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Abstract
Query expansion (QE) is a critical compo-001
nent in the open-domain question answering002
(OpenQA) pipeline, enhancing the retrieval per-003
formance by broadening the scope of queries004
with additional relevant texts. However, ex-005
isting methods like GAR and EAR rely heav-006
ily on supervised training and often struggle007
to maintain effectiveness across domains and008
datasets. Meanwhile, although large language009
models (LLMs) have demonstrated QE capabil-010
ity for information retrieval (IR) tasks, their011
application in OpenQA is hindered by the012
inadequate analysis of query’s informational013
needs and the lack of quality control for gen-014
erated QEs, failing to meet the unique require-015
ments of OpenQA. To bridge this gap, we pro-016
pose a novel LLM-based QE approach named017
AGR for the OpenQA task, leveraging a three-018
step prompting strategy. AGR begins with an019
analysis of the query, followed by the genera-020
tion of answer-oriented expansions, and culmi-021
nates with a refinement process for better query022
formulation. Extensive experiments on four023
OpenQA datasets reveal that AGR not only ri-024
vals in-domain supervised methods in retrieval025
accuracy, but also outperforms state-of-the-art026
baselines in out-domain zero-shot scenarios.027
Moreover, it exhibits enhanced performance in028
end-to-end QA evaluations, underscoring the029
superiority of AGR for OpenQA.1030

1 Introduction031

Open-domain question answering (OpenQA) is a032

key task in Natural Language Processing, aiming to033

provide accurate answers to a wide range of factual034

questions across different domains (Chen and Yih,035

2020; Kwiatkowski et al., 2019). The challenge in036

OpenQA is to retrieve relevant information from037

large text corpora without specific contexts (Zhu038

et al., 2021). Retrieval methods are therefore es-039

sential, with two primary approaches being lexical-040

based sparse retrieval, like BM25 (Robertson and041

1Our code and data will be publicly available.

In 1771, he wrote ""The Army in general and the Army in particular "" 

(1771), in which he advocated the use of high-heated engines hundred-

horsepower per hour (hp) for the war, as a mean to bring about the ...

what does hp mean in war and order

Query

In game "The Order of Battle" (War and Order), HP usually refers to the 

abbreviation for "Horsepower," which is a unit used to measure the 

power or speed of vehicles, engines, etc. In military terms, it can …

In the game "War and Order," HP stands for Hit Points, which represent 

a unit's health or vitality. When a unit takes damage during battle, its HP 

decreases, and if it reaches zero, unit is incapacitated and unable to …

Query Expansion

Hit Points

Answer

EAR-RD+

Q2D+PRF

AGR (ours)

Figure 1: Examples of query expansion generated by
EAR-RD+, Q2D+PRF and AGR methods for a query
sampled from NQ dataset. EAR-RD+ is a supervised
in-domain QE method, it fails to capture the informa-
tional needs about "war and order" when transferred
from TriviaQA to NQ dataset, resulting in generating er-
roneous contents, like "hundred-horsepower per hour".
Q2D+PRF is a LLM-based QE method, although it
knows the game "war and order", its expansion contains
irrelevant content about "horsepower" due to the lack of
quality control of generation. In contrast, our AGR gen-
erates high-quality query expansion contains the correct
answer "hit points" for the query.

Zaragoza, 2009), and embedding-based dense re- 042

trieval (Karpukhin et al., 2020; Guu et al., 2020). 043

Dense retrieval models (Luan et al., 2021; Xiong 044

et al., 2021; Qu et al., 2021), while effective with 045

ample domain-specific training data, are computa- 046

tionally demanding and risk omitting crucial infor- 047

mation due to their reliance on fixed-length embed- 048

ding that may not capture all the textual nuances, 049

leading to potential exclusion of relevant details. 050

Conversely, sparse retrieval combined with query 051

expansion techniques (Lavrenko and Croft, 2017; 052

Chuang et al., 2023) can address these semantic 053

challenges and achieve competitive performance. 054

The recent advent of generation-augmented re- 055

trieval has shown promise in providing more pre- 056
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cise information for OpenQA, as evidenced by057

