
One Prompt Fits All: Universal Graph Adaptation for
Pretrained Models

Yongqi Huang1†, Jitao Zhao1†, Dongxiao He1∗, Xiaobao Wang1, Yawen Li2,
Yuxiao Huang3, Di Jin1, Zhiyong Feng1

1College of Intelligence and Computing, Tianjin University,
2School of Economics and Management, Beijing University of Posts and Telecommunications,

3Department of Data Science, George Washington University,
1{yqhuang, zjtao, hedongxiao, wangxiaobao, jindi, zyfeng}@tju.edu.cn

2warmly0716@126.com, 3yuxiaohuang@gwu.edu

Abstract

Graph Prompt Learning (GPL) has emerged as a promising paradigm that bridges
graph pretraining models and downstream scenarios, mitigating label dependency
and the misalignment between upstream pretraining and downstream tasks. Al-
though existing GPL studies explore various prompt strategies, their effectiveness
and underlying principles remain unclear. We identify two critical limitations:
(1) Lack of consensus on underlying mechanisms: Despite current GPLs have
advanced the field, there is no consensus on how prompts interact with pretrained
models, as different strategies intervene at varying spaces within the model, i.e.,
input-level, layer-wise, and representation-level prompts. (2) Limited scenario
adaptability: Most methods fail to generalize across diverse downstream sce-
narios, especially under data distribution shifts (e.g., homophilic-to-heterophilic
graphs). To address these issues, we theoretically analyze existing GPL approaches
and reveal that representation-level prompts essentially function as fine-tuning
a simple downstream classifier, proposing that graph prompt learning should fo-
cus on unleashing the capability of pretrained models, and the classifier should
adapt to downstream scenarios. Based on our findings, we propose UniPrompt, a
novel GPL method that adapts any pretrained models, unleashing the capability of
pretrained models while preserving the input graph. Extensive experiments demon-
strate that our method can effectively integrate with various pretrained models and
achieve strong performance across in-domain and cross-domain scenarios.

1 Introduction

Graph Prompt Learning (GPL) [1, 2], which aims to design diverse graph prompt strategies, has
emerged as a promising and effective alternative paradigm that bridges between graph pretrain-
ing [3, 4] and downstream scenarios [5], overcoming the limitations of label dependency and the
misalignment between upstream pretraining and downstream tasks [6]. Most GPLs freeze the pa-
rameters of the pretrained model and tune specific prompt module. Due to its compatibility with
various types of graphs, such as general graphs [6, 7], Knowledge Graphs (KGs) [8, 9, 10] and Text-
Attribute Graphs (TAGs) [11, 12], GPL demonstrates strong universality and transferability, thereby
improving the fields of few/zero-shot graph learning [12, 13], unified task learning [14, 15, 16],
cross-domain graph learning [17, 18], and promoting the development of Graph Foundation Models
(GFMs) [19, 20, 21].

†Equal contribution.
*Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Pretrained
Model

Prompt

loss(a)

Pretrained Model

Prompt

loss(b)

Pretrained
Model

Prompt

loss(c)

Figure 1: Three different graph prompting mechanisms: input-level prompt (left), layer-wise prompt
(middle), and representation-level prompt (right).

Most GPLs can be divided into three categories according to how the prompts are integrated into the
pretrained models, as illustrated in Figure 1. Input-level GPLs (Figure 1a), like feature prompt [7] and
edge prompt [22, 23], insert prompt modules or soft prompt before the pretrained models, effectively
modifying the input graph to align with upstream distributions in pretraining. Representation-level
prompts (Figure 1c), including task tokens [6] and prototypical subgraphs [24, 25], applies prompts
to the representations generated by the pretrained models, formulating downstream tasks that align
with the pretrain objectives. Layer-wise prompt (Figure 1b) [15, 26] combines the prompt with each
layer inside the pretrained model, learning the distribution and propagation patterns in each layer.
In addition, some works [26, 27] also explore hybrid strategies that place various prompts across
different layers or components (input-, representation-level) of the model.

Despite the success of these explorations, our observations indicate that GPLs often experience
performance instability or even negative optimization, which also be reported in recent studies [2].
Moreover, the existing prompt methods are complex and diverse. There remains a lack of clear
understanding of why graph prompt learning works. Through our analysis of existing methods, we
identify two major issues: 1). Lack of consensus on underlying mechanisms: Although various
graph prompt strategies have advanced the field, there remains rare unified understanding of how
these prompts interact with pretrained models. As shown in Figure 1, diverse mechanisms such as
input-level, representation-level, and layer-wise prompts achieve promising performance. However,
they influence the models in different ways, and the underlying interaction mechanisms are still
unclear. 2). Limited scenario adaptability: Most GPLs struggle to achieve good performance on
different pretrained models even in the in-domain setting. As shown in Figure 2, only fine-tuning a
classifier can achieve or exceed the performance of existing GPLs. In addition, these methods have
difficulty achieving excellent performance in a variety of downstream scenarios, especially when the
data domains of upstream and downstream scenarios are different (e.g., from a homophilic pretraining
graph to a heterophilic downstream graph). To summarize: From the prompting mechanism to the
downstream scenario, existing graph prompt learning methods exhibit an adaptation gap.

To investigate the underlying mechanisms of GPL, we conduct a motivation experiment and find
that existing representation-level prompt GPLs fail to consistently adapt well to different pretrained
models. Moreover, they show no significant performance improvement compared to linear probe
(only fine-tune a classifier), which achieves good and stable results. This motivates us to explore the
relationship between different types of prompts and linear probe. Through theoretical analysis and
discussions, we demonstrate that the representation-level prompt is essentially equivalent to linear
probe. This primarily serves to adapt the pretrained model to downstream tasks, which focuses on
fitting the outputs of the pretrained models to the downstream labels, struggling to leverage the unique
benefits of prompts. As for layer-wise methods, their reliance on layer-wise representations of the
pretrained model, combined with their design complexity, makes them unsuitable. In contrast, input-
level prompts avoid the limitations and preserve the advantages of prompting, they are the promising
among the three categories. Therefore, we propose a perspective: graph prompt learning should focus
on unleashing the capability of pretrained models, and the classifier adapts to downstream scenarios.

Based on our perspective, we propose UniPrompt, a novel GPL method that adapts any pretrained
models, leveraging prompt graph while preserving the original structure to unleash the capability of
pretrained models. Specifically, we construct a kNN graph as the initial prompt graph and adaptively
optimize edge weights to guide message passing across nodes. To preserve the input graph, we
introduce a bootstrapping strategy that integrates the prompt graph into the original graph topology,
preventing model collapse and overfitting. Our main contributions can be summarized as follows:

2

1. We identify two key issues in existing GPLs: lack of consensus on underlying mechanisms, and
limited scenario adaptability. We propose that graph prompt learning should focus on unleashing the
capability of pretrained models, and the classifier adapts to downstream scenarios.

2. We propose UniPrompt, a novel universal GPL method that adapts any pretrained models. This
method leverages a learnable prompt graph while preserving the original structure to unleash the
capability of pretrained models.

3. We conduct extensive experiments on homophilic and heterophilic datasets, evaluating in-domain
and cross-domain performance under few-shot settings. Experimental results demonstrate that our
method consistently outperforms state-of-the-art GPL baselines.

2 Notations and Preliminary

General Graphs. Given a graph G = (V, E ,X,Y), where V = {v1, v2, · · · , vN} is the set of
nodes, N = |V|, and E ⊆ V × V is the set of edges. These nodes are associated with feature matrix
X ∈ RN×F , Xi ∈ RF is the feature of vi. The edges can be represented by adjacency matrix
A ∈ {0, 1}N×N , and Aij = 1 iff (vi, vj) ∈ E . Each node vi is associated with a label yi ∈ Y,
where Y denotes the set of all possible class labels. We use P (·) to denote the probability distribution,
primarily for distinguishing concepts rather than performing mathematical derivation.

Fine-Tuning. In the pretrain-finetune paradigm, given a pretrained graph encoder fθ and a down-
stream trainable projection head gϕ, both parameters θ and ϕ are jointly optimized on a downstream
dataset D = {(A,X,Y)}. The objective is to maximize the log-likelihood of label predictions,
which can be formulated as:

max
θ,ϕ

1

|D|
∑

(A,X,Y)∈D

N∑
i=1

logP (yi | gϕ (fθ(A,X)i)) , (1)

where fθ(A,X)i denotes the node representation of the node vi. As a special case, when freezing θ
(i.e., restricting maxϕ), this reduces to linear probing where only the projection head gϕ is adapted.

Graph Prompt Learning. Compared to fine-tuning, graph prompt learning keeps the pretrained
encoder fθ frozen while introducing trainable prompt parameters Ψ. The optimization objective for
all graph prompt learning methods can be expressed as:

max
Ψ

1

|D|
∑

(A,X,Y)∈D

N∑
i=1

logP (yi | PredictΨ (A,X, vi; fθ)) , (2)

where D = {(A,X,Y)} is a downstream dataset, Ψ represents all trainable prompt parameters, fθ
is the frozen pretrained encoder. PredictΨ(·) is a unified prediction function that takes the input graph
(A,X), node vi, the pretrained encoder fθ, to predict the label of node vi.

For input-level prompt, Ψ acts on the input (A,X), transforming it before it enters fθ. For layer-wise
prompt, Ψ is integrated within the layers of fθ. For representation-level prompt, Ψ operates on the
representations from fθ, often as part of the classifier, directly influencing the downstream tasks.

3 Motivation Experiments and Analysis

Although graph prompt learning is theoretically distinguished from fine-tuning by freezing the
parameters of the pretrained model to retain pretrained knowledge, this seemingly suggests a clear
boundary between "unleashing pretrained knowledge" and "adapting to downstream scenarios",
which contradicts the problem raised in our Introduction. However, we refute this claim through an
experiment, demonstrating that prompt-based methods fall into a "pseudo-adaptation" trap.

To investigate whether graph prompt learning suffers from adaptation bias, we conduct the fol-
lowing experiment. As illustrated in the Figure 2, we select classic GPL methods, GPPT [6] and
GraphPrompt [24], and compare them with fine-tuning that only optimizes the classifier. We employ
widely used pretrained models: DGI [28], GRACE [29], and GraphMAE [30], and we keep all other
parameters consistent, and observe the differences in downstream training between prompt learning
and fine-tuning. Our experimental results reveal that GPPT exhibits significant incompatibility when

3

Figure 2: Comparison of fitted normalized loss curves and 1-shot performance across three pretrained
models on the Cora dataset. Fine-tune(C) denotes linear probe, while GPPT and GraphPrompt are
two GPL methods. Shading indicates the standard deviation of the sliding window.

switching pretrained models, whereas GraphPrompt maintains stable performance across different
pretrained models. Another observation is that even though GraphPrompt shows good convergence
trends, its performance still falls short of the simple fine-tuning approach in many scenarios, which
remains robust across different pretrained models and even outperforms GPL methods in some cases.

This suggests that different graph prompt learning methods heavily depend on the design of the
pretrained models. When confronted with varying pretrained models, they often demonstrate incom-
patibility or suboptimal performance compared to fine-tuning. This raises an important question: Do
existing graph prompt learning methods work due to the design of the prompt algorithm, or are they
merely benefiting from certain key components in the pretrained model? The answer remains unclear.
However, our observations align with prior research [2], when pretrained models are swapped, many
GPL methods underperform, while simple fine-tuning can achieve superior results.

Thus, we challenge the current objectives of GPLs: Have existing studies truly succeeded in dis-
tinguishing graph prompt learning from fine-tuning? To get deeper insight into the performance
differences across various prompt spaces, we focus on a key question: do these differences stem from
the prompts’ ability to access pretrained knowledge, or from their capacity to adapt to specific tasks?
Therefore, we provide a theoretical analysis in this section to understand the underlying mechanisms.

4 Mechanism Relationship between Prompts and Classifier

Definition 4.1 Given a GNN encoder ϕ(·;G) : V → Rd, the representation set H = {hi ∈ Rd |
vi ∈ V } is encoded by ϕ. The representation of vi is hi = ϕ(vi;G). Then, we define the prompt
function T (·) and classifier C(·) and baseline classifier C0(·) as follows:

T (·) : Rd → Rd′
, C(·) : Rd′

→ Rk, C0(·) : Rd → Rk, (3)
where T (·) is parameterized as a linear transformation: T (h) = WTh + bT , with parameter
WT ∈ Rd′×d, bT ∈ Rd′

. C(·) is implemented as a linear classifier: C(h) = W⊤
Ch, with

WC ∈ Rd′×k. C0(·) is implemented as a baseline classifier: C0(h) = W⊤
0 h, with W0 ∈ Rd×k.

Theorem 4.1 (Parameter Objective Equivalence) Given a linear prompt function T (h) = WTh
+bT and classifier C(h) = W⊤

Ch, the following properties hold:

1. Function Space Equivalence: There exists a linear classifier C ′(h) = W⊤
C′h+ bC′ such

that (C ◦ T)(h) = C ′(h) for all h;

2. Optimization Objective Equivalence: The optimization problems minWT ,bT ,WC
L(C ◦

T (h), y) and minWC′ ,bC′ L(C
′(h), y) are equivalent in parameter space and gradient

update paths.

The function space equivalence is guaranteed by Proposition 4.1, and the optimization equivalence is
demonstrated in Proposition 4.2.

Proposition 4.1 (Function Space Equivalence) For any linear transformation T (h) = WTh+bT

and classifier C(h) = W⊤
Ch, there exists an equivalent classifier C ′(h) = W⊤

C′h+ bC′ such that
(C ◦ T)(h) = C ′(h).

4

The detailed proof of Proposition 4.1 is provided in Appendix A.1. It shows that a representation-level
prompt is functionally equivalent to linear probe C ′ in the function space. While this equivalence
has not been explicitly recognized in prior work. To further clarify the equivalence between a
representation-level prompt and linear probe in terms of optimization, we introduce Proposition 4.2.

Proposition 4.2 (Optimization Objective Equivalence) For (C ◦ T)(h) and C ′(h), we consider
the same loss function L, the optimization problems minWT ,WC ,bT

L((C ◦ T)(h), y) and
minWC′ ,bC′ L(C

′(h), y) are equivalent in the parameter space.

The detailed proof of Proposition 4.2 is provided in Appendix A.2. Here we give a brief explanation:
Proposition 4.2 demonstrates that the two different optimization formulations, representation-level
prompt and linear probe, lead to equivalent parameter updates during optimization. This theoretical
equivalence implies that both approaches perform the same underlying optimization. While practical
performance differences arise due to the structural complexity of prompts, which may introduce extra
challenges, as opposed to linear probe that is typically simpler in design and optimization.

