INSTANCE-DEPENDENT FIXED-BUDGET PURE EXPLORATION IN REINFORCEMENT LEARNING

Anonymous authorsPaper under double-blind review

ABSTRACT

We study the problem of fixed budget pure exploration in reinforcement learning. The goal is to identify a near-optimal policy, given a fixed budget on the number of interactions with the environment. Unlike the standard PAC setting, we do not require the target error level ε and failure rate δ as input. We propose novel algorithms and provide, to the best of our knowledge, the first instance-dependent ε -uniform guarantee, meaning that the probability that ε -correctness is ensured can be obtained simultaneously for all ε above a budget-dependent threshold. It characterizes the budget requirements in terms of the problem-specific hardness of exploration. As a core component of our analysis, we derive a ε -uniform guarantee for the multiple bandit problem—solving multiple multi-armed bandit instances simultaneously—which may be of independent interest. To enable our analysis, we also develop tools for reward-free exploration under the fixed-budget setting, which we believe will be useful for future work.

1 Introduction

Reinforcement Learning (RL) theory Agarwal et al. (2019) has been studied under two main objectives: regret minimization and policy identification, also known as pure exploration. While the former focuses on maximizing cumulative reward during learning, the latter aims to identify a near-optimal policy without concern for rewards gained during learning. A substantial body of work on policy identification has focused on the fixed-confidence setting Kearns and Singh (2002). This line of research, often referred to as Probably Approximately Correct (PAC) RL, requires the algorithm to spend as many samples as possible until it can find an ε -optimal policy with probability at least $1-\delta$. Specifically, the algorithm is required to *verify* itself that the returned arm is indeed ε -optimal policy – otherwise, it is not a fixed confidence algorithm. Due to the verification requirement, both ε and δ are input to the algorithm. Thus, the analysis must be done for the correctness of the *verification* (i.e., proving that the returned arm is indeed an ε -optimal policy) as well as the sample complexity (i.e., proving how many samples are taken before stopping).

However, the fixed-confidence setting is not the only way to perform policy identification. The fixed-budget setting has been popular in multi-armed bandits (Even-Dar et al., 2006; Bubeck et al., 2009). In this setting, the learner is given a fixed number of interactions with the environment as a budget and is required to output a good policy after exhausting the budget. This setting has numerous merits. First, this setting is arguably more practical because the user of the algorithm can control the budget explicitly. In contrast, the fixed confidence setting assumes that the algorithm can use as many samples as possible (though less is preferred). When stopped forcefully to satisfy practical constraints, it is hard to guarantee the quality of the returned policy. Second, the fixed budget setting has potential to guarantee a better sample complexity because there is no verification requirement (i.e., the algorithm itself certifies that the returned policy is ε -optimal). This was true for multi-armed bandits where instant-dependent accelerated rates can be obtained as a function of how many good arms there are, and also a data-poor regime guarantee can be obtained, meaning that where a nontrivial performance guarantee is obtained even if the sampling budget is smaller than the number of arms, depending on the problem instance Zhao et al. (2023). These bounds are not likely to be obtained in the fixed confidence setting due to the verification requirement unless extra knowledge about the best arm is known such as Chaudhuri and Kalyanakrishnan (2017). While the ε -correctness verification from the fixed-confidence setting can be necessary in mission-critical applications, there are many

 applications that do not require such a guarantee, in which case the parameters ε and δ becomes a cumbersome hyperparameter.

Despite the desirable properties of the fixed-budget setting in bandit problems, its counterpart in MDPs remains largely unexplored to our knowledge. In this paper, we take the first step at studying fixed-budget policy identification in MDPs, providing new theoretical insights and algorithms that bridge this gap. Specifically, a fixed budget algorithm is required to take in a episode budget B and return a policy $\hat{\pi}$ at the end of B-th episode. Our central interest is to upper bound the probability that the algorithm fails to return an ε -optimal policy as an exponentially decaying function of the budget B and instance-dependent quantities, simultaneously for all $\varepsilon \geq \varepsilon'$ for some budget dependent threshold ε' . We refer to this type of theoretical guarantee as an ε -uniform guarantee. In other words, the degree of suboptimality of the learned policy $\hat{\pi}$ is a random variable, and we are characterizing its distribution, in particular its tail behavior.

Contributions. Our main contributions are as follows:

- We propose a novel algorithm, **BREA** (Backward Reachability Estimation and Action elimination), which is, to the best of our knowledge, the first fixed-budget pure exploration algorithm for episodic MDPs with instance-dependent ε -uniform guarantees. The algorithm only requires the episode budget B as an input, and does not assume the uniqueness of the optimal action.
- For the first time, we establish an ε-uniform guarantee for the SAR algorithm (Bubeck et al., 2013) for the muliple bandit problem. This may be of independent interest.
- We develop algorithmic and analytical tools for fixed-budget reward-free exploration by carefully adapting a fixed-confidence reward-free exploration algorithm, L2E (Wagenmaker et al., 2022), to the fixed-budget setting. We prove an ε -uniform guarantee for our fixed-budget reward-free algorithms.

2 Preliminaries

Finite-horizon MDP. We consider a finite-horizon non-stationary Markov Decision Process (MDP) defined by the tuple $\mathcal{M}=(\mathcal{S},\mathcal{A},H,\{P_h\}_{h=0}^{H-1},\{R_h\}_{h=1}^{H})$, where \mathcal{S} is a finite set of states of size S,\mathcal{A} is a finite set of actions of size $A,H\in\mathbb{N}$ is the horizon, $P_0\in\Delta(\mathcal{S})$ is the initial distribution, $P_h:\mathcal{S}\times\mathcal{A}\to\Delta(\mathcal{S})$ is the transition kernel, and $R_h:\mathcal{S}\times\mathcal{A}\to\Delta([0,1])$ is the random rewards with $\mathbb{E}[R_h(s,a)]=r_h(s,a)$. $\{P_h\}_{h=0}^{H-1}$ and $\{R_h\}_{h=1}^{H}$ are unknown to the learner.