methods such as GAR(Mao et al., 2021) and058

EAR(Chuang et al., 2023). These approaches uti-059

lize seq2seq models like BART (Lewis et al., 2020)060

to generate contexts that are tailored to the query,061

incorporating elements such as the answer, the sen-062

tence containing the answer, and the title of the063

passage where the answer is located. Nevertheless,064

these methods often require extensive supervised065

training data, which can lead to the generation of066

subpar QEs, particularly in out-of-domain zero-067

shot scenarios. For instance, as depicted in Fig-068

ure 1, the EAR-RD+ model inadequately addresses069

the information needs about the phrase "war and070

order," resulting in the generation of incorrect con-071

tent. Concurrently, the rise of large language mod-072

els (LLMs) like GPT-3 (Brown et al., 2020) and073

Flan-T5 (Raffel et al., 2020) has underscored their074

potential as effective QE tools in information re-075

trieval (IR) tasks (Li et al., 2023), operating without076

the need for training data or external corpora, such077

as Q2D (Wang et al., 2023) and Q2D+PRF (Jager-078

man et al., 2023). However, while these models079

excel in directly bolstering queries with expansions080

derived from an LLM, they often lack mechanisms081

for ensuring the quality of the generated QEs. This082

issue is exemplified in Figure 1, where the QE pro-083

duced by Q2D+PRF includes a mix of relevant and084

irrelevant information, signaling the necessity of085

effective quality control measures.086

To this end, we propose a novel LLM-based QE087

method specially designed for the OpenQA task,088

coined as AGR. As shown in Figure 2, AGR em-089

ploys a three-step progressive prompting strategy,090

namely AGR (Analyze, Generate, and Refine), to091

leverage the extensive capabilities of LLMs, facili-092

tating cross-domain query expansion for OpenQA.093

Specifically, to address the informational needs of094

a given query, the Analyze phase of AGR capi-095

talizes on the question understanding capabilities096

of LLMs to generate an analysis. Subsequently,097

in Generate phase, AGR utilizes the knowledge098

retrieval and integration capabilities of LLMs to099

generate various answer-oriented query expansions100

as candidates. These expansions are then used to101

retrieve reference texts from the corpus to filter out102

erroneous and irrelevant generated information for103

generating new candidates closer to potential an-104

swers. Finally, for the purpose of quality control105

over QEs, the Refine phase of AGR conducts a self-106

review of all candidates, refining them to achieve107

an refined query expansion. Obviously, AGR is108

explicitly oriented towards QA tasks with a series 109

of progressively advancing sub-task steps, making 110

it more suitable for high-quality QE generation in 111

out-domain zero-shot scenarios. 112

Extensive experiments are carried out on four 113

widely-used OpenQA datasets, including Natu- 114

ral Questions (Kwiatkowski et al., 2019), Trivi- 115

aQA (Joshi et al., 2017), WebQuestions (Berant 116

et al., 2013), and CuratedTREC (Baudis and Se- 117

divý, 2015). The results of retrieval evaluation 118

demonstrate that AGR not only achieves compa- 119

rable performance to SOTA supervised QE meth- 120

ods such as EAR (Chuang et al., 2023) on their 121

trained in-domain datasets but also surpasses them 122

in the context of zero-shot scenarios on out-domain 123

datasets, which emphasizes the zero-shot capabil- 124

ities of our AGR method. Furthermore, in com- 125

parison to LLM-based QE methods tailored for IR 126

tasks, AGR exhibits the ability to generate more 127

answer-oriented information so that sparse retriev- 128

ers leveraging AGR can identify more accurate pas- 129

sages containing the answers, which contributes to 130

the higher end-to-end QA quality. 131

Our contributions are three-fold: 1) We propose 132

an LLM-based QE method AGR, which adopts a 133

novel reasoning chain generation process suited 134

for OpenQA. 2) Extensive experiments show that 135

AGR achieves SOTA out-domain zero-shot perfor- 136

mance in boosting the retrieval quality across di- 137

verse datasets. 3) End-to-end QA evaluation indi- 138

cates that AGR enhances the exact match scores of 139

answers, emphasizing its practical utility in real- 140

world applications. 141

2 Related Work 142

2.1 Query Expansion 143

Query expansion (QE) has received widespread 144

attention in the early literature of information re- 145

trieval (Efthimiadis, 1996), fundamentally boosts 146

retrieval systems by enriching queries with addi- 147

tional, conceptually similar terms (Carpineto and 148

Romano, 2012). Early QE methods in IR mainly 149

augment queries with additional terms based on 150

user relevance feedback (Rocchio Jr, 1971), which 151

is often unavailable. Then, the Pseudo-Relevance 152

Feedback (PRF) mechanisms (Croft et al., 2009) 153

is developed, wherein the top-ranking results of an 154

original query are utilized for expansions, but this 155

is also constrained by the quality of the top docu- 156

ments (Carpineto and Romano, 2012). More recent 157

QE studies for IR tasks have started to leverage pre- 158
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what does hp mean in war and order

𝒒: query

The question is asking for the meaning 

of the abbreviation "HP" in relation to 

the game “War and Order”.

𝓐: analysis 𝒒𝒆𝟏: … HP stands for Healthy Points …

𝒒𝒆𝟐: … HP stands for Hit Points. It is a …

𝒒𝒆𝟑: … HP represents for Horsepower …

⋮

𝓠𝒆: query expansions

𝒅𝟏: Health (gaming) Health or vitality is an …

𝒅𝟐: life is a simple "Hit point" (HP) numerical …

𝒅𝟑: a certain amount of health points (HP) …

𝒅𝟒: depending on the game. In the first game …

⋮

𝓒𝓡s: contextual references

BM25

𝒒𝒆𝟏: In the context of the game “War and 

Order,” HP refers to Hit Points, which  …

𝒒𝒆𝟐: HP stands for Hit Points in the game 

War and Order. It represents the health …

𝒒𝒆𝟑: In the game War and Order, Hit Points 

(HP) refer to the vitality of a player's …

⋮

ഥ𝓠𝒆: enriched query expansions

In the game "War and Order" HP stands for 

Hit Points, which represent a unit's health or 

vitality. When a unit takes damage during …

𝒒𝒆𝒐: refined query expansion

What; hp mean; in; war and order

𝓚: keywords

Analyze RefineGenerate

LLM

LLM

LLM

LLM

LLM

𝒒: query

𝒒: query

𝒒: query

𝒒: query

Figure 2: An overview of AGR, where the LLM is prompted to execute a sequence of three sub-steps: Analyze,
Generate, and Refine, to produce a refined answer-oriented QE. This approach capitalizes on the concept of multi-
step task decomposition, enhancing the effectiveness of QE tailored for OpenQA task.

