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ABSTRACT

We study the problem of fixed budget pure exploration in reinforcement learning.
The goal is to identify a near-optimal policy, given a fixed budget on the number
of interactions with the environment. Unlike the standard PAC setting, we do
not require the target error level ε and failure rate δ as input. We propose novel
algorithms and provide, to the best of our knowledge, the first instance-dependent
ε-uniform guarantee, meaning that the probability that ε-correctness is ensured
can be obtained simultaneously for all ε above a budget-dependent threshold. It
characterizes the budget requirements in terms of the problem-specific hardness of
exploration. As a core component of our analysis, we derive a ε-uniform guarantee
for the multiple bandit problem—solving multiple multi-armed bandit instances
simultaneously—which may be of independent interest. To enable our analysis,
we also develop tools for reward-free exploration under the fixed-budget setting,
which we believe will be useful for future work.

1 INTRODUCTION

Reinforcement Learning (RL) theory Agarwal et al. (2019) has been studied under two main objec-
tives: regret minimization and policy identification, also known as pure exploration. While the former
focuses on maximizing cumulative reward during learning, the latter aims to identify a near-optimal
policy without concern for rewards gained during learning. A substantial body of work on policy
identification has focused on the fixed-confidence setting Kearns and Singh (2002). This line of
research, often referred to as Probably Approximately Correct (PAC) RL, requires the algorithm to
spend as many samples as possible until it can find an ε-optimal policy with probability at least 1− δ.
Specifically, the algorithm is required to verify itself that the returned arm is indeed ε-optimal policy –
otherwise, it is not a fixed confidence algorithm. Due to the verification requirement, both ε and δ are
input to the algorithm. Thus, the analysis must be done for the correctness of the verification (i.e.,
proving that the returned arm is indeed an ε-optimal policy) as well as the sample complexity (i.e.,
proving how many samples are taken before stopping).

However, the fixed-confidence setting is not the only way to perform policy identification. The
fixed-budget setting has been popular in multi-armed bandits (Even-Dar et al., 2006; Bubeck et al.,
2009). In this setting, the learner is given a fixed number of interactions with the environment as a
budget and is required to output a good policy after exhausting the budget. This setting has numerous
merits. First, this setting is arguably more practical because the user of the algorithm can control
the budget explicitly. In contrast, the fixed confidence setting assumes that the algorithm can use as
many samples as possible (though less is preferred). When stopped forcefully to satisfy practical
constraints, it is hard to guarantee the quality of the returned policy. Second, the fixed budget setting
has potential to guarantee a better sample complexity because there is no verification requirement
(i.e., the algorithm itself certifies that the returned policy is ε-optimal). This was true for multi-armed
bandits where instant-dependent accelerated rates can be obtained as a function of how many good
arms there are, and also a data-poor regime guarantee can be obtained, meaning that where a nontrivial
performance guarantee is obtained even if the sampling budget is smaller than the number of arms,
depending on the problem instance Zhao et al. (2023). These bounds are not likely to be obtained in
the fixed confidence setting due to the verification requirement unless extra knowledge about the best
arm is known such as Chaudhuri and Kalyanakrishnan (2017). While the ε-correctness verification
from the fixed-confidence setting can be necessary in mission-critical applications, there are many
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applications that do not require such a guarantee, in which case the parameters ε and δ becomes a
cumbersome hyperparameter.

Despite the desirable properties of the fixed-budget setting in bandit problems, its counterpart in
MDPs remains largely unexplored to our knowledge. In this paper, we take the first step at studying
fixed-budget policy identification in MDPs, providing new theoretical insights and algorithms that
bridge this gap. Specifically, a fixed budget algorithm is required to take in a episode budget B and
return a policy π̂ at the end of B-th episode. Our central interest is to upper bound the probability
that the algorithm fails to return an ε-optimal policy as an exponentially decaying function of the
budget B and instance-dependent quantities, simultaneously for all ε ≥ ε′ for some budget dependent
threshold ε′. We refer to this type of theoretical guarantee as an ε-uniform guarantee. In other words,
the degree of suboptimality of the learned policy π̂ is a random variable, and we are characterizing its
distribution, in particular its tail behavior.

