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Abstract

Graph Prompt Learning (GPL) has emerged as a promising paradigm that bridges
graph pretraining models and downstream scenarios, mitigating label dependency
and the misalignment between upstream pretraining and downstream tasks. Al-
though existing GPL studies explore various prompt strategies, their effectiveness
and underlying principles remain unclear. We identify two critical limitations:
(1) Lack of consensus on underlying mechanisms: Despite current GPLs have
advanced the field, there is no consensus on how prompts interact with pretrained
models, as different strategies intervene at varying spaces within the model, i.e.,
input-level, layer-wise, and representation-level prompts. (2) Limited scenario
adaptability: Most methods fail to generalize across diverse downstream sce-
narios, especially under data distribution shifts (e.g., homophilic-to-heterophilic
graphs). To address these issues, we theoretically analyze existing GPL approaches
and reveal that representation-level prompts essentially function as fine-tuning
a simple downstream classifier, proposing that graph prompt learning should fo-
cus on unleashing the capability of pretrained models, and the classifier should
adapt to downstream scenarios. Based on our findings, we propose UniPrompt, a
novel GPL method that adapts any pretrained models, unleashing the capability of
pretrained models while preserving the input graph. Extensive experiments demon-
strate that our method can effectively integrate with various pretrained models and
achieve strong performance across in-domain and cross-domain scenarios.

1 Introduction

Graph Prompt Learning (GPL) [[1, 2], which aims to design diverse graph prompt strategies, has
emerged as a promising and effective alternative paradigm that bridges between graph pretrain-
ing [3, 4] and downstream scenarios [3l], overcoming the limitations of label dependency and the
misalignment between upstream pretraining and downstream tasks [[6]. Most GPLs freeze the pa-
rameters of the pretrained model and tune specific prompt module. Due to its compatibility with
various types of graphs, such as general graphs [6} [7], Knowledge Graphs (KGs) [8} 9} [10] and Text-
Attribute Graphs (TAGs) [[L1,112], GPL demonstrates strong universality and transferability, thereby
improving the fields of few/zero-shot graph learning [12} [13]], unified task learning [[14} [15} [16],
cross-domain graph learning [[17, 18], and promoting the development of Graph Foundation Models
(GFMs) [19} 120, 21]].

"Equal contribution.
*Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



Pretrained H Prompt

él‘ompt Pu(G) Pretrain;li ; IItl 6
—’l Model l | - () Model 3% )=
o [l
|
|

i
|
|
T Prompt : T 173\1,(H)
g O&g’o K7 |
) lots :

g@‘}go oz / g o(’)tgo N
(a) ] Ot' S (C) l Ot' S

Figure 1: Three different graph prompting mechanisms: input-level prompt (left), layer-wise prompt
(middle), and representation-level prompt (right).

( Pretrained Model ;>I¢)

Most GPLs can be divided into three categories according to how the prompts are integrated into the
pretrained models, as illustrated in Figure[T} Input-level GPLs (Figure([Th), like feature prompt [7] and
edge prompt [22, 23], insert prompt modules or soft prompt before the pretrained models, effectively
modifying the input graph to align with upstream distributions in pretraining. Representation-level
prompts (Figure[Tk), including task tokens [6] and prototypical subgraphs [24} [25]], applies prompts
to the representations generated by the pretrained models, formulating downstream tasks that align
with the pretrain objectives. Layer-wise prompt (Figure[Ip) [15| [26] combines the prompt with each
layer inside the pretrained model, learning the distribution and propagation patterns in each layer.
In addition, some works [26} [27]] also explore hybrid strategies that place various prompts across
different layers or components (input-, representation-level) of the model.

Despite the success of these explorations, our observations indicate that GPLs often experience
performance instability or even negative optimization, which also be reported in recent studies [2]].
Moreover, the existing prompt methods are complex and diverse. There remains a lack of clear
understanding of why graph prompt learning works. Through our analysis of existing methods, we
identify two major issues: 1). Lack of consensus on underlying mechanisms: Although various
graph prompt strategies have advanced the field, there remains rare unified understanding of how
these prompts interact with pretrained models. As shown in Figure[I] diverse mechanisms such as
input-level, representation-level, and layer-wise prompts achieve promising performance. However,
they influence the models in different ways, and the underlying interaction mechanisms are still
unclear. 2). Limited scenario adaptability: Most GPLs struggle to achieve good performance on
different pretrained models even in the in-domain setting. As shown in Figure 2} only fine-tuning a
classifier can achieve or exceed the performance of existing GPLs. In addition, these methods have
difficulty achieving excellent performance in a variety of downstream scenarios, especially when the
data domains of upstream and downstream scenarios are different (e.g., from a homophilic pretraining
graph to a heterophilic downstream graph). To summarize: From the prompting mechanism to the
downstream scenario, existing graph prompt learning methods exhibit an adaptation gap.

To investigate the underlying mechanisms of GPL, we conduct a motivation experiment and find
that existing representation-level prompt GPLs fail to consistently adapt well to different pretrained
models. Moreover, they show no significant performance improvement compared to linear probe
(only fine-tune a classifier), which achieves good and stable results. This motivates us to explore the
relationship between different types of prompts and linear probe. Through theoretical analysis and
discussions, we demonstrate that the representation-level prompt is essentially equivalent to linear
probe. This primarily serves to adapt the pretrained model to downstream tasks, which focuses on
fitting the outputs of the pretrained models to the downstream labels, struggling to leverage the unique
benefits of prompts. As for layer-wise methods, their reliance on layer-wise representations of the
pretrained model, combined with their design complexity, makes them unsuitable. In contrast, input-
level prompts avoid the limitations and preserve the advantages of prompting, they are the promising
among the three categories. Therefore, we propose a perspective: graph prompt learning should focus
on unleashing the capability of pretrained models, and the classifier adapts to downstream scenarios.

Based on our perspective, we propose UniPrompt, a novel GPL method that adapts any pretrained
models, leveraging prompt graph while preserving the original structure to unleash the capability of
pretrained models. Specifically, we construct a kNN graph as the initial prompt graph and adaptively
optimize edge weights to guide message passing across nodes. To preserve the input graph, we
introduce a bootstrapping strategy that integrates the prompt graph into the original graph topology,
preventing model collapse and overfitting. Our main contributions can be summarized as follows:



1. We identify two key issues in existing GPLs: lack of consensus on underlying mechanisms, and
limited scenario adaptability. We propose that graph prompt learning should focus on unleashing the
capability of pretrained models, and the classifier adapts to downstream scenarios.

2. We propose UniPrompt, a novel universal GPL method that adapts any pretrained models. This
method leverages a learnable prompt graph while preserving the original structure to unleash the
capability of pretrained models.

3. We conduct extensive experiments on homophilic and heterophilic datasets, evaluating in-domain
and cross-domain performance under few-shot settings. Experimental results demonstrate that our
method consistently outperforms state-of-the-art GPL baselines.

2 Notations and Preliminary

General Graphs. Given a graph G = (V,&,X,Y), where V = {vy,v9,--- ,un} is the set of
nodes, N = |V|,and £ C V x V is the set of edges. These nodes are associated with feature matrix
X € RVXF X, € RF is the feature of v;. The edges can be represented by adjacency matrix
A € {0,1}V*N and A;; = 1iff (v;,v;) € €. Each node v; is associated with a label y; € Y,
where Y denotes the set of all possible class labels. We use P(-) to denote the probability distribution,
primarily for distinguishing concepts rather than performing mathematical derivation.

Fine-Tuning. In the pretrain-finetune paradigm, given a pretrained graph encoder fy and a down-
stream trainable projection head g4, both parameters 6 and ¢ are jointly optimized on a downstream
dataset D = {(A,X,Y)}. The objective is to maximize the log-likelihood of label predictions,
which can be formulated as:

N
max = 5" 3 log P (i | g (fo(A, X)), (1)

6.6 |D| (A,X,Y)eD i=1

where fy(A, X); denotes the node representation of the node v;. As a special case, when freezing 6
(i.e., restricting max), this reduces to linear probing where only the projection head g is adapted.

Graph Prompt Learning. Compared to fine-tuning, graph prompt learning keeps the pretrained
encoder fy frozen while introducing trainable prompt parameters ¥. The optimization objective for
all graph prompt learning methods can be expressed as:

N
1 .
max E E log P (y; | Predicty (A, X, v;; fo)) , @

|D| (AX,)Y)eD =1

where D = {(A,X,Y)} is a downstream dataset, ¥ represents all trainable prompt parameters, fy
is the frozen pretrained encoder. Predicty (+) is a unified prediction function that takes the input graph
(A, X), node v;, the pretrained encoder fy, to predict the label of node v;.

For input-level prompt, ¥ acts on the input (A, X), transforming it before it enters fy. For layer-wise
prompt, ¥ is integrated within the layers of fy. For representation-level prompt, ¥ operates on the
representations from fy, often as part of the classifier, directly influencing the downstream tasks.

3 Motivation Experiments and Analysis

Although graph prompt learning is theoretically distinguished from fine-tuning by freezing the
parameters of the pretrained model to retain pretrained knowledge, this seemingly suggests a clear
boundary between "unleashing pretrained knowledge" and "adapting to downstream scenarios",
which contradicts the problem raised in our Introduction. However, we refute this claim through an
experiment, demonstrating that prompt-based methods fall into a "pseudo-adaptation" trap.

To investigate whether graph prompt learning suffers from adaptation bias, we conduct the fol-
lowing experiment. As illustrated in the Figure [2] we select classic GPL methods, GPPT [|6] and
GraphPrompt [24]], and compare them with fine-tuning that only optimizes the classifier. We employ
widely used pretrained models: DGI [28]], GRACE [29], and GraphMAE [30], and we keep all other
parameters consistent, and observe the differences in downstream training between prompt learning
and fine-tuning. Our experimental results reveal that GPPT exhibits significant incompatibility when
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Figure 2: Comparison of fitted normalized loss curves and 1-shot performance across three pretrained
models on the Cora dataset. Fine-tune(C) denotes linear probe, while GPPT and GraphPrompt are
two GPL methods. Shading indicates the standard deviation of the sliding window.

switching pretrained models, whereas GraphPrompt maintains stable performance across different
pretrained models. Another observation is that even though GraphPrompt shows good convergence
trends, its performance still falls short of the simple fine-tuning approach in many scenarios, which
remains robust across different pretrained models and even outperforms GPL methods in some cases.

This suggests that different graph prompt learning methods heavily depend on the design of the
pretrained models. When confronted with varying pretrained models, they often demonstrate incom-
patibility or suboptimal performance compared to fine-tuning. This raises an important question: Do
existing graph prompt learning methods work due to the design of the prompt algorithm, or are they
merely benefiting from certain key components in the pretrained model? The answer remains unclear.
However, our observations align with prior research [2], when pretrained models are swapped, many
GPL methods underperform, while simple fine-tuning can achieve superior results.

Thus, we challenge the current objectives of GPLs: Have existing studies truly succeeded in dis-
tinguishing graph prompt learning from fine-tuning? To get deeper insight into the performance
differences across various prompt spaces, we focus on a key question: do these differences stem from
the prompts’ ability to access pretrained knowledge, or from their capacity to adapt to specific tasks?
Therefore, we provide a theoretical analysis in this section to understand the underlying mechanisms.

4 Mechanism Relationship between Prompts and Classifier

Definition 4.1 Given a GNN encoder ¢(-;G) : V — RY, the representation set H = {h; € R? |
v; € V'}is encoded by ¢. The representation of v; is h; = ¢(v;; G). Then, we define the prompt
Sfunction T'(-) and classifier C(-) and baseline classifier Cy(-) as follows:

T():RY =5 RY, C():RY - RF, (1) : RY — R, 3)
where T(-) is parameterized as a linear transformation: T(h) = Wrh + by, with parameter
Wp € R¥*4 by e RY. C() is implemented as a linear classifier: C(h) = W/lh, with
We € REXE, Co(-) is implemented as a baseline classifier: Co(h) = W h, with W, € R4k,

Theorem 4.1 (Parameter Objective Equivalence) Given a linear prompt function T(h) = Wrh
+br and classifier C(h) = W Lh, the following properties hold:

1. Function Space Equivalence: There exists a linear classifier C'(h) = W/, h + ber such
that (C o T))(h) = C'(h) for all h;

2. Optimization Objective Equivalence: The optimization problems minw., b, wo L(C ©
T'(h),y) and minw_, b, L(C'(h),y) are equivalent in parameter space and gradient
update paths.

The function space equivalence is guaranteed by Proposition[4.1] and the optimization equivalence is
demonstrated in Proposition[4.2]

Proposition 4.1 (Function Space Equivalence) For any linear transformation T(h) = Wrh+bp
and classifier C(h) = W Lh, there exists an equivalent classifier C'(h) = W/, h + ber such that
(CoT)(h) =C'(h).



The detailed proof of Proposition[4.T]is provided in Appendix[A.T] It shows that a representation-level
prompt is functionally equivalent to linear probe C” in the function space. While this equivalence
has not been explicitly recognized in prior work. To further clarify the equivalence between a
representation-level prompt and linear probe in terms of optimization, we introduce Proposition 4.2

Proposition 4.2 (Optimization Objective Equivalence) For (C o T')(h) and C'(h), we consider
the same loss function L, the optimization problems minw, we b, L((C o T)(h),y) and
minw ., b, L(C’'(h),y) are equivalent in the parameter space.