Discussion 1. Theorem 4.1 demonstrates that the representation-level prompt is fundamentally
equivalent to linear probe, only designing a simple classifier can yield satisfactory results. Therefore,
we suggest that graph prompt learning should focus on unleashing the capability of pretrained models,
rather than adapting pretrained models to specific downstream scenarios. Specifically, an effective
GPL approach should aim to combine the advantages of both mechanisms. Let ϕpre(·;G) = AXWpre

be a pretrained GNN encoder with fixed parameters Wpre. We define Ĝ = (Â, X̂) = T (G), which
modifies the input graph to align the ϕpre. C(h) = W⊤

Ch adapts representations to downstream
labels. Then, the joint optimization of (Ĝ,WC) as follows:

min
WC ,Ĝ

LD = −
∑

vi∈VL

yi log σ
(
W⊤

CÂX̂Wpre

)
i
, (4)

where LD is the downstream task loss, typically cross-entropy loss. ÂX̂Wpre ensures adaptation
with pretrained knowledge, and WC minimizes LD to adapt downstream task.

Discussion 2. Building on Discussion 1, we propose that the input-level and layer-wise prompt
mechanisms align with equation 4, where jointly optimizing the prompts and the classifier leads to
better performance than using the classifier or prompt only. As for layer-wise methods, their reliance
on layer-wise representations of the pretrained model, combined with their design complexity, makes
them unsuitable. In contrast, input-level prompts avoid the limitations and preserve the advantages of
prompting, which applies prompts to the features or adjacency matrix, helping to reduce structural
differences and feature distribution shifts, thereby bridging the gap between upstream pretraining and
downstream scenarios. Therefore, we propose that graph prompt learning should focus on unleashing
the capability of pretrained models, and the classifier adapts to downstream scenarios. This viewpoint
clearly defines the distinct roles and mechanisms of the two crucial downstream components: the
prompt and the classifier.

5 Methodology

In this section, we present our method, UniPrompt. Our approach introduces an input-level graph
prompt that modifies the graph topology to better align the pretrained models with downstream
few-shot tasks. We first introduce an overview of our UniPrompt. For a given graph G = (A,X)
and a frozen pretrained model fθ(·), our goal is to adapt it to a downstream task with only a few
labeled nodes VL. Instead of directly fine-tuning θ, UniPrompt generates a topological prompt Ã
with learnable parameters Ψ. This prompt is then iteratively fused with the original graph to create
a prompt graph, which is fed into the frozen encoder fθ(·). Finally, a lightweight classifier gϕ(·) is
trained jointly with the prompt parameters Ψ on the labeled nodes.

Prompt Initialization. To enhance prompt adaptability for pretrained models, we consider both
in-domain and cross-domain scenarios. In the in-domain case where pretraining and prompt tuning
share the same data distribution, the classifier adapts the pretrained model to downstream scenarios
while the prompt aligns the pretrained model with downstream inputs. A special case occurs when
downstream data is heterophilic, even with matched distributions, the heterophily contradicts the
homophily assumption in pretrained models. Existing input-level and layer-wise prompts primarily

5

process features and tend to overfit in few-shot settings, failing to handle this scenario. In contrast,
topological relationships provide more direct and interpretable structural patterns. Therefore, we
propose an edge prompt strategy that uses kNN to generate a topological prompt with tunable edge
weights, formulated as:

(Ãinit)ij =

{
Sij , if Sij ∈ top-k {Si·},
0, otherwise.

, Sij =
xix

⊤
j

∥xi∥2∥xj∥2
, (5)

where xi,xj ∈ RF are the features for nodes vi and vj , and ∥ · ∥2 denotes the L2 norm. we select the
top-k edges as initial edges and serve as the basis for our learnable prompt.

Parameterization. Instead of treating the presence of edges as fixed, we introduce learnable
parameters to control the importance of each edge in the initial prompt graph. For every non-zero
edge (Ãinit)ij , we associate a learnable scalar weight wij , which forms our set of prompt parameters
Ψ = {wij}. To enable the model to select the most relevant prompt edges and ensure non-negative
weights, we apply a gating mechanism using a scaled and shifted ELU activation function. The
prompt adjacency matrix Ã is computed as:

Ãij = ELU(wij · α− α) + 1, (6)

where α is a hyperparameter controlling the shape of activation. This parameterization adds learn-
able edge gating mechanism that can adaptively prune (i.e., approach zero) or amplify topological
information for downstream scenarios.

Bootstrapped Prompt Integration. After generating the prompt topology Ã, the challenge lies
in its integration with the original adjacency matrix A. While an ideal scenario would involve
directly substituting A with Ã, this approach proves impractical, particularly in few-shot learning
settings, due to risks of severe overfitting and model collapse. Drawing inspiration from Graph
Self-Supervised Learning (GSSL) [31, 32] and Graph Structure Learning (GSL) [33], we adopt a
bootstrapped integration that iteratively updates the topology rather than directly replacing A. The
graph structure fed into the pretrained model at each training epoch is iteratively updated. Let Â(t)

be the input adjacency matrix at training epoch t. The update rule is defined as:

Â(t) = τÂ(t−1) + (1− τ)Ã, (7)

where Â(0) = A is the original adjacency matrix, and the temperature coefficient τ ∈ [0, 1] controls
the balance between original and prompt topology.

Optimization Objective. For subsequent epochs, the input to the pretrained model becomes Ĝ =

(Â,X). Through UniPrompt, we process Ĝ via the pretrained model to obtain node representations
H. Our empirical results in Figure 2 demonstrate that linear probe achieves comparable performance
to existing GPL methods in few-shot settings. This demonstrates the capability of the classifier
to adapt to downstream scenario, confirming its effectiveness in this configuration. Therefore,
we incorporate a learnable projection head gϕ in the representation and jointly optimize it with
UniPrompt. The overall framework is optimized via the following equation:

min
ϕ,Ψ

1

|VL|
∑

vi∈VL

ℓD (gϕ (fθ (pΨ(A,X))i) , yi) , (8)

where yi is the ground-truth label of node vi ∈ VL, and ℓD is the downstream task loss, i.e., the
cross-entropy loss for classification tasks.

6 Experiments

6.1 Experimental Setup

We evaluate the effectiveness of UniPrompt 1 using nine node classification datasets, including
three homophilic datasets Cora [34], CiteSeer [34] and PubMed [34], and six heterophilic datasets
Cornell [35], Texas [35], Wisconsin [35], Chameleon [35], Actor [35] and Squirrel [35]. For in-domain

1Code is available at: https://github.com/hedongxiao-tju/UniPrompt

6

https://github.com/hedongxiao-tju/UniPrompt

Table 1: In-domain node classification. Accuracy on 1-shot node classification tasks over three
pretrained models and nine datasets. The best results in each pretrain strategy are highlighted in bold,
and the runner-up with an underline.

Pretrain Methods Cora CiteSeer PubMed Cornell Texas Wisconsin Chameleon Actor Squirrel

DGI

Fine-tune 50.22±9.28 42.58±8.87 53.90±8.30 35.23±8.84 37.50±13.57 33.91±10.56 24.42±3.19 21.36±3.28 22.27±4.10

Linear-probe 49.77±9.74 43.16±7.60 55.76±9.43 34.56±8.60 36.21±13.77 28.71±9.38 23.64±2.17 21.33±2.62 22.82±4.10

GPPT 37.59±7.38 36.01±6.33 51.56±6.64 29.01±8.32 31.26±8.51 28.56±6.50 22.15±2.50 19.81±1.63 20.71±1.24

GraphPrompt 49.70±10.27 43.98±7.61 46.32±7.80 22.29±6.44 27.62±11.08 22.62±8.14 23.59±2.54 19.84±2.79 22.85±3.28
All-in-one 32.10±6.50 28.77±3.12 35.87±7.53 26.67±12.42 31.53±13.14 24.82±8.77 22.41±3.58 19.93±5.23 21.61±5.87

GPF 51.68±9.52 43.11±5.76 53.09±9.66 26.76±8.87 34.04±15.54 26.59±8.94 23.29±3.67 20.31±4.17 21.66±3.28

GPF+ 48.66±6.80 44.89±6.61 52.58±9.79 25.23±8.76 28.55±13.49 22.82±8.89 22.98±3.66 20.81±3.08 21.56±3.68

EdgePrompt 42.05±6.36 38.54±6.37 47.67±4.73 28.00±8.51 31.32±15.82 32.64±11.87 23.17±3.78 21.36±2.76 21.99±2.50

EdgePrompt+ 41.74±6.73 36.10±6.15 46.73±5.53 28.37±7.94 33.75±13.57 33.38±11.81 22.95±3.78 20.16±2.65 21.74±2.10

UniPrompt 49.95±10.48 45.57±8.63 57.17±7.11 51.13±13.26 48.21±15.95 58.75±13.41 23.75±4.02 25.38±4.86 24.20±2.35

GRACE

Fine-tune 48.59±9.20 46.16±6.30 57.97±7.55 34.18±10.18 31.52±13.08 32.23±8.96 26.22±2.73 20.81±2.86 21.16±2.57

Linear-probe 46.22±7.92 46.10±6.32 57.87±7.60 34.92±9.74 34.84±15.65 31.66±8.18 24.27±3.84 20.53±3.11 20.81±1.82

GPPT 42.19±6.42 37.42±9.10 47.62±7.86 27.88±8.09 32.97±13.84 26.53±8.72 25.46±5.43 19.20±4.16 21.56±2.30

GraphPrompt 49.91±9.60 35.64±8.35 53.63±9.01 23.20±5.83 30.19±13.63 23.07±6.73 28.28±4.38 19.15±3.39 22.48±2.66
All-in-one 34.53±5.86 24.06±6.18 34.51±7.45 22.17±5.40 27.37±13.79 36.17±6.32 19.46±0.29 19.04±4.30 22.03±2.46

GPF 48.41±8.17 36.78±4.96 50.59±7.18 28.21±8.25 29.98±14.44 27.58±5.74 25.25±4.33 20.20±2.65 20.80±3.05

GPF+ 47.06±8.14 44.46±6.76 51.38±7.19 28.91±8.85 31.49±14.92 27.49±8.38 26.03±4.37 20.13±2.90 21.41±2.96

EdgePrompt 41.95±8.19 36.65±6.07 48.20±10.08 31.85±6.19 29.27±11.99 38.62±8.25 23.23±3.25 20.78±2.67 21.76±1.66

EdgePrompt+ 45.32±9.03 35.80±6.37 50.01±11.96 32.13±7.42 31.95±6.51 38.68±7.78 23.79±3.31 20.63±2.95 20.97±1.06

UniPrompt 44.73±10.78 47.53±10.13 57.88±4.80 52.80±11.08 45.38±19.87 50.98±15.38 26.67±2.51 26.23±4.46 23.98±2.53

GraphMAE

Fine-tune 45.92±9.67 36.47±8.35 54.29±9.52 35.82±11.30 37.07±14.08 33.54±10.16 22.08±3.19 20.85±1.68 21.32±2.65
Linear-probe 50.13±12.06 48.08±6.96 58.61±8.34 32.27±11.28 38.32±13.61 28.40±8.67 23.02±2.08 20.56±2.91 21.05±1.87

GPPT 41.80±8.72 31.96±5.26 49.10±8.06 26.74±7.86 35.16±15.12 25.86±8.65 21.87±3.25 19.36±3.72 20.59±1.80

GraphPrompt 51.45±9.63 37.07±6.19 50.87±6.84 23.82±7.50 26.04±11.72 26.78±9.77 22.05±2.61 17.82±2.84 20.71±4.21

All-in-one 28.96±4.87 31.72±2.78 39.99±6.21 22.33±6.43 29.71±20.15 29.85±13.99 20.13±1.81 21.08±2.17 20.39±0.93

GPF 46.74±8.50 40.07±8.34 55.38±7.53 27.21±7.70 28.98±14.02 25.65±8.15 22.30±2.58 20.20±3.78 20.19±0.80

GPF+ 43.30±11.40 40.15±6.79 52.92±7.95 26.38±8.48 34.83±16.64 26.79±9.14 22.35±3.60 20.44±3.64 20.26±0.57

EdgePrompt 39.16±9.95 35.03±6.90 49.79±7.47 25.26±7.20 35.02±16.61 26.02±8.60 22.27±3.90 19.93±3.19 20.16±1.09

EdgePrompt+ 40.11±10.12 37.13±6.93 50.77±7.91 26.15±7.77 34.21±15.55 25.84±9.35 22.47±3.82 20.20±3.00 20.73±1.10

UniPrompt 47.05±9.17 49.29±11.20 57.47±6.86 51.28±12.45 49.83±17.85 61.38±13.58 24.29±3.64 23.35±3.57 22.08±2.03

settings, we use DGI [28], GRACE [29], and GraphMAE [30] as pretrained models, and we compare
our method with two baseline tuning methods, and seven classic and state-of-the-art GPL methods,
including Fine-tune, Linear-probe (fine-tune classifier only), GPPT [6], GraphPrompt [24],
All-in-one [14], GPF [7], GPF-plus [7], EdgePrompt [23], and EdgePrompt-plus [23]. For
cross-domain settings, we adopt FUG [36] as the pretrained model, and we compare our method with
four types of baseline methods, including: (1) Semi-Supervised baselines: GCN [3], GAT [4]. (2)
Graph Self-Supervised Learning baselines: DGI [28], GraphCL [37]. (3) Graph Prompt Learning
baselines: GPPT [6], GPF [7]. (4) Multi-domain Graph Pre-train baselines: GCOPE [38], MDGPT [39],
MDGFM [27]. In our experiments. To ensure performance reliability, we perform 20 repeated runs for
each of 5 fixed random seeds, reporting averaged results over 100 trials. Detailed information about
the experimental setup can be found in the Appendix B.1.

6.2 In-Domain Node Classification

1-shot node classification on different pretrained models. We report 1-shot node classification on
nine datasets using three pretrained models. As shown in Table 1, our method outperforms existing
GPLs across most datasets under different pretrained models. Specifically, we observe the most
significant improvements on the Cornell, Texas, and Wisconsin datasets, where our method surpasses
all existing GPLs. This is primarily because these GPL baselines struggle to adapt downstream
datasets to the pretrained model, particularly for heterophilic graphs, which pose a significant
challenge. In larger heterophilic datasets like Actor and Squirrel, the dense connectivity and size
of these datasets make baselines challenging in the 1-shot setting. Existing methods are unable to
leverage representation-level prompts or directly process features or edges to improve performance.
As a result, these methods suffer from model collapse or overfitting. For homophilic datasets, such as
Cora and CiteSeer, all baselines perform well, resulting in limited improvement for our approach.
However, for PubMed, which has fewer classes, our prompt graph introduces additional homophilic
edges, providing an advantage over other GPL baselines. Moreover, we observe that the choice of
pretrained model has an impact on downstream prompt tuning. For example, on the Chameleon
dataset, under the DGI and GRACE pretrained settings, all baselines perform comparably to or even
better than our method. However, when switching to GraphMAE, the performance of all methods
drops sharply. Similar trends are observed on CiteSeer and PubMed, where our model demonstrates
greater stability compared to other baselines.