Contributions. Our main contributions are as follows:

• We propose a novel algorithm, BREA (Backward Reachability Estimation and Action
elimination), which is, to the best of our knowledge, the first fixed-budget pure exploration
algorithm for episodic MDPs with instance-dependent ε-uniform guarantees. The algorithm
only requires the episode budget B as an input, and does not assume the uniqueness of the
optimal action.

• For the first time, we establish an ε-uniform guarantee for the SAR algorithm (Bubeck et al.,
2013) for the muliple bandit problem. This may be of independent interest.

• We develop algorithmic and analytical tools for fixed-budget reward-free exploration by
carefully adapting a fixed-confidence reward-free exploration algorithm, L2E (Wagenmaker
et al., 2022), to the fixed-budget setting. We prove an ε-uniform guarantee for our fixed-
budget reward-free algorithms.

2 PRELIMINARIES

Finite-horizon MDP. We consider a finite-horizon non-stationary Markov Decision Process (MDP)
defined by the tupleM = (S,A, H, {Ph}H−1

h=0 , {Rh}Hh=1), where S is a finite set of states of size
S, A is a finite set of actions of size A, H ∈ N is the horizon, P0 ∈ ∆(S) is the initial distribution,
Ph : S × A → ∆(S) is the transition kernel, and Rh : S × A → ∆([0, 1]) is the random rewards
with E[Rh(s, a)] = rh(s, a). {Ph}H−1

h=0 and {Rh}Hh=1 are unknown to the learner.

The initial state s1 is drawn from the initial distribution P0. At each step h, taking action ah in
state sh results in a next state sh+1 sampled from the transition kernel Ph(· | sh, ah). A trajectory
{(sh, ah, Rh(sh, ah))}Hh=1 is called an episode, and when the learner reaches the end of the episode,
a new episode begins.

A policy π = (π1, . . . , πH) is a sequence of decision rules πh : S → ∆(A) for each step h ∈ [H].
The Q-value function of a policy π at step h ∈ [H] is defined as

Qπ
h(s, a) := Eπ[

H∑
h′=h

Rh′(sh′ , ah′)|sh = s, ah = a]

and it represents the expected reward obtained by choosing action a in state s at step h and choosing
the subsequent actions according to the policy π. The value function of π at step h is defined as

V π
h (s) = Eπ[Q

π
h(s, πh(s))]

and it represents the expected reward obtained by choosing actions according to the policy π starting
in state s at step h. We also define V π

0 := Es∼P0 [V
π
1 (s)]. The optimal Q-value function, optimal

value function are defined as

Q∗
h(s, a) = sup

π
Qπ

h(s, a), V ∗
h (s) = sup

π
V π
h (s), V ∗

0 = sup
π

V π
0 .

Throughout the paper, we do not assume that the optimal action or policy is unique.
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Pure exploration under the fixed budget setting. In pure exploration under the fixed budget
setting, the goal is to identify an optimal policy π∗ (or near-optimal) based on a limited interaction
budget. Specifically, the learner is allowed to execute a total of B episodes and must return a single
policy π̂ at the end. The performance is measured by the simple regret, which is defined as

V ∗
0 − V π̂

0 .

A policy π̂ is called ε-good if V ∗
0 − V π̂

0 ≤ ε. In this paper, we propose an algorithm and prove their
performance guarantee by showing some instance-dependent upper bounds of the failure probability

P(V ∗
0 − V π̂

0 > ε).

Instance-dependent quantities. To capture the instance-dependent complexity of the problem, we
need the notion of suboptimality gaps defined as

∆h(s, a) := V ∗
h (s)−Q∗

h(s, a),

∆π
h(s, a) := max

a′
Qπ

h(s, a
′)−Qπ

h(s, a).