The detailed proof of Proposition[4.2]is provided in Appendix [A.2] Here we give a brief explanation:
Proposition 4.2 demonstrates that the two different optimization formulations, representation-level
prompt and linear probe, lead to equivalent parameter updates during optimization. This theoretical
equivalence implies that both approaches perform the same underlying optimization. While practical
performance differences arise due to the structural complexity of prompts, which may introduce extra
challenges, as opposed to linear probe that is typically simpler in design and optimization.

Discussion 1. Theorem demonstrates that the representation-level prompt is fundamentally
equivalent to linear probe, only designing a simple classifier can yield satisfactory results. Therefore,
we suggest that graph prompt learning should focus on unleashing the capability of pretrained models,
rather than adapting pretrained models to specific downstream scenarios. Specifically, an effective
GPL approach should aim to combine the advantages of both mechanisms. Let ¢pre(; G) = AXW e

be a pretrained GNN encoder with fixed parameters W .. We define G = (A,X) = T(G), which
modifies the input graph to align the ¢pe. C(h) = W/ h adapts representations to downstream
labels. Then, the joint optimization of (C;, W) as follows:

min Lp = — Z y; log o <W2AXWPE) , (@]
We,g v; VL ‘

where Lp is the downstream task loss, typically cross-entropy loss. AXWPre ensures adaptation
with pretrained knowledge, and W ¢ minimizes £p to adapt downstream task.

Discussion 2. Building on Discussion 1, we propose that the input-level and layer-wise prompt
mechanisms align with equation 4] where jointly optimizing the prompts and the classifier leads to
better performance than using the classifier or prompt only. As for layer-wise methods, their reliance
on layer-wise representations of the pretrained model, combined with their design complexity, makes
them unsuitable. In contrast, input-level prompts avoid the limitations and preserve the advantages of
prompting, which applies prompts to the features or adjacency matrix, helping to reduce structural
differences and feature distribution shifts, thereby bridging the gap between upstream pretraining and
downstream scenarios. Therefore, we propose that graph prompt learning should focus on unleashing
the capability of pretrained models, and the classifier adapts to downstream scenarios. This viewpoint
clearly defines the distinct roles and mechanisms of the two crucial downstream components: the
prompt and the classifier.

5 Methodology

In this section, we present our method, UniPrompt. Our approach introduces an input-level graph
prompt that modifies the graph topology to better align the pretrained models with downstream
few-shot tasks. We first introduce an overview of our UniPrompt. For a given graph G = (A, X)
and a frozen pretrained model fy(-), our goal is to adapt it to a downstream task with only a few

labeled nodes V.. Instead of directly fine-tuning €, UniPrompt generates a topological prompt A
with learnable parameters W. This prompt is then iteratively fused with the original graph to create
a prompt graph, which is fed into the frozen encoder fy(-). Finally, a lightweight classifier g, (-) is
trained jointly with the prompt parameters ¥ on the labeled nodes.

Prompt Initialization. To enhance prompt adaptability for pretrained models, we consider both
in-domain and cross-domain scenarios. In the in-domain case where pretraining and prompt tuning
share the same data distribution, the classifier adapts the pretrained model to downstream scenarios
while the prompt aligns the pretrained model with downstream inputs. A special case occurs when
downstream data is heterophilic, even with matched distributions, the heterophily contradicts the
homophily assumption in pretrained models. Existing input-level and layer-wise prompts primarily



process features and tend to overfit in few-shot settings, failing to handle this scenario. In contrast,
topological relationships provide more direct and interpretable structural patterns. Therefore, we
propose an edge prompt strategy that uses kNN to generate a topological prompt with tunable edge
weights, formulated as:

I {Sij7 if Sij € top-k {SZ},

(A ) XiX;r
)i = . ‘
e 0,  otherwise.

S.. —
’ Y Ixillalixglle”

&)

where x;,x; € R¥ are the features for nodes v; and v;, and || - ||2 denotes the L2 norm. we select the
top-k edges as initial edges and serve as the basis for our learnable prompt.

Parameterization. Instead of treating the presence of edges as fixed, we introduce learnable
parameters to control the importance of each edge in the initial prompt graph. For every non-zero
edge (Ainit)ij, we associate a learnable scalar weight w;;, which forms our set of prompt parameters
¥ = {w;;}. To enable the model to select the most relevant prompt edges and ensure non-negative
weights, we apply a gating mechanism using a scaled and shifted ELU activation function. The
prompt adjacency matrix A is computed as:

Aij = ELU(’UJ” QL — Ot) + ]., (6)

where « is a hyperparameter controlling the shape of activation. This parameterization adds learn-
able edge gating mechanism that can adaptively prune (i.e., approach zero) or amplify topological
information for downstream scenarios.

Bootstrapped Prompt Integration. After generating the prompt topology A, the challenge lies
in its integration with the original adjacency matrix A. While an ideal scenario would involve
directly substituting A with A, this approach proves impractical, particularly in few-shot learning
settings, due to risks of severe overfitting and model collapse. Drawing inspiration from Graph
Self-Supervised Learning (GSSL) [31} 32] and Graph Structure Learning (GSL) [33], we adopt a
bootstrapped integration that iteratively updates the topology rather than directly replacing A. The
graph structure fed into the pretrained model at each training epoch is iteratively updated. Let A®
be the input adjacency matrix at training epoch ¢. The update rule is defined as:

AW = 7A=Y 4 (1 - 7)A, (7)

where A(©) = A is the original adjacency matrix, and the temperature coefficient 7 € [0, 1] controls
the balance between original and prompt topology.

Optimization Objective. For subsequent epochs, the input to the pretrained model becomes G =
(A, X). Through UniPrompt, we process G via the pretrained model to obtain node representations
H. Our empirical results in Figure [2|demonstrate that linear probe achieves comparable performance
to existing GPL methods in few-shot settings. This demonstrates the capability of the classifier
to adapt to downstream scenario, confirming its effectiveness in this configuration. Therefore,
we incorporate a learnable projection head g4 in the representation and jointly optimize it with
UniPrompt. The overall framework is optimized via the following equation:

. 1
Iénqglmv;L 2p (94 (fo (pw(A,X)),) vi), ®)

where y; is the ground-truth label of node v; € Vy, and ¢ is the downstream task loss, i.e., the

cross-entropy loss for classification tasks.

6 Experiments

6.1 Experimental Setup

We evaluate the effectiveness of UniPrompt ! using nine node classification datasets, including
three homophilic datasets Cora [34], CiteSeer [134]] and PubMed [34], and six heterophilic datasets
Cornell |35]], Texas (133, Wisconsin [35]], Chameleon [35]], Actor [|35]] and Squirrel [35]. For in-domain

'Code is available at: https://github.com/hedongxiao-tju/UniPrompt
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Table 1: In-domain node classification. Accuracy on 1-shot node classification tasks over three
pretrained models and nine datasets. The best results in each pretrain strategy are highlighted in bold,
and the runner-up with an underline.

Pretrain Methods Cora CiteSeer PubMed Cornell Texas Wisconsin Chameleon Actor Squirrel

Fine-tune 5022905 42.58i5s7 53904830 35.23,581 875041557 33911056 24424310 2136505 22.271410
Linear-probe 49.77:974 43.16:i760  55.76,045 34561560  36.21i1377  28.7ligss  23.6d1017 2133106y 22824410
GPPT 37594735 36.0ls633 51564661  29.014s32 31264551 28561650 22154250  19.8liies  20.71ii
GraphPrompt  49.70:1097 43.98:761 46324780 22294644 27.62:1108  22.62ig1s 23591054  19.84i579  22.85.4 5
All-in-ome  32.10i650 28.77:312  35.87a7s3  26.6711242 315311314  24.82:g77 22410555 19931503  21.61:5s7

5.2

beL GPF 51.681952 43.111576 53.094966  26.7618587 34.0411550  26.5948.04 23291367  20.3liaa7 21.6643.08
GPF+ 48.661650 4480, .6  B258:to70  25.234s76  28.55i1340  22.8%2i5m0 22981366  20.81ig0s 21561368
EdgePrompt 42.054636  38.5416.37 47.671473  28.004851 313241582 32.64111.87 23174378 21.36.97¢  21.994250
EdgePrompt+ 41744673 36.1016.15 46.734553  28.3T17.04 33.7541357  33.3811181  22.95457s 20.161265  21.741210

UniPrompt 499551045 45.5T1ses 57171711 511311306 48.2111505 58.7511541 23750,  25.381485 24.201555

Fine-tune 57.97.755 341811018 315211508 32231505 26224075  208l.,¢ 21161057
Linear-probe 57.87+760  34.92, 974 34.84, 1565 31664518 24.27 4384 20.53+3.11 20.8141 82

GPPT 47624756  27.8818.09 329741381 26.5318.72 25.461.5.43 19.204416  21.5642.30
GraphPrompt  49.91.0.g 53.635001  2320e5ss 301911565 23.071675  28.28u4ss  19.05:550 2248,

GRACE All-in-one 34.53+5.86 34.514745 22174540 273741379  36.1746.32 19.4640.29 19.041430  22.0342.46
GPF 48414517  36.7814.96 50.591718  28.214895 29.9811440 27584574 25251433 20204265  20.8043.05

GPF+ 47061514 44461676 51381719 289lisss  3149i149s 27491535 26.03143r 20131090 21414506
EdgePrompt 41954819  36.6546.07 48.20110.08  31.8546.19 292711199 38.624825 23231395  20.781267  21.7641.66
EdgePrompt+  45.32.903 35801637 50011110 32131740  31.95:6s1  38.68,7.5  23.79i351  20.63i205  20.971106

UniPrompt 447311078 AT.5311003 BT88,,50 528011108 45.3811057 50.9811538 267,55  26.23114 23.981055

Fine-tune 45921067  364Tisss 54291050 358241140 37.07i1a0s 335411016 22081310 2085, g5 21324005
Linear-probe 35013, 1505 48.08:¢9s  58-6lisai 3227ii1os  38.32:156 2840ss0r 2302505 20561201  21.05.187

GPPT 41801872 31.9645.26 49.1018.06  26.7447.56 351611512 25.8648.65 21871305 19361372 20.5941.80
GraphPrompt  51.45:043 37.071610  50.87iest  23.821750  26.04s1172  26.781077  22.051061  17.82:081  20.71eg01

GraphMAE All-in-one 28.961487  31.724278 39.991621  22.3346.43 29.7142005 298541399 20.131181 21.081217  20.3910.03
GPF 46741550  40.0Tig3q 55384753  2T.21er70 289811400  25.65ig15  22.30i0ss  20.20cs7s  20.1920.0

GPF+ 433041140 40154679 52921795 26384545 348311664 26.794004 22354360 20441364 20.2610.57
EdgePrompt  30.161905 4979 747 25264700  35.0241661  26.02860  22.27n00  19.932410  20.161.00
EdgePrompt+ 40.11410.12  37.1346.93 50.7717.01 26.1547.77 34.21415.55 25.8449.35 224713582 20.2043.00 20.7311.10

UniPrompt AT.051017 49.29i1150 BTAT,qss 512811245 49.8311755 61.3811358 24.20150 23.35i55 22.08.003

settings, we use DGI [28]], GRACE [29], and GraphMAE [30]] as pretrained models, and we compare
our method with two baseline tuning methods, and seven classic and state-of-the-art GPL methods,
including Fine-tune, Linear-probe (fine-tune classifier only), GPPT [6], GraphPrompt [24],
All-in-one [14], GPF [7]], GPF-plus [7], EdgePrompt [23], and EdgePrompt-plus [23]. For
cross-domain settings, we adopt FUG [36] as the pretrained model, and we compare our method with
four types of baseline methods, including: (1) Semi-Supervised baselines: GCN [3]], GAT [4]. (2)
Graph Self-Supervised Learning baselines: DGI 28], GraphCL [37]. (3) Graph Prompt Learning
baselines: GPPT [6]], GPF [7]. (4) Multi-domain Graph Pre-train baselines: GCOPE [38]], MDGPT [39]],
MDGFM [27]. In our experiments. To ensure performance reliability, we perform 20 repeated runs for
each of 5 fixed random seeds, reporting averaged results over 100 trials. Detailed information about
the experimental setup can be found in the Appendix [B.T]

6.2 In-Domain Node Classification

1-shot node classification on different pretrained models. We report 1-shot node classification on
nine datasets using three pretrained models. As shown in Table[T} our method outperforms existing
GPLs across most datasets under different pretrained models. Specifically, we observe the most
significant improvements on the Cornell, Texas, and Wisconsin datasets, where our method surpasses
all existing GPLs. This is primarily because these GPL baselines struggle to adapt downstream
datasets to the pretrained model, particularly for heterophilic graphs, which pose a significant
challenge. In larger heterophilic datasets like Actor and Squirrel, the dense connectivity and size
of these datasets make baselines challenging in the 1-shot setting. Existing methods are unable to
leverage representation-level prompts or directly process features or edges to improve performance.
As a result, these methods suffer from model collapse or overfitting. For homophilic datasets, such as
Cora and CiteSeer, all baselines perform well, resulting in limited improvement for our approach.
However, for PubMed, which has fewer classes, our prompt graph introduces additional homophilic
edges, providing an advantage over other GPL baselines. Moreover, we observe that the choice of
pretrained model has an impact on downstream prompt tuning. For example, on the Chameleon
dataset, under the DGI and GRACE pretrained settings, all baselines perform comparably to or even
better than our method. However, when switching to GraphMAE, the performance of all methods
drops sharply. Similar trends are observed on CiteSeer and PubMed, where our model demonstrates
greater stability compared to other baselines.