trained language models in the process of query159

expansion (Zheng et al., 2020; Naseri et al., 2021),160

commonly achieved through training or fine-tuning161

models.162

Apart from IR tasks, the capability of QE in en-163

hancing retrieval has also been utilized in studies164

on OpenQA, such as GAR(Mao et al., 2021) and165

EAR(Chuang et al., 2023). GAR utilizes a trained166

BART model to generate answer-oriented QEs, ef-167

fectively bridging the information gap between the168

original query and potential answers. Building169

upon by GAR, EAR employs the generator from170

GAR for sampling and generating a various set of171

QEs, and uses a query ranking model to select the172

best QE. Although these methods enhance the ef-173

fectiveness of retrievers, they heavily depend on174

supervised in-domain training of the generator or175

reranker, which constrains their adaptability across176

domains and datasets under zero-shot OpenQA.177

2.2 Large Language Models178

The rapid advancements in generative modeling179

have led to the development of large language mod-180

els (LLMs), like ChatGPT (Ouyang et al., 2022)181

and GPT-4 (OpenAI, 2023), which demonstrate182

exceptional multitasking capabilities, particularly183

exemplifying outstanding zero-shot learning abili-184

ties (Liu et al., 2022; Dong et al., 2023). Moreover,185

LLMs are suitable for a wide array of tasks (Brown186

et al., 2020; Alayrac et al., 2022), ranging from lan-187

guage translation and question answering to more188

intricate challenges like sentiment analysis and di-189

alogue generation (Kaddour et al., 2023). Recent190

studies have highlighted the emergence of promi-191

nent open-source LLMs like LLama2 (Touvron 192

et al., 2023) and Mistral (Jiang et al., 2023), which 193

excel in various LLM benchmarks and display ro- 194

bust multitasking capabilities, garnering substan- 195

tial academic interest due to their accessibility and 196

manageable parameter sizes. 197

In the domain of query expansion, LLMs have 198

also shown promising capabilities. For instance, 199

WebCPM (Qin et al., 2023) and Q2E (Jagerman 200

et al., 2023) employ LLMs to generate topic-related 201

terms as query expansion, Query2Doc (Wang et al., 202

2023) focuses on employing LLMs to generate pas- 203

sages related to the potential answers, aiming to 204

alleviate the issue of word mismatch between query 205

and documents. While these LLM-based methods 206

have notably enhanced QE in IR, underscoring the 207

revolutionary impact of LLMs, they are not explic- 208

itly designed for OpenQA, thereby failing to meet 209

the informational needs of query and lacking qual- 210

ity control for QEs. In contrast, our proposed AGR 211

introduces a multi-step generation framework de- 212

signed for QA tasks, which meets the informational 213

needs of query and implements quality control to 214

obtain a refined QE. 215

3 Methodology 216

As shown in Figure 2, the proposed AGR lever- 217

ages the concept of multi-step task decomposition, 218

encompassing a progressive sub-task workflow to 219

analyze, generate, and refine. This approach thor- 220

oughly exploits the abilities of LLMs (Zhao et al., 221

2023), like semantic comprehension, knowledge re- 222

trieval, and integration, as well as contextual under- 223
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standing and reasoning. The result is an expanded224