The initial state s_1 is drawn from the initial distribution P_0 . At each step h, taking action a_h in state s_h results in a next state s_{h+1} sampled from the transition kernel $P_h(\cdot \mid s_h, a_h)$. A trajectory $\{(s_h, a_h, R_h(s_h, a_h))\}_{h=1}^H$ is called an *episode*, and when the learner reaches the end of the episode, a new episode begins.

A policy $\pi = (\pi_1, \dots, \pi_H)$ is a sequence of decision rules $\pi_h : \mathcal{S} \to \Delta(\mathcal{A})$ for each step $h \in [H]$. The Q-value function of a policy π at step $h \in [H]$ is defined as

$$Q_h^{\pi}(s, a) := \mathbb{E}_{\pi} \left[\sum_{h'=h}^{H} R_{h'}(s_{h'}, a_{h'}) | s_h = s, a_h = a \right]$$

and it represents the expected reward obtained by choosing action a in state s at step h and choosing the subsequent actions according to the policy π . The value function of π at step h is defined as

$$V_h^{\pi}(s) = \mathbb{E}_{\pi}[Q_h^{\pi}(s, \pi_h(s))]$$

and it represents the expected reward obtained by choosing actions according to the policy π starting in state s at step h. We also define $V_0^{\pi} := \mathbb{E}_{s \sim P_0}[V_1^{\pi}(s)]$. The optimal Q-value function, optimal value function are defined as

$$Q_h^*(s,a) = \sup_{\pi} Q_h^{\pi}(s,a), \quad V_h^*(s) = \sup_{\pi} V_h^{\pi}(s), \quad V_0^* = \sup_{\pi} V_0^{\pi}.$$

Throughout the paper, we do not assume that the optimal action or policy is unique.

Pure exploration under the fixed budget setting. In pure exploration under the fixed budget setting, the goal is to identify an optimal policy π^* (or near-optimal) based on a limited interaction budget. Specifically, the learner is allowed to execute a total of B episodes and must return a single policy $\hat{\pi}$ at the end. The performance is measured by the simple regret, which is defined as

$$V_0^* - V_0^{\hat{\pi}}$$

A policy $\hat{\pi}$ is called ε -good if $V_0^* - V_0^{\hat{\pi}} \le \varepsilon$. In this paper, we propose an algorithm and prove their performance guarantee by showing some instance-dependent upper bounds of the failure probability

$$\mathbb{P}(V_0^* - V_0^{\hat{\pi}} > \varepsilon).$$

Instance-dependent quantities. To capture the instance-dependent complexity of the problem, we need the notion of *suboptimality gaps* defined as

$$\Delta_h(s, a) := V_h^*(s) - Q_h^*(s, a), \Delta_h^{\pi}(s, a) := \max_{a'} Q_h^{\pi}(s, a') - Q_h^{\pi}(s, a).$$

For our analysis, we also denote

$$\bar{\Delta}_h(s,a) := \begin{cases} \Delta_h(s,a), & \quad \text{if } Q_h^*(s,a) < V_h^*(s) \\ \Delta_h(s,a'), & \quad \text{if } Q_h^*(s,a) = V_h^* \text{ and } a' \text{ is the second best action}, \end{cases}$$

$$\bar{\Delta}_h^\pi(s,a) := \begin{cases} \Delta_h^\pi(s,a), & \text{if } Q_h^\pi(s,a) < \max_{a'} Q_h^\pi(s,a') \\ \Delta_h^\pi(s,\tilde{a}), & \text{if } Q_h^\pi(s,a) = \max_{a'} Q_h^\pi(s,a') \text{ and } \tilde{a} \text{ is the second best action with respect to } \pi. \end{cases}$$

Thus, if the optimal action in $s \in \mathcal{S}$ at step h is unique, $\bar{\Delta}_h(s,a) > 0$ for all $a \in \mathcal{A}$. In contrast, if there are multiple optimal actions in $s \in \mathcal{S}$ at step h, $\bar{\Delta}_h(s,a) = 0$ for all optimal actions a. Similar results hold for $\bar{\Delta}_h(s,a)$ as well.

In MDP, the probability of reaching each state or action is important. Let π be a policy, $s \in \mathcal{S}, a \in \mathcal{A}, h \in [H], \mathcal{Z} \subset \mathcal{S} \times \mathcal{A}$, we use the following notations:

$$w_h^{\pi}(s) = \mathbb{P}_{\pi}[s_h = s], \qquad w_h^{\pi}(s, a) = \mathbb{P}_{\pi}[s_h = s, a_h = a], \qquad w_h^{\pi}(\mathcal{Z}) = \mathbb{P}_{\pi}[(s_h, a_h) \in \mathcal{Z}],$$

$$W_h(s) = \sup_{\pi} w_h^{\pi}(s) = \sup_{\pi} w_h^{\pi}(s, a), \qquad W_h(\mathcal{Z}) = \sup_{\pi} w_h^{\pi}(\mathcal{Z}).$$

We refer to $w_h^{\pi}(\cdot)$ as the *occupancy measure* and $W_h(\cdot)$ as the *reachability*. Using these notions, we define the *controllability* of MDP at step h as

$$C_h := \sup_{\pi} \sum_{s, W_h(s) > 0} \frac{w_h^{\pi}(s)}{W_h(s)}.$$

Then, we have

$$1 = \sup_{\pi} \sum_{s, W_h(s) > 0} w_h^{\pi}(s) \le C_h = \sup_{\pi} \sum_{s, W_h(s) > 0} \frac{w_h^{\pi}(s)}{W_h(s)} \le \sum_{s, W_h(s) > 0} \sup_{\pi} \frac{w_h^{\pi}(s)}{W_h(s)} \le S.$$

We can see that $C_h=1$ if $W_h(s)=0$ or 1 for any state s i.e. the learner can reach $s_h=s$ with probability 1 by some policy for any reachable state s. On the other hand, $C_h=S$ if $w_h^\pi(s)=W_h(s)>0$ for any state $s\in\mathcal{S}$, any policy π i.e. the learner cannot control the occupancy measure by varying policy and all states are reachable. Therefore, intuitively, a larger C_h indicates that the MDP is more difficult to control at step h.