1/3/5-shot Node Classification Performance on DGI. To further demonstrate the adaptability of
our method, we conduct 3-shot and 5-shot experiments on GPL baselines using the DGI-pretrained



Table 2: Cross-domain node classification. Accuracy on 1-shot node classification tasks over six
datasets. Each column represents a test domain, while others are train domains. The best results are
highlighted in bold, and the runner-up with an underline. Methods with * are reported from [27].

Methods Cora Citeseer PubMed Cornell Squirrel Chameleon
GCN* 28.5745.07 31.27 1453 40.5545.65 31.814471 20.0049.29 24174591
GAT* 28.4046.25 30.764540  39.9914.96 28.03113.19 21.554930  23.931411
DGI* 29.3045.82 30.0314.88 41.8547.78 31.54 11566 21.1541¢68 21.73 1547
GraphCL* 34~94i6.49 30-58i4.58 40~37i7.81 27-15i12.64 21~42i2.23 22-49i3.02
GPPT* 17.5245 59 21.4543 45 36.5645.31 25.0945. 90 20.0940.91 24.53 42 55
GPF* 37.84111.07 37.611gg7 46.3647 48 34.54 773 21.921350 25.901¢ 51
GCOPE* 34.2315.16 39.051g.82 44.8516.72 34.02411.94 22.4641 .96 24.6143 99
MDGPT* 39.5449.02 39.24 45 95 45.39411.01  33.58+10.38 22.3543.77 23.6841 56
MDGFM* 44.83 7 41 42.18 16 41 46.84, 7 3, 40.77 4 5 o6 24.30, 3 96 28.3643 65

UniPrompt(Ours) 45'37i9A08 43'25i9.61 55'01i3A36 51.58ig_91 25'29i3A86 25-14i5A65

model. As shown in Figure[3] our method consistently outperforms existing GPL baselines across
most heterophilic datasets. Performance improvements are observed on Cornell, Texas, Wisconsin,
and Actor, indicating that our approach avoids overfitting and makes use of the label information.
On CiteSeer and PubMed, our method also outperforms existing GPL baselines, demonstrating
its effectiveness when the dataset matches the homophily assumption of pretrained model. On
Cora and Chameleon, the advantages of our method become more pronounced as more labels are
introduced, gradually surpassing current GPL baselines. Similar experiments are conducted on GRACE
and GraphMAE, further validating the generalization capability of our method. Detailed results and
analysis can be found in the Appendix

6.3 Cross-Domain Node Classification

To further demonstrate the broad scenario adaptability of our method compared to existing approaches,
we conduct experiments under both 3/5-shot and challenging multi-domain pretraining settings. In
these settings, not only are the upstream and downstream datasets entirely different, but the multiple
source domains within the pretraining also differ in both structure and semantics.
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Figure 3: In-domain node classification experiments over nine datasets under different shot settings
using DGI as the pretrained model.



1-shot Cross-Domain Node Classification. As shown in Table[2] our method outperforms various
existing baselines, and competes with or surpasses state-of-the-art GFMs. Our approach achieves
improvement on the PubMed and Cornell datasets. This improvement can be attributed to introduce
connections among semantically similar nodes. In scenarios such as PubMed, which has few classes,
and Cornell, which is a sparse graph, our method enables a more effective adaptation of the pretrained
model. In contrast, on Squirrel and Chameleon datasets, where graphs exhibit low homophily and
dense inter-class connectivity, the performance differences across methods are less distinct.

Table 3: Cross-domain node classification. Accuracy on 3/5-shot node classification tasks over six
datasets. Each column represents a test domain, while others are train domains. The best results are
highlighted in bold, and the runner-up with an underline. Methods with * are reported from [27].

Methods Cora(5) CiteSeer(5) Pubmed(5) Cornell(3) Squirrel(3) Chameleon(5)
GCN* 60.154533 45.541471 57.824896  39.5341357 21.614490  22.0940.99
GAT* 59.791389  50.481994 57.5519.37  34.531413.01 20.114311  20.8341.52
DGI* 56.76411.09 42.674+8.08 54.04411.59 43.224584  20.2341.12  27.6845.91
GraphCL* 61.5945.71 47.0546.85 58.504+7.38 32.77+6.23 21.1840.096 27.4549 58
GPPT* 43.6747.11 47314693 4047411017 34.694854 221441153  28.2547139
GPF* 51.21411.44 56.904g 84 58.7647.70 38.1745.15 21.624310 28.0944.93
GCOPE* 54.6343.98  53.184447 57. 744973 482141197 21.3744920  25.50471.23
MDGPT* 59.644573 52714571 58.654754 35184890 21.424416  26.1845.18
MDGFM* 64.56, 709 61.24148> 63.50,5¢; 49.56 690 23.004439 30.54,, g7

UniPrompt(Ours) 65.64:&3.53 59‘37j:2.78 65.0912,51 52.09:&5437 26.7013,78 31.3812,67

3/5-shot Cross-Domain Node Classification. As shown in Table[3] the availability of additional
labels significantly boosts performance compared to the 1-shot scenario. On Squirrel and Chameleon,
our method achieves notable improvements and outperforms existing approaches. Moreover, our
method maintains superior performance on sparse graphs like Cornell and few-class datasets like
PubMed. In contrast, on Cora and CiteSeer, which exhibit high homophily, most baselines, including
supervised baselines and GFMs, perform well when more labeled data are available. The performance
gap between our method and existing GPL baselines becomes less pronounced in these two datasets.
Overall, our method still maintains advantage, particularly as a GPL approach, which demonstrates
the effectiveness in adapting to pretrained models.

6.4 Hyperparameter Analysis
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Figure 4: Hyperparameter analysis of 7 and k for 1-shot node classification with DGI pretrained.

We conduct hyperparameter analysis on 7 and k under DGI pretrained and 1-shot settings. As shown
in Figure[d] for 7, a notable observation is that heterophilic graphs require lower 7 values (typically
converging to 0.999 or 0.9999) to achieve performance gains, which validates the necessity of the
prompt graph. For homophilic graphs, performance stabilizes when 7 > 0.9999, consistent with
existing research findings [35] that these graphs align with the homophily assumption of the pretrained
models. For smaller 7 values (e.g., 7=0.99), only Cornell maintains performance while other datasets



degrade, highlighting the necessity of input graph and demonstrating the robustness against model
collapse. When 7=1.0, no prompt graph is injected, corresponding to the ablation of our method. For
k, The performance gains are most pronounced on sparse heterophilic graphs, i.e., Cornell, Texas, and
Wisconsin. For larger datasets Chameleon, Actor, and Squirrel, the prompt graph provides similarity
information that improves performance. For Cora and CiteSeer, performance remains stable across k
values. However, PubMed performance drops when k reaches 50, which attributes to the effects of
high homophily and limited classes.

7 Conclusion

In this work, we categorize existing Graph Prompt Learning (GPL) methods based on their mecha-
nisms and conduct an analysis of them. Through this analysis, we identify a key problem in existing
GPL methods: the adaptation gap between upstream pretraining and downstream scenarios. We
decompose this issue into two aspects: lack of consensus on underlying mechanisms, and limited
scenario adaptability. Through motivation experiments and theoretical analysis, we reveal that the
representation-level prompt is fundamentally equivalent to fine-tuning a simple downstream classifier.
This primarily serves to adapt the pretrained model to downstream tasks, rather than unleashing its
inherent capabilities. We propose a perspective: graph prompt learning should focus on unleashing
the capability of pretrained models, and the classifier adapts to downstream scenarios. Based on
our perspective, we propose UniPrompt, a novel GPL method that adapts any pretrained models,
which leverages prompt-generated topology while preserving the original structure to unleash the ca-
pability of pretrained models. We evaluate UniPrompt on a comprehensive set of datasets, including
homophilic and heterophilic graphs, under few-shot learning settings. The results demonstrate that
UniPrompt consistently outperforms state-of-the-art baselines in both in-domain and cross-domain
scenarios. Overall, our work provides new perspectives on the design principles of GPL, improving
the fields of few/zero-shot graph learning, unifying downstream graph tasks, cross-domain graph
learning, and promoting the development of Graph Foundation Models.

8 Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 62422210,
No. 62276187, No. 62302333, N0.62372323 and No. 92370111), the National Key Research and
Development Program of China (No. 2023YFC3304503), and the Hebei Natural Science Foundation
(No. F2024202047).

References

[1] Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng, Yun Xiong, and Jia Li. Graph prompt
learning: A comprehensive survey and beyond. arXiv preprint arXiv:2311.16534, arXiv, 2023.

[2] Chenyi Zi, Haihong Zhao, Xiangguo Sun, Yiqing Lin, Hong Cheng, and Jia Li. Prog: A graph
prompt learning benchmark. In The NeurlPS Datasets and Benchmarks Track, 2024.

[3] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, ICLR, 2017.

[4] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
ICLR, 2018.

[5] Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
Zhengqing Yuan, Wei Song, Yijun Ma, et al. Graph foundation models: A comprehensive
survey. arXiv preprint arXiv:2505.15116, arXiv, 2025.

[6] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. GPPT: graph pre-training
and prompt tuning to generalize graph neural networks. In Proceedings of ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, SIGKDD, pages 1717-1727, 2022.

10



(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt
tuning for graph neural networks. In Advances in Neural Information Processing Systems,
NeurlPS, volume 36, pages 52464-52489, 2023.

Huanjing Zhao, Beining Yang, Yukuo Cen, Junyu Ren, Chenhui Zhang, Yuxiao Dong, Evgeny
Kharlamov, Shu Zhao, and Jie Tang. Pre-training and prompting for few-shot node classification
on text-attributed graphs. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, SIGKDD, pages 4467-4478, 2024.

Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and
Data Engineering, TKDE, 36(7):3580-3599, 2024.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A survey on
knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Networks
Learn. Syst., TNNLS, 33(2):494-514, 2022.

Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin,
Peiyan Zhang, Weihao Han, Hao Sun, et al. A comprehensive study on text-attributed graphs:
Benchmarking and rethinking. Advances in Neural Information Processing Systems, NeurlPS,
36:17238-17264, 2023.

Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. Zerog: Investigating cross-
dataset zero-shot transferability in graphs. In Proceedings of ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, SIGKDD, pages 1725-1735, 2024.

Duo Wang, Yuan Zuo, Fengzhi Li, and Junjie Wu. Llms as zero-shot graph learners: Alignment
of gnn representations with 1lm token embeddings. Advances in Neural Information Processing
Systems, NeurIPS, 37:5950-5973, 2024.

Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Proceedings of ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, SIGKDD, pages 2120-2131, 2023.

Xingtong Yu, Zhenghao Liu, Yuan Fang, Zemin Liu, Sihong Chen, and Xinming Zhang.
Generalized graph prompt: Toward a unification of pre-training and downstream tasks on
graphs. IEEE Trans. Knowl. Data Eng., TKDE, 36(11):6237-6250, 2024.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In International
Conference on Learning Representations, ICLR, 2024.

Haihong Zhao, Chenyi Zi, Aochuan Chen, and Jia Li. A survey of cross-domain graph learning:
Progress and future directions. arXiv preprint arXiv:2503.11086, arXiv, 2025.

Zhe-Rui Yang, Jindong Han, Chang-Dong Wang, and Hao Liu. Graphlora: Structure-aware
contrastive low-rank adaptation for cross-graph transfer learning. In Proceedings of ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, SIGKDD, pages 1785-1796,
2025.

Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan
Fang, Lichao Sun, Philip S Yu, et al. Graph foundation models: Concepts, opportunities and
challenges. IEEE Transactions on Pattern Analysis and Machine Intelligence, TPAMI, 2025.

Yun Zhu, Haizhou Shi, Xiaotang Wang, Yongchao Liu, Yaoke Wang, Boci Peng, Chuntao
Hong, and Siliang Tang. Graphclip: Enhancing transferability in graph foundation models for
text-attributed graphs. In Proceedings of the ACM on Web Conference, WWW, pages 2183-2197,
2025.

Yuxiang Wang, Wenqi Fan, Suhang Wang, and Yao Ma. Towards graph foundation models: A
transferability perspective. arXiv preprint arXiv:2503.09363, arXiv, 2025.

11



[22] Yun Zhu, Yaoke Wang, Haizhou Shi, Zhenshuo Zhang, Dian Jiao, and Siliang Tang. Graph-
control: Adding conditional control to universal graph pre-trained models for graph domain
transfer learning. In Proceedings of the ACM on Web Conference, WWW, pages 539-550, 2024.