query that is anticipated to be refined and more225

aligned with the answer, thereby improving the per-226

formance of sparse retrieval mechanisms within the227

OpenQA task.228

3.1 Overview229

Given an original query q, AGR first makes use of230

an LLM (like Mistral) to analyze this query and231

generate an analytic text A on it. Subsequently,232

building on this analysis, a set of answer-oriented233

query expansions Qe = {qe1, qe2, ..., qen} is gen-234

erated by the LLM through random sampling strat-235

egy, which ensures the diversity of generated expan-236

sion content. However, empirical observations in-237

dicate that a portion of query expansions align with238

the correct answer, while others may result from239

model hallucinations, manifesting as either irrele-240

vant to the correct answer or erroneous. Thus, sim-241

ilar to pseudo relevance feedback (PRF), all top-k242

documents from BM25 for all query expansions Qe243

can be integrated to rectify and output a series of244

new query expansion Qe = {qe1, qe2, . . . , qem},245

which combines the knowledge exist in LLM with246

the knowledge retrieved from the corpus. After that,247

a final review by the LLM on these all enriched QE248

candidates Qe is further conducted to identify rele-249

vant answers and erroneous information, ultimately250

generating the refined query expansion qeo, which251

is appended to the original query q to execute the252

following retrieval.253

3.2 Analysis of Original Query254

In the initial phase, we first leverage the seman-255

tic comprehension abilities of LLM to extract key256

phrases K from the original query q, and then con-257

duct an analysis A based on K.258

K = LLM(q) (1)259
260

A = LLM(q,K) (2)261

The generation of key phrases aims to identify262

the core elements of the original query, which turns263

back to help the LLM grasp the essential theme264

and contextual cues within the query, and output a265

more targeted and relevant analysis. The ablation266

study conducted on the generation of K and A267

in Section 4.3 highlights the significance of this268

particular step.269

3.3 Generation of Candidate QEs270

Building on the insights gained from the initial271

analysis A of the query q, the LLM’s knowledge272

retrieval and integration capabilities are employed 273

to produce multiple candidate expansions Qe = 274

{qe1, qe2, . . . , qen}. 275

Qe = LLM(q,A) (3) 276

Subsequently, to enhance the reliability of expan- 277

sions, we turn to use the relevant documents from 278

the corpus to rectify them. Specifically, the BM25 279

top-k documents Dqei for each candidate expan- 280

sion qei ∈ Qe are all collected to form contextual 281

references CRs. Then, the texts CRs in conjunc- 282

tion with the original query q are re-introduced into 283

the LLM to conduct a second round of sampling 284

generation. This process blends the LLM’s intrin- 285

sic knowledge with information retrieved from the 286

corpus, yielding more enriched query expansions 287

Qe = {qe1, qe2, ..., qem}. 288

CRs = ∪{Dqei} = ∪{BM25(qei)}, qei ∈ Qe

(4) 289290

Qe = LLM(q, CRs) (5) 291

In both the generation steps in Eq. 3 and Eq. 5, 292

a random sampling strategy is adopted, which en- 293

sures that LLMs produce a range of potential ex- 294

pansions, each reflecting different facets and inter- 295

pretations of the initial query q. The breadth of 296

generated expansions provides a comprehensive 297

pool for the following refinement step. 298

3.4 Refinement for Optimal QE 299

Due to their stochastic and diverse nature, although 300

relevant documents in the corpus are provided to 301

the LLM to generate more enriched QE candidates 302

Qe and some of them are quite relevant or close 303

to the correct answer for the query q, some others 304

may still be irrelevant or erroneous as results from 305

the hallucinations of LLM. Therefore, in this phase, 306

we employ the LLMs’ capabilities in contextual un- 307

derstanding and reasoning to conduct a final review 308

of all QE candidates. 309

qeo = LLM(q,Qe) (6) 310

This process involves discerning between valu- 311

able and superfluous information. In other words, 312

we refine and distill these expansions into an op- 313

timized query expansion qeo, which is then ap- 314

pended to the original query q, enhancing the qual- 315

ity of sparse retrieval outcomes. 316

Throughout these stages, AGR capitalizes on the 317

LLMs’ analytical and generative capabilities, of- 318

fering a novel paradigm for answer-oriented QE, 319
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enhancing the overall performance in OpenQA sce-320

narios. Overall, AGR is a three-step prompting321

method based on LLMs, and note that the whole322

process of AGR does not require additional training323

or fine-tuning of any models, it only relies on the324

inherent capabilities of LLMs to generate enhanced325

QEs in a zero-shot context.326

4 Experiments327

4.1 Experimental Setup328

Datasets For the evaluation datasets, we select329

four diverse datasets pertinent to OpenQA task,330

including Natural Questions (NQ) (Kwiatkowski331

et al., 2019), TriviaQA (Trivia) (Joshi et al., 2017),332

WebQuestions (WebQ) (Berant et al., 2013) and333

CuratedTREC (TREC) (Baudis and Sedivý, 2015).334

The former two datasets are utilized for baselines335

involving supervised approaches and the latter are336

employed to assess all baseline methods under337

an unsupervised zero-shot evaluation setting. De-338

tailed introduction of datasets refers to Appendix A.339

Given that datasets relevant to OpenQA frequently340

encompass questions annotated with gold-standard341

answers as benchmarks for evaluation (Rajpurkar342

et al., 2016), we have consequently established the343

task paradigm as Retriever-Reader.344

Details of AGR We choose Mistral-7B (Jiang345

et al., 2023) as the backbone model of AGR,346

and more analysis on different models, including347

LLama-3B, LLama2-7B and LLama2-13B (Tou-348

vron et al., 2023), are available in Appendix B.1.349

Besides, we utilize the SamplingParams class350

from vLLM (Kwon et al., 2023), allowing for pre-351

cise and optimized settings across different phases.352

Specifically, temperature is configured at 0.2 for353

the Analyze and Refine phases, and adjusted to354

0.8 for the Generate phase. Considering the con-355

straint of the LLMs’ token input capacity limitation,356

in the Generate phase, the number of generated357

query expansion n is fixed at 15, and the count358

of top-ranking documents retrieved for contextual359

reference k is set at 3. The impacts of these two360

hyper-parameters are detailed in Section 4.3. In361

the Refine phase, the number of generated query362

expansion m is determined to be 10, aiming for a363

balance between accuracy and practicality. As for364

inference resources, our experiment employs four365

NVIDIA L40 48GB GPUs. Other detailed settings366

are provided in the Appendix B.2.367

Baselines We compare AGR with three types of 368

approaches as baselines: 369

1) Direct retrieval without QE: BM25 (Robert- 370

son and Zaragoza, 2009) is a standard term- 371

matching sparse retriever, and DPR (Karpukhin 372

et al., 2020) is a standard dense retriever based on 373

BERT model. 374

2) Supervised QE models: GAR (Mao et al., 375

2021) adopts three types of query expansion gener- 376

ators based on trained seq2seq models, EAR further 377

uses trained query rankers to reorganize the QEs, 378

achieving SOTA performance on NQ and TriviaQA 379

datasets as shown in Chuang et al. (2023). 380

3) LLM-based QE for IR tasks: Query2doc 381

(Q2D) (Wang et al., 2023) uses LLMs to gener- 382

ate answer-oriented passages as QEs, and Q2E 383

(query2keywords) (Jagerman et al., 2023) gener- 384

ates topic-oriented keyword information as QEs. 385

To ensure a unified basis for comparison, all QE 386

methods employ BM25 model for retrieval, and 387

all LLM-based QE baseline methods utilize the 388

Mistral-7B as the backbone model. 389

Metrics Akin to prior research (Brown et al., 390

2020; Mao et al., 2021), we adopt Retriever-Reader 391

task paradigm and introduce two principal metrics. 392

Hit@k for retrieval accuracy, is utilized for assess- 393

ing the effectiveness of retriever, and it is defined 394

as the proportion of questions/queries for which 395

at least one answer span is contained within the 396

top-k retrieved passages. EM@k for exact match 397

score, is employed to evaluate the results of the 398

Reader, serving as an end-to-end performance in- 399

dicator. The score is the proportion of instances 400

where the predicted answer span exactly matches 401

one of the true answers after string normalization. 402

4.2 Results 403

Retrieval evaluations The retrieval evaluation 404

results, as presented in Table 1, concisely encapsu- 405

late our principal findings, which can be summa- 406

rized as follows: 407

1) Our zero-shot AGR is on par with the su- 408

pervised strong baseline EAR-RD∗. This equiva- 409

lence is demonstrated in Table 1. The AGR method, 410

closely matching the performance of SOTA super- 411

vised method EAR-RD∗ within a 1% margin, show- 412

cases its effectiveness. Particularly noteworthy is 413

AGR’s improved performance over the supervised 414

approach DPR∗ on the TriviaQA dataset, highlight- 415

ing its capability to understand search intent with- 416

out relying on supervised training. 417
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Method Natural Questions TriviaQA WebQuestions CuratedTREC

