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Abstract

Explaining black-box model behavior with nat-
ural language has achieved impressive results
in various NLP tasks. Recent research has ex-
plored the utilization of subsequences from the
input text as a rationale, providing users with
evidence to support the model decision. Al-
though existing frameworks excel in generating
high-quality rationales while achieving high
task performance, they neglect to account for
the unreliable link between the generated ra-
tionale and model decision. In simpler terms,
a model may make correct decisions while at-
tributing wrong rationales, or make poor deci-
sions while attributing correct rationales. To
mitigate this issue, we propose a unified two-
stage framework known as Self-Attribution and
Decision-Making (SADM). Through extensive
experiments on five reasoning datasets from the
ERASER benchmark, we demonstrate that our
framework not only establishes a more reliable
link between the generated rationale and model
decision but also achieves competitive results
in task performance and the quality of rationale.
Furthermore, we explore the potential of our
framework in semi-supervised scenarios.

1 Introduction

Large-scale pre-trained models (Lewis et al., 2019;
Touvron et al., 2023) have achieved state-of-the-
art results on various tasks (Wang et al., 2023; Du
et al., 2023a; Chen et al., 2023), but their decision-
making process is opaque. Recent work (Geirhos
et al., 2020; Lai et al., 2021; Wang et al., 2021;
Du et al., 2022; Liu et al., 2023; Du et al., 2023b)
have revealed that models often rely on superficial
clues for predictions, which can make their deci-
sions unconvincing. Therefore, it is valuable to
motivate models to provide trustworthy rationales
to back up their decisions, which facilitates their
implementation in real-world applications.
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Figure 1: With the claim and passage as input, the FID-
Ex framework generates the model decision, followed
by the rationale as output. It is observed that the gener-
ated rationale does not convincingly justify the model
decision. The underlined part of the passage represents
the manually annotated rationale.

Recent studies (Ismail et al., 2021; Shen et al.,
2022) have concentrated on the ERASER (DeY-
oung et al., 2019) benchmark, which encourages
models to obtain the extracted subsequences from
the input text as a rationale to support their decision.
The WT5 (Narang et al., 2020) framework and its
variant FID-Ex (Lakhotia et al., 2020) have shown
superiority on this benchmark, which generates the
rationale and classification decision in a parallel
way. However, such parallel frameworks raise a
serious problem: is the link between the rationale
and classification decision generated by models re-
liable? In the upper example of Fig. 1, we observe
that the model attributes the correct rationale, that



“The Nice Guys is a 2016 American neo-noir action
comedy film directed by Shane Black”, but still
mistakenly supports the claim that “The Nice Guys
was directed by Stephen Spielberg”. In the lower
example of Fig. 1, it is evident that the model at-
tributes the rationale that “The Others (Los Otros)
is a 2001 Spanish-American supernatural gothic
horror film with elements of psychological horror”,
which is entirely unrelated to the claim. However,
despite the wrong rationale, the model still cor-
rectly supports the claim that “The Others (2001
film) won awards”. These instances highlight a
significant challenge in developing a model with
explanations in natural language form, that the gen-
erated rationale does not genuinely support and
convincingly justify the model decision.

To mitigate the above issue, we introduce a uni-
fied two-stage framework called Self-Attribution
and Decision-Making (SADM). Our SADM frame-
work adopts distinct architectures for training and
inference processes. For the training process, we
train the model by jointly optimizing both the self-
attribution and decision-making objectives. For
the inference process, we adopt a two-stage for-
mat, which is inspired by the two-stage inference
theory of human (Evans, 1984). The model is
first prompted to extract the rationale from the
given input (known as the self-attribution stage),
and then, the model is prompted to utilize the
extracted rationale to make informed decisions
(known as the decision-making stage). Moreover,
our SADM framework incorporates the Fusion-In-
Decoder (FID) (Izacard and Grave, 2020) archi-
tecture to address the challenges posed by lengthy
texts, and the Sentence Mark (SM) (Lakhotia et al.,
2020) strategy to mitigate the issue of random
and irrelevant rationale generation during the self-
attribution stage. To further enhance the model’s
comprehension at the decision-making stage, we
also introduce a Reasoning Augment Learning
(RAL) strategy.