[23] Xingbo Fu, Yinhan He, and Jundong Li. Edge prompt tuning for graph neural networks. In
International Conference on Learning Representations, ICLR, 2025.

[24] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training
and downstream tasks for graph neural networks. In Proceedings of the ACM on Web Conference,
WWW, pages 417—428, 2023.

[25] Xingtong Yu, Jie Zhang, Yuan Fang, and Renhe Jiang. Non-homophilic graph pre-training and
prompt learning. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V. 1, SIGKDD, pages 1844-1854, 2025.

[26] Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. Multigprompt for multi-task
pre-training and prompting on graphs. In Proceedings of the ACM on Web Conference, WWW,
pages 515-526, 2024.

[27] Shuo Wang, Bokui Wang, Zhixiang Shen, Boyan Deng, et al. Multi-domain graph foundation
models: Robust knowledge transfer via topology alignment. In Proceedings of International
Conference on Machine Learning, ICML, 2025.

[28] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Li0, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, ICLR,
2019.

[29] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, arXiv, 2020.

[30] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, SIGKDD, pages 594-604, 2022.

[31] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar
Velickovié¢, and Michal Valko. Bootstrapped representation learning on graphs. In
ICLR Workshop on Geometrical and Topological Representation Learning, 2021.

[32] Wangbin Sun, Jintang Li, Liang Chen, Bingzhe Wu, Yatao Bian, and Zibin Zheng. Rethinking
and simplifying bootstrapped graph latents. In Proceedings of ACM International Conference
on Web Search and Data Mining, WSDM, pages 665-673, 2024.

[33] Zhixun Li, Liang Wang, Xin Sun, Yifan Luo, Yangiao Zhu, Dingshuo Chen, Yingtao Luo,
Xiangxin Zhou, Qiang Liu, Shu Wu, et al. Gslb: The graph structure learning benchmark.
Advances in Neural Information Processing Systems, NeurIPS, 36:30306-30318, 2023.

[34] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of International Conference on Machine Learning,
ICML, volume 48, pages 4048, 2016.

[35] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In International Conference on Learning Representations,
ICLR, 2020.

[36] Jitao Zhao, Di Jin, Meng Ge, Lianze Shan, Xin Wang, Dongxiao He, and Zhiyong Feng. Fug:
Feature-universal graph contrastive pre-training for graphs with diverse node features. Advances
in Neural Information Processing Systems, NeurlPS, 37:4003-4034, 2024.

[37] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.

Graph contrastive learning with augmentations. In Advances in Neural Information Processing
Systems, NeurIPS, volume 33, pages 5812-5823, 2020.

12



[38] Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, and Jia Li. All in one and one
for all: A simple yet effective method towards cross-domain graph pretraining. In Proceedings
of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, SIGKDD, pages
4443-4454, 2024.

[39] Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. Text-free multi-domain graph
pre-training: Toward graph foundation models. arXiv preprint arXiv:2405.13934, arXiv, 2024.

[40] Alberto P Garcia-Plaza, Victor Fresno, Raquel Martinez Unanue, and Arkaitz Zubiaga. Using
fuzzy logic to leverage html markup for web page representation. IEEE Transactions on Fuzzy
Systems, IEEE Trans. Fuzzy Syst., 25(4):919-933, 2016.

[41] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, J. Complex Netw., 9(2), 2021.

[42] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser-Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In Advances in Neural Information Processing Systems, NeurIPS, volume 34,
pages 2088720902, 2021.

[43] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In
Advances in Neural Information Processing Systems, NeurIPS, volume 33, pages 22118-22133,
2020.

[44] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In International Conference on Learning Representations,
ICLR Workshop, 2013.

[45] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, arXiv, 2018.

[46] Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by
maximizing mutual information across views. Advances in Neural Information Processing
Systems, NeurIPS, 32, 2019.

[47] Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In Proceedings of the ACM on Web Conference, WWW,
pages 2069-2080, 2021.

[48] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. Al open, 1:57-81, 2020.

[49] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip S. Yu. Graph
self-supervised learning: A survey. IEEE Trans. Knowl. Data Eng., TKDE, 35(6):5879-5900,
2023.

[50] Yizhen Zheng, Shirui Pan, Vincent C. S. Lee, Yu Zheng, and Philip S. Yu. Rethinking and scaling
up graph contrastive learning: An extremely efficient approach with group discrimination. In

Advances in Neural Information Processing Systems, NeurIPS, volume 35, pages 10809-10820,
2022.

[51] Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning
on graphs. In Proceedings of International Conference on Machine Learning, ICML, volume
119, pages 41164126, 2020.

[52] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In Proceedings of International Conference on Machine Learning, ICML, pages
12121-12132, 2021.

[53] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. In Advances in Neural Information Processing Systems,
NeurlPS, pages 15920-15933, 2021.

13



[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z. Li. Progcl: Rethinking hard negative
mining in graph contrastive learning. In Proceedings of International Conference on Machine
Learning, ICML, volume 162, pages 24332-24346, 2022.

Dongxiao He, Jitao Zhao, Cuiying Huo, Yongqi Huang, Yuxiao Huang, and Zhiyong Feng. A
new mechanism for eliminating implicit conflict in graph contrastive learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, AAAI, volume 38, pages 12340-12348, 2024.

Hengrui Zhang, Qitian Wu, Yu Wang, Shaofeng Zhang, Junchi Yan, and Philip S Yu. Localized
contrastive learning on graphs. arXiv preprint arXiv:2212.04604, arXiv, 2022.

Mengyue Liu, Yun Lin, Jun Liu, Bohao Liu, Qinghua Zheng, and Jin Song Dong. B2-sampling:
Fusing balanced and biased sampling for graph contrastive learning. In Proceedings of ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, SIGKDD, pages 1489-1500,
2023.

Jiaming Zhuo, Can Cui, Kun Fu, Bingxin Niu, Dongxiao He, Chuan Wang, Yuanfang Guo,
Zhen Wang, Xiaochun Cao, and Liang Yang. Graph contrastive learning reimagined: Exploring
universality. In Proceedings of the ACM Web Conference, WWW, pages 641-651, 2024.

Yongqi Huang, Jitao Zhao, Dongxiao He, Di Jin, Yuxiao Huang, and Zhen Wang. Does gcl need
a large number of negative samples? enhancing graph contrastive learning with effective and
efficient negative sampling. In Proceedings of the AAAI Conference on Artificial Intelligence,
AAAI volume 39, pages 17511-17518, 2025.

Jiaming Zhuo, Feiyang Qin, Can Cui, Kun Fu, Bingxin Niu, Mengzhu Wang, Yuanfang Guo,
Chuan Wang, Zhen Wang, Xiaochun Cao, et al. Improving graph contrastive learning via
adaptive positive sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR, pages 23179-23187, 2024.

Jiaming Zhuo, Yintong Lu, Hui Ning, Kun Fu, Bingxin Niu, Dongxiao He, Chuan Wang,
Yuanfang Guo, Zhen Wang, Xiaochun Cao, et al. Unified graph augmentations for generalized
contrastive learning on graphs. Advances in Neural Information Processing Systems, NeurlPS,
37:37473-37503, 2024.

Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai. Homogcl: Rethinking
homophily in graph contrastive learning. In Proceedings of ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, SIGKDD, pages 1341-1352, 2023.

Dongxiao He, Yongqi Huang, Jitao Zhao, Xiaobao Wang, and Zhen Wang. Str-gcl: Structural
commonsense driven graph contrastive learning. In Proceedings of the ACM on Web Conference,
WWW, pages 1129-1141, 2025.

Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised
learning on graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI,
volume 36, pages 7372-7380, 2022.

Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework
for graph contrastive learning without data augmentation. In Proceedings of the ACM on Web
Conference, WWW, pages 1070-1079, 2022.

Dongxiao He, Jitao Zhao, Rui Guo, Zhiyong Feng, Di Jin, Yuxiao Huang, Zhen Wang, and
Weixiong Zhang. Contrastive learning meets homophily: Two birds with one stone. In
Proceedings of International Conference on Machine Learning, ICML, volume 202, pages
12775-12789, 2023.

Xiaobao Wang, Jun Yang, Zhigiang Wang, Dongxiao He, Jitao Zhao, Yuxiao Huang, and Di Jin.
Graph contrastive learning with multiple information fusion. Expert Systems with Applications,
ESWA, 268:126129, 2025.

Jingyu Chen, Runlin Lei, and Zhewei Wei. Polygcl: Graph contrastive learning via learnable
spectral polynomial filters. In International Conference on Learning Representations, ICLR,
2024.

14



[69] Guancheng Wan, Yijun Tian, Wenke Huang, Nitesh V Chawla, and Mang Ye. S3gcl: spectral,
swift, spatial graph contrastive learning. In Proceedings of International Conference on Machine
Learning, ICML, pages 49973—49990, 2024.

[70] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, arXiv, 2016.

[71] Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
Graphmae2: A decoding-enhanced masked self-supervised graph learner. In Proceedings of the
ACM on Web Conference, WWW, pages 737746, 2023.

[72] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems, NeurIPS, 33:21271-21284, 2020.

[73] Dongxiao He, Lianze Shan, Jitao Zhao, Hengrui Zhang, Zhen Wang, and Weixiong Zhang.
Exploitation of a latent mechanism in graph contrastive learning: Representation scattering.
Advances in Neural Information Processing Systems, NeurlPS, 37:115351-115376, 2024.

[74] Junhyun Lee, Wooseong Yang, and Jaewoo Kang. Subgraph-level universal prompt tuning.
arXiv preprint arXiv:2402.10380, arXiv, 2024.

[75] Jiazheng Li, Jundong Li, and Chuxu Zhang. Instance-aware graph prompt learning. Transactions
on Machine Learning Research, TMLR, 2025.

[76] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
Neural Information Processing Systems, NeurlPS, 30:6309-6318, 2017.

[77] Jiapeng Zhu, Zichen Ding, Jianxiang Yu, Jiaqi Tan, Xiang Li, and Weining Qian. RELIEF:
reinforcement learning empowered graph feature prompt tuning. In Proceedings of ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, V.1, SIGKDD, pages 2159—
2170, 2025.

[78] Fengyu Yan, Xiaobao Wang, Dongxiao He, Longbiao Wang, Jianwu Dang, and Di Jin. Hetergp:
Bridging heterogeneity in graph neural networks with multi-view prompting. In Proceedings of
the AAAI Conference on Artificial Intelligence, AAAI, volume 39, pages 21895-21903, 2025.

[79] Qian Huang, Hongyu Ren, Peng Chen, Gregor Krzmanc, Daniel Zeng, Percy Liang, and
Jure Leskovec. PRODIGY: enabling in-context learning over graphs. In Advances in Neural
Information Processing Systems, NeurIPS, volume 36, pages 16302-16317, 2023.

[80] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, ICCV, pages 3836-3847, 2023.

[81] Xingtong Yu, Yuan Fang, Zemin Liu, and Xinming Zhang. Hgprompt: Bridging homogeneous
and heterogeneous graphs for few-shot prompt learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, AAAI, pages 16578-16586, 2024.

[82] Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V Chawla. Hetgpt: Harnessing
the power of prompt tuning in pre-trained heterogeneous graph neural networks. In Proceedings
of the ACM on Web Conference, WWW, pages 1015-1023, 2024.

[83] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Long Xia, Dawei Yin, and Chao Huang. Higpt:
Heterogeneous graph language model. In Proceedings of ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, SIGKDD, pages 28422853, 2024.

[84] Lecheng Kong, Jiarui Feng, Hao Liu, Chengsong Huang, Jiaxin Huang, Yixin Chen, and Muhan
Zhang. GOFA: A generative one-for-all model for joint graph language modeling. In The
International Conference on Learning Representations, ICLR, 2025.

[85] Zheyuan Liu, Xiaoxin He, Yijun Tian, and Nitesh V. Chawla. Can we soft prompt llms for graph
learning tasks? In Proceedings of the ACM on Web Conference, WWW, pages 481-484, 2024.

15



[86]

[87]

[88]

[89]

[90]

[91]

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, ICLR, 2022.

Yufei He, Yuan Sui, Xiaoxin He, and Bryan Hooi. Unigraph: Learning a unified cross-domain
foundation model for text-attributed graphs. In Proceedings of ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, V.1, SIGKDD, pages 448-459. ACM, 2025.

Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large
language and graph assistant. In Proceedings of International Conference on Machine Learning,
ICML, pages 7809-7823, 2024.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Sugi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pages
491-500, 2024.

Zehong Wang, Zheyuan Zhang, Nitesh Chawla, Chuxu Zhang, and Yanfang Ye. Gft: Graph
foundation model with transferable tree vocabulary. Advances in Neural Information Processing
Systems, NeurIPS, 37:107403-107443, 2024.

Zehong Wang, Zheyuan Zhang, Tianyi Ma, Nitesh V Chawla, Chuxu Zhang, and Yanfang
Ye. Towards graph foundation models: Learning generalities across graphs via task-trees. In
Proceeding of International Conference on Machine Learning, ICML, 2025.