Hit@5 Hit@100 Hit@5 Hit@100 Hit@5 Hit@100 Hit@5 Hit@100

In-domain Supervised Settings

DPR∗ 68.3 86.1 72.7 84.8 62.8 82.2 66.6 89.9
GAR∗ 60.8 84.7 71.8 85.3 - - - -
EAR-RI∗ 63.2 85.9 73.4 85.9 - - - -
EAR-RD∗ 69.3 86.5 77.6 86.4 - - - -

Out-domain Zero-shot Settings

BM25 43.8 78.3 67.7 83.9 41.8 75.5 64.3 89.9
DPR+ - - - - 52.7/56.8 78.3/81.2 74.1/78.8 92.1/93.7
GAR+ -/40.00 -/75.01 61.54/- 81.17/- 50.0/45.5 79.0/76.7 70.9/71.5 92.4/91.5
EAR-RI+ -/45.87 -/79.09 67.80/- 83.99/- 53.7/49.6 81.3/79.6 73.5/74.2 92.9/92.5
EAR-RD+ -/ 50.58 -/78.92 70.77/- 84.05/- 59.5/54.5 81.3/79.7 80.0/79.8 93.7/93.1
Q2D 59.71 84.32 72.89 85.04 64.22 83.26 84.26 94.38
Q2D+PRF 61.41 82.99 73.69 84.98 63.43 82.18 84.58 93.80
Q2E 51.72 79.63 68.46 82.81 57.08 78.54 76.65 91.78
Q2E+PRF 50.72 76.90 67.06 80.95 55.26 76.03 74.92 90.34
AGR (ours) 68.47 85.76 77.47 86.01 67.07 83.51 88.62 94.96

Table 1: Hit@k retrieval accuracy (%) on test sets across four datasets. Methods marked with ∗ denote supervised
in-domain settings, while those with a plus + indicate cross-domain settings (transferred from NQ/TriviaQA).

2) AGR showcases superior generalization418

abilities over all baseline methods. As substan-419

tiated in Table 1, on the former two datasets our420

experiment conducts a cross-domain evaluation of421

GAR and EAR methods, and for the subsequent422

two datasets we incorporate cross-domain results423

of DPR, GAR, and EAR from (Chuang et al., 2023)424

(transfer from NQ/TriviaQA). These results are425

considered representative of zero-shot out-domain426

settings for supervised methods. Evidently, AGR427

demonstrates consistently superior performance428

over all baseline methods in zero-shot out-domain429

settings across various datasets, manifesting its abil-430

ity of generalization beyond domain constraints.431

3) AGR outperforms other LLM-based QE432

methods in IR tasks due to its QA-specific de-433

sign. This conclusion is drawn from the compari-434

son of LLM-based QE methods, where AGR con-435

sistently leads in performance against counterparts436

like Query2Doc, Q2E, and their variants. Surpass-437

ing the average Hit@5/100 retrieval accuracy of438

these methods by significant margins, AGR con-439

firms its design specifically tailored for QA task, as440

opposed to general IR objectives.441

End-to-end QA evaluations To further com-442

pare AGR method with all baseline approaches443

across the complete end-to-end OpenQA task, we444

uniformly employ the Fusion-in-Decoder (FiD)445

model (Izacard and Grave, 2021) pre-trained on446

NQ/TriviaQA datasets as the reader component.447

As illustrated in Table 2, we can obtain observa-448

tions from the results as follows: 449

Method EM@1 EM@10 EM@100

NQ TQ NQ TQ NQ TQ

GAR* 28.14 40.38 42.00 62.51 49.61 69.8
EAR-RI* 28.84 48.26 44.54 65.61 51.25 71.16
EAR-RD* 36.20 57.14 46.73 67.59 51.94 71.46

GAR+ 13.13 38.70 29.78 55.78 42.47 65.83
EAR-RI+ 14.99 41.96 32.58 61.96 45.70 69.46
EAR-RD+ 20.42 48.84 47.01 63.53 45.71 69.63
Q2D 28.14 55.56 42.05 66.59 50.33 71.40
Q2D+PRF 31.52 58.07 42.16 66.07 49.61 70.49
Q2E 21.99 46.95 36.26 61.91 46.73 68.15
Q2E+PRF 23.21 48.82 34.46 60.02 44.40 66.29
AGR (ours) 37.73 61.64 47.01 69.29 51.50 72.24

Table 2: Exact-match scores for end-to-end QA on NQ
and TriviaQA (TQ) test sets. EM@1/10/100 denote the
scores when top-1/10/100 documents are input to FiD.