In our experiments, we introduce the RSQ met-
ric to quantitatively assess the reliable link be-
tween generated rationales and model decisions.
Experimental results consistently show significant
improvements in the RSQ metric for our SADM
framework. For task performance and the quality of
rationale, our SADM framework also outperforms
strong baselines overall. Moreover, we conduct
ablation experiments to analyze the contribution of
each component within our framework.

2 Background

2.1 Task Form

We work with supervised data containing quadru-
ples (q, p, r, y). Here, q represents a question or
claim, p represents a passage that can answer or
judge q, r corresponds to the rationale, typically a
subsequence extracted from the passage p, and y
represents the classification target. Our objective
is to train a model f where the input is denoted as
x = (q, p). The desired outcome from the model
is twofold: a classification result and a rationale
to explain its decision-making behavior, that is,
(r, y) = f(q, p).

2.2 Related Work

Rationale. The rationale is defined as the con-
densed and logically coherent subsequences from
the input text, yet still adequate for the model to
make correct decisions (Lei et al., 2016; Linardatos
et al., 2020; Burkart and Huber, 2021). Previ-
ous works (McDonnell et al., 2016, 2017; Arous
et al., 2021) have shown that rationales bring
many benefits, including more reliable judgments,
greater transparency for evaluating human raters,
and added value from the rationales themselves.

Methods. Existing methods are mainly divided
into two categories: pipeline-based frameworks
and parallel frameworks.

For pipeline-based frameworks, one way is a
post-hoc explanation. After models make deci-
sions, humans attempt to analyze why models give
a specific decision. Common methods include at-
tention mechanism (Tenney et al., 2019) (assign
soft weights to tokens by self-attention matrix),
LIME (Ribeiro et al., 2016) (approximate model be-
havior locally by repeatedly perturbing inputs), and
gradient (Sundararajan et al., 2017; Smilkov et al.,
2017) (gradient of each token vector to represent
their attribution), etc. However, recent work (Feng
et al., 2018; Serrano and Smith, 2019; Jain and Wal-
lace, 2019; Pruthi et al., 2019; Brunner et al., 2019;
Zhou et al., 2022) have pointed out that the above
methods often exhibit counterintuitive behaviors
and lack credibility. The other way is a pre-hoc ex-
planation. Models are encouraged to first generate
the rationale and then make decisions based on it.
The BERT2BERT framework utilizes two indepen-
dent models to extract rationales and make deci-
sions, with the reparameterization method to jointly
optimize two models during training. Based on the



Figure 2: Illustration of our SADM framework: During the inference process, a two-stage format is adopted. Firstly,
the model is prompted to generate the rationale, and subsequently, the model is prompted to make a decision based
on the generated rationale.

BERT2BERT framework, the IB framework pro-
poses an information bottleneck method instead of
the reparameterization method to jointly optimize
the models. Moreover, the QUASER framework
incorporates a sentence selector and a multi-task
training objective to improve the model’s task per-
formance, which aims at the sequence-to-sequence
(seq2seq) models.

For parallel frameworks, WT5 and FID-Ex are
representative, where the latter is a variant of the
former. For the WT5 framework, task-specific
phrases such as “explain fact verification task” are
prepended to the input text. The model then gen-
erates a classification decision, followed by the ex-
tracted rationale. Notably, the position of the clas-
sification decision and extracted rationale can be
interchanged, referred to as WT5-INVERSE (WT5-
INV). Empirical evidence suggests that WT5 gen-
erally outperforms WT5-INV in terms of perfor-
mance. Furthermore, FID-Ex retains the same
mode as WT5 but introduces the fusion-in-decoder
architecture to address input length limitations. Ad-
ditionally, it employs a sentence mark strategy to
prevent the generation of random rationales.

Furthermore, prior research (Wiegreffe et al.,
2020) has measured the association between free-
text rationales and model decisions. Their findings
indicate that the parallel frameworks offer substan-
tial advantages over the pipeline framework. Differ-

ently, our study concentrates on extracted rationale
scenarios. In comparison to parallel frameworks,
our proposed pipeline SADM framework demon-
strates more pronounced advantages.