3 THE BREA ALGORITHM

There are inherent difficulties in achieving instance-dependent ε -uniform guarantee for fixed budget setting. First, while it is relatively straightforward to analyze algorithms in the fixed confidence setting using concentration bounds such as Hoeffding or Bernstein bound with a prespecified confidence level δ , it is much more challenging in the fixed budget setting, where neither the confidence level δ nor the accuracy level ε is known in advance. Second, whereas the fixed-confidence setting typically

allows for a potentially excessive number of samples before termination (depending on the confidence level), the fixed-budget setting strictly limits the algorithm to a finite number of samples. Third, it is hard to simply convert the fixed-confidence algorithms since it requires the knowledge of nontrivial instance-dependent terms. Even if it is possible, the conversion of fixed-confidence algorithm would require not only the budget B but also one of the confidence δ and the accuracy ε . Also, theoretical guarantee of this conversion would only applies to prespecified ε (or δ), which is much weaker than ε -uniform guarantee. In this section, we present how we design and analyze our algorithm to overcome the aforementioned difficulties.

At step h, each state s can be treated as a bandit problem, where the expected reward of each action a is given by $Q_h^*(s,a)$. If we aim to learn the exact optimal policy maximizing $Q_h^*(s,a)$, we need to sample trajectories $s_{h+1}, a_{h+1}, \ldots, s_H, a_H$ generated under the optimal policy $\{\pi_{h'}^*\}_{h'=h+1}^H$, which is unknown. Fortunately, since our goal is to learn an approximately optimal policy, the following proposition shows that it suffices to use a suitably accurate policy $\{\hat{\pi}_{h'}\}_{h'=h+1}^H$ for sampling in order to learn $\hat{\pi}_h$.

Proposition 1. (Wagenmaker et al., 2022, Lemma B.1) Assume that some deterministic policy $\hat{\pi}$ satisfies $\Delta_h^{\hat{\pi}}(s, \hat{\pi}_h(s)) \leq \varepsilon_h(s)$ for any $h' \leq h \leq H$ and any $s \in \mathcal{S}$. Then, for any policy π' ,

$$\sum_{s} w_{h'}^{\pi'}(s) \left(V_{h'}^{*}(s) - V_{h'}^{\hat{\pi}}(s) \right) \leq \sum_{h=h'}^{H} \sup_{\pi} \sum_{s} w_{h}^{\pi}(s) \varepsilon_{h}(s).$$

Note that $\Delta_h^{\hat{\pi}}(s,a)$ depends only on the future policies $\{\hat{\pi}_{h'}\}_{h'=h+1}^{H}$, implying that we must determine them before learning $\hat{\pi}_h(s)$. By this observation, our learning proceeds backward from H to 1.

If we assume that the hypothesis of the previous proposition holds with h'=1 and $\varepsilon_h(s):=\frac{\varepsilon}{C_hHW_h(s)}$, then the proposition says

$$\begin{split} V_0^* - V_0^{\hat{\pi}} &\leq \sum_{h=1}^H \sup_{\pi} \sum_s w_h^{\pi}(s) \varepsilon_h(s) \\ &= \sum_{h=1}^H \sup_{\pi} \sum_s w_h^{\pi}(s) \frac{\varepsilon}{C_h H W_h(s)} \\ &= \sum_{h=1}^H \frac{\varepsilon}{H} \end{split} \tag{definition of } C_h) \\ &= \varepsilon \end{split}$$

Therefore, we design our algorithm to identify a $\Theta(\frac{\varepsilon}{C_hHW_h(s)})$ -good action for each relevant state s. The precise definition of "relevant state" will be given in the analysis. We again emphasize that ε is not an input to our algorithm and can be chosen arbitrarily for the purpose of analysis. Our algorithm consists of two key components: estimating the reachability $W_h(s)$ and eliminating actions. We introduce the following notation, which will be used in the statements of upcoming results.

$$\varepsilon_B := (1 + \frac{\log(2)B}{c(B)})^{-0.6321}$$

denotes an error threshold that depends on the budget B. The factor

$$C_{L2E}(B) = \tilde{O}(\text{poly}(S, A, H)),$$

is formally defined in Appendix C, equation 5. We denote $C_{L2E}(B) = SH^2c(B)$.

3.1 REACHABILITY ESTIMATION

The first part of our algorithm is greatly influenced by Wagenmaker et al. (2022). Through the first part, we estimate the reachability $W_h(s)$ of each state s at step h. To this end, we execute a fixed-budget reward-free exploration. One notable benefit of reward-free exploration is that it only needs to be run once, after which the collected data can be applied to a variety of downstream reward