For our analysis, we also denote

∆̄h(s, a) :=

{
∆h(s, a), if Q∗

h(s, a) < V ∗
h (s)

∆h(s, a
′), if Q∗

h(s, a) = V ∗
h and a′ is the second best action,

∆̄π
h(s, a) :=

{
∆π

h(s, a), if Qπ
h(s, a) < maxa′ Qπ

h(s, a
′)

∆π
h(s, ã), if Qπ

h(s, a) = maxa′ Qπ
h(s, a

′) and ã is the second best action with respect to π.

Thus, if the optimal action in s ∈ S at step h is unique, ∆̄h(s, a) > 0 for all a ∈ A. In contrast, if
there are multiple optimal actions in s ∈ S at step h, ∆̄h(s, a) = 0 for all optimal actions a. Similar
results hold for ∆̄h(s, a) as well.

In MDP, the probability of reaching each state or action is important. Let π be a policy, s ∈ S, a ∈
A, h ∈ [H],Z ⊂ S ×A, we use the following notations:

wπ
h(s) = Pπ[sh = s], wπ

h(s, a) = Pπ[sh = s, ah = a], wπ
h(Z) = Pπ[(sh, ah) ∈ Z],

Wh(s) = sup
π

wπ
h(s) = sup

π
wπ

h(s, a), Wh(Z) = sup
π

wπ
h(Z).

We refer to wπ
h(·) as the occupancy measure and Wh(·) as the reachability. Using these notions, we

define the controllability of MDP at step h as

Ch := sup
π

∑
s,Wh(s)>0

wπ
h(s)

Wh(s)
.

Then, we have

1 = sup
π

∑
s,Wh(s)>0

wπ
h(s) ≤ Ch = sup

π

∑
s,Wh(s)>0

wπ
h(s)

Wh(s)
≤

∑
s,Wh(s)>0

sup
π

wπ
h(s)

Wh(s)
≤ S.

We can see that Ch = 1 if Wh(s) = 0 or 1 for any state s i.e. the learner can reach sh = s with
probability 1 by some policy for any reachable state s. On the other hand, Ch = S if wπ

h(s) =
Wh(s) > 0 for any state s ∈ S, any policy π i.e. the learner cannot control the occupancy measure
by varying policy and all states are reachable. Therefore, intuitively, a larger Ch indicates that the
MDP is more difficult to control at step h.

3 THE BREA ALGORITHM

There are inherent difficulties in achieving instance-dependent ε-uniform guarantee for fixed budget
setting. First, while it is relatively straightforward to analyze algorithms in the fixed confidence setting
using concentration bounds such as Hoeffding or Bernstein bound with a prespecified confidence
level δ, it is much more challenging in the fixed budget setting, where neither the confidence level δ
nor the accuracy level ε is known in advance. Second, whereas the fixed-confidence setting typically
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allows for a potentially excessive number of samples before termination (depending on the confidence
level), the fixed-budget setting strictly limits the algorithm to a finite number of samples. Third, it is
hard to simply convert the fixed-confidence algorithms since it requires the knowledge of nontrivial
instance-dependent terms. Even if it is possible, the conversion of fixed-confidence algorithm would
require not only the budget B but also one of the confidence δ and the accuracy ε. Also, theoretical
guarantee of this conversion would only applies to prespecified ε (or δ), which is much weaker
than ε-uniform guarantee. In this section, we present how we design and analyze our algorithm to
overcome the aforementioned difficulties.

At step h, each state s can be treated as a bandit problem, where the expected reward of each action a
is given by Q∗

h(s, a). If we aim to learn the exact optimal policy maximizing Q∗
h(s, a), we need to

sample trajectories sh+1, ah+1, . . . , sH , aH generated under the optimal policy {π∗
h′}Hh′=h+1, which

is unknown. Fortunately, since our goal is to learn an approximately optimal policy, the following
proposition shows that it suffices to use a suitably accurate policy {π̂h′}Hh′=h+1 for sampling in order
to learn π̂h.

Proposition 1. (Wagenmaker et al., 2022, Lemma B.1) Assume that some deterministic policy π̂
satisfies ∆π̂

h(s, π̂h(s)) ≤ εh(s) for any h′ ≤ h ≤ H and any s ∈ S. Then, for any policy π′,

∑
s

wπ′

h′ (s)
(
V ∗
h′(s)− V π̂

h′(s)
)
≤

H∑
h=h′

sup
π

∑
s

wπ
h(s)εh(s).