3 SADM

In this section, we first introduce our overall SADM
framework (Sec. 3.1), and then we describe how
our SADM framework works in detail from two
aspects: Training Process (Sec. 3.2) and Inference
Process (Sec. 3.3).

3.1 Overall Framework
The theory of human inference (Evans, 1984) sug-
gests that there are two processes involved in hu-
man inference: the heuristic process and the ana-
lytic process. During the heuristic process, indi-
viduals gather task-relevant information, while the
analytic process involves manipulating and process-
ing the gathered information to make judgments.
Drawing inspiration from this cognitive thinking,
we propose our SADM framework, as depicted
in Fig. 2. Firstly, we employ the Trationale tem-
plate to prompt the model to generate a task-related
rationale, the process called self-attribution. Sub-
sequently, we employ the other Tanswer template
to prompt the model to make a decision based on
the generated rationale, the process called decision-
making. As for the choice of prompt templates,



Figure 3: The format of training samples with and with-
out the RAL strategy.

we utilize natural language oriented toward human
understanding. Consider the FEVER dataset as an
example. For the Trationale template, we design
it as follows: “Extract the rationale from the pas-
sage to assess the claim”. Similarly, the Tanswer

template is formulated as: “Refer to the following
information to judge the claim”. Notably, we use
discrete prompt templates, which do not introduce
additional parameters or training costs.

Moreover, similar to FID-Ex and QUASER
frameworks, we implement the FID architecture
based on the seq2seq models to effectively han-
dle lengthy text inputs. The FID architecture can
be described as follows: Firstly, the lengthy pas-
sage p is divided into multiple segments denoted as
{seg1, seg2, ..., segn}. Next, q is combined with
each segment and encoded separately in the en-
coder module to generate multiple vector repre-
sentations {e1, e2, ..., en}. Finally, all the vector
representations are concatenated as e1 ⊕ e2...⊕ en
and forwarded to the decoder module for further
processing.

3.2 Training Process

For the training process, we introduce our training
objective, the Sentence Mark (SM) strategy, and
the Reasoning Augment Learning (RAL) strategy.

Training Objective. Our SADM framework is
designed to achieve two training objectives:
• Objective Orationale: Training the model to gen-

erate a task-related rationale at the prompt of
Trationale template.

• Objective Odecision: Training the model to make
a decision based on the generated rationale at the
prompt of Tanswer template.

As shown in Fig. 3, for the objective Orationale,
we provide the model with Trationale, q, and p
as input, while using the human-annotated ra-
tionale r as the learning objective. For objec-

tive Odecision, we provide Tanswer, q, and human-
annotated rationale r as input, with the golden
target y as the learning objective. We adopt a
joint training strategy that involves adding the
losses Lrationale and Ldecision of two objectives.
Moreover, to calculate the losses Lrationale and
Ldecision, we employ the teacher-forcing strategy.
Given an input sequence x1, ..., xt and a target
sequence y1, ..., yu, we maximize the probability
p(yi|x1, ..., xt, y1, ..., yi−2, yi−1) for each yi in the
target sequence y1, ..., yu to obtain the loss.

Sentence Mark (SM). Recent research (Tam
et al., 2022) has highlighted the creative nature
of generative models. However, in our specific
task, there is a concern that the generative model
may produce random and irrelevant natural lan-
guage as a rationale. To mitigate this issue, we
adopt the sentence mark strategy (Lakhotia et al.,
2020), which involves adding an index number be-
fore each sentence in the passage p. For instance,
a passage consists of n sentences (s1, ..., sn). Af-
ter adding the index, the passage takes the form
of (S1 : s1, ..., SN : sn), where uppercase charac-
ters are the sentence indexes. If applying the SM
strategy, when optimizing the objective Orationale

during the training process, we need to take the
sentence indexes of human-annotated rationales as
the learning objective instead of the rationale in
natural language form.