1/3/5-shot Node Classification Performance on DGI. To further demonstrate the adaptability of
our method, we conduct 3-shot and 5-shot experiments on GPL baselines using the DGI-pretrained

7

Table 2: Cross-domain node classification. Accuracy on 1-shot node classification tasks over six
datasets. Each column represents a test domain, while others are train domains. The best results are
highlighted in bold, and the runner-up with an underline. Methods with ∗ are reported from [27].

Methods Cora Citeseer PubMed Cornell Squirrel Chameleon
GCN* 28.57±5.07 31.27±4.53 40.55±5.65 31.81±4.71 20.00±0.29 24.17±5.21

GAT* 28.40±6.25 30.76±5.40 39.99±4.96 28.03±13.19 21.55±2.30 23.93±4.11

DGI* 29.30±5.82 30.03±4.88 41.85±7.78 31.54±15.66 21.15±1.68 21.73±5.47

GraphCL* 34.94±6.49 30.58±4.58 40.37±7.81 27.15±12.64 21.42±2.23 22.49±3.02

GPPT* 17.52±5.52 21.45±3.45 36.56±5.31 25.09±2.92 20.09±0.91 24.53±2.55

GPF* 37.84±11.07 37.61±8.87 46.36±7.48 34.54±7.73 21.92±3.50 25.90±8.51

GCOPE* 34.23±8.16 39.05±8.82 44.85±6.72 34.02±11.94 22.46±1.96 24.61±3.99

MDGPT* 39.54±9.02 39.24±8.95 45.39±11.01 33.58±10.38 22.35±3.77 23.68±1.56

MDGFM* 44.83±7.41 42.18±6.41 46.84±7.31 40.77±5.96 24.30±3.26 28.36±3.65

UniPrompt(Ours) 45.37±9.08 43.25±9.61 55.01±3.36 51.58±9.91 25.29±3.86 25.14±5.65

model. As shown in Figure 3, our method consistently outperforms existing GPL baselines across
most heterophilic datasets. Performance improvements are observed on Cornell, Texas, Wisconsin,
and Actor, indicating that our approach avoids overfitting and makes use of the label information.
On CiteSeer and PubMed, our method also outperforms existing GPL baselines, demonstrating
its effectiveness when the dataset matches the homophily assumption of pretrained model. On
Cora and Chameleon, the advantages of our method become more pronounced as more labels are
introduced, gradually surpassing current GPL baselines. Similar experiments are conducted on GRACE
and GraphMAE, further validating the generalization capability of our method. Detailed results and
analysis can be found in the Appendix B.4.

6.3 Cross-Domain Node Classification

To further demonstrate the broad scenario adaptability of our method compared to existing approaches,
we conduct experiments under both 3/5-shot and challenging multi-domain pretraining settings. In
these settings, not only are the upstream and downstream datasets entirely different, but the multiple
source domains within the pretraining also differ in both structure and semantics.

GraphPrompt GPF GPF+UniPrompt(Ours) EdgePrompt EdgePrompt+GPPT

Figure 3: In-domain node classification experiments over nine datasets under different shot settings
using DGI as the pretrained model.

8

1-shot Cross-Domain Node Classification. As shown in Table 2, our method outperforms various
existing baselines, and competes with or surpasses state-of-the-art GFMs. Our approach achieves
improvement on the PubMed and Cornell datasets. This improvement can be attributed to introduce
connections among semantically similar nodes. In scenarios such as PubMed, which has few classes,
and Cornell, which is a sparse graph, our method enables a more effective adaptation of the pretrained
model. In contrast, on Squirrel and Chameleon datasets, where graphs exhibit low homophily and
dense inter-class connectivity, the performance differences across methods are less distinct.

Table 3: Cross-domain node classification. Accuracy on 3/5-shot node classification tasks over six
datasets. Each column represents a test domain, while others are train domains. The best results are
highlighted in bold, and the runner-up with an underline. Methods with ∗ are reported from [27].

Methods Cora(5) CiteSeer(5) Pubmed(5) Cornell(3) Squirrel(3) Chameleon(5)
GCN* 60.15±5.33 45.54±4.71 57.82±8.26 39.53±13.57 21.61±4.22 22.09±0.99

GAT* 59.79±3.89 50.48±2.94 57.55±9.37 34.53±13.01 20.11±3.11 20.83±1.52

DGI* 56.76±11.29 42.67±8.98 54.04±11.59 43.22±5.84 20.23±1.12 27.68±5.21

GraphCL* 61.59±5.71 47.05±6.85 58.50±7.38 32.77±6.23 21.18±0.96 27.45±2.58

GPPT* 43.67±7.11 47.31±6.93 40.47±10.17 34.69±8.54 22.14±1.53 28.25±1.39

GPF* 51.21±11.44 56.90±8.84 58.76±7.70 38.17±8.15 21.62±3.10 28.09±4.93

GCOPE* 54.63±3.98 53.18±4.47 57.74±2.73 48.21±11.97 21.37±4.20 25.50±1.23

MDGPT* 59.64±5.73 52.71±5.71 58.65±7.54 35.18±8.90 21.42±4.16 26.18±5.18

MDGFM* 64.56±7.29 61.24±4.82 63.50±5.81 49.56±6.92 23.00±4.39 30.54±2.87

UniPrompt(Ours) 65.64±3.53 59.37±2.78 65.09±2.51 52.09±5.37 26.70±3.78 31.38±2.67

3/5-shot Cross-Domain Node Classification. As shown in Table 3, the availability of additional
labels significantly boosts performance compared to the 1-shot scenario. On Squirrel and Chameleon,
our method achieves notable improvements and outperforms existing approaches. Moreover, our
method maintains superior performance on sparse graphs like Cornell and few-class datasets like
PubMed. In contrast, on Cora and CiteSeer, which exhibit high homophily, most baselines, including
supervised baselines and GFMs, perform well when more labeled data are available. The performance
gap between our method and existing GPL baselines becomes less pronounced in these two datasets.
Overall, our method still maintains advantage, particularly as a GPL approach, which demonstrates
the effectiveness in adapting to pretrained models.

6.4 Hyperparameter Analysis

Figure 4: Hyperparameter analysis of τ and k for 1-shot node classification with DGI pretrained.

We conduct hyperparameter analysis on τ and k under DGI pretrained and 1-shot settings. As shown
in Figure 4, for τ , a notable observation is that heterophilic graphs require lower τ values (typically
converging to 0.999 or 0.9999) to achieve performance gains, which validates the necessity of the
prompt graph. For homophilic graphs, performance stabilizes when τ ≥ 0.9999, consistent with
existing research findings [35] that these graphs align with the homophily assumption of the pretrained
models. For smaller τ values (e.g., τ=0.99), only Cornell maintains performance while other datasets

9

degrade, highlighting the necessity of input graph and demonstrating the robustness against model
collapse. When τ=1.0, no prompt graph is injected, corresponding to the ablation of our method. For
k, The performance gains are most pronounced on sparse heterophilic graphs, i.e., Cornell, Texas, and
Wisconsin. For larger datasets Chameleon, Actor, and Squirrel, the prompt graph provides similarity
information that improves performance. For Cora and CiteSeer, performance remains stable across k
values. However, PubMed performance drops when k reaches 50, which attributes to the effects of
high homophily and limited classes.

7 Conclusion

In this work, we categorize existing Graph Prompt Learning (GPL) methods based on their mecha-
nisms and conduct an analysis of them. Through this analysis, we identify a key problem in existing
GPL methods: the adaptation gap between upstream pretraining and downstream scenarios. We
decompose this issue into two aspects: lack of consensus on underlying mechanisms, and limited
scenario adaptability. Through motivation experiments and theoretical analysis, we reveal that the
representation-level prompt is fundamentally equivalent to fine-tuning a simple downstream classifier.
This primarily serves to adapt the pretrained model to downstream tasks, rather than unleashing its
inherent capabilities. We propose a perspective: graph prompt learning should focus on unleashing
the capability of pretrained models, and the classifier adapts to downstream scenarios. Based on
our perspective, we propose UniPrompt, a novel GPL method that adapts any pretrained models,
which leverages prompt-generated topology while preserving the original structure to unleash the ca-
pability of pretrained models. We evaluate UniPrompt on a comprehensive set of datasets, including
homophilic and heterophilic graphs, under few-shot learning settings. The results demonstrate that
UniPrompt consistently outperforms state-of-the-art baselines in both in-domain and cross-domain
scenarios. Overall, our work provides new perspectives on the design principles of GPL, improving
the fields of few/zero-shot graph learning, unifying downstream graph tasks, cross-domain graph
learning, and promoting the development of Graph Foundation Models.

8 Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 62422210,
No. 62276187, No. 62302333, No.62372323 and No. 92370111), the National Key Research and
Development Program of China (No. 2023YFC3304503), and the Hebei Natural Science Foundation
(No. F2024202047).

References
[1] Xiangguo Sun, Jiawen Zhang, Xixi Wu, Hong Cheng, Yun Xiong, and Jia Li. Graph prompt

learning: A comprehensive survey and beyond. arXiv preprint arXiv:2311.16534, arXiv, 2023.

[2] Chenyi Zi, Haihong Zhao, Xiangguo Sun, Yiqing Lin, Hong Cheng, and Jia Li. Prog: A graph
prompt learning benchmark. In The NeurIPS Datasets and Benchmarks Track, 2024.

[3] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, ICLR, 2017.

[4] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. International Conference on Learning Representations,
ICLR, 2018.

[5] Zehong Wang, Zheyuan Liu, Tianyi Ma, Jiazheng Li, Zheyuan Zhang, Xingbo Fu, Yiyang Li,
Zhengqing Yuan, Wei Song, Yijun Ma, et al. Graph foundation models: A comprehensive
survey. arXiv preprint arXiv:2505.15116, arXiv, 2025.

[6] Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. GPPT: graph pre-training
and prompt tuning to generalize graph neural networks. In Proceedings of ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, SIGKDD, pages 1717–1727, 2022.

10

[7] Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt
tuning for graph neural networks. In Advances in Neural Information Processing Systems,
NeurIPS, volume 36, pages 52464–52489, 2023.

[8] Huanjing Zhao, Beining Yang, Yukuo Cen, Junyu Ren, Chenhui Zhang, Yuxiao Dong, Evgeny
Kharlamov, Shu Zhao, and Jie Tang. Pre-training and prompting for few-shot node classification
on text-attributed graphs. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, SIGKDD, pages 4467–4478, 2024.

[9] Shirui Pan, Linhao Luo, Yufei Wang, Chen Chen, Jiapu Wang, and Xindong Wu. Unifying large
language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and
Data Engineering, TKDE, 36(7):3580–3599, 2024.

[10] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and Philip S. Yu. A survey on
knowledge graphs: Representation, acquisition, and applications. IEEE Trans. Neural Networks
Learn. Syst., TNNLS, 33(2):494–514, 2022.

[11] Hao Yan, Chaozhuo Li, Ruosong Long, Chao Yan, Jianan Zhao, Wenwen Zhuang, Jun Yin,
Peiyan Zhang, Weihao Han, Hao Sun, et al. A comprehensive study on text-attributed graphs:
Benchmarking and rethinking. Advances in Neural Information Processing Systems, NeurIPS,
36:17238–17264, 2023.

[12] Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. Zerog: Investigating cross-
dataset zero-shot transferability in graphs. In Proceedings of ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, SIGKDD, pages 1725–1735, 2024.

[13] Duo Wang, Yuan Zuo, Fengzhi Li, and Junjie Wu. Llms as zero-shot graph learners: Alignment
of gnn representations with llm token embeddings. Advances in Neural Information Processing
Systems, NeurIPS, 37:5950–5973, 2024.

[14] Xiangguo Sun, Hong Cheng, Jia Li, Bo Liu, and Jihong Guan. All in one: Multi-task prompting
for graph neural networks. In Proceedings of ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, SIGKDD, pages 2120–2131, 2023.

[15] Xingtong Yu, Zhenghao Liu, Yuan Fang, Zemin Liu, Sihong Chen, and Xinming Zhang.
Generalized graph prompt: Toward a unification of pre-training and downstream tasks on
graphs. IEEE Trans. Knowl. Data Eng., TKDE, 36(11):6237–6250, 2024.

[16] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan
Zhang. One for all: Towards training one graph model for all classification tasks. In International
Conference on Learning Representations, ICLR, 2024.

[17] Haihong Zhao, Chenyi Zi, Aochuan Chen, and Jia Li. A survey of cross-domain graph learning:
Progress and future directions. arXiv preprint arXiv:2503.11086, arXiv, 2025.

[18] Zhe-Rui Yang, Jindong Han, Chang-Dong Wang, and Hao Liu. Graphlora: Structure-aware
contrastive low-rank adaptation for cross-graph transfer learning. In Proceedings of ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, SIGKDD, pages 1785–1796,
2025.

[19] Jiawei Liu, Cheng Yang, Zhiyuan Lu, Junze Chen, Yibo Li, Mengmei Zhang, Ting Bai, Yuan
Fang, Lichao Sun, Philip S Yu, et al. Graph foundation models: Concepts, opportunities and
challenges. IEEE Transactions on Pattern Analysis and Machine Intelligence, TPAMI, 2025.

[20] Yun Zhu, Haizhou Shi, Xiaotang Wang, Yongchao Liu, Yaoke Wang, Boci Peng, Chuntao
Hong, and Siliang Tang. Graphclip: Enhancing transferability in graph foundation models for
text-attributed graphs. In Proceedings of the ACM on Web Conference, WWW, pages 2183–2197,
2025.

[21] Yuxiang Wang, Wenqi Fan, Suhang Wang, and Yao Ma. Towards graph foundation models: A
transferability perspective. arXiv preprint arXiv:2503.09363, arXiv, 2025.

11

[22] Yun Zhu, Yaoke Wang, Haizhou Shi, Zhenshuo Zhang, Dian Jiao, and Siliang Tang. Graph-
control: Adding conditional control to universal graph pre-trained models for graph domain
transfer learning. In Proceedings of the ACM on Web Conference, WWW, pages 539–550, 2024.

[23] Xingbo Fu, Yinhan He, and Jundong Li. Edge prompt tuning for graph neural networks. In
International Conference on Learning Representations, ICLR, 2025.

[24] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training
and downstream tasks for graph neural networks. In Proceedings of the ACM on Web Conference,
WWW, pages 417–428, 2023.

[25] Xingtong Yu, Jie Zhang, Yuan Fang, and Renhe Jiang. Non-homophilic graph pre-training and
prompt learning. In Proceedings of ACM SIGKDD Conference on Knowledge Discovery and
Data Mining V. 1, SIGKDD, pages 1844–1854, 2025.

[26] Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. Multigprompt for multi-task
pre-training and prompting on graphs. In Proceedings of the ACM on Web Conference, WWW,
pages 515–526, 2024.