248

249250251

253

254

255

256

257

258

259 260

261

262

264 265

267

Algorithm 1 Fixed Budget Learn to Explore (FB-L2E)

```
217
                1: function FB-L2E(\mathcal{X} \subseteq \mathcal{S} \times \mathcal{A}, step h, budget B)
218
                2:
                            if |\mathcal{X}| = 0 then
219
                3:
                                  return \{(\emptyset, \emptyset, 0)\}
220
                4:
                            end if
221
                            J \leftarrow \left[0.6321 \log_2 \left(1 + \frac{\log(2)B}{c(B)}\right)\right] (c(B)) is defined in Appendix C)
                5:
222
                6:
                                  \begin{array}{l} L_j \leftarrow 2^{J-j}, \quad \delta_j \leftarrow (\frac{1}{8SAH})^{0.6321} L_j \log \log(8SAH) \\ K_j \leftarrow K_j (\delta_j, SAH\delta_j) \ (K_j \ \text{is defined in Appendix C}) \end{array}
223
                7:
224
                8:
225
                                   N_j \leftarrow K_j/(4|\mathcal{X}| \cdot 2^j)
                9:
226
               10:
                                   (\mathcal{X}_i, \Pi_i) \leftarrow \text{FINDEXPLORABLESETS}(\mathcal{X}, h, \delta, K_i, N_i)
227
               11:
                                   \mathcal{X} \leftarrow \mathcal{X} \setminus \mathcal{X}_i
228
               12:
                            end for
                            return \{(\mathcal{X}_i, \Pi_i, N_i)\}_{i=1}^J
               13:
229
               14: end function
230
               15:
231
               16: function FINDEXPLORABLESETS(\mathcal{X} \subseteq \mathcal{S} \times \mathcal{A}, step h, confidence \delta, epochs K, samples N)
232
                            r_h^1(s,a) \leftarrow 1 \text{ if } (s,a) \in \mathcal{X}, \text{ else } 0
233
                            N(s, a, h) \leftarrow 0, \mathcal{Y} \leftarrow \emptyset, \Pi \leftarrow \emptyset, j \leftarrow 1
               18:
                            for k = 1 to K do
               19:
235
                                  // StrongEuler is as defined in Simchowitz and Jamieson (2019)
               20:
236
                                  Run STRONGEULER(\delta) on reward r_h^j to get trajectory \{(s_h^k, a_h^k, h)\}_{h=1}^H and policy \pi_k
               21:
237
                                   N(s_h^k, a_h^k) \leftarrow N(s_h^k, a_h^k) + 1, \quad \Pi \leftarrow \Pi \cup \{\pi_k\}
               22:
238
                                  if N(s_h^k, a_h^k) \geq N, (s_h^k, a_h^k) \in \mathcal{X} and (s_h^k, a_h^k) \notin \mathcal{Y} then
               23:
239
                                         \mathcal{Y} \leftarrow \mathcal{Y} \cup (s_h^k, a_h^k)
               24:
                                         r_h^{j+1}(s,a) \leftarrow 1 \text{ if } (s,a) \in \mathcal{X} \setminus \mathcal{Y}, \text{ else } 0
j \leftarrow j+1
               25:
241
               26:
242
               27:
                                         Restart STRONGEULER(\delta)
243
               28:
                                  end if
244
               29:
                            end for
245
               30:
                            return \mathcal{Y}, \Pi
246
               31: end function
247
```

functions. More specifically, we reset the reward as $R_{h'}(s',a') = \begin{cases} 1, & \text{if } (s',a',h') = (s,1,h), \\ 0, & \text{otherwise.} \end{cases}$

where we arbitrarily fix an action and denote it by 1. With this reset reward, an optimal policy maximizes the visitation probability of (s,1) at step h. Therefore, $V_0^* = W_h(s,1) = W_h(s)$. To approximate such an optimal policy, we employ STRONGEULER (Simchowitz and Jamieson, 2019).

More generally, the reachability $W_h(\mathcal{X})$ of any subset $\mathcal{X} \subset \mathcal{S} \times \mathcal{A}$ can be estimated in the same manner. We formalize this in Algorithm 1, which we refer to as **FB-L2E**, short for *Fixed-Budget Learn2Explore*. It is a careful adaptation of Learn2Explore algorithm introduced in Wagenmaker et al. (2022), which itself is inspired by Zhang et al. (2021); Brafman and Tennenholtz (2003).

Algorithm 1 satisfies the following guarantee:

Theorem 3.1. Consider running Algorithm 1 with $B \ge c(B)$. Then, the following statements hold.

- 1. The total budget used is at most B.
- 2. For any $\varepsilon \geq 2SH^2\varepsilon_B$, with probability at least $1 \exp\left(-\tilde{\Theta}\left(\frac{\varepsilon B}{C_{\text{L2E}}(B)}\right)\right)$,
 - (1) The reachability of each set X_i satisfies

$$\frac{|\mathcal{X}_i|}{|\mathcal{X}|} \cdot 2^{-i-3} \le W_h(\mathcal{X}_i) \le 2^{-i+1} \quad \text{for all } i \le i_{\varepsilon} := \left\lceil \log_2\left(\frac{2SH^2}{\varepsilon}\right) \right\rceil,$$

271

272 273

274 275

276 277

278 279

281

282 283 284

285 287

288

289 290 291

292 293

> 295 296 297

> > 298

299 300

301 302

> 303 304 305

306

307 308

310 311

312 313 314

315 316

317 318 319

> 320 321

323

322 for any $\varepsilon \geq 0$.

(2) The remaining elements, $\bar{\mathcal{X}} := \mathcal{X} \setminus \bigcup_{i=1}^{i_{\varepsilon}} \mathcal{X}_i$ satisfy

$$\sup_{\pi} \sum_{(s,a) \in \bar{\mathcal{X}}} w_h^{\pi}(s,a) \le \frac{\varepsilon}{2SH^2}.$$

(3) Moreover, for any $i \leq i_{\varepsilon}$, if each policy in Π_i is executed A times, then every stateaction pair $(s, a) \in \mathcal{X}_i$ is visited at least $\frac{1}{8}AN_i$ times.

Here, the probability accounts for both the randomness in execution and resampling.

The proof of Theorem 3.1 is deferred to Appendix C.

Remark 2. Theorem 3.1 crucially relies on the fact that STRONGEULER (Simchowitz and Jamieson, 2019) achieves a high probability regret bound with $\log \frac{1}{\lambda}$ dependence. However, when the target set is $\mathcal{X} = \{(s, a)\}$, similar results can be obtained by applying a boosting technique even if we use other algorithms with worse dependence. Although we only present Algorithm 1 in the main text for the simplicity, the algorithm with boosting technique is described in Appendix C, Algorithm 0.

3.2 ACTION ELIMINATION

In the second part of our algorithm, we iteratively sample trajectories, compute empirical Q-function of state-action pairs, and eliminate suboptimal actions. For the purpose of efficient elimination, we employ a multiple bandit algorithm, Successive Accepts and Rejects (SAR), proposed by Bubeck et al. (2013), and, for the first time, provide an ε -correctness guarantee for this algorithm. By employing this algorithm to our main algorithm, we are able to reduce the dependency on S compared to applying its multi-armed bandit counterpart. For a more detailed explanation, see Appendix D, Remark 27.

Multiple bandit problem. Consider M instances of multi-armed bandit problems, each with Karms. Each arm i in instance m yields stochastic rewards supported on $[0,\sigma]$, with mean $\mu_{m,i}$, ordered such that $\mu_{m,1} \ge \cdots \ge \mu_{m,K}$. We denote each bandit-arm pair by (m,i), where $m \in [M]$ and $i \in [K]$. The objective is to identify a good arm in each instance $m \in [M]$ under a total budget of B pulls.