Reasoning Augment Learning (RAL). Cogni-
tive science (Payne et al., 1988) shows that humans
have the ability to make reasonable decisions re-
gardless of whether they possess fine-grained in-
formation (such as human-annotated rationale) or
coarse-grained information (such as the whole pas-
sage). Therefore, we imitate human beings, in-
tending to equip the model with the ability to per-
ceive information at different levels of granularity,
thereby enhancing its reasoning ability. To accom-
plish this, we leverage the wealth of information
available in supervised data. As shown in Fig. 3,
for the objective Odecision, we add two new for-
mats of training samples. We respectively provide
the model with Tanswer, q, and p as input, as well
as Tanswer, q, r, and p as input. The golden tar-
get y is regarded as the learning objective and the
calculated loss is added to Ldecision.

3.3 Inference Process
The inference process initiates an auto-regressive
process. During the inference process, we em-



ploy a two-stage process as shown in Fig. 2: self-
attribution and decision-making.

Self-attribution. When the model is prompted
with the Trationale template, it generates the ratio-
nale based on the claim q and passage p. If with
the SM strategy, the model first generates sentence
indexes, which are then used to locate the corre-
sponding rationale from the passage p. And if with-
out the SM strategy, the model directly generates
the rationale in natural language form.

Decision-making. When the model is prompted
with the Tanswer template, it makes a decision
based on the generated rationale. Moreover, we
provide the model with the option to make a deci-
sion by considering a combination of the generated
rationale and passage.

4 Evaluation Metrics

Consistent with prior work (Paranjape et al., 2020;
Ghoshal et al., 2022), we assess task performance
using accuracy and evaluate the quality of gener-
ated rationales using the Intersection-Over-Union
F1 score (IOU F1) and Token F1 (TF1). We also
follow the prior research (Wiegreffe et al., 2020)
to take Rationale Accuracy (R-Acc) to evaluate the
quality of generated rationales. Additionally, we
introduce a novel metric, the Reasoning Success
Quotient (RSQ), to gauge the extent of the reliable
link between the generated rationale and model
decision.

IOU F1 and TF1 metrics. The IOU F1 and TF1
metrics are used to evaluate the quality of rationale
at the sentence level and the token level respec-
tively. Whether at the sentence level or the token
level, the precision and recall rates are calculated
for each test sample. Based on them, the F1 value
can be calculated. To obtain the IOU F1 or TF1
metrics, the corresponding F1 values of all test sam-
ples are averaged. The detailed calculation process
is described in App. A.

R-Acc metric. We first train a model f with ques-
tions and annotated rationales and then evaluate the
performance (accuracy) of model f on generated
rationales to reflect the quality of the generated
rationales.

RSQ metric. We propose the RSQ metric to mea-
sure the reliable link between the generated ratio-
nale and model decision. Specifically, we catego-
rize the test samples into four classes:

• rcdc: Samples where both the generated rationale
and model decision are correct.

• rwdw: Samples where both the generated ratio-
nale and model decision are wrong.

• rcdw: Samples where the generated rationale is
correct, but the model decision is wrong.

• rwdc: Samples where the generated rationale is
wrong, but the model decision is correct.

The RSQ metric is calculated as follows.

RSQ =
Num(rcdc + rwdw)

Num(rcdc + rwdw + rcdw + rwdc)
(1)

where Num represents the number of samples. As
for how to assess whether the generated rationale
or model decision is correct, for the model decision,
we determine whether the predicted target aligns
with the golden target. For the generated rationale,
we assess its correctness using the recall (described
in detail in App. A). If the recall rate exceeds a
certain threshold, mainly set at 0.5 in our work, we
consider the generated rationale to be correct.

