, relying on cloud-based
services that allow for automatic load adjustment in case of increased user traffic, ensuring consistently
high-quality user experience.



ZPI 2024

3.3 Data and Success Metrics of the Project

Figure 3: Outcomes after using Genesis Application

Operational efficiency has been significantly enhanced through a notable reduction in process com-
pletion times. The automation of key activities has accelerated project execution.

We conducted a survey among our beta testers to determine the average time they spent creating
project’s IT environment. The results were impressive. Most testers reported spending less than one
hour to fully configure their environments.

This is a remarkable achievement, considering that without the Genesis application, setting up an
IT environment typically required anywhere from a week to several weeks. This drastic improvement
highlights the transformative potential of our tool in streamlining and optimizing IT workflows.

Figure 4: Code coverage

The system successfully passed all planned tests including unit tests, integration tests and com-
prehensive end-to-end (E2E) tests, ensuring the application’s stability. This achievement reflects the
high quality of the software. By automating processes, the risk of manual errors has been significantly
reduced, leading to more stable and reliable deployments. These improvements underline the system’s
robustness and its potential to deliver consistent, almost error free performance.



ZPI 2024

Figure 5: Genesis Feedback

So far, the feedback from beta testers has been overwhelmingly positive, which indicates that the
system is effectively meeting user needs and expectations. From a business perspective, this suggests
a strong potential for market adoption and highlights the system’s capability to deliver tangible value
to organizations by streamlining processes and enhancing efficiency.

3.4 Streamlined Deployment and User-Centric Benefits
The deployment of the Genesis project leverages a CI/CD process to automate and streamline the team’s
workflow. The system operates with two main branches: develop, managing the development environ-
ment, and main, representing the production environment. Automatic deployments are triggered when
a pull request (PR) is merged into the respective branch, enabling a seamless transition of changes to
the production environment hosted on AWS.

To manage project environments, Genesis uses AWS Elastic Beanstalk, ensuring an efficient and
scalable hosting platform that simplifies configuration and application monitoring.

The benefits of the Genesis project encompass a wide range of conveniences. For technical users,
these include primarily the acceleration of IT infrastructure creation, the ability to integrate with AWS
cloud without requiring advanced technical knowledge, and the reduction of manual errors in envi-
ronment configuration. Companies and startups can rely on simplified project management through
integration with tools such as ClickUp and GitHub, translating into time and resource savings, especially
for smaller businesses and freelancers. Developers gain the ability to focus on application development
rather than infrastructure configuration, as well as the automatic creation of development and produc-
tion environments. Finally, project teams benefit from easier communication and organization of work
thanks to integration tools and intuitive project management within a single centralized system.



ZPI 2024

4 CONCLUSIONS
The Genesis project has delivered a transformative tool for automating IT project environment creation,
significantly enhancing efficiency and accuracy. By integrating external services such as GitHub, Discord,
and ClickUp and utilizing Terraform for automated infrastructure generation in AWS, the tool drastically
reduced the time required for environment setup. Based on user surveys and beta tests, the average
configuration time dropped from several weeks to under one hour-a reduction of over 90%.

From a business perspective, Genesis simplifies and accelerates IT project launches, eliminating
manual errors by automating complex processes. The infrastructure generated by Genesis is error-free,
ensuring reliability and consistency.

A key technical achievement is the seamless integration of Terraform code generation with robust
API connections, enabling the creation of comprehensive IT infrastructures in minutes. This flexibil-
ity, combined with its ability to support scalable and secure deployments, positions Genesis as a rare
solution tailored for smaller entities that often lack advanced IT capabilities.

In summary, the Genesis project successfully addressed its core objectives by demonstrating signif-
icant time savings, enhanced process reliability, and operational efficiency.

5 FUTURE DEVELOPMENT DIRECTIONS
In the project, we have identified two key areas for development: the implementation of a message
queue (e.g., Amazon SQS, RabbitMQ or Kafka) and the application of machine learning (ML) based on
the collected data.

Currently, communication between the backend and frontend is handled via REST API, which means
synchronous, blocking data exchange. Implementing a message queue would enable a transition to
asynchronous communication, allowing for non-blocking processing of large volumes of data, thereby
increasing the scalability and efficiency of the system.

In the context of machine learning, we see significant potential in leveraging the collected data to
create predictive models and perform analyses. Through the implementation of ML algorithms, the
system could analyze user behavior patterns, predict resource infrastructure needs, and optimize au-
tomatic configurations. ML integration could also support decision-making automation and suggest
optimal infrastructure solutions to users based on historical data and current trends.

REFERENCES
[1] Ansible. Ansible automation platform. Available at: https://www.ansible.com/.

[2] John Culkin and Mike Zazon. AWS Cookbook: Recipes for Success on AWS. O’Reilly Media, 2022.
Available at: https://www.amazon.com/AWS-Cookbook-Recipes-Success/dp/1492092606.

[3] HashiCorp. Terraform documentation. Available at: https://www.terraform.io/.

[4] Kief Morris. Infrastructure as Code: Dynamic Systems for the Cloud Age. O’Reilly Media, 2nd edition,
2020. Available at: https://www.amazon.com/Infrastructure-Code-Dynamic-Systems-Cloud/
dp/1098114671.

[5] Puppet. Puppet automation. Available at: https://www.puppet.com/.

[6] Amazon Web Services. Aws documentation. Available at: https://docs.aws.amazon.com/.

https://www.ansible.com/
https://www.amazon.com/AWS-Cookbook-Recipes-Success/dp/1492092606
https://www.terraform.io/
https://www.amazon.com/Infrastructure-Code-Dynamic-Systems-Cloud/dp/1098114671
https://www.amazon.com/Infrastructure-Code-Dynamic-Systems-Cloud/dp/1098114671
https://www.puppet.com/
https://docs.aws.amazon.com/

	Introduction
	Related Work
	Results
	Implemented Functionalities
	Business and Technical Objectives
	Data and Success Metrics of the Project
	Streamlined Deployment and User-Centric Benefits

	Conclusions
	Future Development Directions