Note that ∆π̂
h(s, a) depends only on the future policies {π̂h′}Hh′=h+1, implying that we must determine

them before learning π̂h(s). By this observation, our learning proceeds backward from H to 1.

If we assume that the hypothesis of the previous proposition holds with h′ = 1 and εh(s) :=
ε

ChHWh(s)
, then the proposition says

V ∗
0 − V π̂

0 ≤
H∑

h=1

sup
π

∑
s

wπ
h(s)εh(s)

=

H∑
h=1

sup
π

∑
s

wπ
h(s)

ε

ChHWh(s)

=

H∑
h=1

ε

H
(definition of Ch)

= ε.

Therefore, we design our algorithm to identify a Θ( ε
ChHWh(s)

)-good action for each relevant state s.
The precise definition of “relevant state” will be given in the analysis. We again emphasize that ε is
not an input to our algorithm and can be chosen arbitrarily for the purpose of analysis. Our algorithm
consists of two key components: estimating the reachability Wh(s) and eliminating actions. We
introduce the following notation, which will be used in the statements of upcoming results.

εB := (1 +
log(2)B

c(B)
)−0.6321

denotes an error threshold that depends on the budget B. The factor

CL2E(B) = Õ(poly(S,A,H)),

is formally defined in Appendix C, equation 5. We denote CL2E(B) = SH2c(B).

3.1 REACHABILITY ESTIMATION

The first part of our algorithm is greatly influenced by Wagenmaker et al. (2022). Through the
first part, we estimate the reachability Wh(s) of each state s at step h. To this end, we execute a
fixed-budget reward-free exploration. One notable benefit of reward-free exploration is that it only
needs to be run once, after which the collected data can be applied to a variety of downstream reward

4
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Algorithm 1 Fixed Budget Learn to Explore (FB-L2E)

1: function FB-L2E(X ⊆ S ×A, step h, budget B)
2: if |X | = 0 then
3: return {(∅, ∅, 0)}
4: end if
5: J ← ⌈0.6321 log2(1 +

log(2)B
c(B) )⌉ (c(B) is defined in Appendix C)

6: for j = 1 to J do
7: Lj ← 2J−j , δj ← ( 1

8SAH )0.6321Lj log log(8SAH)

8: Kj ← Kj(δj , SAHδj) (Kj is defined in Appendix C)
9: Nj ← Kj/(4|X | · 2j)

10: (Xj ,Πj)← FINDEXPLORABLESETS(X , h, δ,Kj , Nj)
11: X ← X \ Xj

12: end for
13: return {(Xj ,Πj , Nj)}Jj=1
14: end function
15:
16: function FINDEXPLORABLESETS(X ⊆ S ×A, step h, confidence δ, epochs K, samples N )
17: r1h(s, a)← 1 if (s, a) ∈ X , else 0
18: N(s, a, h)← 0, Y ← ∅, Π← ∅, j ← 1
19: for k = 1 to K do
20: // StrongEuler is as defined in Simchowitz and Jamieson (2019)
21: Run STRONGEULER(δ) on reward rjh to get trajectory {(skh, akh, h)}Hh=1 and policy πk

22: N(skh, a
k
h)← N(skh, a

k
h) + 1, Π← Π ∪ {πk}

23: if N(skh, a
k
h) ≥ N , (skh, a

k
h) ∈ X and (skh, a

k
h) /∈ Y then

24: Y ← Y ∪ (skh, a
k
h)

25: rj+1
h (s, a)← 1 if (s, a) ∈ X \ Y , else 0

26: j ← j + 1
27: Restart STRONGEULER(δ)
28: end if
29: end for
30: return Y,Π
31: end function

functions. More specifically, we reset the reward as Rh′(s′, a′) =

{
1, if (s′, a′, h′) = (s, 1, h),

0, otherwise.
,

where we arbitrarily fix an action and denote it by 1. With this reset reward, an optimal policy
maximizes the visitation probability of (s, 1) at step h. Therefore, V ∗

0 = Wh(s, 1) = Wh(s). To
approximate such an optimal policy, we employ STRONGEULER (Simchowitz and Jamieson, 2019).