[27] Shuo Wang, Bokui Wang, Zhixiang Shen, Boyan Deng, et al. Multi-domain graph foundation
models: Robust knowledge transfer via topology alignment. In Proceedings of International
Conference on Machine Learning, ICML, 2025.

[28] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, ICLR,
2019.

[29] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep graph contrastive
representation learning. arXiv preprint arXiv:2006.04131, arXiv, 2020.

[30] Zhenyu Hou, Xiao Liu, Yukuo Cen, Yuxiao Dong, Hongxia Yang, Chunjie Wang, and Jie Tang.
Graphmae: Self-supervised masked graph autoencoders. In Proceedings of ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, SIGKDD, pages 594–604, 2022.

[31] Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar
Veličković, and Michal Valko. Bootstrapped representation learning on graphs. In
ICLR Workshop on Geometrical and Topological Representation Learning, 2021.

[32] Wangbin Sun, Jintang Li, Liang Chen, Bingzhe Wu, Yatao Bian, and Zibin Zheng. Rethinking
and simplifying bootstrapped graph latents. In Proceedings of ACM International Conference
on Web Search and Data Mining, WSDM, pages 665–673, 2024.

[33] Zhixun Li, Liang Wang, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen, Yingtao Luo,
Xiangxin Zhou, Qiang Liu, Shu Wu, et al. Gslb: The graph structure learning benchmark.
Advances in Neural Information Processing Systems, NeurIPS, 36:30306–30318, 2023.

[34] Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. In Proceedings of International Conference on Machine Learning,
ICML, volume 48, pages 40–48, 2016.

[35] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geo-
metric graph convolutional networks. In International Conference on Learning Representations,
ICLR, 2020.

[36] Jitao Zhao, Di Jin, Meng Ge, Lianze Shan, Xin Wang, Dongxiao He, and Zhiyong Feng. Fug:
Feature-universal graph contrastive pre-training for graphs with diverse node features. Advances
in Neural Information Processing Systems, NeurIPS, 37:4003–4034, 2024.

[37] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
Graph contrastive learning with augmentations. In Advances in Neural Information Processing
Systems, NeurIPS, volume 33, pages 5812–5823, 2020.

12

[38] Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, and Jia Li. All in one and one
for all: A simple yet effective method towards cross-domain graph pretraining. In Proceedings
of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, SIGKDD, pages
4443–4454, 2024.

[39] Xingtong Yu, Chang Zhou, Yuan Fang, and Xinming Zhang. Text-free multi-domain graph
pre-training: Toward graph foundation models. arXiv preprint arXiv:2405.13934, arXiv, 2024.

[40] Alberto P García-Plaza, Víctor Fresno, Raquel Martínez Unanue, and Arkaitz Zubiaga. Using
fuzzy logic to leverage html markup for web page representation. IEEE Transactions on Fuzzy
Systems, IEEE Trans. Fuzzy Syst., 25(4):919–933, 2016.

[41] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, J. Complex Netw., 9(2), 2021.

[42] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser-Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. In Advances in Neural Information Processing Systems, NeurIPS, volume 34,
pages 20887–20902, 2021.

[43] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In
Advances in Neural Information Processing Systems, NeurIPS, volume 33, pages 22118–22133,
2020.

[44] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In International Conference on Learning Representations,
ICLR Workshop, 2013.

[45] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, arXiv, 2018.

[46] Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by
maximizing mutual information across views. Advances in Neural Information Processing
Systems, NeurIPS, 32, 2019.

[47] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive
learning with adaptive augmentation. In Proceedings of the ACM on Web Conference, WWW,
pages 2069–2080, 2021.

[48] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and
applications. AI open, 1:57–81, 2020.

[49] Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and Philip S. Yu. Graph
self-supervised learning: A survey. IEEE Trans. Knowl. Data Eng., TKDE, 35(6):5879–5900,
2023.

[50] Yizhen Zheng, Shirui Pan, Vincent C. S. Lee, Yu Zheng, and Philip S. Yu. Rethinking and scaling
up graph contrastive learning: An extremely efficient approach with group discrimination. In
Advances in Neural Information Processing Systems, NeurIPS, volume 35, pages 10809–10820,
2022.

[51] Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning
on graphs. In Proceedings of International Conference on Machine Learning, ICML, volume
119, pages 4116–4126, 2020.

[52] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In Proceedings of International Conference on Machine Learning, ICML, pages
12121–12132, 2021.

[53] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to
improve graph contrastive learning. In Advances in Neural Information Processing Systems,
NeurIPS, pages 15920–15933, 2021.

13

[54] Jun Xia, Lirong Wu, Ge Wang, Jintao Chen, and Stan Z. Li. Progcl: Rethinking hard negative
mining in graph contrastive learning. In Proceedings of International Conference on Machine
Learning, ICML, volume 162, pages 24332–24346, 2022.

[55] Dongxiao He, Jitao Zhao, Cuiying Huo, Yongqi Huang, Yuxiao Huang, and Zhiyong Feng. A
new mechanism for eliminating implicit conflict in graph contrastive learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, AAAI, volume 38, pages 12340–12348, 2024.

[56] Hengrui Zhang, Qitian Wu, Yu Wang, Shaofeng Zhang, Junchi Yan, and Philip S Yu. Localized
contrastive learning on graphs. arXiv preprint arXiv:2212.04604, arXiv, 2022.

[57] Mengyue Liu, Yun Lin, Jun Liu, Bohao Liu, Qinghua Zheng, and Jin Song Dong. B2-sampling:
Fusing balanced and biased sampling for graph contrastive learning. In Proceedings of ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, SIGKDD, pages 1489–1500,
2023.

[58] Jiaming Zhuo, Can Cui, Kun Fu, Bingxin Niu, Dongxiao He, Chuan Wang, Yuanfang Guo,
Zhen Wang, Xiaochun Cao, and Liang Yang. Graph contrastive learning reimagined: Exploring
universality. In Proceedings of the ACM Web Conference, WWW, pages 641–651, 2024.

[59] Yongqi Huang, Jitao Zhao, Dongxiao He, Di Jin, Yuxiao Huang, and Zhen Wang. Does gcl need
a large number of negative samples? enhancing graph contrastive learning with effective and
efficient negative sampling. In Proceedings of the AAAI Conference on Artificial Intelligence,
AAAI, volume 39, pages 17511–17518, 2025.

[60] Jiaming Zhuo, Feiyang Qin, Can Cui, Kun Fu, Bingxin Niu, Mengzhu Wang, Yuanfang Guo,
Chuan Wang, Zhen Wang, Xiaochun Cao, et al. Improving graph contrastive learning via
adaptive positive sampling. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR, pages 23179–23187, 2024.

[61] Jiaming Zhuo, Yintong Lu, Hui Ning, Kun Fu, Bingxin Niu, Dongxiao He, Chuan Wang,
Yuanfang Guo, Zhen Wang, Xiaochun Cao, et al. Unified graph augmentations for generalized
contrastive learning on graphs. Advances in Neural Information Processing Systems, NeurIPS,
37:37473–37503, 2024.

[62] Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai. Homogcl: Rethinking
homophily in graph contrastive learning. In Proceedings of ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, SIGKDD, pages 1341–1352, 2023.

[63] Dongxiao He, Yongqi Huang, Jitao Zhao, Xiaobao Wang, and Zhen Wang. Str-gcl: Structural
commonsense driven graph contrastive learning. In Proceedings of the ACM on Web Conference,
WWW, pages 1129–1141, 2025.

[64] Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised
learning on graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI,
volume 36, pages 7372–7380, 2022.

[65] Jun Xia, Lirong Wu, Jintao Chen, Bozhen Hu, and Stan Z Li. Simgrace: A simple framework
for graph contrastive learning without data augmentation. In Proceedings of the ACM on Web
Conference, WWW, pages 1070–1079, 2022.

[66] Dongxiao He, Jitao Zhao, Rui Guo, Zhiyong Feng, Di Jin, Yuxiao Huang, Zhen Wang, and
Weixiong Zhang. Contrastive learning meets homophily: Two birds with one stone. In
Proceedings of International Conference on Machine Learning, ICML, volume 202, pages
12775–12789, 2023.

[67] Xiaobao Wang, Jun Yang, Zhiqiang Wang, Dongxiao He, Jitao Zhao, Yuxiao Huang, and Di Jin.
Graph contrastive learning with multiple information fusion. Expert Systems with Applications,
ESWA, 268:126129, 2025.

[68] Jingyu Chen, Runlin Lei, and Zhewei Wei. Polygcl: Graph contrastive learning via learnable
spectral polynomial filters. In International Conference on Learning Representations, ICLR,
2024.

14

[69] Guancheng Wan, Yijun Tian, Wenke Huang, Nitesh V Chawla, and Mang Ye. S3gcl: spectral,
swift, spatial graph contrastive learning. In Proceedings of International Conference on Machine
Learning, ICML, pages 49973–49990, 2024.

[70] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, arXiv, 2016.

[71] Zhenyu Hou, Yufei He, Yukuo Cen, Xiao Liu, Yuxiao Dong, Evgeny Kharlamov, and Jie Tang.
Graphmae2: A decoding-enhanced masked self-supervised graph learner. In Proceedings of the
ACM on Web Conference, WWW, pages 737–746, 2023.

[72] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in Neural
Information Processing Systems, NeurIPS, 33:21271–21284, 2020.

[73] Dongxiao He, Lianze Shan, Jitao Zhao, Hengrui Zhang, Zhen Wang, and Weixiong Zhang.
Exploitation of a latent mechanism in graph contrastive learning: Representation scattering.
Advances in Neural Information Processing Systems, NeurIPS, 37:115351–115376, 2024.

[74] Junhyun Lee, Wooseong Yang, and Jaewoo Kang. Subgraph-level universal prompt tuning.
arXiv preprint arXiv:2402.10380, arXiv, 2024.

[75] Jiazheng Li, Jundong Li, and Chuxu Zhang. Instance-aware graph prompt learning. Transactions
on Machine Learning Research, TMLR, 2025.

[76] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
Neural Information Processing Systems, NeurIPS, 30:6309–6318, 2017.

[77] Jiapeng Zhu, Zichen Ding, Jianxiang Yu, Jiaqi Tan, Xiang Li, and Weining Qian. RELIEF:
reinforcement learning empowered graph feature prompt tuning. In Proceedings of ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, V.1, SIGKDD, pages 2159–
2170, 2025.

[78] Fengyu Yan, Xiaobao Wang, Dongxiao He, Longbiao Wang, Jianwu Dang, and Di Jin. Hetergp:
Bridging heterogeneity in graph neural networks with multi-view prompting. In Proceedings of
the AAAI Conference on Artificial Intelligence, AAAI, volume 39, pages 21895–21903, 2025.

[79] Qian Huang, Hongyu Ren, Peng Chen, Gregor Krzmanc, Daniel Zeng, Percy Liang, and
Jure Leskovec. PRODIGY: enabling in-context learning over graphs. In Advances in Neural
Information Processing Systems, NeurIPS, volume 36, pages 16302–16317, 2023.

[80] Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, ICCV, pages 3836–3847, 2023.

[81] Xingtong Yu, Yuan Fang, Zemin Liu, and Xinming Zhang. Hgprompt: Bridging homogeneous
and heterogeneous graphs for few-shot prompt learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, AAAI, pages 16578–16586, 2024.

[82] Yihong Ma, Ning Yan, Jiayu Li, Masood Mortazavi, and Nitesh V Chawla. Hetgpt: Harnessing
the power of prompt tuning in pre-trained heterogeneous graph neural networks. In Proceedings
of the ACM on Web Conference, WWW, pages 1015–1023, 2024.

[83] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Long Xia, Dawei Yin, and Chao Huang. Higpt:
Heterogeneous graph language model. In Proceedings of ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, SIGKDD, pages 2842–2853, 2024.

[84] Lecheng Kong, Jiarui Feng, Hao Liu, Chengsong Huang, Jiaxin Huang, Yixin Chen, and Muhan
Zhang. GOFA: A generative one-for-all model for joint graph language modeling. In The
International Conference on Learning Representations, ICLR, 2025.

[85] Zheyuan Liu, Xiaoxin He, Yijun Tian, and Nitesh V. Chawla. Can we soft prompt llms for graph
learning tasks? In Proceedings of the ACM on Web Conference, WWW, pages 481–484, 2024.

15

[86] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
International Conference on Learning Representations, ICLR, 2022.

[87] Yufei He, Yuan Sui, Xiaoxin He, and Bryan Hooi. Unigraph: Learning a unified cross-domain
foundation model for text-attributed graphs. In Proceedings of ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, V.1, SIGKDD, pages 448–459. ACM, 2025.

[88] Runjin Chen, Tong Zhao, Ajay Kumar Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large
language and graph assistant. In Proceedings of International Conference on Machine Learning,
ICML, pages 7809–7823, 2024.

[89] Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In Proceedings of International
ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pages
491–500, 2024.

[90] Zehong Wang, Zheyuan Zhang, Nitesh Chawla, Chuxu Zhang, and Yanfang Ye. Gft: Graph
foundation model with transferable tree vocabulary. Advances in Neural Information Processing
Systems, NeurIPS, 37:107403–107443, 2024.

[91] Zehong Wang, Zheyuan Zhang, Tianyi Ma, Nitesh V Chawla, Chuxu Zhang, and Yanfang
Ye. Towards graph foundation models: Learning generalities across graphs via task-trees. In
Proceeding of International Conference on Machine Learning, ICML, 2025.

16

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly list our contributions and the scope of our work in the abstract and
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We describe the limitations of our work in the main text and in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

17

Justification: We provide proof in the appendix for the points we make in the main text.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have given detailed and real experimental data in the experiment of the
text and appendix, and they are reproducible.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18

Answer: [Yes]
Justification: We will give the complete model code about the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We give detailed experimental details in the experiment of the text and
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the standard deviation of the experimental data in the main
experiments and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We give the GPU models used in our experiments in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work complies with the NeurIPS Code of Ethics in all aspects.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the positive impact of this work on related fields in the main text
and appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

20

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This item is not relevant to our work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Our work respects any licenses and terms of use, and appropriately cites the
work of others.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

21

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This item is not relevant to our work.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This item is not relevant to our work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This item is not relevant to our work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

22

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

23

https://neurips.cc/Conferences/2025/LLM

A Proofs

A.1 Proof for Proposition 4.1

Proof: (C ◦ T)(h) = W⊤
C (WTh + bT) = (W⊤

T WC)
⊤h + W⊤

CbT . Then, we let WC′ =
W⊤

T WC ,bC′ = W⊤
CbT , we can get (C ◦T)(h) = W⊤

C′h+bC′ ≡ C ′(h). Therefore, we conclude
that any linear prompt combination can be represented as a linear classifier with a bias term. □

A.2 Proof for Proposition 4.2

Proof: For any parameters of objective function WC′ and bC′ , there exists WT and WC :

WC = (W⊤
T)

−1WC′ , bT = W†
CbC′ , (9)

where W†
C is the pseudo-inverse matrix of WC . The mapping above is unique when W†

C =(
W⊤

CWC

)−1
W⊤

C and WC has full column rank. We calculate the gradient update paths of the two
optimization methods respectively. For the original gradient of WC and WT , we have the following:

∂L

∂WC
=

∂L

∂C ′
∂C ′

∂WC
= (WTh+bT)

(
∂L

∂C ′

)⊤

,
∂L

∂WT
=

∂L

∂C ′
∂C ′

∂WT
= WC

∂L

∂C ′h
⊤. (10)

For ease of understanding, the matrix of two equations are ∇WC
L = (WTh+ bT) · (∇C′L)

⊤ and
∇WT

L = WC · ∇C′L · h⊤. Then, the gradient of bT is ∇bT
L = WC · ∇C′L. For the classifier

C ′, we calculate the gradient of WC′ and bC′ using ∇WC′L = h · (∇C′L)
⊤ and ∇bC′L = ∇C′L.