1) AGR secures a dominant position in end- 450

to-end EM scores across various datasets. This 451

view is supported by the end-to-end evaluation re- 452

sults conducted on the NQ/TriviaQA datasets. The 453

results indicate that our AGR method almost con- 454

sistently outperforms all other baseline approaches 455

in terms of end-to-end effectiveness. This includes 456

surpassing the SOTA in-domain supervised method 457

EAR-RD∗, which is notable given that its retrieval 458

accuracy marginally exceeds AGR. This compari- 459

son underscores AGR’s comprehensive proficiency, 460

especially in demonstrating a performance advan- 461

tage in end-to-end OpenQA task. 462

2) With fewer input documents, AGR’s end- 463

to-end EM score advantage grows more distinct. 464
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This conclusion is derived through conducting mul-465

tiple comparative tests by varying the input param-466

eters of the FiD reader. In these experiments, we467

used top-1/10/100 retrieved passages – standard468

quantity parameters for FiD – as inputs to compute469

the EM scores for each QE method accordingly.470

Significantly, with the reduction in the number of471

input passages from 100 to 1, the AGR method’s472

superiority becomes progressively evident. This473

suggests that the passages retrieved through AGR474

not only demonstrate exceptional retrieval accuracy475

but also rank higher in delivering gold passages476

rich with answer content, thereby facilitating FiD477

in extracting more accurate responses.478

4.3 Analysis479

Ablation study To better comprehend the utility480

of AGR, we conduct various experiments on the NQ481

dataset analyzing the impact and effectiveness of482

each component within this architecture as follow:483

1) Necessity of individual components: In this484

experiment, we establish three variants to investi-485

gate the necessity of each component: a) w/o Ana-486

lyze: Our proposed framework without the analysis487

step, replaced by the generate-refine pipeline; b)488

w/o CRs: Our proposed framework without in-489

tegrating contextual references (CRs) in second490

round sampling generation; c) w/o Refine: Our491

proposed framework without the refinement step,492

directly samples a QE from candidates.493

Method Hit@5 EM@1

AGR 68.47 37.73

w/o Analyze 67.85 36.59
w/o CRs 64.07 30.88
w/o Refine 67.64 37.09

Table 3: Ablation results of AGR on NQ.

From Table 3, we can draw the following con-494

clusions: a) The performance of AGR on the NQ495

datasets is better than these variants lacking com-496

ponents of this method, affirming the effectiveness497

of our proposed Analyze, Generate, and Refine498

framework. A plausible explanation involves de-499

composing the problem into sub-questions and em-500

ploying multi-step progressive prompting. This501

can amplify LLMs’ multi-task reasoning capabili-502

ties, thereby facilitating the generation of improved503

answer-oriented QEs specific for OpenQA task. b)504

When comparing the performance among different505

variants, we observe that the variant w/o CRs per-506

forms the worst, highlighting the critical role of507

contextual references for enhancing the quality of 508

subsequent sampling generation. By further incor- 509

porating the refine step, it can eliminate irrelevant 510

or erroneous information from the initial round of 511

sampling generation, thus enhancing the overall 512

performance of the AGR framework. 513

2) Quantitative Assessment of Generation and 514

Refinement: At this assessment stage, we statisti- 515

cally analyze the QEs generated across three dis- 516

tinct stages, to quantitatively assess the impact of 517

integrating contextual references in the sampling 518

generation process between Qe and Qe, as well as 519

the effect of the refinement process between Qe 520

and qeo. A QE is considered high-quality if the 521

retrieval results include the gold passage within the 522

top-5 documents; otherwise, it is categorized as 523

low-quality. The proportion of high-quality QEs 524

per query instance then acts as our fundamental 525

unit of statistical measurement. 526

Figure 3: Trend analysis of the ratio of high-quality QEs
during the generation and refinement of AGR.

Specific statistical results are depicted in Fig- 527

ure 3. We observe an increasing trend where most 528

intermediate data shifted towards higher proportion 529

rates of high-quality QEs after undergoing the gen- 530

eration and refinement processes. This trend sug- 531

gests that the processes are effective at filtering out 532

some irrelevant or erroneous information produced 533

during the initial sampling generation, thereby im- 534

proving the quality of the QE. Conversely, less 535

intermediate data moved towards lower proportion 536

rates, indicating that an overabundance of irrele- 537

vant or erroneous information can negatively im- 538

pact subsequent generation attempts. 539

To further quantify the process, we track the 540

change in the proportion of high-quality QEs across 541

three stages for each query, estimating the proba- 542

bility of transformation: With a threshold set at 0.6, 543

data above this threshold had a 95.1% probability 544

of resulting in high-quality QEs after processing, 545
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Query: what is the main mineral in lithium batteries? Answer: lithium, Lithium

EAR-RD∗

QE The mineral lithium chloride is the most abundant component of lithium ion; as such , it is often considered ...

Retriever
Title: Lithium as an investment Text: Increased tendency for costlier components to be targeted for replace-
ment by new technologies. Current projections of the global market for lithium-iron batteries range from $26
billion in 2023 (Navigant Research). It’s most frequently found in deposits such as spodumene and pegmatite...

Reader Answer: spodumene

AGR

QE The main minerals used in the production of lithium for lithium batteries are spodumene, petalite, lepidolite ...

Retriever
Title: Lithium iron phosphate Text: Lithium iron phosphate, also known as LFP, is an inorganic compound
with the formula. It is a gray, red-grey, brown, or black solid that is insoluble in water. The material has att-
racted attention as a candidate component of lithium iron phosphate batteries. It’s targeted for use in power...