More generally, the reachability Wh(X ) of any subset X ⊂ S × A can be estimated in the same
manner. We formalize this in Algorithm 1, which we refer to as FB-L2E, short for Fixed-Budget
Learn2Explore. It is a careful adaptation of Learn2Explore algorithm introduced in Wagenmaker
et al. (2022), which itself is inspired by Zhang et al. (2021); Brafman and Tennenholtz (2003).

Algorithm 1 satisfies the following guarantee:

Theorem 3.1. Consider running Algorithm 1 with B ≥ c(B). Then, the following statements hold.

1. The total budget used is at most B.

2. For any ε ≥ 2SH2εB , with probability at least 1− exp

(
−Θ̃

(
εB

CL2E(B)

))
,

(1) The reachability of each set Xi satisfies

|Xi|
|X |
· 2−i−3 ≤Wh(Xi) ≤ 2−i+1 for all i ≤ iε :=

log2
(
2SH2

ε

) ,

5
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(2) The remaining elements, X̄ := X \ ∪iεi=1Xi satisfy

sup
π

∑
(s,a)∈X̄

wπ
h(s, a) ≤

ε

2SH2
.

(3) Moreover, for any i ≤ iε, if each policy in Πi is executed A times, then every state-
action pair (s, a) ∈ Xi is visited at least 1

8ANi times.

Here, the probability accounts for both the randomness in execution and resampling.

The proof of Theorem 3.1 is deferred to Appendix C.
Remark 2. Theorem 3.1 crucially relies on the fact that STRONGEULER (Simchowitz and Jamieson,
2019) achieves a high probability regret bound with log 1

δ dependence. However, when the target
set is X = {(s, a)}, similar results can be obtained by applying a boosting technique even if we use
other algorithms with worse dependence. Although we only present Algorithm 1 in the main text for
the simplicity, the algorithm with boosting technique is described in Appendix C, Algorithm 0.

3.2 ACTION ELIMINATION

In the second part of our algorithm, we iteratively sample trajectories, compute empirical Q-function
of state-action pairs, and eliminate suboptimal actions. For the purpose of efficient elimination, we
employ a multiple bandit algorithm, Successive Accepts and Rejects (SAR), proposed by Bubeck et al.
(2013), and, for the first time, provide an ε-correctness guarantee for this algorithm. By employing
this algorithm to our main algorithm, we are able to reduce the dependency on S compared to applying
its multi-armed bandit counterpart. For a more detailed explanation, see Appendix D, Remark 27.

Multiple bandit problem. Consider M instances of multi-armed bandit problems, each with K
arms. Each arm i in instance m yields stochastic rewards supported on [0, σ], with mean µm,i,
ordered such that µm,1 ≥ · · · ≥ µm,K . We denote each bandit-arm pair by (m, i), where m ∈ [M ]
and i ∈ [K]. The objective is to identify a good arm in each instance m ∈ [M ] under a total budget
of B pulls.

We now define some notations. Let µ̂m,i(n) denote the empirical mean reward of arm i in instance
m after n pulls. Define the suboptimality gap as

∆̄m,i :=

{
µm,1 − µm,2, if i = 1,

µm,1 − µm,i, if i ∈ {2, . . . ,K}.

We enumerate all gaps ∆̄m,i over all (m, i) ∈ [M ]× [K] in increasing order as
∆̄(1) ≤ ∆̄(2) ≤ · · · ≤ ∆̄(MK).

Let
g(ε) :=

∣∣∣{(m, i) ∈ [M ]× [K] : µm,1 − µm,i ≤ ε
}∣∣∣

for any ε > 0, and define the harmonic log term

log(MK) :=
1

2
+

MK∑
i=2

1

i
.

