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Abstract

Accurate long-term forecasting of temperature
distribution in buildings is critical for optimizing
control strategies, improving energy efficiency,
and maintaining occupant comfort. In this work,
we benchmark three approaches for forecasting
one-week ahead temperature distributions in a
smart building. We evaluate the following mod-
els: (1) SeqCast, a Seq2Seq Encoder Decoder
LSTM; (2) a Transformer-based direct forecast-
ing model trained with curriculum learning; (3)
a Robust Kalman Filter, a lightweight baseline
grounded in classical state-space modeling. All
methods are evaluated using mean absolute error
across the prediction horizon. Our results show
that the Transformer model significantly outper-
forms both SeqCast and the Robust Kalman Filter.
Our study highlights the trade-offs between model
complexity, interpretability, and forecasting per-
formance in the context of building-level time
series forecasting.

1. Introduction

Predicting indoor temperature distributions and dynamics is
essential for enabling predictive control in smart buildings.
As buildings account for 34% of global energy demand and
37% of energy and process-related CO2 emissions (BPIE,
2024), strategies that anticipate thermal needs can lead to
significant energy savings and improved occupant comfort if
deployed effectively. Data-driven strategies for long-horizon
prediction are gaining traction as a measure of bridging
sustainability and comfort.

With the increasing deployment of sensors in commercial
and residential buildings, large volumes of high-resolution
time series data are now available, providing a rich temporal
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and spatial view of indoor climate dynamics. These data
pave the way for approaches that not only forecast overall
temperature trends but also capture fine-grained, localized
variations. Notably, the Smart Buildings Dataset (Goldfeder
et al., 2025) includes 5-minute interval readings of Google
buildings spanning all of 2022, capturing several physical
building parameters. Each data sample x, includes the fol-
lowing:

1. Observation values of sensor and setpoint measure-
ments for various rooms in the building

2. Action values representing three water and air temper-
ature setpoints

3. A floor-plan matrix and a device layout map providing
spatial context of the sensors and actuators

4. Rich metadata including sensor/device IDs, times-
tamps, and mappings to physical locations

The dataset is divided into temporal partitions and is de-
signed to support tasks such as forecasting, control, and
representation learning in building environments. For this
work, we focus specifically on learning building dynamics
of the Google Smart Building from 1 month of 5-minute
interval readings (June, 2022) and performing one-week
ahead temperature distribution forecasting (July 1-7, 2022).
Temperature readings for three devices in the dataset across
the training period can be seen in Figure 1.

SeqCast (Sourirajan, 2025) has shown promise as an LSTM-
based approach for indoor temperature forecasting. In this
study, we benchmark it against two alternative approaches:
a Transformer-based direct forecasting model and a Ro-
bust Kalman Filter baseline. We evaluate all models on
both Mean Absolute Error (MAE) and end-to-end runtime
to capture trade-offs between accuracy and computational
efficiency.

2. Related Work

Previous work on modeling temperature in buildings has
explored both physics-based simulations and data-driven
techniques.
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Figure 1. Analysis of temperatures of three devices during the training period (June, 2022)

Classical control techniques such as Model Predictive Con-
trol (MPC) (Oldewurtel et al., 2012) and Kalman filtering
(Alam et al., 2018) have long been used for temperature
regulation and state estimation in buildings. MPC generally
relies on physics-based thermal models to forecast future
states and optimize control inputs, while Kalman filters use
state-space formulations to estimate hidden system states
from noisy observations. Both approaches require careful
calibration and may struggle to generalize across buildings
due to differences in geometry, construction materials, and
occupancy patterns. While data-driven variants of Kalman
filtering aim to learn system dynamics directly from sensor
data, they remain constrained by assumptions of linearity
and Gaussian noise.

In response to these challenges, the field has shifted toward
machine learning techniques such as support vector regres-
sion (Lee & Baltazar, 2020), decision trees (Yu et al., 2010),
and Gaussian processes (Rhee & Myoung, 2022). These
methods have shown promise, but often lack scalability or
fail to capture the complex spatial-temporal dependencies in-
herent in building systems. With the advent of deep learning,
Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) models have emerged as more promising
alternatives, demonstrating improved accuracy in short-term
indoor temperature prediction (Elmaz et al., 2021; Shah,
2021).