Based on the RSQ metric, we also propose RSQ-
W and RSQ-C metrics to guide a more detailed
analysis. The RSQ-W measures the proportion
of wrong decisions made by the model when the
model attributes the correct rationales. The RSQ-W
metric is as follows:

RSQ−W =
Num(rcdw)

Num(rcdc + rcdw)
(2)

The RSQ-C measures the proportion of correct
decisions made by the model when the model at-
tributes the wrong rationales. The RSQ-C metric is
as follows:

RSQ−C =
Num(rwdc)

Num(rwdw + rwdc)
(3)

5 Experiment

5.1 Datasets
The statistics of datasets used in our experiments
are shown in Tab. 2. The FEVER (Thorne et al.,
2018) dataset aims to judge whether the given
passage supports or refutes the claim. The Mul-
tiRC (Khashabi et al., 2018) dataset aims to assign
True or False to the question concatenating with
the answer choice based on the given passage. The
BoolQ (Clark et al., 2019) dataset aims to answer
the question with True or False labels based on
the given passage. The Evidence Inference (Evi



Perf.↑ IOU F1↑ TF1↑ R-Acc↑ RSQ↑ RSQ-W↓ RSQ-C↓

FEVER
BERT2BERT 85.0 81.7 - - - - -
WT5 91.9 76.6 85.3 - 74.9 6.7 86.9
WT5-INV 91.4 76.5 84.9 - 75.4 6.8 85.1
FID-Ex(C=1) 92.7 85.4 86.4 92.1 82.2 5.5 82.7
SADM(C=1) 93.1 85.9 86.9 92.2 83.5 4.9 81.6

MultiRC
BERT2BERT 63.3 41.6 - - - - -
WT5 78.0 68.0 76.6 - 69.6 20.7 72.3
WT5-INV 77.2 66.6 75.5 - 68.4 21.7 72.5
FID-Ex(C=1) 79.1 72.0 77.4 77.6 72.1 19.8 72.6
SADM(C=1) 80.1 72.9 78.1 78.8 75.2 18.4 69.3

BoolQ
BERT2BERT 62.3 31.5 - - - -
WT5 71.8 44.1 63.2 - 54.0 23.6 67.4
WT5-INV 69.7 42.6 61.6 - 52.8 26.3 66.1
FID-Ex(C=1) 73.9 52.3 64.2 72.8 61.9 20.1 65.5
FID-Ex(C=10) 72.4 52.2 64.3 73.2 61.5 22.8 64.9
SADM(C=1) 74.3 52.9 64.5 72.9 63.1 17.1 62.9
SADM(C=10) 72.5 51.9 64.3 73.6 61.4 22.6 63.9

Evi Inf
BERT2BERT 70.8 53.9 - - - - -
WT5 66.8 21.1 55.2 - 46.6 17.9 62.8
WT5-INV 62.9 22.4 55.7 - 52.1 15.9 57.9
FID-Ex(C=1) 63.5 32.6 51.3 66.3 54.0 23.1 57.7
FID-Ex(C=10) 75.4 51.4 66.4 75.2 66.1 12.9 60.5
SADM(C=1) 68.3 30.9 49.1 65.4 57.5 8.4 57.4
SADM(C=10) 75.6 52.2 67.9 76.0 68.0 11.4 58.7

Mov Rev
BERT2BERT 86.0 15.7 - - - - -
WT5 90.9 30.2 50.9 - 21.1 8.7 90.9
WT5-INV - - - - - - -
FID-Ex(C=1) 90.5 57.1 68.2 87.9 68.8 7.8 86.4
FID-Ex(C=6) 96.0 57.8 67.3 95.5 41.7 2.5 95.8
SADM(C=1) 94.9 63.9 73.2 89.9 90.5 4.3 84.6
SADM(C=6) 96.5 62.7 71.4 96.5 55.8 1.8 94.5

Table 1: Experimental results(%) in full-supervised scenarios. Perf. represents task performance and C represents
the count of segments set in FID architecture.

Inf) (Lehman et al., 2019) dataset concatenates the
(intervention, outcome, comparator) triplet into the
question, and aims to judge whether the interven-
tion significantly increases, decreases, or has no
effect on the outcome based on the given passage.
The Movie Reviews (Mov Rev) (Zaidan and Eis-
ner, 2008) dataset aims to analyze the sentiment
of the given passage with positive or negative la-
bels, where the question is uniformly set to “What
is the sentiment of this review?”. Overall, all five
datasets belong to the reasoning tasks. Moreover,
the ERASER benchmark provides the annotated ra-
tionale at the phrase level for the Mov Rev dataset,
and the sentence level for the others. Following
the prior work, we convert the phrase level to the
sentence level annotations.