For each k ∈ [MK − 1], define

nk(B,M,K) :=

⌈
1

log(MK)
· B −MK

MK + 1− k

⌉
. (1)

The SAR algorithm (Bubeck et al., 2013) is summarized in Algorithm 2. By leveraging the ranking
of empirical gaps, SAR adaptively distributes the budget across bandit instances, solving the multiple
bandit problem efficiently. We present a theoretical guarantee for its ability to identify ε-good arms.
Theorem 3.2. If we run Algorithm 2 with B ≥MK, then the total number of budget used is at most
B and

P(∃m ∈ [M ] : µm,1 − µm,J(m) > ε) ≤ 2M2K2 exp

(
− B −MK

128σ2 log(MK) ·
∑

i∈[MK](∆̄(i) ∨ ε)−2

)
.

for any ε ≥ 0.

The proof of Theorem 3.2 is deferred to Appendix D.

6
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Algorithm 2 Successive Accept and Reject (SAR) for the multiple bandit

1: input: Budget B
2: A1 ← {(1, 1), . . . , (M,K)}, n0 ← 0
3: for k = 1 to MK − 1 do
4: nk ← nk(B,M,K) (as defined in equation 1)
5: ∀(m, i) ∈ Ak, pull (m, i) for nk − nk−1 times
6: ∀m, 1̂m ← argmaxi:(m,i)∈Ak

µ̂m,i(nk) (Break ties arbitrarily)
7: if ∃m such that 1̂m is the last active arm in m then
8: Jm = 1̂m (Accept)
9: Ak+1 ← Ak \ {(m, 1̂m)} (Deactivate)

10: else
11: (mk, ik)← argmax(m,i)∈Ak

(
µ̂m,1̂m

(nk)− µ̂m,i(nk)
)

(Break ties arbitrarily)
12: Ak+1 ← Ak \ {(mk, ik)} (Reject and deactivate)
13: end if
14: end for
15: Jm ← i for AMK = {(m, i)}
16: return {(m,Jm)}Mm=1

3.3 OVERVIEW OF THE BREA ALGORITHM

We combine the two mechanisms described above to construct our main algorithm. The algorithm
proceeds in a backward manner over steps h = H,H − 1, . . . , 1. At each step h, the first half of
the budget is devoted to estimating the reachability Wh(s) for each state s, while the second half
applies the SAR mechanism to eliminate suboptimal actions. Although the logic by which our
algorithm eliminates actions is entirely different, the structure of eliminating actions after reward-free
exploration was also used in the fixed-confidence algorithm, MOCA (Wagenmaker et al., 2022).

In general MDPs, the stochasticity of the transition kernel prevents us from freely collecting arbitrary
state-action samples. However, Theorem 3.1 ensures that, with high probability, the policies stored
during the reachability estimation phase yield sufficient samples for each relevant state-action pair.
Under this event, the SAR mechanism is expected to perform reliably. We now present our main
theorem and its corollary; their proofs are provided in Appendix E.
Theorem 3.3. If we run Algorithm 3 with

B ≥ max{2SHc(
B

2SH
), 2SAε B

2SH
log2

1

ε B
2SH

},

then the total number of budget used is at most B. Moreover, for any ε ≥ 2SH2ε B
2SH

,

P
(
V ∗
0 − V π̂

0 > ε
)
≤ exp

(
−Θ̃

( εB

CL2E(
B

2SH )

))
+ exp

(
−Θ̃

( B

H5 maxh∈[H] C
2
h

∑
s∈S Wh(s)−1

∑
a∈A(∆̄h(s, a) ∨ ε

Wh(s)
)−2

))
.

Corollary 3. In addition to the hypothesis of Theorem 3.3, assume further that 2SH2ε B
2SH

< ε∗ :=

min{min+s,h Wh(s), 2Hmin+s,a,h ChWh(s)∆̄h(s, a)} and the optimal action in each state s at each
step h is unique. Then, we obtain a guarantee of the best policy identification, given by

P
(
V ∗
0 − V π̂

0 > 0
)
≤ exp

(
−Θ̃

( ε∗B

CL2E(
B

2SH )

))
+ exp

(
−Θ̃

( B

H3 maxh∈[H]

∑
s∈S Wh(s)−1

∑
a∈A ∆̄h(s, a)−2

))
.