Sequence-to-sequence (Seq2Seq) encoder-decoder models
have also been applied to multi-step forecasting tasks like
weather and building energy prediction (Kim et al., 2021).
SeqCast, in particular, employs a Seq2Seq encoder-decoder
architecture for long-term temperature distribution forecast-
ing, offering stronger temporal modeling than standard au-
toregressive LSTMs (Sourirajan, 2025).

Transformer-based models—known for capturing long-

range dependencies and enabling parallel computa-
tion—have most recently shown state-of-the-art results in
long time series forecasting (Zhou et al., 2021; Wu et al.,
2021) and are beginning to be applied in energy and building
domains. However, their use for high-resolution tempera-
ture forecasting in buildings remains limited.

This paper benchmarks three approaches for long-term tem-
perature distribution forecasting in smart buildings: (1) the
SeqCast model as a Seq2Seq encoder-decoder LSTM base-
line; (2) a Transformer-based direct forecasting model opti-
mized with curriculum learning; and (3) a lightweight but
interpretable Robust Kalman Filter grounded in classical
linear state-space modeling. By comparing these methods
under a common framework and evaluating both forecast ac-
curacy and computational cost, we aim to provide a clearer
picture of the trade-offs involved in modeling large-scale
building environments.

3. Methodology

3.1. Problem Formulation

The objective of this task is to predict the future tempera-
ture distribution across multiple zones of a smart building
given historical temperature data, historical exogenous and
action variables, and future exogenous and action variables.
Formally, let

Xy.r € RT*P

denote the historical temperature, exogenous, and action
input sequence over 7' timesteps, and let

Yi.y € R¥*P

be the future temperature distributions over a prediction
horizon of H steps. The model learns a mapping:

(X1, Evm) = Yiim
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where E1.p are exogenous and action variables of the pre-
diction window. We focus on June, 2022 as our training
window, consisting of 8640 5-minute interval measurements,
and July 1-7 as our forecasting horizon, consisting of 2016
measurements.

3.2. SeqCast

Originally developed by (Sourirajan, 2025), SeqCast is an
encoder-decoder model designed for forecasting of temper-
ature distributions in the Smart Buildings Dataset. It builds
on the standard sequence-to-sequence (Seq2Seq) framework
using LSTM units, with an autoregressive decoder that gen-
erates future temperature trajectories based on learned tem-
poral patterns and exogenous signals. The encoder receives
as input a sequence of historical temperature distributions,
exogenous variables, and action values over a fixed context
window. It processes the sequence using a stacked LSTM
to produce a hidden representation of the past dynamics.
The final hidden and cell states of the encoder serve as the
initial hidden state of the decoder, forming a learned context
vector. Training is performed using teacher forcing, where
the decoder receives the ground truth temperature from the
previous step, rather than its own prediction, to stabilize
learning. The model is trained end-to-end with a fixed con-
text window of 1 day (288 steps) and a forecast horizon of
12 hours (144 steps), with the following weighted combi-
nation of Mean-Squared Error (MSE) and smoothness loss
function:

T-1
1
£=MSE+0.1 % ;(ytﬂ — )

During inference, the model ingests the entire training data
as historical context and generates temperature distribution
forecasts autoregressively, using the previously predicted
temperature distribution as “ground truth”. While an effec-
tive approach in short-term forecasts, this methodology has
several key limitations:

1. Autoregressive error accumulation: Small prediction
errors at each step compound over long horizons, de-
grading performance.

2. Temporal generalization gap: The model is trained on
short input/output sequences but evaluated on much
longer ones, leading to a mismatch in temporal scale
and a failure to fully leverage long-term historical
trends.

3. Limited long-term memory: LSTMs have known limi-
tations in retaining information over many timesteps
(Kandadi & Shankarlingam, 2025), and even with
stacked layers, the model may struggle to remember
slow-evolving patterns or seasonal shifts.

4. Static context handling: The model is not explicitly
designed to ingest or leverage large historical windows
during inference, as it has only seen fixed-length (1-
day) sequences during training.