According to WC′ = W⊤
T WC and bC′ = W⊤

CbT , we analyze the gradient propagation using the
chain rule:

∆WC′ = W⊤
T ∆WC + (∆WT)

⊤WC

= W⊤
T

(
η(WTh+ bT) · (∇C′L)

⊤
)
+ ηh (∇C′L)W⊤

CWC

= ηh · (∇C′L)
⊤
, when W⊤

CWC = Ik and W⊤
T WT = Id.

(11)

For bC′ , we have the following:

∆bC′ = W⊤
C∆bT + (∆WC)

⊤bT

= ηW⊤
CWC∇C′L+ η (WTh+ bT)

⊤
bT∇C′L,

(12)

when WC has full column rank and bT is orthogonal to WTh+bT , we can obtain ∆bC′ = η∇C′L,
which is consistent with the gradient of single linear classifier C ′. □

B Other Experiments and Detail Settings

B.1 Experimental Setup

Implementation details. In our experiments, we use 2-layer GCN backbones for DGI and GRACE,
and 2-layer GAT backbone for GraphMAE. For downstream prompt tuning, all classifiers employ
2-layer MLPs. We fine-tune all GPL baselines across all pretrained models. We train for 2000 epochs
with early stopping (patience=20). Following the ProG [2] benchmark settings, we conduct k-shot
sampling evaluations under both in-domain and cross-domain settings with k ∈ {1, 3, 5}. To ensure
performance reliability, we perform 20 repeated runs for each of 5 fixed random seeds = { 42, 12345,
23344, 38108, 39788 }, reporting averaged results over 100 total trials. All of the experiments are
conducted on a server with Xeon(R) Platinum 8352V CPU, 90GB of memory, an RTX 4090 graphics
card, and 24GB of video memory. The detailed GitHub links for the various pre-trained models,
GPL baselines, sampling, split, and evaluation settings used in our experiments are provided in Table
12, which can be used for future reference and reproducibility.

B.2 Real-world datasets

We introduce the details of the 10 commonly used real-world datasets, including homophily and
heterophily graphs as follows, and the statistics of these datasets are shown in Table 4.

24

• Cora [34], CiteSeer [34] and PubMed [34] are citation datasets, nodes represent papers,
edges represent citation relationships. Each dimension in the feature corresponds to a word.
Labels are the categories into which the paper is divided.

• Cornell [35], Texas [35], and Wisconsin [35] are sub-datasets of WebKB [40], which is a
webpage dataset collected from Carnegie Mellon University. Nodes represent web pages,
and edges represent hyperlinks between web pages.

• Chameleon [35] and Squirrel [35] are page to page networks on specific topic collected from
Wikipedia [41], nodes represent web pages and edges represent links between web pages.
The average monthly traffic of the web page is converted into five categories to predict.

• Actor [35] is the actor-only induced subgraph of the film-director-actor-writer network. Each
node corresponds to an actor, and the edge between two nodes denotes co-occurrence on the
same Wikipedia page. Node features correspond to some keywords in the Wikipedia pages.
The task is to classify the nodes into five categories in term of words of actor’s Wikipedia.

• arXiv-year [42] is a modification of the OGBN-arXiv [43], where the labels are assigned
based on the paper’s publication year rather than topic. The nodes represent papers from
arXiv website, and the links denote citation relationships. The node features are averaged
Word2Vec [44] token features of both the title and abstract of the paper. The dataset is
partitioned by publication date, which ensures a relatively balanced distribution of classes.

Table 4: Statistics of real-world datasets.
Dataset #Nodes #Edges #Features #Classes #Homophily

Cora 2,708 5,278 1,433 7 0.81
CiteSeer 3,327 4,552 3,703 6 0.74
PubMed 19,717 44,324 500 3 0.80
Cornell 183 298 1,703 5 0.31
Texas 183 325 1,703 5 0.11
Wisconsin 251 515 1,703 5 0.20
Chameleon 2,277 36,101 2,277 5 0.24
Actor 7,600 30,019 932 5 0.22
Squirrel 5,201 217,073 2,089 5 0.22
arXiv-year 169,343 1,166,243 128 5 0.22

B.3 Descriptions of Various Baselines

Graph Semi-Supervised Baselines.

• GCN [3]: GCN introduces a spectral graph convolution framework based on localized first-
order Chebyshev filters, utilizing mean-pooling for neighborhood aggregation. It recursively
updates node representations by averaging the features of neighbors and uses learnable
parameters to control the transformation process.

• GAT [4]: GAT proposes multi-head attention mechanisms to dynamically compute node-
specific weights during message passing. It adopts a learnable attention coefficient to
quantify the importance of neighbors, thereby achieving adaptive aggregation.

Graph Pretraining Models. We introduce the classic graph pretraining strategies as follows.

• DGI [28]: Deep Graph Infomax (DGI) learns node embeddings by maximizing the mutual
information (MI) between local node representations and graph representation. It utilizes
GCNs to generate node representations, and aggregates node representations into a graph
representation. DGI treats the corrupted graph as a negative example and train by identifying
the relationship between nodes and graphs, thereby maximizing MI between them.

• GRACE [29]: GRACE learns node embeddings by maximizing mutual information between
node representations in two augmented views. It generates different views through edge
removal and feature masking. It uses InfoNCE [45, 46] as loss function, which maximizes
the similarity of two augmented nodes generated by the same node and minimizes the
similarity of other nodes to train the model.

25

Table 5: In-domain node classification. Accuracy on 3-shot node classification tasks over three
pretrained strategies and nine datasets. The best results in each pretrain strategy are highlighted in
bold, and the runner-up with an underline.

Pretrain Methods Cora CiteSeer PubMed Cornell Texas Wisconsin Chameleon Actor Squirrel

DGI

Fine-tuning 65.09±5.73 60.32±4.05 64.81±6.80 41.84±6.52 38.75±9.34 41.34±7.57 28.66±3.99 22.61±2.36 23.02±3.54

Linear-probe 67.48±4.65 60.91±4.23 65.92±5.53 40.39±8.35 39.30±7.67 38.29±9.18 27.17±4.04 21.66±2.31 22.56±2.29

GPPT 52.75±6.52 45.07±5.43 59.83±4.92 37.55±5.48 34.02±9.71 35.86±6.43 22.71±2.40 19.70±1.23 21.51±1.37

GraphPrompt 64.29±47.8 57.37±5.26 60.56±5.37 26.06±6.24 36.89±7.56 25.96±9.75 25.71±2.68 20.02±1.39 22.16±2.42

All-in-one 44.97±7.44 28.52±6.57 37.58±8.35 32.78±15.99 30.37±13.08 24.44±6.62 24.76±3.27 21.10±4.81 23.96±2.92
GPF 65.73±5.53 55.82±5.79 62.94±7.71 37.70±7.22 39.66±8.29 37.34±5.70 26.16±3.15 21.84±2.08 22.01±2.30

GPF+ 68.17±4.28 54.52±5.91 64.58±7.07 37.90±7.53 34.49±8.99 38.12±6.79 25.88±2.65 21.81±2.09 21.83±2.17

EdgePrompt 62.65±3.39 49.49±4.97 59.56±3.43 40.26±7.81 41.88±8.76 36.59±7.37 25.07±4.07 21.63±2.45 21.45±1.83

EdgePrompt+ 59.30±4.10 49.25±5.12 59.60±3.36 39.98±6.70 42.55±9.04 37.01±7.58 25.45±3.77 22.39±2.80 21.96±1.87

UniPrompt(Ours) 69.07±4.37 61.73±4.15 60.94±6.46 59.63±5.84 61.44±14.55 68.70±6.99 25.90±3.08 27.32±3.26 24.19±2.35

GRACE

Fine-tuning 63.99±5.69 60.48±4.52 62.03±6.10 42.42±7.46 39.73±6.45 40.34±5.37 29.73±4.02 21.70±2.14 23.77±2.23

Linear-probe 63.68±5.99 60.35±3.99 65.71±5.87 41.60±7.19 39.53±6.62 41.46±5.28 29.02±4.60 21.55±1.38 21.62±3.47

GPPT 54.24±7.29 51.71±5.39 57.13±4.60 36.05±8.71 33.55±3.66 37.69±5.65 31.45±3.69 20.78±1.21 24.17±2.68

GraphPrompt 67.60±4.90 53.84±8.22 56.60±7.00 29.86±7.56 34.82±8.84 29.66±8.12 32.46±3.60 20.98±1.85 24.41±3.18
All-in-one 40.78±8.81 31.09±5.80 38.25±6.23 30.60±17.45 30.66±12.45 24.40±16.68 25.40±3.18 21.32±2.56 23.50±2.32

GPF 64.09±4.04 52.45±4.90 61.93±6.95 38.75±7.05 41.76±9.79 36.11±3.65 30.23±3.41 21.61±2.07 21.28±3.88

GPF+ 63.91±5.08 53.24±6.88 55.88±5.54 38.40±5.00 41.37±8.39 36.63±5.07 32.07±3.59 19.67±3.47 23.32±2.66

EdgePrompt 60.45±4.39 48.65±4.08 57.33±4.67 42.58±10.88 42.97±6.22 36.46±8.73 27.42±3.19 21.63±1.33 23.14±2.02

EdgePrompt+ 61.60±2.95 45.12±4.53 62.38±6.11 42.11±9.13 43.83±7.29 39.26±5.16 27.82±2.07 21.41±0.98 23.37±1.53

UniPrompt(Ours) 67.71±5.24 61.93±3.73 66.83±6.14 60.86±8.37 64.22±3.84 67.60±8.57 27.71±3.66 25.56±1.37 25.22±2.47

GraphMAE

Fine-tuning 66.38±6.34 58.57±5.82 62.51±4.55 46.09±8.50 43.91±8.88 48.31±5.70 27.33±3.17 21.40±1.56 21.18±1.20

Linear-probe 70.74±4.52 60.60±4.96 66.90±4.70 38.52±7.65 43.13±8.47 41.40±5.54 29.02±4.05 22.08±1.77 21.91±1.74

GPPT 57.64±5.74 40.14±6.89 56.63±8.23 35.12±9.70 38.28±9.54 40.94±6.23 27.46±2.27 20.06±2.56 20.58±1.13

GraphPrompt 67.49±3.01 57.51±6.52 62.78±4.76 23.79±7.02 29.76±10.51 27.90±8.98 23.02±3.37 21.50±2.05 26.29±2.34

All-in-one 39.30±6.31 39.39±3.38 54.72±10.13 29.82±7.23 24.80±14.33 26.93±14.46 24.40±3.76 21.13±2.23 22.16±3.42

GPF 57.91±4.28 43.44±12.02 64.32±7.22 36.33±6.82 38.79±9.89 36.86±5.95 27.09±2.88 21.30±2.51 20.82±1.81

GPF+ 56.55±6.74 44.71±6.36 60.60±7.87 38.59±7.84 37.27±8.10 38.06±9.06 26.87±3.29 20.56±3.21 20.95±0.95

EdgePrompt 64.18±4.20 57.56±6.66 54.32±7.07 35.42±6.17 40.95±8.73 37.31±5.69 26.60±4.02 19.66±4.94 22.05±1.27

EdgePrompt+ 64.36±3.89 53.46±6.12 63.05±6.35 37.20±6.09 41.00±8.92 38.80±5.81 22.10±2.67 20.59±4.43 21.72±0.90

UniPrompt(Ours) 66.16±6.69 61.90±2.95x 64.62±5.71 59.92±5.06 65.62±2.75 71.60±2.88 27.78±2.17 24.77±1.83 22.82±1.19

• GraphCL [37]: GraphCL learns graph-level representations by maximizing mutual informa-
tion between augmented views of graphs. It introduces four graph augmentation types (node
dropping, edge perturbation, attribute masking, subgraph sampling) to generate augmented
views. The InfoNCE loss maximizes similarities between positive pairs (augmented views
of the same graph) while contrasting against negative pairs (other graphs in the batch),
corresponding to mutual information maximization between augmented representations and
unifies diverse contrastive learning frameworks.

• GraphMAE [30]: GraphMAE is a generative self-supervised graph autoencoder that learns
robust representations through masked feature reconstruction. It employs a two-stage
framework: (1) A GNN-based encoder learns node embeddings from input graphs with
randomly masked node features; (2) A GNN decoder reconstructs the masked features
using a re-mask decoding strategy, optimized by a scaled cosine error loss that emphasizes
directional alignment over magnitude.

Graph Prompt Learning Baselines.

• GPPT [6]: GPPT pioneers the use of the "pretrain–prompt" paradigm in graph machine
learning. It employs link prediction as its pre-training task to learn general knowledge
about graph structures. In its prompt design, GPPT introduces two types of prompts: task
tokens and structure tokens. The former serve as prototype vectors for each class within
clusters, while the latter are derived by aggregating information from the target node and its
neighbors. For downstream node classification, the task is reformulated as link prediction.
This is accomplished by calculating the probability of a link existing between the task token
and the structure token, thus leveraging the learned prompts to make predictions.

• GraphPrompt [24]: GraphPrompt proposes a unified pretraining and prompting frame-
work for GNNs, bridging the gap between pretraining and downstream tasks through a
subgraph similarity-based template. It introduces learnable task-specific prompts that guide
the ReadOut operation to dynamically emphasize task-relevant features during subgraph
representation aggregation. By mapping both link prediction (pretraining) and node/graph
classification (downstream) tasks to subgraph similarity learning, GraphPrompt enables
parameter-efficient adaptation via prompt tuning—freezing pre-trained GNN weights while
optimizing lightweight prompts.

• All-in-one [14] All-in-one unifies the downstream tasks of the "pretrain-prompt"
paradigm. This method first reformulates node and edge tasks into graph-level tasks by

26

Table 6: In-domain node classification. Accuracy on 5-shot node classification tasks over three
pretrained models and nine datasets. The best results in each pretrain strategy are highlighted in bold,
and the runner-up with an underline.