We now define some notations. Let $\hat{\mu}_{m,i}(n)$ denote the empirical mean reward of arm i in instance m after n pulls. Define the suboptimality gap as

$$\bar{\Delta}_{m,i} := \begin{cases} \mu_{m,1} - \mu_{m,2}, & \text{if } i = 1, \\ \mu_{m,1} - \mu_{m,i}, & \text{if } i \in \{2, \dots, K\}. \end{cases}$$

We enumerate all gaps $\bar{\Delta}_{m,i}$ over all $(m,i) \in [M] \times [K]$ in increasing order as

$$\bar{\Delta}_{(1)} \leq \bar{\Delta}_{(2)} \leq \cdots \leq \bar{\Delta}_{(MK)}.$$

Let

$$g(\varepsilon) := \left| \left\{ (m, i) \in [M] \times [K] : \mu_{m, 1} - \mu_{m, i} \le \varepsilon \right\} \right|$$

for any $\varepsilon > 0$, and define the harmonic log term

$$\overline{\log}(MK) := \frac{1}{2} + \sum_{i=2}^{MK} \frac{1}{i}.$$

For each $k \in [MK - 1]$, define

$$n_k(B, M, K) := \left\lceil \frac{1}{\overline{\log}(MK)} \cdot \frac{B - MK}{MK + 1 - k} \right\rceil. \tag{1}$$

The SAR algorithm (Bubeck et al., 2013) is summarized in Algorithm 2. By leveraging the ranking of empirical gaps, SAR adaptively distributes the budget across bandit instances, solving the multiple bandit problem efficiently. We present a theoretical guarantee for its ability to identify ε -good arms.

Theorem 3.2. If we run Algorithm 2 with B > MK, then the total number of budget used is at most

$$\mathbb{P}(\exists m \in [M] : \mu_{m,1} - \mu_{m,J(m)} > \varepsilon) \le 2M^2 K^2 \exp\left(-\frac{B - MK}{128\sigma^2 \overline{\log}(MK) \cdot \sum_{i \in [MK]} (\overline{\Delta_{(i)}} \vee \varepsilon)^{-2}}\right).$$

The proof of Theorem 3.2 is deferred to Appendix D.

Algorithm 2 Successive Accept and Reject (SAR) for the multiple bandit

```
325
              1: input: Budget B
326
              2: A_1 \leftarrow \{(1,1),\ldots,(M,K)\}, n_0 \leftarrow 0
327
              3: for k = 1 to MK - 1 do
328
                        n_k \leftarrow n_k(B, M, K) (as defined in equation 1)
                        \forall (m,i) \in A_k, pull (m,i) for n_k - n_{k-1} times
              5:
330
                        \forall m, \quad \hat{1}_m \leftarrow \arg\max_{i:(m,i)\in A_k} \hat{\mu}_{m,i}(n_k) \text{ (Break ties arbitrarily)}
              6:
                        if \exists m such that \hat{1}_m is the last active arm in m then
              7:
332
                                  J_m = \hat{1}_m \text{ (Accept)}
              8:
333
                                  A_{k+1} \leftarrow A_k \setminus \{(m, \hat{1}_m)\} (Deactivate)
              9:
334
             10:
335
                              (m_k, i_k) \leftarrow \arg\max_{(m,i) \in A_k} \left(\hat{\mu}_{m,\hat{1}_m}(n_k) - \hat{\mu}_{m,i}(n_k)\right) (Break ties arbitrarily)
             11:
336
             12:
                             A_{k+1} \leftarrow A_k \setminus \{(m_k, i_k)\} (Reject and deactivate)
337
             13:
338
             14: end for
339
            15: J_m \leftarrow i \text{ for } A_{MK} = \{(m, i)\}
16: return \{(m, J_m)\}_{m=1}^M
340
341
```

3.3 OVERVIEW OF THE BREA ALGORITHM

We combine the two mechanisms described above to construct our main algorithm. The algorithm proceeds in a backward manner over steps $h = H, H - 1, \dots, 1$. At each step h, the first half of the budget is devoted to estimating the reachability $W_h(s)$ for each state s, while the second half applies the SAR mechanism to eliminate suboptimal actions. Although the logic by which our algorithm eliminates actions is entirely different, the structure of eliminating actions after reward-free exploration was also used in the fixed-confidence algorithm, MOCA (Wagenmaker et al., 2022).

In general MDPs, the stochasticity of the transition kernel prevents us from freely collecting arbitrary state-action samples. However, Theorem 3.1 ensures that, with high probability, the policies stored during the reachability estimation phase yield sufficient samples for each relevant state-action pair. Under this event, the SAR mechanism is expected to perform reliably. We now present our main theorem and its corollary; their proofs are provided in Appendix E.

Theorem 3.3. If we run Algorithm 3 with

$$B \ge \max\{2SHc(\frac{B}{2SH}), 2SA\varepsilon_{\frac{B}{2SH}}\log_2\frac{1}{\varepsilon_{\frac{B}{2SH}}}\},$$

then the total number of budget used is at most B. Moreover, for any $\varepsilon \geq 2SH^2\varepsilon_{\frac{B}{2SH}}$,

$$\begin{split} \mathbb{P}\left(V_0^* - V_0^{\hat{\pi}} > \varepsilon\right) &\leq \exp\left(-\tilde{\Theta}\left(\frac{\varepsilon B}{C_{\text{L2E}}\left(\frac{B}{2SH}\right)}\right)\right) \\ &+ \exp\left(-\tilde{\Theta}\left(\frac{B}{H^5 \max_{h \in [H]} C_h^2 \sum_{s \in \mathcal{S}} W_h(s)^{-1} \sum_{a \in \mathcal{A}} (\bar{\Delta}_h(s, a) \vee \frac{\varepsilon}{W_h(s)})^{-2}}\right)\right). \end{split}$$