We seek to address these with a transformer-based approach
described below.

3.3. Transformer-Based Forecasting Architecture

To overcome the limitations of autoregressive sequence
models such as SeqCast, we design a non-autoregressive
Transformer-based architecture for direct, parallel predic-
tion of temperature distributions across a one-week forecast
horizon. This architecture is capable of ingesting long
historical contexts and leveraging future exogenous and
action variables to predict full-length output sequences
without recursive decoding. It is inspired by the original
Transformer architecture (Vaswani et al., 2017), adapted
for the forecasting setting in smart buildings. The encoder
receives the historical temperature, exogenous, and action
variables, each of which are mapped to a shared latent
dimension and summed. We inject positional information
by adding the sinusoidal positional encoding proposed in
(Vaswani et al., 2017) to the input embeddings. The decoder
receives a concatenated tensor of the initial temperature
distribution as well as exogenous and action variables for
the full forecasting horizon. It produces an output tensor of
dimension L X dyode] Where L = 2016, diodel = 512 which
is then fed through a feedforward neural network to produce
a sequence of temperature distributions of dimension 123
over the full forecasting horizon.

During training, we randomly sample variable-length histor-
ical sequences between 1 and 7 days, padding them to the
maximum length in the batch using a custom collate_fn. To
improve model stability and generalization for long-horizon
forecasting, we adopt a curriculum learning strategy during
training. Prior work has shown that curriculum strategies
can improve convergence speed and lead to more stable
predictions over long horizons (Koenecke & Gajewar, 2019)
(Teutsch & Mider, 2022). We begin training with shorter
prediction lengths and gradually increase the forecast
horizon ranges as training progresses. This approach allows
the model to learn short-term dependencies before tackling
long-horizon forecasts. We adopt the following schedule:

» Stage 0: 1-2 day forecasting horizon (15 epochs)

Stage 1: 1-4 day forecasting horizon (20 epochs)
» Stage 2: 1-7 day forecasting horizon (25 epochs)

* Stage 3: 4-7 day forecasting horizon (30 epochs)
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During inference, the model forecasts one full week using an
entire month of historical data, an out-of-distribution shift
from its training regime. Curriculum learning helps bridge
this gap by progressively conditioning the model to handle
longer-term temporal dependencies. The model is trained
end-to-end using mean-squared-error loss. Unlike SeqCast,
the model does not use teacher forcing and instead learns to
map full historical sequences and future exogenous and ac-
tion signals directly to full-length temperature distributions.
Thus, the architecture is robust to error accumulation and
better-suited for long-horizon forecasts.

3.4. Kalman Filters

As a model-based alternative, we implement a Robust
Kalman Filter for estimating the state of the building given
noisy historical measurements. The Kalman Filter is a recur-
sive estimator that infers latent state dynamics and updates
predictions by combining prior estimates with noisy obser-
vations, under the assumption of linear-Gaussian dynamics.
Our implementation extends the classical formulation to
high-dimensional multivariate time series with an emphasis
on numerical stability and practical applicability in long-
horizon forecasting scenarios. Kalman filters model the
system through the following dynamics:

Xe41 = Axe +Bu +wy, wy ~N(0,Q) (1)
Yt = CXt + Vi, Vi~ N(Oa R) (2)

where

* x; € R?is the latent state vector representing the
thermal state of the building at time ¢,

e u; € R™ is the control input comprising both exoge-
nous variables and action setpoints,

* y;: € R™ is the observed room-level temperature vector
(with n = 123),

* A B, C are the state transition, control input, and ob-
servation matrices respectively,

* Q, R are the process and observation noise covariance
matrices.