Pretrain Methods Cora CiteSeer PubMed Cornell Texas Wisconsin Chameleon Actor Squirrel

DGI

Fine-tuning 73.01±2.55 65.08±3.52 70.91±4.65 45.78±5.65 43.20±9.51 43.26±7.43 28.81±2.82 23.65±2.38 22.58±2.75

Linear-probe 72.39±2.01 65.11±2.62 70.32±4.19 45.23±6.87 42.81±8.09 41.66±5.68 28.80±2.67 22.55±2.40 23.53±1.70

GPPT 57.78±4.46 51.64±5.06 64.59±3.68 41.95±4.57 42.19±6.56 41.37±5.85 23.47±2.98 20.87±1.24 21.80±1.47

GraphPrompt 65.36±4.72 62.33±2.60 66.83±6.05 27.94±6.51 40.91±7.12 31.20±7.22 25.98±3.38 20.38±1.04 22.82±2.18

All-in-one 45.79±8.06 28.43±3.39 41.32±6.26 34.02±8.02 32.29±15.12 30.76±18.03 23.50±3.52 20.60±3.11 23.78±2.93
GPF 66.57±7.50 60.99±3.73 68.33±5.03 42.96±6.01 42.61±8.83 43.68±6.29 27.10±2.94 22.79±1.56 23.38±2.37

GPF+ 69.10±3.70 57.84±4.22 68.81±4.57 43.63±6.62 43.21±8.64 45.11±6.42 27.86±2.74 22.39±2.01 21.48±3.01

EdgePrompt 66.82±3.62 56.99±4.12 64.08±6.27 45.14±5.71 49.10±11.77 47.61±6.32 25.05±3.76 23.82±1.87 21.62±1.53

EdgePrompt+ 67.10±3.94 56.12±3.88 62.95±6.15 43.05±4.58 46.88±9.06 50.40±5.49 24.96±3.74 23.49±1.99 21.53±2.15

UniPrompt(Ours) 70.58±3.01 65.10±3.15 70.97±4.33 68.02±4.32 67.86±8.36 70.43±9.34 28.04±2.68 28.20±2.66 23.88±2.19

GRACE

Fine-tuning 70.49±2.28 64.19±3.49 70.42±5.36 47.15±6.77 43.09±8.74 42.51±5.92 34.00±2.48 22.61±1.91 25.22±1.65
Linear-probe 71.09±2.18 63.65±3.29 71.34±6.46 47.07±6.66 42.11±8.02 41.91±6.20 32.78±3.15 22.23±1.88 24.05±1.58

GPPT 56.51±7.10 50.88±5.62 65.97±5.75 44.36±4.88 41.15±7.09 41.98±7.60 33.10±3.47 21.36±2.18 24.70±2.14

GraphPrompt 68.58±4.30 52.65±3.84 65.49±6.66 35.28±5.94 38.65±7.75 33.76±7.48 32.68±3.32 21.17±1.14 22.55±1.87

All-in-one 44.29±8.37 39.27±3.85 40.76±8.25 29.23±7.65 30.71±10.37 29.49±16.00 23.77±3.65 21.57±2.49 25.13±2.82

GPF 68.56±3.98 59.53±3.91 68.20±4.59 46.01±6.72 44.17±7.43 41.66±4.84 28.62±3.26 22.91±1.49 21.29±2.57

GPF+ 68.86±3.95 61.51±3.90 68.30±3.99 45.89±6.10 40.99±8.35 45.65±5.22 29.46±3.33 22.64±1.45 24.61±2.24

EdgePrompt 63.76±3.49 51.81±6.08 68.23±3.16 48.17±8.16 54.45±7.50 47.14±6.15 32.04±3.80 23.17±1.55 24.22±1.26

EdgePrompt+ 66.16±3.38 53.90±3.03 71.03±2.40 47.66±8.64 53.98±6.93 46.46±5.98 32.44±3.41 24.46±1.64 24.35±1.41

UniPrompt(Ours) 72.99±3.48 63.64±3.80 74.21±2.81 68.13±4.35 68.36±4.92 71.43±4.58 33.66±1.54 26.68±1.87 26.07±0.84

GraphMAE

Fine-tuning 73.85±2.87 64.59±4.32 72.83±3.21 58.24±4.44 47.62±6.96 50.29±6.59 28.78±2.47 21.22±4.17 22.38±1.12

Linear-probe 75.78±2.38 66.17±2.72 70.08±4.82 43.71±5.71 45.00±7.98 41.11±7.54 31.31±3.63 22.51±2.23 22.25±1.75

GPPT 64.66±5.47 46.87±6.52 62.50±7.81 46.25±4.64 41.04±6.81 46.10±5.06 26.49±3.32 20.14±2.49 20.97±1.15

GraphPrompt 69.80±4.65 49.17±4.19 67.51±6.93 25.83±5.77 38.54±9.35 30.60±7.55 23.65±2.67 20.08±1.65 24.71±2.50

All-in-one 41.06±6.34 41.97±3.61 63.56±5.10 27.98±8.33 24.11±8.95 31.56±17.46 23.53±3.43 21.60±2.78 23.19±3.54

GPF 72.09±3.98 52.73±4.94 65.47±4.85 41.55±6.06 43.08±8.13 42.30±5.95 28.51±2.63 22.62±3.36 21.04±1.39

GPF+ 63.28±6.20 55.60±6.03 65.96±5.03 44.53±7.08 39.61±6.69 42.38±6.35 26.86±3.34 20.89±2.70 21.12±0.81

EdgePrompt 67.74±3.60 62.29±3.24 58.66±6.36 44.37±6.27 44.02±7.88 43.53±5.40 29.35±2.20 22.00±2.67 21.68±1.32

EdgePrompt+ 73.81±2.00 48.25±4.39 65.60±3.68 44.02±7.48 44.56±7.51 43.14±5.61 29.84±2.28 21.74±2.57 21.35±1.15

UniPrompt(Ours) 74.77±2.26 65.74±2.80 70.49±4.77 67.73±3.71 71.02±5.21 73.89±6.62 29.77±2.26 24.96±1.65 23.23±1.21

constructing an induced subgraph. It then generates learnable prompts and integrates them
into the node features in a weighted manner to construct a prompt graph. Furthermore, this
method combines meta-learning to optimize prompts across multiple tasks and make the
prompts adapt to different downstream tasks.

• GPF/GPF-plus [7]: GPF/GPF-plus framework introduces a universal graph prompt learn-
ing method that is compatible with any pre-training strategy. The approach operates by
adding learnable prompt vectors to the input node features. Specifically, GPF uses a single
global prompt vector shared by all nodes, whereas GPF-plus generates individual prompt
vectors for each node by aggregating basis vectors via an attention mechanism. The resulting
prompted nodes are then fed into a frozen pre-trained GNN for the downstream task. This
method effectively overcomes a key limitation of existing prompt-tuning methods, which
are restricted to specific pre-training tasks.

• EdgePrompt/EdgePrompt-plus [23]: EdgePrompt introduces a graph prompt tuning
framework for pre-trained GNNs by injecting learnable edge-wise prompts into adjacency
matrices. It designs edge-specific trainable vectors to customize message aggregation
patterns between nodes. This structural adaptation bridges the objective gap between
pretraining and downstream tasks while preserving GNN parameters. EdgePrompt+ enables
each edge to learn its customized prompt vectors, which is similar to GPF and GPF-plus.

Multi-Domain Graph Pretrain Baselines.

• GCOPE [38]: GCOPE proposes a cross-domain graph pretraining framework that unifies
diverse graph structures by introducing learnable "coordinators" to align various datasets.
These coordinators interconnect isolated source datasets into a unified large-scale graph,
enabling joint pretraining with objectives. During pretraining, GCOPE learns transferable
representations by balancing shared multi-domain knowledge and domain-specific features
through latent alignment strategies. The framework supports flexible transfer via fine-tuning
or graph prompting while maintaining parameter efficiency.

• MDGPT [39]: MDGPT introduces a dual-prompt framework for downstream adaptation: a
unifying prompt transfers broadly learned cross-domain knowledge by aligning target
domains with the pre-trained prior, and a mixing prompt enables fine-grained domain-
specific alignment through learnable projections. MDGPT bridges pretraining and downstream
tasks by optimizing domain-invariant representations via self-supervised objectives on multi-
domain data.

27

Table 7: Analysis of key components in UniPrompt via replacement experiments on 1-shot, 3-shot
and 5-shot node classification tasks over different pretrained models.

Shot Pretrain Strategies Cora CiteSeer PubMed Cornell Texas Wisconsin Chameleon Actor Squirrel

1

DGI
Random_Topo 45.81±8.86 40.81±10.22 62.84±4.16 32.34±14.79 22.03±15.34 34.74±7.21 21.82±2.17 21.46±3.05 23.83±1.52

Simple_Add 24.23±5.36 26.61±4.24 43.90±9.68 51.88±16.76 39.37±13.39 63.66±3.16 25.23±4.66 23.50±1.98 24.08±1.60

Discard_Topo 27.27±6.48 28.69±5.36 36.81±7.89 51.88±17.03 45.94±14.83 62.74±10.70 23.98±4.91 26.93±3.48 23.37±1.09

GRACE
Random_Topo 40.48±8.03 17.28±0.55 66.58±6.08 29.69±9.96 26.72±3.47 27.54±7.58 27.35±5.48 20.63±1.11 24.25±2.86

Simple_Add 39.04±10.74 15.70±1.84 61.60±5.58 60.16±6.50 21.56±12.82 49.83±11.60 23.32±1.41 23.29±2.25 23.79±1.86

Discard_Topo 39.20±11.25 16.13±2.58 39.25±2.03 58.44±9.06 29.84±19.27 51.89±12.15 21.43±1.70 26.48±3.83 23.85±1.59

GraphMAE
Random_Topo 38.58±6.42 33.77±9.37 41.02±5.34 23.13±7.24 34.53±12.78 31.20±4.10 20.15±1.41 19.30±3.23 20.94±0.22

Simple_Add 49.11±9.59 51.46±11.88 57.79±9.90 49.38±11.01 42.97±14.82 65.26±13.60 25.47±1.71 21.86±3.21 23.06±1.73

Discard_Topo 46.01±9.86 49.99±11.70 36.83±7.48 49.69±13.36 44.69±15.52 63.43±13.45 25.40±4.06 21.77±4.99 23.19±2.11

3

DGI
Random_Topo 66.20±2.61 60.51±3.54 65.50±2.87 38.28±2.47 25.62±3.93 34.74±8.00 23.71±2.09 19.36±2.10 19.93±0.53

Simple_Add 26.20±5.33 28.24±6.10 57.75±4.46 63.44±2.72 34.22±19.07 61.83±7.44 24.97±1.96 25.30±1.44 22.74±2.01

Discard_Topo 50.87±7.24 45.95±6.91 59.03±5.21 62.19±2.55 55.63±17.81 69.60±10.99 26.73±2.44 27.71±1.33 21.12±2.55

GRACE
Random_Topo 64.78±8.27 60.13±3.83 69.28±5.93 40.47±5.44 34.06±5.75 30.29±5.27 22.65±2.55 21.35±1.16 25.02±0.68

Simple_Add 53.64±4.69 48.61±5.15 61.37±5.95 54.06±11.43 31.41±19.65 65.60±5.38 26.76±3.53 23.97±1.39 24.83±1.21

Discard_Topo 53.71±5.12 49.35±4.45 36.27±9.04 54.22±12.55 65.94±6.57 66.29±7.11 28.01±2.28 24.78±1.49 25.20±1.51

GraphMAE
Random_Topo 55.34±2.86 41.25±5.71 51.16±2.39 33.75±7.03 30.00±7.26 28.11±8.42 21.60±1.62 21.31±1.72 20.42±0.69

Simple_Add 69.77±5.32 63.56±1.45 66.22±5.05 59.84±5.58 37.50±11.69 58.29±12.59 24.81±1.09 25.37±2.73 20.82±1.60

Discard_Topo 51.72±4.48 62.99±1.04 56.93±4.10 60.93±5.74 45.78±13.95 57.71±12.22 26.11±3.46 24.63±3.30 21.12±1.56

5

DGI
Random_Topo 55.75±3.37 63.27±1.41 72.11±1.45 44.37±5.69 36.09±4.72 40.80±8.40 23.37±1.75 21.73±2.11 19.34±1.05

Simple_Add 24.07±2.17 33.53±7.95 52.91±2.24 66.87±3.58 39.37±22.46 70.74±4.58 25.62±2.22 25.15±1.68 21.20±1.43

Discard_Topo 37.33±3.23 49.75±2.76 61.54±6.05 66.72±2.91 69.22±3.15 74.06±3.64 28.38±1.44 28.04±2.04 22.60±2.94

GRACE
Random_Topo 69.53±1.76 64.02±2.20 69.79±5.09 46.56±4.98 37.66±4.12 41.37±6.74 33.66±1.80 23.19±0.66 25.11±1.88

Simple_Add 60.94±2.39 51.47±2.60 50.09±15.64 67.19±1.48 63.91±7.03 67.20±5.43 28.08±2.43 23.79±1.41 24.59±1.99

Discard_Topo 61.31±2.42 53.59±0.87 37.02±6.73 67.97±2.84 69.84±7.20 70.29±3.84 29.01±2.23 25.68±0.64 24.99±2.25

GraphMAE
Random_Topo 47.71±6.19 46.10±2.35 57.95±4.81 38.59±2.73 39.37±5.10 38.63±3.66 22.02±1.63 19.99±0.64 20.90±0.54

Simple_Add 69.72±2.62 65.66±3.02 73.22±3.31 67.19±1.40 66.72±8.94 74.74±4.72 28.42±3.01 23.80±2.23 23.65±1.02

Discard_Topo 59.12±4.09 61.96±4.11 68.70±2.40 66.25±3.40 68.75±4.50 75.43±4.40 29.34±2.01 23.59±1.64 23.08±1.79

• MDGFM [27]: MDGFM integrates multiple source domains during pretraining, leveraging con-
trastive learning to maximize mutual information between multi-view graph augmentations.
The topology-aware refinement process, which aligns different graph topologies into a
unified semantic space via meta-prompts (for global knowledge transfer) and task-specific
prompts (for domain adaptation).

B.4 3/5-shot node classification on different pretrained models

We further conduct 3-shot and 5-shot node classification experiments on the same nine datasets,
based on three different pretrained strategies, as shown in Table 5 and Table 6. Consistent with the
1-shot results, our method outperforms existing GPL approaches across most datasets under different
pretrained model settings. However, the baselines become more competitive in these scenarios, with
each achieving runner-up on certain datasets. Another observation is that, as the number of shots
increases, the performance discrepancies among models under different pretrained settings become
more pronounced, especially on datasets such as CiteSeer and Chameleon. In comparison to the GPL
baselines, UniPrompt demonstrates more stable performance across all settings. It is also noteworthy
that with an increase in the number of labels, Fine-tuning and Linear-probe become highly
competitive, achieving runner-up or even optimal performance on many datasets. This indicates
that traditional fine-tuning methods, much like GPLs, benefit significantly from additional label
information and, in some instances, utilize it more effectively than some existing prompt approaches.
Furthermore, our method achieves particularly significant gains on the Cornell, Texas, and Wisconsin
datasets, with this strong performance holding consistently across the different pretrained models.
This further underscores the broad applicability and robustness of UniPrompt .