Remark 4. From Theroem 3.3, we can derive the sample complexity required by BREA to identify an
ε-correct policy with probability at least 1− δ, given by

τε,δ = Θ̃

(
CL2E

(
B

2SH

)
ε

+H5 max
h∈[H]

C2
h

∑
s∈S

1

Wh(s)

∑
a∈A

1(
∆̄h(s, a) ∨ ε

Wh(s)

)2
)
log

1

δ
.
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Algorithm 3 Backward Reachability Estimation and Action elimination (BREA)

1: input: Budget B
2: B′ ← ⌊ B

2SH ⌋, J ← ⌈0.6321 log2(1 +
log(2)B′

c(B′) )⌉
3: B′′ ← B

2HJ
4: for h = H,H − 1, . . . , 1 do
5: Zh ← ∅
6: for s ∈ S do {(X sh

j ,Πsh
j , Nsh

j )}Jj=1 ← FB-L2E({(s, 1)}, h, B′) (1 is an arbitrary action)
7: if X sh

h = {(s, 1)} for some j ∈ [J ] then
8: Ŵh(s)← 2−j+1, Zh ← Zh ∪ {s}
9: end if

10: end for
11: for i = 1 to J do
12: Zhi ← {s ∈ Zh : Ŵh(s) = 2−i+1}, A1 ← Zhi ×A,
13: ∀(s, a) ∈ A1, N(s, a)← 0, T (s, a)← 0, T0(s, a) = 0, Q(s, a)← 0
14: for k = 1 to |Zhi|A− 1 do
15: nk ← nk(⌊B′′2−i−2⌋, |Zhi|, A) (as defined in equation 1)
16: for (s, a) ∈ Ak do
17: Tk(s, a)← ⌊ nk

Nsh
i

⌋
18: Rerun each policy in Πsh

i for Tk(s, a)− Tk−1(s, a) times
19: for each time t = T (s, a) + 1 to Tk(s, a) do
20: if (s, a) is visited at step h then
21: Take action a and extend a trajectory using {π̂h′}Hh′=h+1

22: N(s, a)← N(s, a) + 1

23: Q(s, a)← Q(s, a) +
∑H

h′=h R
t
h′(sth′ , ath′)

24: end if
25: end for
26: Q̂π̂

h(s, a)← Q(s, a)/N(s, a) if N(s, a) > 0 else 0
27: T (s, a)← T (s, a) + Tk(s, a)
28: end for
29: if ∃ state s with unique surviving pair (s, a) in Ak then
30: π̂h(s)← a, Ak+1 ← Ak \ {(s, a)}
31: else
32: ∀(s, a) ∈ Ak, ∆̂π̂

h(s, a)← maxa:(s,a)∈Ak
Q̂π̂

h(s, a)− Q̂π̂
h(s, a)

33: (s′, a′)← argmax(s,a)∈Ak
∆̂π̂

h(s, a) (Break ties arbitrarily)
34: Ak+1 ← Ak \ {(s′, a′)}
35: end if
36: end for
37: π̂(s)← a for A|Zhi|A = {(s, a)}
38: end for
39: For each s ∈ S \ Zh, set π̂h(s) as any action
40: end for
41: return π̂

The first term inside Θ̃ is a lower-order term. The second term inside Θ̃ becomes
∑

a∈A
1

(∆̄(a)∨ε)2

for multi-armed bandits (S = H = 1). This is consistent with known results in the bandit literature
((Even-Dar et al., 2006; Audibert et al., 2010; Karnin et al., 2013)). It is also noteworthy that our
sample complexity is deterministic while the sample complexity of PAC RL algorithm typically is
guaranteed with probability at least 1− δ.