16



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly list our contributions and the scope of our work in the abstract and
introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We describe the limitations of our work in the main text and in the appendix.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide proof in the appendix for the points we make in the main text.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have given detailed and real experimental data in the experiment of the
text and appendix, and they are reproducible.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will give the complete model code about the paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We give detailed experimental details in the experiment of the text and
appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide the standard deviation of the experimental data in the main
experiments and appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We give the GPU models used in our experiments in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Our work complies with the Neur[PS Code of Ethics in all aspects.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the positive impact of this work on related fields in the main text
and appendix.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This item is not relevant to our work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our work respects any licenses and terms of use, and appropriately cites the
work of others.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This item is not relevant to our work.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This item is not relevant to our work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This item is not relevant to our work.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs

A.1 Proof for Proposition 4.1

Proof: (CoT)(h) = WL(Wrh + by) = (WL We) h+ Wlibr. Then, we let Weor =
WIWe,ber = Wby, we can get (CoT)(h) = WL, h+be = C’(h). Therefore, we conclude
that any linear prompt combination can be represented as a linear classifier with a bias term. ]

A.2 Proof for Proposition 4.2

Proof:  For any parameters of objective function W+ and b¢v, there exists W and W
W =(W7)"'Wer, br=Wlbe, ©)

where WTC is the pseudo-inverse matrix of W. The mapping above is unique when WTC =
(W(T;Wc) ! W/, and W has full column rank. We calculate the gradient update paths of the two
optimization methods respectively. For the original gradient of W and W, we have the following:

oL 0L ocC' oL oL 0L ocC’ W oL

N
_— — = _— —_— = = T
oWo ~ a0 awg ~ (Wrhdbr) (60’ > C o awy a0 owy - Weget - 10

For ease of understanding, the matrix of two equations are Vyw.L = (Wrh + br) - (VC/L)—r and
VwyLl =W¢e -V L- h'. Then, the gradient of by is Vb,L = W¢ - Ve L. For the classifier
C’, we calculate the gradient of W and ber using Vw_, L = h - (VC/L)T and Vy,, L = V¢ L.
According to Wer = W] W and bor = W/ br, we analyze the gradient propagation using the
chain rule:

AWeo = WLAWe 4+ (AW7) T We
— W] (n(WTh +by) - (VC/L)T> +h (Ve L) WEW e (11
—nh-(VerL)', when WS We = I, and WL Wy = L.
For b, we have the following:
Abcr = WLAby + (AWe) Thy
=nWEWeVe L +n(Wrh+br) brVeL,

when W ¢ has full column rank and b is orthogonal to Wrh + b, we can obtain Abgor = nVer L,
which is consistent with the gradient of single linear classifier C". ([

(12)

B Other Experiments and Detail Settings

B.1 Experimental Setup

Implementation details. In our experiments, we use 2-layer GCN backbones for DGI and GRACE,
and 2-layer GAT backbone for GraphMAE. For downstream prompt tuning, all classifiers employ
2-layer MLPs. We fine-tune all GPL baselines across all pretrained models. We train for 2000 epochs
with early stopping (patience=20). Following the ProG [2] benchmark settings, we conduct k-shot
sampling evaluations under both in-domain and cross-domain settings with k& € {1, 3,5}. To ensure
performance reliability, we perform 20 repeated runs for each of 5 fixed random seeds = { 42, 12345,
23344, 38108, 39788 }, reporting averaged results over 100 total trials. All of the experiments are
conducted on a server with Xeon(R) Platinum 8352V CPU, 90GB of memory, an RTX 4090 graphics
card, and 24GB of video memory. The detailed GitHub links for the various pre-trained models,
GPL baselines, sampling, split, and evaluation settings used in our experiments are provided in Table
[I2] which can be used for future reference and reproducibility.

B.2 Real-world datasets

We introduce the details of the 10 commonly used real-world datasets, including homophily and
heterophily graphs as follows, and the statistics of these datasets are shown in Table [4]
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* Cora [34], CiteSeer [34] and PubMed [34] are citation datasets, nodes represent papers,
edges represent citation relationships. Each dimension in the feature corresponds to a word.
Labels are the categories into which the paper is divided.

e Cornell [35)], Texas [35]], and Wisconsin [35]] are sub-datasets of WebKB [40], which is a
webpage dataset collected from Carnegie Mellon University. Nodes represent web pages,
and edges represent hyperlinks between web pages.

* Chameleon [35] and Squirrel [35] are page to page networks on specific topic collected from
Wikipedia [41], nodes represent web pages and edges represent links between web pages.
The average monthly traffic of the web page is converted into five categories to predict.

* Actor [33] is the actor-only induced subgraph of the film-director-actor-writer network. Each
node corresponds to an actor, and the edge between two nodes denotes co-occurrence on the
same Wikipedia page. Node features correspond to some keywords in the Wikipedia pages.
The task is to classify the nodes into five categories in term of words of actor’s Wikipedia.

* arXiv-year [42] is a modification of the OGBN-arXiv [43], where the labels are assigned
based on the paper’s publication year rather than topic. The nodes represent papers from
arXiv website, and the links denote citation relationships. The node features are averaged
Word2Vec [44] token features of both the title and abstract of the paper. The dataset is
partitioned by publication date, which ensures a relatively balanced distribution of classes.

Table 4: Statistics of real-world datasets.

Dataset #Nodes #Edges #Features #Classes #Homophily
Cora 2,708 5,278 1,433 7 0.81
CiteSeer 3,327 4,552 3,703 6 0.74
PubMed 19,717 44,324 500 3 0.80
Cornell 183 298 1,703 5 0.31
Texas 183 325 1,703 5 0.11
‘Wisconsin 251 515 1,703 5 0.20
Chameleon 2,277 36,101 2,277 5 0.24
Actor 7,600 30,019 932 5 0.22
Squirrel 5,201 217,073 2,089 5 0.22
arXiv-year 169,343 1,166,243 128 5 0.22

B.3 Descriptions of Various Baselines
Graph Semi-Supervised Baselines.

* GCN [3]]: GCN introduces a spectral graph convolution framework based on localized first-
order Chebyshev filters, utilizing mean-pooling for neighborhood aggregation. It recursively
updates node representations by averaging the features of neighbors and uses learnable
parameters to control the transformation process.

e GAT [4]: GAT proposes multi-head attention mechanisms to dynamically compute node-
specific weights during message passing. It adopts a learnable attention coefficient to
quantify the importance of neighbors, thereby achieving adaptive aggregation.

Graph Pretraining Models. We introduce the classic graph pretraining strategies as follows.

* DGI [28]]: Deep Graph Infomax (DGI) learns node embeddings by maximizing the mutual
information (MI) between local node representations and graph representation. It utilizes
GCNs to generate node representations, and aggregates node representations into a graph
representation. DGI treats the corrupted graph as a negative example and train by identifying
the relationship between nodes and graphs, thereby maximizing MI between them.

* GRACE [29]: GRACE learns node embeddings by maximizing mutual information between
node representations in two augmented views. It generates different views through edge
removal and feature masking. It uses InfoNCE [45, 146 as loss function, which maximizes
the similarity of two augmented nodes generated by the same node and minimizes the
similarity of other nodes to train the model.
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Table 5: In-domain node classification. Accuracy on 3-shot node classification tasks over three
pretrained strategies and nine datasets. The best results in each pretrain strategy are highlighted in
bold, and the runner-up with an underline.

Pretrain ~ Methods Cora CiteSeer PubMed Cornell Texas Wisconsin ~ Chameleon Actor Squirrel
Fine-tuning 65.091573 60321405  64.81,.g 4184,  38.754034  AL34,..;  28.664390 2261545 23.02:354
Linear-probe 67481465 6091, 53 65.92.1 553 40.391535  39.304767 38294918 20171404 21.661231  22.561229
GPPT 45.07+5.43 59.8344.92 37.5545.48 34.0249.71 35.8646.43 22.7149.49 19.7041 23 21.5149.37
GraphPrompt 57.374526  60.561537  26.061621 36.891756  25.964075  25.71is6s  20.024130 22161542

DeT All-in-one 28524657  37.5848.35 327841500 30.37113.08 24.44ug6r  24.761507 2110148 5 40.9
GPF 55.8245.79 62941771 37.701722  39.6618.29 37344570 26161315  21.84:20s  22.01i230
GPF+ 54524501  64.58:7.07r  37.901753 344945090  38.124670  25.884065  21.81is09  21.83447
EdgePrompt 3.39 49.4914.97 59.56.+3.43 40.2647.81 41.88158.76 36.5947.37 25.0714.07 21.6312.45 21454183
EdgePrompt+ 59.30:410 49.25:512  59.60i335  39.98i670  42.55,90s  37.0lirss 25454377 2239080 219611 g7
UniPrompt(Ours) 69.074437 61.73.1415 60.94 4646 59.631584 61.4411455 68.704699 25904308 27.321396 24.194535
Fine-tuning 63.99:560 60.48,,5 62031610 4242i746 39731645  40.34us37  29.73u402  2070,,,,  23.77i093
Linear-probe 60.35:300  65.71,5¢r  41.605710  39.531662 4146, 5.5 29.024460  21.55:135  21.62:3.47
GPPT 51.7145.39 57134460  36.051s71  33.5513.66 37694565 31451369 20.784121 24171068
GraphPrompt 53.8415.90 56.60+7.00 29.8647.56 34.824884 29.66+5.12 32.461360 20.98+1.85 24.41, 515

GRACE All-in-one 31.0945.80 38.2546.03 30.60417.45 30.66412.45 244041668 25.404318 21.3249.56 23.5049.30
GPF 52.45£4.00 61931695 38751705  41.7619.79 36114365  30.231341  21.61i207  21.2813ss
GPF+ 53241685 55.88i551 38401500 41.3Tigze  36.63i507  32.07,550  19.67a347  23.324046
EdgePrompt 48.6514.08 57334467 42581588 42.9716.22 36.461573 27424319 21631133 23141202
EdgePrompt+ 451244 53 62.3846.11 42114913 43.83 7 59 39.2645.16 27.8249 07 21.4140.08 23.3741.53
UniPrompt(Ours) 67.711524 61.9313735 66.83.614 60.864537 64.22.351 67.604557 27.7li366 25.561137 25.221047
Fine-tuning 66384630  58.57+5.82 62.51+455 46.09.g5, 43.91,g4¢ 4831, 5,0 27334317 21.40+1.56 21184120
Linear-probe 70.744s50 60.60, 505  66.90:470 38.52i765 43.131g47 41401551  29.024405 2208, ., 21.91ii7y
GPPT 57.64 40145689  56.63:1g503 35021970 38281054  40.941603 27464997  20.061956  20.581113
GraphPrompt 57.5146.50 62.78 +4.7¢ 23.7947.02 29.76410.51 27.9045.098 23.024337 21.5049.05 26.29.19 34

GraphMAE All-in-one 39.39+3.38 54.7211013 29821723  24.8011433  26.9311446 24401376 21131003  22.1613.42

P GPF 43.44 115 02 64.3247.99 36.3346.82 38.794+9.89 36.86+5.95 27.0949 88 21.3042.51 20.8241.81
GPF+ 44.71 16,36 60.6017.87 38591781  37.2Ti810 38.0610.06 26871320  20.561321  20.9510.95
EdgePrompt 64.184400 57.561665  54.324i707 35424617  40.951573  37.3lisge  26.604402  19.66140s  22.0541.07
EdgePrompt+ 64.361380 53461612 63.054635  37.2016.00  41.0018.92 38.80+581  22.104267  20.59+443  21.7210.90
UniPrompt(Ours) 66.16:660 61.90:505, 64.62 5,  59.924505 65.624075 71.60108s 27.78 51,  24.TTi1g3 22.82,, 14

* GraphCL [37]: GraphCL learns graph-level representations by maximizing mutual informa-
tion between augmented views of graphs. It introduces four graph augmentation types (node
dropping, edge perturbation, attribute masking, subgraph sampling) to generate augmented
views. The InfoNCE loss maximizes similarities between positive pairs (augmented views
of the same graph) while contrasting against negative pairs (other graphs in the batch),
corresponding to mutual information maximization between augmented representations and
unifies diverse contrastive learning frameworks.

L]

GraphMAE [30]: GraphMAE is a generative self-supervised graph autoencoder that learns
robust representations through masked feature reconstruction. It employs a two-stage
framework: (1) A GNN-based encoder learns node embeddings from input graphs with
randomly masked node features; (2) A GNN decoder reconstructs the masked features
using a re-mask decoding strategy, optimized by a scaled cosine error loss that emphasizes
directional alignment over magnitude.

Graph Prompt Learning Baselines.

* GPPT [6]: GPPT pioneers the use of the "pretrain—prompt" paradigm in graph machine
learning. It employs link prediction as its pre-training task to learn general knowledge
about graph structures. In its prompt design, GPPT introduces two types of prompts: task
tokens and structure tokens. The former serve as prototype vectors for each class within
clusters, while the latter are derived by aggregating information from the target node and its
neighbors. For downstream node classification, the task is reformulated as link prediction.
This is accomplished by calculating the probability of a link existing between the task token
and the structure token, thus leveraging the learned prompts to make predictions.