B.5 Key Components Analysis of UniPrompt

To further analyze the pros and cons of each component in UniPrompt, we initially aimed to remove
the key components (i.e., kNN and bootstrap). However, since both components are essential
and cannot be simply removed, we instead conduct replacement experiments: (1) Random_Topo:
replacing kNN with random topology, (2) Simple_Add: replacing bootstrap with a simple addition
of the original and prompt graph, and (3) Discard_Topo: discarding the original graph totally. The
1-shot results are shown in the Table 7: From the table, we can find that Random_Topo maintains
some of effectiveness on homophilic datasets while showing reduced performance on heterophilic
ones. Conversely, for Simple_Add and Discard_Topo, heterophilic datasets still retain some
performance. However, performance on homophilic datasets drops significantly, as their original
structure is crucial for classification. Furthermore, a notable phenomenon is that when these core

28

Table 8: In-domain large scale node classification. Accuracy on 5-shot node classification tasks
over three pretrained models and arXiv-year dataset. The best result is highlighted in bold, and the
runner-up with an underline.

Pretrain Method arXiv-year (Acc) Preprocessing Time (s) Training Time (s/per_epoch)

DGI Fine-tune 28.27±5.99 - 0.0138
UniPrompt 32.48±6.37 1.25 0.0224

GRACE Fine-tune 24.60±1.04 - 0.0205
UniPrompt 25.17±2.83 1.26 0.0320

GraphMAE Fine-tune 23.24±1.58 - 0.0427
UniPrompt 24.25±5.43 1.32 0.0618

Table 9: Time (s) and GPU memory (MB) costs of different GPL baselines across various datasets.

Methods Time/Memory Cora CiteSeer PubMed Cornell Texas Wisconsin Chameleon Actor Squirrel

Fine-tune Time 0.0027 0.0026 0.0033 0.0026 0.0025 0.0031 0.0026 0.0027 0.0034
Memory 80.5 153.1 310.3 26.6 26.6 28.4 118.4 155.4 368.9

Linear-probe Time 0.0010 0.0009 0.0009 0.0009 0.0009 0.0009 0.0011 0.0009 0.0009
Memory 56.9 127.5 120.1 26.4 26.4 27.6 70.5 86.9 122.0

GPPT Time 0.0118 0.0117 0.0130 0.0123 0.0120 0.0119 0.0109 0.0051 0.0127
Memory 80.6 153.1 311.7 26.6 26.7 28.5 118.4 155.1 365.9

GraphPrompt Time 0.0035 0.0008 0.0101 0.0242 0.0037 0.0136 0.0003 0.0006 0.0024
Memory 642.6 896.1 2366.2 31.5 31.8 37.0 1170.4 913.7 3597.7

All-in-one Time 0.7616 0.7362 0.6024 0.6846 0.6732 0.6846 0.6856 0.7118 0.6834
Memory 2696.0 4021.5 9052.5 31.0 32.2 39.8 1801.8 3625.9 4917.2

GPF Time 0.0021 0.0031 0.0031 0.0020 0.0021 0.0020 0.0031 0.0022 0.0042
Memory 119.8 267.4 470.1 29.9 29.9 32.1 193.4 236.8 662.4

GPF+ Time 0.0033 0.0032 0.0033 0.0021 0.0023 0.0021 0.0032 0.0022 0.0042
Memory 130.0 361.8 470.5 32.3 32.3 34.9 194.3 236.9 662.6

EdgePrompt Time 0.0018 0.0027 0.0042 0.0025 0.0017 0.0017 0.0041 0.0031 0.0127
Memory 191.1 398.0 746.2 32.6 31.9 36.3 550.8 379.8 2608.3

EdgePrompt+ Time 0.0024 0.0027 0.0042 0.0025 0.0024 0.0024 0.0040 0.0035 0.0122
Memory 191.5 398.3 746.2 33.2 32.0 36.7 551.0 380.8 2608.4

UniPrompt(Ours) Time 0.0054 0.0052 0.0039 0.0040 0.0045 0.0039 0.0047 0.0068 0.0073
Memory 511.5 674.5 566.2 55.1 55.2 67.7 539.9 1392.6 1603.9

components are replaced, an increasing number of labels does not consistently lead to performance
improvements. This is particularly evident in the Random_Topo setting. Although this setup is
analogous to augmentation strategies [47, 37] in graph self-supervised learning, adding edges, as
opposed to masking them, can introduce unnecessary message passing and additional potential risks.
Thus, simply using a random topology is clearly suboptimal. Another observation is the varied impact
of discarding the original topology across different datasets. On homophilic graphs, performance
drops significantly, whereas in heterophilic scenarios, performance is maintained on some datasets
(i.e., Cornell, Texas) or even improved (i.e., Wisconsin, Chameleon). This suggests that the original
topology in these latter cases fails to provide an effective message passing mechanism, and useful
information is instead derived by learning the distribution of representations around anchor nodes. In
contrast, UniPrompt augments the graph with a learnable topology, facilitating effective message
passing for downstream adaptation and thereby ensuring good performance on both homophilic and
heterophilic datasets.

B.6 Large Scale Dataset Node Classification

We additionally run experiments on the large-scale heterophilic dataset Arxiv-year as a supplement.
Here, we use a simplified kNN by randomly sampling 1,000 nodes, then connecting each node to its
top-k most similar sampled nodes. We test three pretrain strategies under 5-shot setting, comparing
with fine-tuning. The accuracy and computational cost are shown in the Table 8. Our method incurs
minimal preprocessing time and only a slight increase in training time per epoch, with small epoch
counts (typically less than 500). This demonstrates that our approach is scalable to large graphs.

29

Table 10: Robustness analysis of the various pre-trained models to varying levels of Gaussian noise
on 1-shot, 3-shot, 5-shot node classification.

Pretrain Shot Noisy Cora CiteSeer PubMed Cornell Texas Wisconsin Chameleon Actor Squirrel

DGI

1
0.01 44.42±10.49 32.39±12.85 61.00±5.31 50.62±14.07 46.72±12.88 62.51±10.50 20.80±2.43 26.96±4.35 22.50±2.07

0.05 23.23±9.21 19.77±1.66 40.01±0.98 49.22±12.02 38.75±13.32 61.03±9.79 20.72±0.76 24.67±2.96 20.41±0.74

0.20 27.82±5.26 15.73±5.90 39.46±0.37 28.59±5.96 33.91±10.64 42.86±16.34 20.08±2.77 22.15±2.70 20.21±0.27

3
0.01 63.72±4.62 27.40±6.12 63.33±4.47 52.66±1.82 45.31±19.04 56.80±8.75 23.27±2.51 24.58±2.75 21.50±1.19

0.05 18.65±9.51 16.23±4.72 39.72±4.32 56.87±4.62 45.16±20.96 55.54±6.71 19.39±0.59 24.47±3.06 20.08±0.21

0.20 15.38±11.48 15.01±4.15 28.09±9.02 43.75±8.46 34.06±21.60 52.11±11.30 15.99±4.04 22.15±2.70 19.99±0.16

5
0.01 67.71±2.51 22.39±6.18 66.05±9.07 64.69±4.15 60.47±2.44 68.46±4.46 24.32±3.60 25.61±2.11 20.69±1.76

0.05 17.55±8.71 17.27±1.84 42.76±5.67 63.75±4.65 59.38±4.79 67.77±4.82 20.41±2.47 20.53±5.54 19.73±1.13

0.20 12.98±2.29 18.12±1.64 32.68±9.75 59.69±4.41 43.59±15.76 59.54±8.94 20.03±2.67 22.14±2.80 20.63±2.12

GRACE

1
0.01 39.71±13.16 16.09±3.60 65.10±6.39 47.34±11.48 27.97±12.94 39.20±12.04 27.28±2.02 24.12±3.53 23.98±2.95

0.05 20.92±6.90 16.51±2.27 46.31±14.86 49.06±12.40 27.34±13.95 38.40±12.37 23.64±5.95 22.62±1.95 19.62±1.70

0.20 13.87±6.26 15.01±2.60 32.15±9.30 31.72±11.89 40.00±13.23 34.17±10.49 19.99±5.26 18.44±4.36 21.21±1.98

3
0.01 61.75±6.43 51.58±7.30 66.66±6.50 48.59±11.11 58.59±6.79 69.26±6.74 22.73±2.42 22.94±1.69 25.40±2.37

0.05 26.12±7.17 21.63±4.37 56.63±9.53 51.09±11.66 56.87±6.65 69.14±5.19 21.35±1.26 20.51±3.28 20.78±1.75

0.20 17.09±7.61 23.22±3.48 40.08±5.38 39.06±11.28 39.37±16.47 71.31±1.93 20.20±2.20 21.13±2.80 20.41±0.94

5
0.01 69.56±2.07 57.83±2.23 73.53±3.16 64.69±1.81 61.72±5.01 65.60±3.92 29.97±2.75 25.04±1.06 24.63±1.39

0.05 20.98±3.35 19.95±6.61 60.38±10.46 63.75±1.82 61.61±4.32 66.29±5.21 23.37±3.42 18.96±3.31 21.91±2.34

0.20 8.84±3.80 17.05±1.69 35.34±9.91 60.31±2.55 51.25±11.72 60.69±8.42 17.47±2.03 18.62±3.24 19.61±0.24

GraphMAE

1
0.01 40.25±8.40 30.03±7.41 56.54±8.91 50.94±8.48 42.34±14.66 64.80±13.22 22.59±1.50 21.85±0.82 22.42±2.31

0.05 10.58±1.47 18.42±1.29 40.30±10.47 50.00±11.42 45.78±16.96 63.54±13.43 19.49±1.18 23.89±1.29 20.16±0.46

0.20 10.59±2.95 18.31±1.75 32.69±6.86 39.69±16.35 48.13±13.11 57.03±13.33 18.97±1.51 21.35±2.35 20.42±0.47

3
0.01 67.07±7.47 43.01±4.05 65.04±3.90 60.31±3.68 35.31±9.90 57.94±12.90 25.45±0.81 25.52±1.82 19.97±0.86

0.05 34.90±14.43 16.63±2.18 30.69±6.61 59.53±3.87 33.91±10.57 56.43±12.05 19.41±1.04 25.70±3.06 19.99±0.55

0.20 14.50±4.97 18.24±0.72 28.54±9.41 55.00±8.85 33.44±18.88 58.40±11.46 19.45±2.17 20.77±4.98 20.13±0.64

5
0.01 64.44±3.70 16.86±4.51 71.46±3.32 67.06±1.17 66.56±9.12 75.09±4.83 25.01±1.85 24.49±1.88 23.31±0.74

0.05 34.30±11.05 20.61±6.32 49.20±9.18 68.44±1.45 65.78±8.43 74.29±4.28 22.34±2.96 20.11±5.47 19.92±1.20

0.20 14.87±5.61 17.05±1.69 37.75±4.10 61.25±2.19 54.22±11.96 74.74±3.01 19.83±1.78 17.46±5.73 19.84±0.61

B.7 Computational Overhead Comparison

we provide the 1-shot time and space table for various baselines of DGI pretrained models, are shown
in the Table 9. In the table, UniPrompt demonstrates efficient performance in both time and GPU
costs. In terms of inference time, our approach is comparable to all GPL baselines. While our use of
kNN slightly increases GPU memory usage, it remains within an acceptable range. This indicates that
our method is lightweight and can be quickly deployed on various datasets, showcasing its efficiency.

B.8 Robustness Analysis

Since our prompt topology is built on node features, it is sensitive to feature noise, which can lead
to distorted graph structures. When both features and topology are misaligned with the pre-trained
model, our method faces challenges in solving this problem. The 1-shot learning results under varying
levels of Gaussian noise are summarized in the Table 10, where we observe that a 0.01 noise level
shows minor augmentation, maintaining accuracy in some datasets (e.g. PubMed, Wisconsin and
Actor). However, 0.05 noise begins to impact performance, and 0.20 noise significantly degrades
accuracy across most datasets, with an average accuracy drop of over 30%.

B.9 Hyperparameter Settings

We conduct extensive experiments to explore the impact of various hyperparameters on the perfor-
mance of our model, as shown in Table 11, ensuring that our approach achieves robust and consistent
results across diverse settings.

C Related Works

Graph Pretraining. Graph pretraining has emerged as a powerful paradigm for learning general-
izable and transferable representations from large-scale unlabeled graph data, aiming to mitigate
the dependency on labeled data in downstream tasks. Unlike traditional supervised methods that
require extensive manual annotations [3, 4, 48], graph pretraining leverages self-supervised strategies
to capture structural and semantic patterns in graphs. Graph Self-Supervised Learning (GSSL) [49]
currently has attracted widespread attention in the graph community, which mainly designs self-
supervised objective functions to train the model based on maximizing Mutual Information (MI).
As a classic paradigm, DGI [28] maximizes mutual information between node representations and

30

Table 11: Hyperparameter settings of UniPrompt for 1-shot, 3-shot, and 5-shot scenarios across
different pretrained models

Pretrain Dataset 1-shot 3-shot 5-shot
up_lr down_lr k τ up_lr down_lr k τ up_lr down_lr k τ

DGI

Cora 0.001 0.05 50 0.99999 0.0005 0.05 10 0.9999 0.0001 0.05 10 0.99999
CiteSeer 0.0005 0.05 50 0.9999 0.0005 0.05 10 0.9999 0.0001 0.05 10 0.9999
PubMed 0.0005 0.001 1 0.9999 0.0001 0.05 50 0.9999 0.0005 0.05 10 0.99999
Cornell 0.001 0.0005 50 0.99 0.001 0.01 50 0.9999 0.00005 0.001 50 0.9999
Texas 0.00001 0.0001 50 0.999 0.0001 0.00005 50 0.9999 0.00001 0.0001 50 0.9999
Wisconsin 0.0001 0.001 50 0.999 0.005 0.0001 50 0.9999 0.00001 0.0001 50 0.9999
Chameleon 0.00005 0.001 10 0.9999 0.00001 0.05 10 0.999 0.00001 0.05 10 0.999
Actor 0.001 0.01 50 0.999 0.00001 0.01 50 0.9999 0.0005 0.005 50 0.9999
Squirrel 0.00005 0.005 50 0.99999 0.0005 0.01 50 0.99 0.0001 0.0001 50 0.9999

GRACE

Cora 0.001 0.005 50 0.9999 0.001 0.05 50 0.9999 0.001 0.05 50 0.9999
CiteSeer 0.005 0.001 50 0.9999 0.00001 0.05 50 0.9999 0.00001 0.05 50 0.9999
PubMed 0.01 0.05 1 0.9999 0.01 0.05 1 0.9999 0.01 0.0001 1 0.9999
Cornell 0.0001 0.0005 50 0.99 0.00001 0.0001 50 0.9999 0.00001 0.0005 50 0.9999
Texas 0.0001 0.00005 50 0.9999 0.00005 0.0001 50 0.9999 0.00005 0.0005 50 0.9999
Wisconsin 0.0001 0.01 50 0.999 0.0001 0.0005 50 0.999 0.0001 0.0001 50 0.9999
Chameleon 0.005 0.001 1 0.99999 0.001 0.001 50 0.9999 0.005 0.05 50 0.99999
Actor 0.0005 0.01 50 0.9999 0.005 0.01 50 0.9999 0.005 0.05 50 0.9999
Squirrel 0.01 0.05 50 0.9999 0.005 0.05 50 0.99999 0.005 0.05 50 0.99999

GraphMAE

Cora 0.0005 0.0005 50 0.9999 0.0005 0.05 1 0.99999 0.005 0.0005 1 0.9999
CiteSeer 0.001 0.0001 1 0.99999 0.001 0.05 50 0.9999 0.001 0.05 10 0.9999
PubMed 0.005 0.01 1 0.999 0.0001 0.05 10 0.9999 0.0001 0.05 1 0.9999
Cornell 0.00005 0.05 50 0.9999 0.00005 0.005 50 0.9999 0.00005 0.0005 50 0.9999
Texas 0.00001 0.0005 50 0.9999 0.00005 0.0005 50 0.9999 0.00005 0.0005 50 0.9999
Wisconsin 0.00005 0.01 50 0.9999 0.00001 0.00005 50 0.9999 0.00001 0.0005 50 0.9999
Chameleon 0.00001 0.005 50 0.99999 0.001 0.001 50 0.9999 0.001 0.05 50 0.9999
Actor 0.005 0.05 50 0.9999 0.001 0.05 50 0.9999 0.01 0.05 50 0.9999
Squirrel 0.005 0.05 50 0.9999 0.001 0.05 5 0.99999 0.005 0.0001 50 0.9999

Table 12: Settings and code links of various baseline methods.