Corollary 3. In addition to the hypothesis of Theorem 3.3, assume further that $2SH^2\varepsilon_{\frac{B}{2SH}} < \varepsilon^* := \min\{\min_{s,h}^+ W_h(s), 2H\min_{s,a,h}^+ C_h W_h(s)\bar{\Delta}_h(s,a)\}$ and the optimal action in each state s at each step h is unique. Then, we obtain a guarantee of the best policy identification, given by

$$\mathbb{P}\left(V_0^* - V_0^{\hat{\pi}} > 0\right) \le \exp\left(-\tilde{\Theta}\left(\frac{\varepsilon^* B}{C_{\text{L2E}}(\frac{B}{2SH})}\right)\right) + \exp\left(-\tilde{\Theta}\left(\frac{B}{H^3 \max_{h \in [H]} \sum_{s \in \mathcal{S}} W_h(s)^{-1} \sum_{a \in \mathcal{A}} \bar{\Delta}_h(s, a)^{-2}}\right)\right).$$

Remark 4. From Theorem 3.3, we can derive the sample complexity required by BREA to identify an ε -correct policy with probability at least $1 - \delta$, given by

$$\tau_{\varepsilon,\delta} = \tilde{\Theta}\left(\frac{C_{\text{L2E}}\left(\frac{B}{2SH}\right)}{\varepsilon} + H^5 \max_{h \in [H]} C_h^2 \sum_{s \in \mathcal{S}} \frac{1}{W_h(s)} \sum_{a \in \mathcal{A}} \frac{1}{\left(\bar{\Delta}_h(s,a) \vee \frac{\varepsilon}{W_h(s)}\right)^2}\right) \log \frac{1}{\delta}.$$

420 421

422

423

424

425

426

427

428

429

430

431

Algorithm 3 Backward Reachability Estimation and Action elimination (BREA)

```
379
                 1: input: Budget B
380
                 2: B' \leftarrow \lfloor \frac{B}{2SH} \rfloor, J \leftarrow \lceil 0.6321 \log_2(1 + \frac{\log(2)B'}{c(B')}) \rceil
381
                 3: B'' \leftarrow \frac{B}{2HJ}
4: for h = H, H - 1, \dots, 1 do
382
                             \mathcal{Z}_h \leftarrow \emptyset
                 5:
384
                             for s \in \mathcal{S} do \{(\mathcal{X}_j^{sh}, \Pi_j^{sh}, N_j^{sh})\}_{j=1}^J \leftarrow \text{FB-L2E}(\{(s,1)\}, h, B') (1 is an arbitrary action)
                 6:
385
                                   if \mathcal{X}_{h}^{sh} = \{(s,1)\} for some j \in [J] then
386
                 7:
                                         \widehat{\widehat{W}}_h(s) \leftarrow 2^{-j+1}, \quad \mathcal{Z}_h \leftarrow \mathcal{Z}_h \cup \{s\}
387
                 8:
388
                 9:
                             end for
                10:
389
                             for i = 1 to J do
               11:
390
                                   \begin{array}{l} \mathcal{Z}_{hi} \leftarrow \{s \in \mathcal{Z}_h : \widehat{W}_h(s) = 2^{-i+1}\}, \quad A_1 \leftarrow \mathcal{Z}_{hi} \times \mathcal{A}, \\ \forall (s,a) \in A_1, \quad N(s,a) \leftarrow 0, \quad T(s,a) \leftarrow 0, \quad T_0(s,a) = 0, \quad Q(s,a) \leftarrow 0 \\ \textbf{for } k = 1 \text{ to } |\mathcal{Z}_{hi}|A - 1 \textbf{ do} \end{array}
               12:
391
               13:
392
               14:
                                          n_k \leftarrow n_k(\lfloor B''2^{-i-2}\rfloor, |\mathcal{Z}_{hi}|, A) (as defined in equation 1)
393
               15:
394
                                          for (s,a) \in A_k do
               16:
395
                                                T_k(s, a) \leftarrow \lfloor \frac{n_k}{N^{sh}} \rfloor
               17:
               18:
                                                Rerun each policy in \Pi_i^{sh} for T_k(s,a) - T_{k-1}(s,a) times
397
               19:
                                                for each time t = T(s, a) + 1 to T_k(s, a) do
398
               20:
                                                       if (s, a) is visited at step h then
399
                                                             Take action a and extend a trajectory using \{\hat{\pi}_{h'}\}_{h'=h+1}^{H}
               21:
400
               22:
                                                             N(s,a) \leftarrow N(s,a) + 1
401
                                                             Q(s,a) \leftarrow Q(s,a) + \sum_{h'=h}^{H} R_{h'}^{t}(s_{h'}^{t}, a_{h'}^{t})
               23:
402
                                                       end if
               24:
403
                                                end for
               25:
404
                                                \hat{Q}_h^{\hat{\pi}}(s,a) \leftarrow Q(s,a)/N(s,a) if N(s,a) > 0 else 0
               26:
405
               27:
                                                 T(s,a) \leftarrow T(s,a) + T_k(s,a)
406
               28:
               29:
                                          if \exists state s with unique surviving pair (s, a) in A_k then
407
               30:
                                                 \hat{\pi}_h(s) \leftarrow a, \quad A_{k+1} \leftarrow A_k \setminus \{(s,a)\}
408
                                          else
               31:
409
                                                \forall (s,a) \in A_k, \quad \widehat{\Delta}_h^{\hat{\pi}}(s,a) \leftarrow \max_{a:(s,a)\in A_k} \widehat{Q}_h^{\hat{\pi}}(s,a) - \widehat{Q}_h^{\hat{\pi}}(s,a)
               32:
410
                                                (s', a') \leftarrow \arg\max_{(s,a) \in A_k} \widehat{\Delta}_h^{\hat{\pi}}(s, a) (Break ties arbitrarily)
               33:
411
412
               34:
                                                 A_{k+1} \leftarrow A_k \setminus \{(s', a')\}
               35:
                                          end if
413
               36:
                                   end for
414
               37:
                                   \hat{\pi}(s) \leftarrow a \text{ for } A_{|\mathcal{Z}_{hi}|A} = \{(s,a)\}
415
               38:
416
               39:
                             For each s \in \mathcal{S} \setminus \mathcal{Z}_h, set \hat{\pi}_h(s) as any action
417
               40: end for
418
               41: return \hat{\pi}
419
```

The first term inside $\tilde{\Theta}$ is a lower-order term. The second term inside $\tilde{\Theta}$ becomes $\sum_{a\in\mathcal{A}}\frac{1}{(\tilde{\Delta}(a)\vee\varepsilon)^2}$ for multi-armed bandits (S=H=1). This is consistent with known results in the bandit literature ((Even-Dar et al., 2006; Audibert et al., 2010; Karnin et al., 2013)). It is also noteworthy that our sample complexity is deterministic while the sample complexity of PAC RL algorithm typically is guaranteed with probability at least $1-\delta$.