* GraphPrompt [24]: GraphPrompt proposes a unified pretraining and prompting frame-
work for GNNs, bridging the gap between pretraining and downstream tasks through a
subgraph similarity-based template. It introduces learnable task-specific prompts that guide
the ReadOut operation to dynamically emphasize task-relevant features during subgraph
representation aggregation. By mapping both link prediction (pretraining) and node/graph
classification (downstream) tasks to subgraph similarity learning, GraphPrompt enables
parameter-efficient adaptation via prompt tuning—freezing pre-trained GNN weights while
optimizing lightweight prompts.

* All-in-one [14] All-in-one unifies the downstream tasks of the "pretrain-prompt"
paradigm. This method first reformulates node and edge tasks into graph-level tasks by
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Table 6: In-domain node classification. Accuracy on 5-shot node classification tasks over three
pretrained models and nine datasets. The best results in each pretrain strategy are highlighted in bold,
and the runner-up with an underline.

Pretrain ~ Methods Cora CiteSeer PubMed Cornell Texas Wisconsin ~ Chameleon  Actor Squirrel
Fine-tuning 73.014055 05.08:35 7091465 45.78.565 43.20105 432647435  28.8lingy  23.654038  22.58:i075
Linear-probe  72.39,,0, 65.11i062 70.323410 45.23.q57 42.8ligge 41664565  28.80,0 6  22.55:040 23531170
GPPT 57781446 51.641506 64591365 41951457 42191656 A1.37i5s5  23.4Tisos 20874104  21.804147
GraphPrompt 65361472 62331260 66.831605 27941651 40.91i712 31.204720 25984333 20384104  22.824918

DGT All-in-one 45794806 28431330 41320626 34024800 322941512 30.7611805 23501350 20.604311  23.78.,05
GPF 66.57+750 60994373 68331503 42964601 42.61ig83 43.68.16.29 27.1042.04 22.794156  23.3842.37
GPF+ 69.101570 57.841400 688145y  43.63x662 43.2lases  45.114ga2  27.861074  22.391001  21.4813.01
EdgePrompt 66.821362  956.994412  64.081627 45144571 49104, 5, 47.614632  25.05437¢  23.824, 4,  21.621153
EdgePrompt+ 67.1043.94  56.124388  62.9516.15 43.054458 46.88+906 50.40, 549  24.96+3714  23.491199  21.5312.15
UniPrompt(Ours) 70.5813.01 65.10,3,5 70.971433 68.021432 67.8641536 70.431934 28.04426s 28.204266 23.8842.19
Fine-tuning 70494008 64.194349 70424535 47154677  43.09471  42.51i590  34.004043 22614191 2522, g5
Linear-probe 71094015  03.65,500 7134645 4707666 42.114g00 41914690 32784315 22235188 24.054) 58
GPPT 56511710 50.8815g2 65971575  44.3614ss 41151700 41984760  33.104347  21.364015 24704014
GraphPrompt 68.581430 52.651381 65491666 35.284594 38.651775 33764745  32.681332 21174114 22554187

CRACE All-in-one 44294537 39271385 40.761s25 29234765 30.71i10s7 294941600 23.TTis6s 21574940  25.1310s80
GPF 68561308 59.531301 68.201450 46.01igro 44171743 41664485  28.62:306 22914149 21.294557
GPF+ 68.86+305 61.511300 08.3013090 45.89:610 40.99ig35  45.654520 29461533 22641145  24.61u9094
EdgePrompt 63.761549 51.8lu60s  68.233316 48.17.¢,6 5445.,50 ATddyq,5 32041380 23171155  24.2211 6
EdgePrompt+ 66.1643.38  53.9043.03  71.0342.40 47.664861 53.98+693  46.461598  32.4443.41 244664 24.3541.41
UniPrompt(Ours) 72.99:3458 63.641350 74.214081 68.131435 68.364492 71.431458 33.66,,5  26.681187 26.071054
Fine-tuning 73.854087 64591432  T2.834321 58.24,, 4, 47.62,505 50.29,550  28.784047 21224417 22384112
Linear-probe 75.78 055 66.17T1070 70.084480 43711571 45004795 41114751 31.81ig63 2251003 22254175
GPPT 64.661547 46.871650  62.501781 46251464 41.041651 46.1045.06  26.4943.32 20144949 20974115
GraphPrompt 69.80+4.65 49171419 67511693 25831577 38541935  30.601755  23.654067  20.084165 24.T1in50

Graphuag  All-in-one 41.064634 41.971361 63561510 27984833 24.11ig05 315641746 23531343 21604078  23.19i354

P GPF 72094308 52731401 65.4Tisss  41.55i606  43.08:s813  42.304595  28.5luney  22.62,545 21041139
GPF+ 63.284620 55.6016.03 659645035 44.5317.0s  39.6li6g0  42.381635  26.861531  20.8940q70  21.1240s
EdgePrompt 67.741360 622941324 58661636 44371607 44.024788  43.534540 29354220  22.004267  21.6841.32
EdgePrompt+ 73814000 48251430 65.60i56s 44.02i748 4456175 4304561 20.8445.5 21744057 21351115
UniPrompt(Ours) 74.77,,56 05.744050 7049 .77 67.734371 71.024521 73.894662 29771005 24964165 23.23,, 0,
constructing an induced subgraph. It then generates learnable prompts and integrates them
into the node features in a weighted manner to construct a prompt graph. Furthermore, this
method combines meta-learning to optimize prompts across multiple tasks and make the
prompts adapt to different downstream tasks.

* GPF/GPF-plus [7]: GPF/GPF-plus framework introduces a universal graph prompt learn-
ing method that is compatible with any pre-training strategy. The approach operates by
adding learnable prompt vectors to the input node features. Specifically, GPF uses a single
global prompt vector shared by all nodes, whereas GPF-plus generates individual prompt
vectors for each node by aggregating basis vectors via an attention mechanism. The resulting
prompted nodes are then fed into a frozen pre-trained GNN for the downstream task. This
method effectively overcomes a key limitation of existing prompt-tuning methods, which
are restricted to specific pre-training tasks.

L]

EdgePrompt/EdgePrompt-plus [23l]: EdgePrompt introduces a graph prompt tuning
framework for pre-trained GNNs by injecting learnable edge-wise prompts into adjacency
matrices. It designs edge-specific trainable vectors to customize message aggregation
patterns between nodes. This structural adaptation bridges the objective gap between
pretraining and downstream tasks while preserving GNN parameters. EdgePrompt+ enables
each edge to learn its customized prompt vectors, which is similar to GPF and GPF-plus.

Multi-Domain Graph Pretrain Baselines.

* GCOPE [38]: GCOPE proposes a cross-domain graph pretraining framework that unifies
diverse graph structures by introducing learnable "coordinators" to align various datasets.
These coordinators interconnect isolated source datasets into a unified large-scale graph,
enabling joint pretraining with objectives. During pretraining, GCOPE learns transferable
representations by balancing shared multi-domain knowledge and domain-specific features
through latent alignment strategies. The framework supports flexible transfer via fine-tuning
or graph prompting while maintaining parameter efficiency.

* MDGPT [39]]: MDGPT introduces a dual-prompt framework for downstream adaptation: a
unifying prompt transfers broadly learned cross-domain knowledge by aligning target
domains with the pre-trained prior, and a mixing prompt enables fine-grained domain-
specific alignment through learnable projections. MDGPT bridges pretraining and downstream
tasks by optimizing domain-invariant representations via self-supervised objectives on multi-
domain data.
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Table 7: Analysis of key components in UniPrompt via replacement experiments on 1-shot, 3-shot
and 5-shot node classification tasks over different pretrained models.

Shot  Pretrain Strategies Cora CiteSeer PubMed Cornell Texas Wisconsin  Chameleon Actor Squirrel
Random_Topo  45.81igss  40.81i10.20 62.8441416  32.3411479 22.0311534 34.741701  21.824047 21464305 23.831152
DGI Simple_Add  24.234536  26.611424 43.9010968 51.8841676 39.37T+13.30 63.661316  25.231466 23501108  24.0841.60

Discard_Topo 27.27i648  28.694536  36.81i780  51.88417.03 459441483 62.7411070 23.9844.01 26.9313.48 23.37+1.00

Random_Topo  40.48.4g.03 17.28.40.55 66.5846.08 29.6949.96 26.7243.47 27.5447.58 20.6341.11  24.2542.86

GRACE  Simple_Add  39.0411074 1570118 61.601555 60161650 215621082 49.83:1160 23.324141  23.291005 23.79:1s80
Discard_Topo 39.20+1125 16.131258 39.2519.03 58.44 19,06 29.8411907 51.89412.15 21.4341.70 264813583 23.8511.590
Random_Topo  38.58.4.42 33.771937  41.0245.34 23.1347.04 34.531127s  31.2014.10 20.1541.41 19.3043.23 20.94.40.22

GraphMAE Simple_Add 49.1149.59 51.46411.88  57.79+9.90 49.38411.01 429711482 65.26113.60 25474171 21864321  23.06+1.73
Discard_Topo 46.0149 86 49.99411.70  36.8347.48 49.6941336 44.69+1552 63.43+13.45 25.4044.06 21774499 23.194011
Random_Topo  66.201261  60.5li354  65.504287  38.284247  25.624393  34.Tdigoo  23.Tlizgy  19.3642.10 19.931053

DGI Simple_Add 26.2045.33 28.2446.10 57.7544.46 63.4449.72 34.22419.07  61.8317.44 24.9741.96 25304144 22.7410.01
Discard_Topo 50.8747.24  45.9516.01 59.031521 62191055  55.6311781 69.6011099 26.7342.44 27714133 21.124055

60.1343.83 69.2845.93 40.47 4544 34.0645.75 30.2945.27 22.6549.55 21354116 25.02+0.68

Random_Topo

3 GRACE Simple_Add 48615515 61371505 54.06:11435 31.41i1065 65.602535  26.761353 23974180 24834101
Discard_Topo 49351445 36271001 542241055 65941657 66.291717  28.01h4005 24784149 25.2041 51

Random_Topo 41251571 51161050 33751705  30.00i706  28.11isar 201604162 21.3lir7e 2042060

GraphMAE  Simple_Add  69.77:532  63.561145  66.224505 59.84is558  37.50:1160 582951250 24814100  25.371973 20.8211.60
Discard_Topo 51.72:44s 62995101 56934410 60931574 457811305 577111200 2611134 24.631530 21124156

Random_Topo  55.75:337 63274141 721li14s 44371560  36.09i470  40.80is40  23.371175 21731011 19.344105

DGI Simple_Add  24.074017 33531705 52914001 66.87igss  393Tisoss 70.74igss  25.620000 25154165 21.204; .43
Discard_Topo 37.33i323 49.75ip76 61544g05 66.72:001 69220315 74.061561 28381144 28044005 22601004

s Random_Topo  69.534176  64.024050 69.794500 46.561405 37.66:412 41371674 33661150 23.194066 251148
: GRACE Simple_Add  60.94ip39 514Ti260 50.09:1564 67194145 63912705  67.201543  28.085043 23794141  24.59:; 09

Discard_Topo 61.31i040  53.591087 37.024673 67.9740s4 69841720 70.29:384  29.014003 25.6840.64 24.9910.05

Random_Topo  47.Tlig19 46104035 5795448 38591573 3937510  38.63:1366 22021165 19995061 20.90:054
GraphMAE  Simple_Add  69.72:0gy  65.661302  73.224331  67.194140  66.72450s 74.7dss7o 28424501  23.801903 23.65:1.02
Discard_Topo 59.12:400 61965411 68704040 66255540 68.751s50 75431440 29341001  23.59:16s 23.08:170

e MDGFM [27]: MDGFM integrates multiple source domains during pretraining, leveraging con-
trastive learning to maximize mutual information between multi-view graph augmentations.
The topology-aware refinement process, which aligns different graph topologies into a
unified semantic space via meta-prompts (for global knowledge transfer) and task-specific
prompts (for domain adaptation).

B.4 3/5-shot node classification on different pretrained models

We further conduct 3-shot and 5-shot node classification experiments on the same nine datasets,
based on three different pretrained strategies, as shown in Table [5|and Table[6] Consistent with the
1-shot results, our method outperforms existing GPL approaches across most datasets under different
pretrained model settings. However, the baselines become more competitive in these scenarios, with
each achieving runner-up on certain datasets. Another observation is that, as the number of shots
increases, the performance discrepancies among models under different pretrained settings become
more pronounced, especially on datasets such as CiteSeer and Chameleon. In comparison to the GPL
baselines, UniPrompt demonstrates more stable performance across all settings. It is also noteworthy
that with an increase in the number of labels, Fine-tuning and Linear-probe become highly
competitive, achieving runner-up or even optimal performance on many datasets. This indicates
that traditional fine-tuning methods, much like GPLs, benefit significantly from additional label
information and, in some instances, utilize it more effectively than some existing prompt approaches.
Furthermore, our method achieves particularly significant gains on the Cornell, Texas, and Wisconsin
datasets, with this strong performance holding consistently across the different pretrained models.
This further underscores the broad applicability and robustness of UniPrompt .