Methods Source Code

k-Shot Sampling ProG/blob/main/prompt_graph/tasker/node_task.py
Dataset Split ProG/blob/main/prompt_graph/data/load4data.py
Evaluation ProG/blob/main/prompt_graph/evaluation/AllInOneEva.py

DGI https://github.com/PetarV-/DGI
GRACE https://github.com/CRIPAC-DIG/GRACE
GraphMAE https://github.com/THUDM/GraphMAE/tree/pyg

GPPT https://github.com/MingChen-Sun/GPPT
GraphPrompt https://github.com/Starlien95/GraphPrompt
GPF/GPF+ https://github.com/zjunet/GPF
All-in-one https://github.com/sheldonresearch/ProG
EdgePrompt/EdgePrompt+ https://github.com/xbfu/EdgePrompt

the summary of the graph. GGD [50] further explores the DGI, summarizing it as a group discrim-
ination task, greatly reducing the computational time overhead. MVGRL [51] introduces graph
diffusion to generate different scale subgraphs to improve the pipeline of DGI. GRACE [29] uses
InfoNCE [45, 46] to optimize by maximizing the similarity of two augmented nodes generated by
the same node and minimizing the similarity of other nodes to train the model. GCA [47] improve
the augmentation strategy by defining the importance of different nodes and edges to preserve
semantic information. GraphCL [37] and JOAO [52] use this paradigm to global-global graph
representation contrast. AD-GCL [53] has similar idea, which designs a learnable augmentation
strategy, and trains the model by maximizing mutual information between node representation and
augmented graph. Some works [54, 55, 56, 57, 58, 59, 60, 61] focus on design effective sampling
strategy, and other works [62, 63] further introduce additional knowledge into GCL. AFGRL [64],
SimGRACE [65], NeCo [66] and AFGCL [67] propose augmentation free paradigm to optimize
sampling. PolyGCL [68] and S3GCL [69] focus on designing polynomials with learnable filters
to generate different spectral contrastive views. GraphMAE [30], as the method of masked graph
autoencoders, utilizes randomly mask mechanism from the input with the graph autoencoder [70]
architecture to reconstruct the node features or structures. GraphMAE2 [71] proposes multiview

31

https://github.com/sheldonresearch/ProG/blob/main/prompt_graph/tasker/node_task.py
https://github.com/sheldonresearch/ProG/blob/main/prompt_graph/data/load4data.py
https://github.com/sheldonresearch/ProG/blob/main/prompt_graph/evaluation/AllInOneEva.py
https://github.com/PetarV-/DGI
https://github.com/CRIPAC-DIG/GRACE
https://github.com/THUDM/GraphMAE/tree/pyg
https://github.com/MingChen-Sun/GPPT
https://github.com/Starlien95/GraphPrompt
https://github.com/zjunet/GPF
https://github.com/sheldonresearch/ProG
https://github.com/xbfu/EdgePrompt

random re-mask decoding, the node representations are randomly re-masked multiple times, to
introduce randomness into feature reconstruction. BGRL [31] adopts BYOL [72], which trains the
online encoder by predicting the target encoder to generate efficient node representations. This
backbone is followed by some recent works, such as SGRL [73] and SGCL [32].

Graph Prompt Learning. Graph prompt learning aims to address the gap between pretrained models
and downstream tasks by introducing tunable components into the inputs, model parameters, or
outputs of pretrained models. This approach facilitates the alignment of the pretraining domain with
the target domain, thereby improving performance in downstream tasks, particularly in few-shot
fine-tuning scenarios. GPPT [6] introduces structure tokens and task tokens, transforming the node
classification task into a form consistent with link prediction. GPF/GPF-plus [7], from the perspective
of the feature space, inject global and specific prompt vectors into nodes, bringing the prompt-tuning
paradigm into graph representation learning. SUPT [74] extends GPF-plus to the subgraph level,
modifying the attention mechanism to a GCN-like aggregation that incorporates neighborhood in-
formation. IA-GPL [75] further advanced this by introducing an instance-aware mechanism that
maps node representations to a prompt space, and quantizes them into a codebook using Vector
Quantization (VQ) [76]. The resulting quantized prompts are then combined with node features
as input for the pre-trained model. RELIEF [77] employs reinforcement learning to select a small,
efficient set of nodes for prompt generation, creating node-specific prompts to avoid the potential
interference of applying prompts to all nodes. All-in-one [14] unifies the "pretraining-prompt"
paradigm by converting node and edge tasks into graph-level tasks by building an induced subgraph.
It then adds learnable prompts to the node features in a weighted manner to construct a prompt
graph. By combining meta-learning with this process, the prompts can adapt to multiple downstream
tasks. HeterGP [78] extends this paradigm by considering heterophilic scenarios. GraphPrompt [24]
unifies node-level and graph-level tasks into subgraph similarity computation and incorporates a
learnable prompt vector into the readout layer of GNNs, enabling the model to adapt flexibly to
various downstream tasks. Building on this, GraphPrompt+ [15] generalizes pre-training tasks to
arbitrary contrastive learning tasks and introduces prompt vectors into each GNN layer, thereby
leveraging hierarchical knowledge. MultiGPrompt [26] further adopts multi-task pre-training to learn
more comprehensive and multi-level representations. PRODIGY [79] introduces task graphs to unify
pretraining and downstream tasks via in-context learning. It avoids parameter tuning by reformulating
tasks as link prediction between data and label tokens. GraphControl [22] aligns cross-domain
graphs via conditional prompts inspired by ControlNet [80], enabling semantic consistency in transfer
learning. Moreover, some works are designed for considering heterogeneous graphs. HGPrompt [81],
based on GraphPrompt, decomposes a heterogeneous graph into multiple homogeneous subgraphs
and introduces feature prompts and heterogeneity prompts, thereby proposing the prompt framework
applicable to both homogeneous and heterogeneous graphs. HetGPT [82] further introduces virtual
class prompts and heterogeneous feature prompts, and adopts a multi-view neighborhood aggregation
mechanism to effectively model the complexity of heterogeneous neighborhood structures, construct-
ing a general framework for heterogeneous graph prompting. HiGPT [83] targets more complex and
dynamic heterogeneous graph scenarios by employing context-parameterized heterogeneity projectors
and LLMs to generate node embeddings, while leveraging instruction tuning in downstream tasks to
enhance generalization ability. Although various graph prompt strategies have advanced the field,
there remains no unifed understanding of how these prompts interact with pretrained models, which
is the problem our work tries to explain and solve.

Prompt Techniques in Graph Foundation Models. Due to its simple and efficient design, prompt
techniques is widely used in some graph foundation models and LLM+GNN paradigms. GCOPE [38]
proposes the concept of a "Coordinator", which introduces a set of virtual nodes to bridge different
datasets, enabling the model to learn knowledge across multiple domains and transfer it to a wide range
of downstream tasks. OFA [16] and GOFA [84] introduce LLMs into graph learning. Specifically,
OFA [16] first transforms all graph data into text-attributed graphs (TAGs), and augments the
NOI (node of interest) subgraph with NOI prompt nodes and class prompt nodes. The data are
then processed sequentially by an LLM and a GNN to predict the category of the NOI. GOFA [84]
interleaves GNN layers with LLM layers, which not only preserves the ability to learn graph structures
but also equips the model with text generation capabilities, thereby enabling broader generalization to
downstream tasks. GraphPrompter [85] projects TAGs into a semantic space to align them. A GNN
then encodes the graph structure, and the resulting node embeddings are concatenated into prefix
tokens. These tokens are prepended to the input text, enabling a frozen LLM to understand and reason
about the graph data. ZeroG [12] uses LoRA [86] to fine-tune a pretrained Language Model (LM).

32

It creates a neighborhood-aware prompt that aggregates local topological information via message
passing, helping the LM generate effective representations for zero-shot tasks. UniGraph [87] maps
cross-domain graph features into a unified LLM semantic space. It trains a cascaded LM-GNN
encoder using a masked language modeling task. For downstream tasks, it uses in-context learning for
few-shot transfer and combines LoRA with fine-tuning for zero-shot transfer. LLaGA [88] transforms
graph structures into node sequences using either a neighbor-based or hop-count based approach. The
resulting sequences, which are rich in structural information, are combined with prompt tokens and
fed into a frozen LLM for various downstream tasks. GraphGPT [89] uses a two-phase prompt tuning
to enhance LLM understanding of graph structures. The first phase uses self-supervised prompt
tuning with a graph matching task to learn a projector. The second phase involves task-specific
fine-tuning to customize the reasoning of LLMs for different downstream tasks. The GFT [90]
framework defines a computation tree as a token, and uses VQ to maintain a token vocabulary during
pretraining. For downstream prompting, any task can be re-framed as the classification of these
computation tree tokens. GIT [91] adopts similar concepts to GFT, but adds theoretical proofs to
demonstrate the stability, transferability, and generalization of the task tree.

D Limitations

Despite the excellent results achieved by our proposed UniPrompt method, several limitations should
be considered:

• Limited Integration with LLMs: Our proposed method currently focuses on adapting
traditional graph pretrained models and does not explore the integration of Large Language
Models (LLMs) as encoders. This is a notable limitation, given the increasing prominence of
LLMs in generating powerful, semantically rich node representations from textual attributes.
The full potential of UniPrompt in semantically driven graph tasks and its applicability to
emerging paradigms like zero-shot graph learning remain unexplored.

• Hyperparameter Dependency: The effectiveness of UniPrompt hinges on two key hy-
perparameters: the temperature coefficient, τ , which balances the original and prompt
topologies, and the number of neighbors, k, in the kNN graph. The hyperparameter analysis
reveals that the optimal settings for these parameters vary significantly across datasets of
different types (e.g., homophilic vs. heterophilic) and scales. This necessitates careful tuning
when applying the method to new datasets, which adds to its practical complexity.

• Limited Task Coverage: The current evaluation is exclusively focused on node classifica-
tion, particularly in few-shot settings. Whether UniPrompt can be effectively generalized
to other important graph learning tasks, such as graph classification, link prediction, or
community detection, remains unverified. These tasks have different requirements for
global structural information or edge-level relationships, for which the current node centric
topological prompt may not be optimal.

E Broader Impacts

The introduction of UniPrompt represents a significant advancement in the field of graph prompt
learning. The broader impact of this work includes:

• Promoting the Development of Graph Foundation Models: By theoretically dissecting
the underlying mechanisms of different prompting strategies, this research proposes a clearer
design paradigm: graph prompt learning should focus on unleashing the capability of
pretrained models, and the classifier adapts to downstream scenarios. This perspective offers
theoretical guidance for building more powerful and versatile Graph Foundation Models
(GFMs), helping to steer the field toward a more unified and efficient direction.

• Further Integration with LLMs: The principles of UniPrompt can be powerfully com-
bined with Large Language Models (LLMs), which have become de facto foundation models
for language. In this paradigm, an LLM could serve as a powerful feature encoder for text-
attributed graphs, and UniPrompt ’s adaptive topology would then refine the graph structure
to best suit the rich semantic representations provided by the LLM. This integration would
test the universality of our approach, demonstrating how a learnable, input-level prompt can

33

effectively guide a powerful, but non-graph-native, pre-trained model to reason over graph
structures.

• Extension to Multiple Tasks: While the current work focuses on node classification, the
core idea of learning an adaptive topology is task-agnostic and holds significant promise
for other fundamental graph tasks. For graph classification, the learned prompt graph could
highlight key subgraphs or motifs crucial for determining a graph’s overall label. For
link prediction, the adaptive topology could help the model capture higher-order structural
patterns predictive of missing edges. Extending UniPrompt to these diverse tasks would be
a crucial step in validating its effectiveness as a more universal adaptation method for graph
models.

• Enhancing Model Robustness and Generalization: The method enhances the gener-
alization capability of pre-trained models by learning a topology that is adaptive to the
downstream task, especially when handling distribution shifts (e.g., from homophily to het-
erophily). This concept can inspire further research into improving cross-domain adaptation
and Out-of-Distribution (OOD) generalization, which is vital for building reliable and stable
AI systems that can operate in diverse, real-world environments.

34

	Introduction
	Notations and Preliminary
	Motivation Experiments and Analysis
	Mechanism Relationship between Prompts and Classifier
	Methodology
	Experiments
	Experimental Setup
	In-Domain Node Classification
	Cross-Domain Node Classification
	Hyperparameter Analysis

	Conclusion
	Acknowledgments
	Proofs
	Proof for Proposition 4.1
	Proof for Proposition 4.2

	Other Experiments and Detail Settings
	Experimental Setup
	Real-world datasets
	Descriptions of Various Baselines
	3/5-shot node classification on different pretrained models
	Key Components Analysis of UniPrompt
	Large Scale Dataset Node Classification
	Computational Overhead Comparison
	Robustness Analysis
	Hyperparameter Settings

	Related Works
	Limitations
	Broader Impacts