Remark 5. Our sample complexity involves H5 maxh term, in contrast to the H4
∑

h dependence
that appear in PAC RL literature ((Wagenmaker et al., 2022; Wagenmaker and Jamieson, 2022;
Tirinzoni et al., 2023)). This difference stems from the inherent difficulty of the fixed budget setting,
where the algorithm does not know in advance how to distribute the budget across different h. A
similar issue regarding the dependency on S could be resolved by employing a multiple bandit
algorithm instead of a multi-armed bandit algorithm.
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3.4 INCORPORATING TARGET ACCURACY

If an accuracy level ε is provided as input, we can modify Algorithm 3 to include a third part and obtain
a different form of probabilistic guarantee. While Algorithm 3 allocates B

4 budget to each of its two
parts, the modified algorithm assigns B

4 to the first and the second part and assgins B
2 to the last part.

In the third part, for each multiple-bandit instance Zhi, let ĝπ̂hi(ε) denote the number of pairs
(s, a) ∈ Zhi such that ∆̂π̂

h(s, a) ≤ ε

Ŵh(s)
. After the second part, we gather the last ĝπ̂hi(ε) surviving

pairs and perform an additional refinement step.

Theoretical guarantees for this variant are presented in the next theorem. The full algorithm and its
analysis are provided in Appendix F.

Theorem 3.4. (Informal) There exists a variant of Algorithm 3 that, when given a sufficiently large
budget B and an accuracy level ε ≥ 2SH2ε B

2SH
as input, it uses at most budget B and satisfies the

following:

P
(
V ∗
0 − V π̂

0 > ε
)
≤ exp

(
−Θ̃

(
εB

poly(S,A,H, logB)

))

+ exp

−Θ̃( B

H3 maxh∈[H]

∑
s∈S Wh(s)−1

∑
a∈A(∆̄h(s, a) ∨ ε

Wh(s)
)−2

)
+ exp

−Θ̃( ε2B

H5 maxh∈[H] |OPTh(ε)|

) ,

where OPTh(ε) = {(s, a) ∈ S ×A : ∆h(s, a)Wh(s) ≤ ε}.
Remark 6. From Theorem 3.4, we can derive the sample complexity required by the modified
algorithm to identify an ε-correct policy with probability at least 1− δ, given by

τε,δ = Θ̃

(
poly(S,A,H, logB)

ε
+H3 max

h∈[H]

∑
s∈S

1

Wh(s)

∑
a∈A

1(
∆̄h(s, a) ∨ ε

Wh(s)

)2 +

H5max
h∈[H]

|OPTh(ε)|

ε2

)
log

1

δ
.

It is interesting that even though the logic of action elimination is very different, this expression is
closely aligned with the sample complexity

τε,δ =
CLOT(ε)

ε
+ Θ̃

(
H2

∑
h∈[H]

∑
s∈S

1

Wh(s)

∑
a∈A

1(
∆̄h(s, a) ∨ ε

Wh(s)

)2 +

H4
∑

h∈[H]

|OPTh(ε)|

ε2

)
log

1

δ

of MOCA algorithm (Wagenmaker et al., 2022), where CLOT = poly(S,A,H, log 1
ε , log

1
δ ).

4 CONCLUSION

In this paper, we have explored the fixed-budget setting of the pure exploration MDP, which is
surprisingly underexplored in RL theory. While our results establish the first fully instance-dependent
guarantee in the fixed budget setting, these are just beginning. First, it would be great to see what
kind of instance-dependent acceleration can be proven in MDP, which should be possible given that
accelerated rates were possible in bandits as a function of the number of good arms Katz-Samuels
and Jamieson (2020); Zhao et al. (2023). Second, similarly, it would be interesting to explore what
kind of data-poor regime guarantees are attainable – again, such bounds are available in the bandit
setting Katz-Samuels and Jamieson (2020); Zhao et al. (2023). Third, we believe the factor H2 in
the sample complexity may be improved by leveraging variance-dependent concentration bounds.
Finally, it would be interesting to extend our setting to the function approximation setting.
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REPRODUCIBILITY STATEMENT

We have carefully specified all details of the algorithms presented in this paper. Moreover, we clearly
state all assumptions required for the theoretical guarantees of our methods. We believe that this level
of detail ensures the reproducibility of our results.
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