B.5 Key Components Analysis of UniPrompt

To further analyze the pros and cons of each component in UniPrompt, we initially aimed to remove
the key components (i.e., kNN and bootstrap). However, since both components are essential
and cannot be simply removed, we instead conduct replacement experiments: (1) Random_Topo:
replacing kNN with random topology, (2) Simple_Add: replacing bootstrap with a simple addition
of the original and prompt graph, and (3) Discard_Topo: discarding the original graph totally. The
1-shot results are shown in the Table [/} From the table, we can find that Random_Topo maintains
some of effectiveness on homophilic datasets while showing reduced performance on heterophilic
ones. Conversely, for Simple_Add and Discard_Topo, heterophilic datasets still retain some
performance. However, performance on homophilic datasets drops significantly, as their original
structure is crucial for classification. Furthermore, a notable phenomenon is that when these core
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Table 8: In-domain large scale node classification. Accuracy on 5-shot node classification tasks
over three pretrained models and arXiv-year dataset. The best result is highlighted in bold, and the
runner-up with an underline.

Pretrain Method arXiv-year (Acc) Preprocessing Time (s) Training Time (s/per_epoch)

DCT Fine-tune 28.27 15 g9 - 0.0138
UniPrompt 32.48 .37 1.25 0.0224
Fine-tune 24.60+1.04 - 0.0205

GRACE UniPrompt  25.1740.83 1.26 0.0320
Fine-tune 23.24.11 58 - 0.0427

GraphMAE  yiprompt  24.25.5 43 132 0.0618

Table 9: Time (s) and GPU memory (MB) costs of different GPL baselines across various datasets.

Methods Time/Memory Cora CiteSeer PubMed Cornell Texas Wisconsin Chameleon Actor Squirrel
Fine-tune Time 0.0027  0.0026 0.0033  0.0026  0.0025 0.0031 0.0026 0.0027  0.0034
Memory 80.5 153.1 310.3 26.6 26.6 28.4 118.4 155.4 368.9
Li _orob Time 0.0010  0.0009 0.0009 0.0009  0.0009 0.0009 0.0011 0.0009  0.0009
inear-probe Memory 56.9 127.5 120.1 26.4 26.4 27.6 70.5 86.9 122.0
GPPT Time 0.0118  0.0117 0.0130 0.0123  0.0120 0.0119 0.0109 0.0051 0.0127
Memory 80.6 153.1 311.7 26.6 26.7 28.5 118.4 155.1 365.9
GraphPrompt Time 0.0035 0.0008 0.0101 0.0242  0.0037 0.0136 0.0003 0.0006  0.0024
P P Memory 642.6 896.1 2366.2 31.5 31.8 37.0 1170.4 913.7 3597.7
All-in-one Time 0.7616  0.7362 0.6024  0.6846  0.6732 0.6846 0.6856 0.7118  0.6834
Memory 2696.0  4021.5 9052.5 31.0 322 39.8 1801.8 36259 49172
GPF Time 0.0021  0.0031 0.0031 0.0020  0.0021 0.0020 0.0031 0.0022  0.0042
Memory 119.8 267.4 470.1 299 29.9 32.1 193.4 236.8 662.4
GPF+ Time 0.0033  0.0032 0.0033  0.0021  0.0023 0.0021 0.0032 0.0022  0.0042
Memory 130.0 361.8 470.5 323 323 349 194.3 236.9 662.6
EdgePrompt Time 0.0018  0.0027 0.0042  0.0025 0.0017 0.0017 0.0041 0.0031  0.0127
g P Memory 191.1 398.0 746.2 32,6 319 36.3 550.8 379.8  2608.3
FdgePromptt Time 0.0024  0.0027 0.0042  0.0025 0.0024 0.0024 0.0040 0.0035  0.0122
g P Memory 191.5 398.3 746.2 33.2 32.0 36.7 551.0 380.8  2608.4
UniPrompt(Ours) Time 0.0054  0.0052 0.0039  0.0040  0.0045 0.0039 0.0047 0.0068  0.0073
P Memory 511.5 674.5 566.2 55.1 55.2 67.7 539.9 13926 1603.9

components are replaced, an increasing number of labels does not consistently lead to performance
improvements. This is particularly evident in the Random_Topo setting. Although this setup is
analogous to augmentation strategies [47,, 37] in graph self-supervised learning, adding edges, as
opposed to masking them, can introduce unnecessary message passing and additional potential risks.
Thus, simply using a random topology is clearly suboptimal. Another observation is the varied impact
of discarding the original topology across different datasets. On homophilic graphs, performance
drops significantly, whereas in heterophilic scenarios, performance is maintained on some datasets
(i.e., Cornell, Texas) or even improved (i.e., Wisconsin, Chameleon). This suggests that the original
topology in these latter cases fails to provide an effective message passing mechanism, and useful
information is instead derived by learning the distribution of representations around anchor nodes. In
contrast, UniPrompt augments the graph with a learnable topology, facilitating effective message
passing for downstream adaptation and thereby ensuring good performance on both homophilic and
heterophilic datasets.

B.6 Large Scale Dataset Node Classification

We additionally run experiments on the large-scale heterophilic dataset Arxiv-year as a supplement.
Here, we use a simplified kNN by randomly sampling 1,000 nodes, then connecting each node to its
top-k most similar sampled nodes. We test three pretrain strategies under 5-shot setting, comparing
with fine-tuning. The accuracy and computational cost are shown in the Table (8| Our method incurs
minimal preprocessing time and only a slight increase in training time per epoch, with small epoch
counts (typically less than 500). This demonstrates that our approach is scalable to large graphs.

29



Table 10: Robustness analysis of the various pre-trained models to varying levels of Gaussian noise
on 1-shot, 3-shot, 5-shot node classification.

Pretrain  Shot Noisy Cora CiteSeer PubMed Cornell Texas Wisconsin ~ Chameleon Actor Squirrel

0.01 44.42410.49 323911285 61.00453; 50.62414.07 46.7211288 62.5141050 20.8042.43 26.96+435 22.5042.07
1 0.05 23234921 19771166 40014095  49.2211202 38.7541332 61.034979  20.724076  24.6740.96 20414074
0.20  27.8245.96 15.7345.90 39.46.40.37 28.59.45.96 339141064 42.86416314 20.0842.77 22154270 20.2140.097

0.01  63.724462 27401612  63.334447  52.661182  45.31119.04 56.804g75  23.27T4051  24.581275 21.5041.19

DGI 3005 18654051 16230470 39724437  56.87Tire2  45.16us005 5554er1  19.39p080 24471505  20.081001
020 153841148 15011415  28.09:000 43754846 340610160 521141150 15994408 22154070 19.994016

001  67.71125 22.3946.18  66.0549.07  64.694415 60474044 68461446  24.3243.60 25614011  20.6941.76

5005 17.554sm1  17.27Ti1s1 42760567 63754465 59385470  67.77Tisgs  20.41i047 20534550  19.731113

020 12981599 18.1211 64 32.68.19.75 59.69+4.41 43.5941576  59.5448.94 20.03+2.67 22144980 20.6312.12

001 39.7141316 16.091360 65101639 473411148 27.9711200  39.2041200 27284202 24124353  23.984295

1 0.05 20924690 16514027 463141486 49.06112.40 27.3441305 38.4041237  23.644595  22.624195 19.6241.70

020 13.87i625 1501060 32150030 317241180 40.0041525 341711049 19994506 18441426 21214108

GRACE 0.01 61.75.416.43 51.58.+7.30 66.66+6.50 48.59411.11  58.5946.79 69.2616.74 22.7349.42 22.944169 25.4049.37
3 0.05 26.124747 21.63+4.37 56.63+9.53 51.09411.66 56.87+6.65 69.14 45 19 21.3541.26 20.514308 20.7841.75

020 17.09:761 2322545 40.08:535 39.0641195 39.37:1647 71311105 20205000 21134080 20414004

0.01  69.564207 57.834223  73.531316 64691181  61.724501 65.6043.092  29.9740.75 25.0441.06 24.6341.39

5 005 20981355 19954601 603851046 63.75118 6L6lisgs 66294591  23.37is45 18964531 21.91 554

020 8.841380 17.0541.69  35.344991  60.31io55  51.25111.72  60.691842 17471003  18.624324 19.6140.24

0.01  40.254840 30.0347.41  56.544891  50.944g48  42.3411466 64.80113220 22.594150  21.8510s2 22.424931

1 0.05 10.5841.47 18424199  40.30+1047 50.00+11.42 45.78116.06 63.5411343 19494118 23.89+120 20.1610.46

020 10.59.505 18311175 32.69:686 39.6941655 481311511 57.0341585 18974151 21354085 20424047

GraphMAE 001  67.074747 43.014405  65.044390 60.31i36s  35.3lig990 5794112090 25.4540.81 25.524182 19971056

3 005 349011045 16631915 30.69:661 59531587 33911057 564341205 1941i10s 25704806 19.991058
020 14504497  18.2d1072 28541941 55.001885 334411888 584041146 19454217 20.771408  20.1310.64

0.01 64.4443 70 16.8644.51 71.4643.32 67.06+1.17 66.56+9.12 75.09+4.83 25.0141 85 24494188 23311074
5 0.05 34.30111.05 20.61i6.32 49.2049.18 68.4441 45 65.7848.43 74.2914.08 22.3449.96 20.114547 19924499
020 14874561  17.054169 37754410  61.254019 542241196 74744301 19834178 17464573  19.844061

B.7 Computational Overhead Comparison

we provide the 1-shot time and space table for various baselines of DGI pretrained models, are shown
in the Table[9] In the table, UniPrompt demonstrates efficient performance in both time and GPU
costs. In terms of inference time, our approach is comparable to all GPL baselines. While our use of
kNN slightly increases GPU memory usage, it remains within an acceptable range. This indicates that
our method is lightweight and can be quickly deployed on various datasets, showcasing its efficiency.

B.8 Robustness Analysis

Since our prompt topology is built on node features, it is sensitive to feature noise, which can lead
to distorted graph structures. When both features and topology are misaligned with the pre-trained
model, our method faces challenges in solving this problem. The 1-shot learning results under varying
levels of Gaussian noise are summarized in the Table [I0} where we observe that a 0.01 noise level
shows minor augmentation, maintaining accuracy in some datasets (e.g. PubMed, Wisconsin and
Actor). However, 0.05 noise begins to impact performance, and 0.20 noise significantly degrades
accuracy across most datasets, with an average accuracy drop of over 30%.

B.9 Hyperparameter Settings

We conduct extensive experiments to explore the impact of various hyperparameters on the perfor-
mance of our model, as shown in Table[IT} ensuring that our approach achieves robust and consistent
results across diverse settings.

C Related Works

Graph Pretraining. Graph pretraining has emerged as a powerful paradigm for learning general-
izable and transferable representations from large-scale unlabeled graph data, aiming to mitigate
the dependency on labeled data in downstream tasks. Unlike traditional supervised methods that
require extensive manual annotations [3} 4} 48], graph pretraining leverages self-supervised strategies
to capture structural and semantic patterns in graphs. Graph Self-Supervised Learning (GSSL) [49]
currently has attracted widespread attention in the graph community, which mainly designs self-
supervised objective functions to train the model based on maximizing Mutual Information (MI).
As a classic paradigm, DGI [28]] maximizes mutual information between node representations and
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Table 11: Hyperparameter settings of UniPrompt for 1-shot, 3-shot, and 5-shot scenarios across
different pretrained models

. 1-shot 3-shot 5-shot
Pretrain Dataset
up_Ir down_Ir &k T up_Ir down_Ir &k T up_Ir down_Ir £k T
Cora 0.001 0.05 50 0.99999  0.0005 0.05 10 0.9999  0.0001 0.05 10 0.99999

CiteSeer 0.0005 0.05 50 0.9999  0.0005 0.05 10 0.9999  0.0001 0.05 10 0.9999
PubMed 0.0005 0.001 109999  0.0001 0.05 50 0.9999  0.0005 0.05 10 0.99999
Cornell 0.001 0.0005 50 0.99 0.001 0.01 50 0.9999  0.00005 0.001 50 0.9999
DGI Texas 0.00001  0.0001 50  0.999 0.0001  0.00005 50 0.9999 0.00001  0.0001 50 0.9999
Wisconsin 0.0001 0.001 50 0.999 0.005 0.0001 50  0.9999 0.00001  0.0001 50 0.9999
Chameleon  0.00005 0.001 10 0.9999  0.00001 0.05 10 0999  0.00001 0.05 10 0.999

Actor 0.001 0.01 50 0999  0.00001 0.01 50 0.9999  0.0005 0.005 50 0.9999
Squirrel 0.00005 0.005 50 0.99999  0.0005 0.01 50 0.99 0.0001 0.0001 50  0.9999
Cora 0.001 0.005 50 0.9999 0.001 0.05 50 0.9999 0.001 0.05 50 0.9999
CiteSeer 0.005 0.001 50 0.9999  0.00001 0.05 50 0.9999  0.00001 0.05 50 0.9999
PubMed 0.01 0.05 1 0.9999 0.01 0.05 1 0.9999 0.01 0.0001 1 0.9999
Cornell 0.0001 0.0005 50 0.99 0.00001  0.0001 50 0.9999 0.00001  0.0005 50 0.9999
GRACE Texas 0.0001  0.00005 50 0.9999  0.00005 0.0001 50 0.9999 0.00005 0.0005 50 0.9999

Wisconsin 0.0001 0.01 50 0.999 0.0001 0.0005 50  0.999 0.0001 0.0001 50  0.9999
Chameleon  0.005 0.001 1099999  0.001 0.001 50  0.9999 0.005 0.05 50 0.99999

Actor 0.0005 0.01 50 0.9999 0.005 0.01 50 0.9999 0.005 0.05 50 0.9999
Squirrel 0.01 0.05 50 0.9999 0.005 0.05 50 0.99999  0.005 0.05 50 0.99999
Cora 0.0005 0.0005 50  0.9999  0.0005 0.05 1 0.99999  0.005 0.0005 1 0.9999
CiteSeer 0.001 0.0001 1099999  0.001 0.05 50 0.9999 0.001 0.05 10 0.9999
PubMed 0.005 0.01 1 0.999 0.0001 0.05 10 0.9999  0.0001 0.05 1 0.9999
Cornell 0.00005 0.05 50 0.9999  0.00005 0.005 50 0.9999 0.00005 0.0005 50  0.9999
GraphMAE  Texas 0.00001  0.0005 50 0.9999  0.00005 0.0005 50 0.9999 0.00005 0.0005 50 0.9999
Wisconsin  0.00005 0.01 50 0.9999 0.00001 0.00005 50 0.9999 0.00001  0.0005 50 0.9999
Chameleon  0.00001 0.005 50 0.99999  0.001 0.001 50 0.9999 0.001 0.05 50 0.9999
Actor 0.005 0.05 50 0.9999 0.001 0.05 50 0.9999 0.01 0.05 50 0.9999
Squirrel 0.005 0.05 50 0.9999 0.001 0.05 5 099999  0.005 0.0001 50  0.9999

Table 12: Settings and code links of various baseline methods.