In our case, we choose the state dimension d to match the
number of temperature sensors n = 123, assuming full
observability and simplifying the problem to learning only
the A, B, Q, R matrices (C is trivially the identity matrix).
After clipping outliers and scaling both temperature and
control inputs, we construct tuples (X, us,y, ) and solve
the following regression:

Vi1 = Ax; + Buy 3

Table 1. Mean average error across the validation horizon (July 1-7,
2022) and total training+inference time in minutes of the SeqCast,
Transformer Direct Forecasting with Curriculum Learning (Trans-
former CL), and Robust Kalman Filter (RKF). All experiments
were conducted using an NVIDIA RTX 4090 GPU

MODEL MAE  TIME (MIN)
SEQCAST 15.042 17
TRANSFORMER CL 1.606 492
RKF 58.188 1

We employ a ridge regression framework, scanning a range
of regularization coefficients and selecting the model min-
imizing the mean squared residual while ensuring A has a
spectral radius less than 1 to guarantee discrete-time system
stability. Process and observation noise covariances Q, R
are empirically estimated from the residuals and regularized
to be positive definite and well-conditioned.

After we learn the dynamics, we initialize the state estimate
X( to be a scaled initial temperature vector and covariance
matrix Py = 0.011. We forecast recursively for the entire
horizon using the following equations:

X1 = Axy + By 4
P,y =APAT +Q Q)

‘We map the latent state back to the temperature space and
perform an inverse normalization. To ensure robustness over
long-horizon forecasts, predictions are clipped to reasonable
bounds.

4. Results

Our results in Table 1 show the relative performance of the
3 models on the Smart Buildings Dataset over the 1-week
forecasting horizon (July 1-7, 2022). The transformer model
trained with curriculum learning (Transformer CL) achieved
the best performance by a substantial margin, with a MAE
of 1.606 compared to 15.042 for SeqCast and 58.188 for
the Robust Kalman Filter (RKF). This demonstrates the
superiority of non-autoregressive forecasting methods in
capturing the dynamics of thermal behavior over longer
horizons. However, the transformer’s strong performance
came with a notable computational cost, requiring almost
30x the training and inference time compared to SeqCast,
underscoring a common tradeoff in such problems: larger
transformer-based models offer higher performance at the
cost of computational resources.

Figure 2 shows the average temperature prediction of the
transformer model across the full forecasting horizon com-
pared to the ground truth average values. The model accu-
rately captures large-scale fluctuations in average tempera-
ture, especially sharp sensor measurement drops, indicating
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strong temporal generalization. However, it tends to underfit
fine-grained sensor-level variations, such as those seen from
July 3-5. Producing constant values during these periods
of subtle shift indicates room for improvement in modeling
local sensor-level transitions, perhaps through integration
of spatial priors or localized attention mechanisms.

Despite its simplicity, the Kalman Filter struggles with the
dimensionality and nonlinearity of the problem, though the
results reported reflect a preliminary implementation of the
Robust Kalman Filter (RKF). Future work may significantly
improve performance through more careful tuning. In partic-
ular, incorporating more aggressive eigenvalue clipping for
the transition matrix A, adaptive regularization for the noise
covariances Q, R, and advanced outlier rejection mecha-
nisms during prediction could improve numerical stability
and robustness over long horizons. SeqCast offers a reason-
able compromise, reducing MAE by over 70% compared to
the RKF, but its autoregressive nature leads to compounding
error over longer horizons.
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Figure 2. Average temperature prediction of transformer model
trained with curriculum learning over validation forecasting win-
dow (July 1-7, 2022). We compare the predictions to the average
ground truth sensor measurements during the same window.

5. Conclusion

In this work, we benchmark three distinct approaches
for long-horizon forecasting of temperature distribution in
smart buildings: a sequential LSTM-based Seq2Seq model
(SeqCast), and a non-autoregressive transformer trained
with curriculum learning, and a robust Kalman Filter. These
models cover a range of paradigms, including recurrent
sequence modeling, parallel direct prediction, and proba-
bilistic modeling, respectively. As noted in Table 1, each
paradigm has its unique trade-offs in accuracy and complex-
ity.

Our findings point to the practical value of deep learning
architectures, even in operational settings where forecasting
accuracy can translate directly into energy savings. Future
work will extend this benchmarking to incorporate spatial
relationships between sensors to capture non-temporal de-
pendencies. Integration of device layout, floorplan topology,
and room adjacency could enhance forecasting performance
by leveraging structural correlations between building zones.

Additionally, supporting probabilistic forecasting and un-
certainty estimation can further bridge the gap between
forecasting and actionable energy management.
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