Reader Answer: Lithium

Table 4: An example of end-to-end QA via EAR-RD∗ and AGR on NQ dataset. Although both top-1 retrieved
passage is gold passage, the answer obtained by EAR-RD∗ is wrong due to the quality of gold passage.

whereas data below had only a 31.03% probabil-546

ity. These findings highlight the limitations of the547

effectiveness in the Generate and Refine phase, in-548

dicating the need for quality control at each stage549

to obtain the final high-quality QE.550

Hyper-parameter sensitivity We proceed to ex-551

plore the sensitivity of our method’s performance552

to hyper-parameters, primarily focusing on two piv-553

otal sets in the Generate phase: a) the number of554

generated query expansion, denoted as "n", and555

b) the number of top-ranking documents retrieved556

from contextual references, labeled as "k". Due to557

constraint of the LLMs’ token input capacity limita-558

tion, the range for both is capped at their maximum559

values, with "n" up to 15 and "k" up to 5.560

Figure 4: The impacts of hyper-parameter on NQ
dataset. In experiments concerning "n", "k" is fixed
to 3, and for the assessment of "k", "n" is fixed to 15.

The experiments presented in Figure 4 demon-561

strate that within the constraints of the model’s562

token input capacity, increasing "n" enhances re-563

trieval accuracy. This suggests that employing a564

more powerful model with a larger token input ca-565

pacity could yield even better results. On the other566

hand, marginal gains diminish as k increases, sug-567

gesting a point of diminishing returns in terms of568

retrieval accuracy enhancement. These findings569

clearly illustrate the AGR method’s performance570

sensitivity to these two hyper-parameters. 571

Case illustration As demonstrated by the results 572

in Tables 1 & 2, although AGR marginally lags 573

behind SOTA in-domain supervised method EAR- 574

RD∗ in terms of retrieval accuracy, it exhibits better 575

end-to-end EM scores, nearly universally surpass- 576

ing EAR-RD∗ across various setting. This phe- 577

nomenon underscores the adaptability of AGR’s 578

design for end-to-end OpenQA. As illustrated by 579

an example in Table 4, it can be observed that the 580

top-1 documents retrieved by both methods contain 581

the question’s answer, marked as the gold passage, 582

while the gold passage retrieved by AGR exhibits a 583

stronger relevance to the answer and subject matter 584

compared to EAR-RD∗, allowing the reader to have 585

a better chance to extract the correct answer. 586

5 Conclusion 587

In this paper, we introduce a multi-step generative 588

framework AGR with analyze, expand and refine 589

phases, which deeply mines the inherent knowl- 590

edge of LLMs for answer-oriented query expansion. 591

AGR eschews the need for additional in-domain 592

data for supervised training and demonstrates sig- 593

nificantly higher retrieval accuracy compared to 594

state-of-the-art QE methods under out-domain zero- 595

shot scenes. Moreover, when integrated with the 596

Fusion-in-Decoder as the reader component, AGR 597

achieves a nearly comprehensive lead in end-to- 598

end performance, showcasing its effectiveness on 599

OpenQA task. In future work, we plan to explore a 600

more comprehensive framework, further integrat- 601

ing the requirements of the reader component to 602

achieve a unified architecture and enhance the end- 603

to-end performance for OpenQA task. 604
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Limitations605

Firstly, as shown in our experimental analysis, the606

effectiveness of our proposed AGR, an LLMs-based607

QE generation framework, is intrinsically linked608

to the quality of the underlying backbone model.609

It is needful to find out a suitable LLM to fully610

demonstrate the AGR’s capacity, and carry out fur-611

ther investigations with more types of LLMs, like612

GPT-4. Secondly, although AGR avoids additional613

supervised training data and conserves computa-614

tional resources, its reliance on multiple inference615

generations with LLMs introduces certain latency.616

Therefore, further exploration of strategies to ac-617

celerate LLM inference and reduce overall latency618

are left for future work. Finally, the generations619

from LLMs are associated with the input prompts.620

Although we have tested multiple configurations to621

achieve the current performance, the possibility of622

better configurations exists.623
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A Dataset Information911

Natural Questions (NQ) (Kwiatkowski et al.,912

2019) introduced as a question answering dataset,913

is comprised of real, anonymized, aggregated914

queries submitted to the Google search engine. The915

dataset includes 79,168 training examples, 8,757916

development examples, and 3,610 test examples.917

TriviaQA (Trivia) (Joshi et al., 2017) is a sub-918

stantial and realistic text-based question answer-919

ing dataset, which encompasses 950,000 question-920

answer pairs derived from 662,000 documents921

sourced from Wikipedia and the web. The dataset922

is composed of 60,413 training examples, 8,377923

development examples, and 11,313 test examples,924

providing a diverse range of scenarios that test the925

depth and adaptability of QA systems.926

WebQuestions (WebQ) (Berant et al., 2013) de-927

signed for question answering tasks, utilizes Free-928

base as its underlying knowledge base and con-929

sists of 6,642 question-answer pairs. This dataset930

was developed by sourcing questions through the931

Google Suggest API, followed by obtaining corre-932

sponding answers via Amazon Mechanical Turk. It933

is structured with an original split of 3,778 training934

examples and 2,032 testing examples. All answers935

are defined as Freebase entities.936

CuratedTREC (TREC) (Baudis and Sedivý,937

2015) is a reference question dataset for bench-938

marking Question Answering systems created from939

the TREC-8 (1999) to TREC-13 (2004). It com-940

prises a concise yet focused collection of 694 anno-941

tated data entries, making it an ideal resource for942

evaluating the precision and effectiveness of QA943

systems under test conditions.944

B Experimental Details945

In this appendix section, we elaborate on the more946

details of the model parameter settings employed947

during the inference process of the AGR method,948

along with the precise prompts used in all LLM-949

based QE methods throughout our experiments.950

B.1 Backbone Model951

We conducted a preliminary experiment to iden-952

tify the most appropriate model foundation, eval-953

uating the performance of prominent LLMs in-954

cluding Llama-3B, Llama2-7B, Llama2-13B, and955

Mistral-7B. The Base method was designed for di-956

rect answer-oriented text generation, whereas the957

AGR method was simplified, excluding contextual958

Method Prompt

Q2E

"""Write a list of keywords for the
given query:

Query: {query}

Keywords:"""

Q2E+PRF

"""Write a list of keywords for the
given query based on the context:

Context:
{Q2K_PRF_Doc_1}
{Q2K_PRF_Doc_2}
{Q2K_PRF_Doc_3}
Query: {query}

Keywords:"""

Q2D

"""Write a passage that answers the
given query:

Query: {query}

Passage:"""

Q2D+PRF

"""Write a passage that answers the
given query based on the context:

Context:
{Q2D_PRF_Doc_1}
{Q2D_PRF_Doc_2}
{Q2D_PRF_Doc_3}
Query: {query}

Passage:"""

Table 5: Prompts for Q2D, Q2E and their variants.
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references integration, to expedite evaluation. No-959

tably, prompt adaptability varied across models to960

ensure compatibility, maintaining a consistent over-961

all framework.962

Figure 5: Accuracy of backbone models on NQ.

Experimental results, depicted in Figure 5 show963

that the effectiveness of the AGR method is intrinsi-964

cally linked to the size and capabilities of underly-965

ing model. Under the Llama-3B setup, AGR under-966

performed due to the model’s limited grasp of com-967

plex prompts. While it consistently achieves im-968

provements on larger models, with enhancements969

scaling alongside model capabilities. This high-970

lights that models with greater robustness and ad-971

vanced semantic understanding better complement972

the AGR approach. Specifically, the Mistral-7B973

model outshines Llama2-7B and Llama2-13B in974

reasoning tasks, in line with the findings of Jiang975

et al. (2023) research.976

B.2 Additional Parameter Details977

For the detailed configuration of model parameters978

within the AGR framework, we utilize the Sam-979

plingParams class from vLLM (Kwon et al., 2023)980

to facilitate precise and optimized settings across 981

different stages. Key parameters include "tempera- 982

ture" set at 0.2 during the Analysis and Refinement 983

phases and adjusted to 0.8 for the Sampling Gener- 984

ation phase. "max_tokens" is configured to 150 for 985

Analysis, 100 per item in Sampling Generation, and 986

300 for Refinement. "repetition_penalty" is consis- 987

tently set at 1.1 across all phases, and "top_p" is 988

maintained at 1.0. 989

The configuration of these model parameters is 990

established through testing with a very limited set 991

of sample data from NQ test dataset. However, 992

given that the initial parameter choices were based 993

on empirical estimates, there remains the potential 994

for undiscovered, more effective parameter combi- 995

nations. 996

B.3 Prompts 997

In this subsection, we provide a thorough descrip- 998

tion of the prompts utilized in all LLM-based QE 999

methods employed in our experiment. Table 5 de- 1000

tails the prompts used in Q2D, Q2E, and their vari- 1001

ants, while Table 6 displays the prompts applied 1002

in each sub-module of AGR. The objective of this 1003

subsection is to clarify the precise nature of the 1004

prompts, facilitating a deeper understanding of our 1005

study. It is important to note that these prompts 1006

are configured for the Mistral-7B model, and slight 1007

adaptability adjustments may be necessary when 1008

applying them to other models. 1009

B.4 Contextual References 1010

In the experiment of AGR, we explore the im- 1011

pact of deduplicating the retrieved contextual ref- 1012

erences before proceeding with subsequent steps. 1013

The final outcomes reveal that the Top-5 recall rate 1014

stood at 68.37%, marginally different from the non- 1015

deduplicated result of 68.47%. However, the end- 1016

to-end Top-1 EM score was 36.52, significantly 1017

lower than the non-deduplicated result of 37.73. A 1018

possible explanation is that, without deduplication, 1019

the gold passages, being repeatedly retrieved across 1020

different QE candidates. This makes gold passages 1021

more significant informational weight, thereby ben- 1022

efiting the overall end-to-end answer generation. 1023
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Sub-Modules Prompt

AGR-Analyze

"""Question: {query}
Key Phrases: {answer_kp_analysis}
Do not attempt to explain or answer the question, just provide the Question
Analysis.

Expected Output:
"Question Analysis": Question Analysis based on Question and Key Phrases
Output:"""

AGR-Generate

"""Question: {query}
Question analysis: {answer_analysis}

Based on the retrieval context and your available knowledge, create a possibly
correct and concise answer that directly answers the question "{query}".

Expected Output:
"Answer": answer with a detailed context
Output:"""

AGR-Generate with
contextual references

"""Question: {query}
Retrieval Context: {AGR_Retrieval_Docs}

Based on the analysis and your available knowledge, create a possibly correct
and concise answer that directly answers the question "{query}".

Expected Output:
"Answer": answer with a detailed context
Output:"""

AGR-Refine

"""Question: {query}
Candidate answer list: {Candidate_Answer_List}

Based on the candidate answers and your available knowledge, please eval-
uate the accuracy and reliability of each candidate answer. Identify any mis-
information or incorrect facts in the answers. Then, generate a correct and
concise response that best answer the question, refer to the information
from the candidate answers that you have verified as accurate.

Expected Output:
"Best Answer": a concise answer for the question "{query}"
Output:"""

Table 6: Prompts for AGR Sub-Modules.

14


	Introduction
	Related Work
	Query Expansion
	Large Language Models

	Methodology
	Overview
	Analysis of Original Query
	Generation of Candidate QEs
	Refinement for Optimal QE

	Experiments
	Experimental Setup
	Results
	Analysis

	Conclusion
	Dataset Information
	Experimental Details
	Backbone Model
	Additional Parameter Details
	Prompts
	Contextual References