Remark 5. Our sample complexity involves H^5 max_h term, in contrast to the $H^4 \sum_h$ dependence that appear in PAC RL literature ((Wagenmaker et al., 2022; Wagenmaker and Jamieson, 2022; Tirinzoni et al., 2023)). This difference stems from the inherent difficulty of the fixed budget setting, where the algorithm does not know in advance how to distribute the budget across different h. A similar issue regarding the dependency on S could be resolved by employing a multiple bandit algorithm instead of a multi-armed bandit algorithm.

3.4 Incorporating target accuracy

If an accuracy level ε is provided as input, we can modify Algorithm 3 to include a third part and obtain a different form of probabilistic guarantee. While Algorithm 3 allocates $\frac{B}{4}$ budget to each of its two parts, the modified algorithm assigns $\frac{B}{4}$ to the first and the second part and assgins $\frac{B}{2}$ to the last part.

In the third part, for each multiple-bandit instance \mathcal{Z}_{hi} , let $\hat{g}_{hi}^{\hat{\pi}}(\varepsilon)$ denote the number of pairs $(s,a) \in \mathcal{Z}_{hi}$ such that $\widehat{\Delta}_{h}^{\hat{\pi}}(s,a) \leq \frac{\varepsilon}{\widehat{W}_{h}(s)}$. After the second part, we gather the last $\hat{g}_{hi}^{\hat{\pi}}(\varepsilon)$ surviving pairs and perform an additional refinement step.

Theoretical guarantees for this variant are presented in the next theorem. The full algorithm and its analysis are provided in Appendix F.

Theorem 3.4. (Informal) There exists a variant of Algorithm 3 that, when given a sufficiently large budget B and an accuracy level $\varepsilon \geq 2SH^2\varepsilon_{\frac{B}{2SH}}$ as input, it uses at most budget B and satisfies the following:

$$\mathbb{P}\left(V_0^* - V_0^{\hat{\pi}} > \varepsilon\right) \leq \exp\left(-\tilde{\Theta}\left(\frac{\varepsilon B}{\operatorname{poly}(S, A, H, \log B)}\right)\right) \\
+ \exp\left(-\tilde{\Theta}\left(\frac{B}{H^3 \max_{h \in [H]} \sum_{s \in \mathcal{S}} W_h(s)^{-1} \sum_{a \in \mathcal{A}} (\bar{\Delta}_h(s, a) \vee \frac{\varepsilon}{W_h(s)})^{-2}\right)\right) \\
+ \exp\left(-\tilde{\Theta}\left(\frac{\varepsilon^2 B}{H^5 \max_{h \in [H]} |\operatorname{OPT}_h(\varepsilon)|}\right)\right),$$

where $\mathrm{OPT}_h(\varepsilon) = \{(s, a) \in \mathcal{S} \times \mathcal{A} : \Delta_h(s, a) W_h(s) \leq \varepsilon\}.$

Remark 6. From Theorem 3.4, we can derive the sample complexity required by the modified algorithm to identify an ε -correct policy with probability at least $1 - \delta$, given by

$$\tau_{\varepsilon,\delta} = \tilde{\Theta}\left(\frac{\operatorname{poly}(S,A,H,\log B)}{\varepsilon} + H^3 \max_{h \in [H]} \sum_{s \in \mathcal{S}} \frac{1}{W_h(s)} \sum_{a \in \mathcal{A}} \frac{1}{\left(\bar{\Delta}_h(s,a) \vee \frac{\varepsilon}{W_h(s)}\right)^2} + \frac{H^5 \max_{h \in [H]} |\operatorname{OPT}_h(\varepsilon)|}{\varepsilon^2}\right) \log \frac{1}{\delta}.$$

It is interesting that even though the logic of action elimination is very different, this expression is closely aligned with the sample complexity

$$\tau_{\varepsilon,\delta} = \frac{C_{\text{LOT}}(\varepsilon)}{\varepsilon} + \tilde{\Theta}\left(H^2 \sum_{h \in [H]} \sum_{s \in \mathcal{S}} \frac{1}{W_h(s)} \sum_{a \in \mathcal{A}} \frac{1}{\left(\bar{\Delta}_h(s,a) \vee \frac{\varepsilon}{W_h(s)}\right)^2} + \frac{H^4 \sum_{h \in [H]} |\operatorname{OPT}_h(\varepsilon)|}{\varepsilon^2}\right) \log \frac{1}{\delta}$$

of MOCA algorithm (Wagenmaker et al., 2022), where $C_{\text{LOT}} = \text{poly}(S, A, H, \log \frac{1}{\varepsilon}, \log \frac{1}{\delta})$.

4 Conclusion

In this paper, we have explored the fixed-budget setting of the pure exploration MDP, which is surprisingly underexplored in RL theory. While our results establish the first fully instance-dependent guarantee in the fixed budget setting, these are just beginning. First, it would be great to see what kind of instance-dependent acceleration can be proven in MDP, which should be possible given that accelerated rates were possible in bandits as a function of the number of good arms Katz-Samuels and Jamieson (2020); Zhao et al. (2023). Second, similarly, it would be interesting to explore what kind of data-poor regime guarantees are attainable – again, such bounds are available in the bandit setting Katz-Samuels and Jamieson (2020); Zhao et al. (2023). Third, we believe the factor H^2 in the sample complexity may be improved by leveraging variance-dependent concentration bounds. Finally, it would be interesting to extend our setting to the function approximation setting.