Methods Source Code

k-Shot Sampling ProG/blob/main/prompt_graph/tasker/node_task.py
Dataset Split ProG/blob/main/prompt_graph/data/load4data.py
Evaluation ProG/blob/main/prompt_graph/evaluation/AlllnOneEva.py
DGI https://github.com/PetarV-/DGI

GRACE https://github.com/CRIPAC-DIG/GRACE
GraphMAE https://github.com/THUDM/GraphMAE/tree/pyg
GPPT https://github.com/MingChen-Sun/GPPT
GraphPrompt https://github.com/Starlien95/GraphPrompt
GPF/GPF+ https://github.com/zjunet/GPF
All-in-one https://github.com/sheldonresearch/ProG
EdgePrompt/EdgePrompt+ https://github.com/xbfu/EdgePrompt

the summary of the graph. GGD [50]] further explores the DGI, summarizing it as a group discrim-
ination task, greatly reducing the computational time overhead. MVGRL [51] introduces graph
diffusion to generate different scale subgraphs to improve the pipeline of DGI. GRACE [29] uses
InfoNCE [45] 46] to optimize by maximizing the similarity of two augmented nodes generated by
the same node and minimizing the similarity of other nodes to train the model. GCA [47] improve
the augmentation strategy by defining the importance of different nodes and edges to preserve
semantic information. GraphCL [37] and JOAO [52] use this paradigm to global-global graph
representation contrast. AD-GCL [53]] has similar idea, which designs a learnable augmentation
strategy, and trains the model by maximizing mutual information between node representation and
augmented graph. Some works [54} 55156, 157, 158,159} 160} [61]] focus on design effective sampling
strategy, and other works [62] 63] further introduce additional knowledge into GCL. AFGRL [64],
SimGRACE [65], NeCo [66] and AFGCL [67] propose augmentation free paradigm to optimize
sampling. PolyGCL [68]] and S3GCL [69] focus on designing polynomials with learnable filters
to generate different spectral contrastive views. GraphMAE [30], as the method of masked graph
autoencoders, utilizes randomly mask mechanism from the input with the graph autoencoder [[70]
architecture to reconstruct the node features or structures. GraphMAE2 [[/1] proposes multiview
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random re-mask decoding, the node representations are randomly re-masked multiple times, to
introduce randomness into feature reconstruction. BGRL [31] adopts BYOL [72], which trains the
online encoder by predicting the target encoder to generate efficient node representations. This
backbone is followed by some recent works, such as SGRL [73]] and SGCL [32].

Graph Prompt Learning. Graph prompt learning aims to address the gap between pretrained models
and downstream tasks by introducing tunable components into the inputs, model parameters, or
outputs of pretrained models. This approach facilitates the alignment of the pretraining domain with
the target domain, thereby improving performance in downstream tasks, particularly in few-shot
fine-tuning scenarios. GPPT [6] introduces structure tokens and task tokens, transforming the node
classification task into a form consistent with link prediction. GPF/GPF-plus [7]], from the perspective
of the feature space, inject global and specific prompt vectors into nodes, bringing the prompt-tuning
paradigm into graph representation learning. SUPT [74] extends GPF-plus to the subgraph level,
modifying the attention mechanism to a GCN-like aggregation that incorporates neighborhood in-
formation. IA-GPL [75] further advanced this by introducing an instance-aware mechanism that
maps node representations to a prompt space, and quantizes them into a codebook using Vector
Quantization (VQ) [[76]. The resulting quantized prompts are then combined with node features
as input for the pre-trained model. RELIEF [77]] employs reinforcement learning to select a small,
efficient set of nodes for prompt generation, creating node-specific prompts to avoid the potential
interference of applying prompts to all nodes. All-in-one [14] unifies the "pretraining-prompt"
paradigm by converting node and edge tasks into graph-level tasks by building an induced subgraph.
It then adds learnable prompts to the node features in a weighted manner to construct a prompt
graph. By combining meta-learning with this process, the prompts can adapt to multiple downstream
tasks. HeterGP [78]] extends this paradigm by considering heterophilic scenarios. GraphPrompt [24]]
unifies node-level and graph-level tasks into subgraph similarity computation and incorporates a
learnable prompt vector into the readout layer of GNNs, enabling the model to adapt flexibly to
various downstream tasks. Building on this, GraphPrompt+ [[15] generalizes pre-training tasks to
arbitrary contrastive learning tasks and introduces prompt vectors into each GNN layer, thereby
leveraging hierarchical knowledge. MultiGPrompt [26] further adopts multi-task pre-training to learn
more comprehensive and multi-level representations. PRODIGY [79] introduces task graphs to unify
pretraining and downstream tasks via in-context learning. It avoids parameter tuning by reformulating
tasks as link prediction between data and label tokens. GraphControl [22] aligns cross-domain
graphs via conditional prompts inspired by ControlNet [80], enabling semantic consistency in transfer
learning. Moreover, some works are designed for considering heterogeneous graphs. HGPrompt [81]],
based on GraphPrompt, decomposes a heterogeneous graph into multiple homogeneous subgraphs
and introduces feature prompts and heterogeneity prompts, thereby proposing the prompt framework
applicable to both homogeneous and heterogeneous graphs. HetGPT [82]] further introduces virtual
class prompts and heterogeneous feature prompts, and adopts a multi-view neighborhood aggregation
mechanism to effectively model the complexity of heterogeneous neighborhood structures, construct-
ing a general framework for heterogeneous graph prompting. HiGPT [83]] targets more complex and
dynamic heterogeneous graph scenarios by employing context-parameterized heterogeneity projectors
and LLMs to generate node embeddings, while leveraging instruction tuning in downstream tasks to
enhance generalization ability. Although various graph prompt strategies have advanced the field,
there remains no unifed understanding of how these prompts interact with pretrained models, which
is the problem our work tries to explain and solve.

Prompt Techniques in Graph Foundation Models. Due to its simple and efficient design, prompt
techniques is widely used in some graph foundation models and LLM+GNN paradigms. GCOPE [38]
proposes the concept of a "Coordinator”, which introduces a set of virtual nodes to bridge different
datasets, enabling the model to learn knowledge across multiple domains and transfer it to a wide range
of downstream tasks. OFA [[16] and GOFA [84] introduce LLMs into graph learning. Specifically,
OFA [16] first transforms all graph data into text-attributed graphs (TAGs), and augments the
NOI (node of interest) subgraph with NOI prompt nodes and class prompt nodes. The data are
then processed sequentially by an LLM and a GNN to predict the category of the NOI. GOFA [84]]
interleaves GNN layers with LLM layers, which not only preserves the ability to learn graph structures
but also equips the model with text generation capabilities, thereby enabling broader generalization to
downstream tasks. GraphPrompter [85] projects TAGs into a semantic space to align them. A GNN
then encodes the graph structure, and the resulting node embeddings are concatenated into prefix
tokens. These tokens are prepended to the input text, enabling a frozen LLM to understand and reason
about the graph data. ZeroG [[12]] uses LoRA [86] to fine-tune a pretrained Language Model (LM).
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It creates a neighborhood-aware prompt that aggregates local topological information via message
passing, helping the LM generate effective representations for zero-shot tasks. UniGraph [87] maps
cross-domain graph features into a unified LLM semantic space. It trains a cascaded LM-GNN
encoder using a masked language modeling task. For downstream tasks, it uses in-context learning for
few-shot transfer and combines LoRA with fine-tuning for zero-shot transfer. LLaGA [88]] transforms
graph structures into node sequences using either a neighbor-based or hop-count based approach. The
resulting sequences, which are rich in structural information, are combined with prompt tokens and
fed into a frozen LLM for various downstream tasks. GraphGPT [89] uses a two-phase prompt tuning
to enhance LLM understanding of graph structures. The first phase uses self-supervised prompt
tuning with a graph matching task to learn a projector. The second phase involves task-specific
fine-tuning to customize the reasoning of LLMs for different downstream tasks. The GFT [90]
framework defines a computation tree as a token, and uses VQ to maintain a token vocabulary during
pretraining. For downstream prompting, any task can be re-framed as the classification of these
computation tree tokens. GIT [91]] adopts similar concepts to GFT, but adds theoretical proofs to
demonstrate the stability, transferability, and generalization of the task tree.

D Limitations

Despite the excellent results achieved by our proposed UniPrompt method, several limitations should
be considered:

* Limited Integration with LLMs: Our proposed method currently focuses on adapting
traditional graph pretrained models and does not explore the integration of Large Language
Models (LLMs) as encoders. This is a notable limitation, given the increasing prominence of
LLMs in generating powerful, semantically rich node representations from textual attributes.
The full potential of UniPrompt in semantically driven graph tasks and its applicability to
emerging paradigms like zero-shot graph learning remain unexplored.

* Hyperparameter Dependency: The effectiveness of UniPrompt hinges on two key hy-
perparameters: the temperature coefficient, 7, which balances the original and prompt
topologies, and the number of neighbors, £, in the kNN graph. The hyperparameter analysis
reveals that the optimal settings for these parameters vary significantly across datasets of
different types (e.g., homophilic vs. heterophilic) and scales. This necessitates careful tuning
when applying the method to new datasets, which adds to its practical complexity.

* Limited Task Coverage: The current evaluation is exclusively focused on node classifica-
tion, particularly in few-shot settings. Whether UniPrompt can be effectively generalized
to other important graph learning tasks, such as graph classification, link prediction, or
community detection, remains unverified. These tasks have different requirements for
global structural information or edge-level relationships, for which the current node centric
topological prompt may not be optimal.

E Broader Impacts

The introduction of UniPrompt represents a significant advancement in the field of graph prompt
learning. The broader impact of this work includes:

* Promoting the Development of Graph Foundation Models: By theoretically dissecting
the underlying mechanisms of different prompting strategies, this research proposes a clearer
design paradigm: graph prompt learning should focus on unleashing the capability of
pretrained models, and the classifier adapts to downstream scenarios. This perspective offers
theoretical guidance for building more powerful and versatile Graph Foundation Models
(GFMs), helping to steer the field toward a more unified and efficient direction.

* Further Integration with LLMs: The principles of UniPrompt can be powerfully com-
bined with Large Language Models (LLMs), which have become de facto foundation models
for language. In this paradigm, an LLM could serve as a powerful feature encoder for text-
attributed graphs, and UniPrompt ’s adaptive topology would then refine the graph structure
to best suit the rich semantic representations provided by the LLM. This integration would
test the universality of our approach, demonstrating how a learnable, input-level prompt can
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effectively guide a powerful, but non-graph-native, pre-trained model to reason over graph
structures.

Extension to Multiple Tasks: While the current work focuses on node classification, the
core idea of learning an adaptive topology is task-agnostic and holds significant promise
for other fundamental graph tasks. For graph classification, the learned prompt graph could
highlight key subgraphs or motifs crucial for determining a graph’s overall label. For
link prediction, the adaptive topology could help the model capture higher-order structural
patterns predictive of missing edges. Extending UniPrompt to these diverse tasks would be
a crucial step in validating its effectiveness as a more universal adaptation method for graph
models.

Enhancing Model Robustness and Generalization: The method enhances the gener-
alization capability of pre-trained models by learning a topology that is adaptive to the
downstream task, especially when handling distribution shifts (e.g., from homophily to het-
erophily). This concept can inspire further research into improving cross-domain adaptation
and Out-of-Distribution (OOD) generalization, which is vital for building reliable and stable
Al systems that can operate in diverse, real-world environments.
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