REPRODUCIBILITY STATEMENT

We have carefully specified all details of the algorithms presented in this paper. Moreover, we clearly state all assumptions required for the theoretical guarantees of our methods. We believe that this level of detail ensures the reproducibility of our results.

REFERENCES

- Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Reinforcement learning: Theory and algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 2019.
- Audibert, J.-Y., Bubeck, S., and Munos, R. Best Arm Identification in Multi-Armed Bandits. In Proceedings of the Conference on Learning Theory (COLT), 2010.
 - Brafman, R. I. and Tennenholtz, M. R-max a general polynomial time algorithm for near-optimal reinforcement learning. *J. Mach. Learn. Res.*, 3(null):213–231, Mar. 2003. ISSN 1532-4435. doi: 10.1162/153244303765208377. URL https://doi.org/10.1162/153244303765208377.
- Bubeck, S., Munos, R., and Stoltz, G. Pure Exploration in Multi-armed Bandits Problems. In
 Proceedings of the International Conference on Algorithmic Learning Theory (ALT), pages 23–37,
 2009.
- Bubeck, S., Wang, T., and Viswanathan, N. Multiple Identifications in Multi-Armed Bandits. In *Proceedings of the International Conference on Machine Learning (ICML)*, pages 258–265, 2013.
 - Chaudhuri, A. R. and Kalyanakrishnan, S. PAC identification of a bandit arm relative to a reward quantile. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*, pages 1777–1783, 2017.
 - Dann, C., Marinov, T. V., Mohri, M., and Zimmert, J. Beyond value-function gaps: improved instance-dependent regret bounds for episodic reinforcement learning. In *Proceedings of the 35th International Conference on Neural Information Processing Systems*, NIPS '21, Red Hook, NY, USA, 2021. Curran Associates Inc. ISBN 9781713845393.
 - Even-dar, E., Mannor, S., and Mansour, Y. PAC bounds for multi-armed bandit and Markov decision processes. In *Proceedings of the Conference on Learning Theory (COLT)*, pages 255–270, 2002.
 - Even-Dar, E., Mannor, S., and Mansour, Y. Action Elimination and Stopping Conditions for the Multi-Armed Bandit and Reinforcement Learning Problems. *Journal of Machine Learning Research*, 7: 1079–1105, 2006.
 - Garivier, A. and Kaufmann, E. Optimal best arm identification with fixed confidence. In *Proceedings* of the Conference on Learning Theory (COLT), pages 998–1027, 2016.
 - Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I. Is q-learning provably efficient? In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf.
 - Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu, T. Reward-free exploration for reinforcement learning. In III, H. D. and Singh, A., editors, *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 4870–4879. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/jin20d.html.
 - Kalyanakrishnan, S., Tewari, A., Auer, P., and Stone, P. PAC Subset Selection in Stochastic Multi-armed Bandits. In *Proceedings of the International Conference on Machine Learning (ICML)*, pages 655–662, 2012.
- Karnin, Z., Koren, T., and Somekh, O. Almost Optimal Exploration in Multi-Armed Bandits. In
 Proceedings of the International Conference on Machine Learning (ICML), pages 1238–1246, 2013.
 - Katz-Samuels, J. and Jamieson, K. The True Sample Complexity of Identifying Good Arms. In *Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)*, pages 1781–1791, 2020.

Kearns, M. and Singh, S. Near-optimal reinforcement learning in polynomial time. *Machine learning*, 49:209–232, 2002.

Mannor, S. and Tsitsiklis, J. N. The sample complexity of exploration in the multi-armed bandit problem. *J. Mach. Learn. Res.*, 5:623–648, Dec. 2004. ISSN 1532-4435.

Orabona, F. and Pal, D. Coin Betting and Parameter-Free Online Learning. In *Advances in Neural Information Processing Systems (NeurIPS)*, pages 577–585, 2016.

Simchowitz, M. and Jamieson, K. G. Non-asymptotic gap-dependent regret bounds for tabular

Simchowitz, M. and Jamieson, K. G. Non-asymptotic gap-dependent regret bounds for tabular mdps. In Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf.

Tirinzoni, A., Al-Marjani, A., and Kaufmann, E. Near instance-optimal pac reinforcement learning for deterministic mdps. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Tirinzoni, A., Al-Marjani, A., and Kaufmann, E. Optimistic pac reinforcement learning: the instance-dependent view. In Agrawal, S. and Orabona, F., editors, *Proceedings of The 34th International Conference on Algorithmic Learning Theory*, volume 201 of *Proceedings of Machine Learning Research*, pages 1460–1480. PMLR, 20 Feb–23 Feb 2023. URL https://proceedings.mlr.press/v201/tirinzoni23a.html.

Wagenmaker, A. and Jamieson, K. Instance-dependent near-optimal policy identification in linear mdps via online experiment design. In *Proceedings of the 36th International Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN 9781713871088.

Wagenmaker, A. J., Simchowitz, M., and Jamieson, K. Beyond no regret: Instance-dependent pac reinforcement learning. In Loh, P.-L. and Raginsky, M., editors, *Proceedings of Thirty Fifth Conference on Learning Theory*, volume 178 of *Proceedings of Machine Learning Research*, pages 358–418. PMLR, 02–05 Jul 2022. URL https://proceedings.mlr.press/v178/wagenmaker22a.html.

Zanette, A. and Brunskill, E. Tighter problem-dependent regret bounds in reinforcement learning without domain knowledge using value function bounds. In Chaudhuri, K. and Salakhutdinov, R., editors, *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 7304–7312. PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/zanette19a.html.

Zhang, Z., Du, S., and Ji, X. Near optimal reward-free reinforcement learning. In Meila, M. and Zhang, T., editors, *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine Learning Research*, pages 12402–12412. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/v139/zhang21e.html.

Zhao, Y., Stephens, C., Szepesvári, C., and Jun, K.-S. Revisiting simple regret: Fast rates for returning a good arm. *Proceedings of the International Conference on Machine Learning (ICML)*, 2023.