Train / Dev / Test # Toks # Sents

FEVER 97,957 / 6,122 / 61,111 288 11
MultiRC 24,029 / 3,214 / 4,848 300 14
BoolQ 6,363 / 1,491 / 2,807 3,391 165
Evi Inf 7,958 / 972 / 959 4,658 153

Mov Rev 1,600 / 200 / 200 774 37

Table 2: Statistics of datasets in our experiments.

5.2 Training Details
Consistent with previous work (Paranjape et al.,
2020; Ghoshal et al., 2022), we select T5-base as
our main model and use the integrated interface
T5ForConditionalGeneration1 from huggingface to
load the model. We run all experiments on a single
NVIDIA 80g-a100 GPU machine. We set the learn-
ing rate to 1e-4, the batch size to 16, and the total

1https://huggingface.co/docs/transformers/.



training steps to 15,000 steps, where we evaluate
the IOU F1 metric on the validation set every 500
steps to choose the best checkpoint. For datasets
with lengthy input, we apply the FID architecture.
For the BoolQ, Mov Rev, and Evi Inf datasets, we
use a maximum of 512 subword tokens per segment
input, where we use 10 segments for the BoolQ and
Evi Inf datasets and 6 for the Mov Rev dataset. For
the FEVER and MultiRC datasets, we only use
one segment and set the maximum input subword
lengths to 512 and 1024 respectively.

5.3 Baselines
In our study, we compare our SADM framework
against several baselines, including BERT2BERT,
IB, WT5, WT5-INV, and FID-Ex frameworks.
The experimental results for BERT2BERT and
IB are reported from the original work, where
BERT2BERT is applied in full-supervised scenar-
ios and IB is applied in semi-supervised scenarios.
For WT5, WT5-INV, and FID-Ex frameworks, we
re-implemented them based on the details provided
in the original work. However, it is important to
note that there is limited availability of open-source
code for these baselines, which presents a challenge
in aligning the TF1 metric. To ensure fairness, we
do not report the TF1 metric mentioned in the prior
work. On the other hand, for task performance and
IOU F1 metrics, we successfully aligned them.

5.4 Experiment Results
Full-supervised scenario. We select the WT5,
WT5-INV,FID-Ex and BERT2BERT frameworks
as baselines. Since the WT5-INV framework can
not obtain a stable performance on the Mov Rev
dataset, we do not report its results. As shown
in Tab. 1, experimental results demonstrate the
promising potential of the SADM framework. For
both task performance (Perf.) and the quality of
rationale (IOU F1, TF1, and R-Acc), our frame-
work demonstrates varying degrees of improve-
ment across five datasets. Notably, our framework
has exhibited more significant improvements in the
RSQ metric, which indicates a more reliable link
between the generated rationale and model deci-
sion. Specifically, we observe 1.3 points improve-
ment on the FEVER dataset, 3.1 points improve-
ment on the MultiRC dataset, 1.2 points improve-
ment on the BoolQ dataset, 1.9 points improvement
on the Evi Inf dataset, and 21.7 points improvement
on the Mov Rev dataset. Furthermore, experimen-
tal results show that the FID architecture only pro-

Perf. IOU F1 TF1 RSQ

FEVER
IB 88.8 66.6 - -
FID-Ex(C=1) 91.5 83.9 85.3 82.1
SADM (C=1) 92.1 84.8 86.2 82.8

MultiRC
IB 66.4 54.4 - -
FID-Ex(C=1) 78.4 71.5 76.8 72.3
SADM(C=1) 79.9 72.6 77.6 74.4

BoolQ
IB 63.4 32.3 - -
FID-Ex(C=1) 70.7 46.4 60.6 55.8
FID-Ex(C=10) 65.7 49.5 60.9 53.1
SADM(C=1) 73.9 50.3 61.5 61.7
SADM(C=10) 73.4 47.5 61.3 57.8

Evi Inf
IB 46.7 13.3 - -
FID-Ex(C=1) 55.1 26.2 47.8 57.6
FID-Ex(C=10) 64.1 43.1 61.3 57.7
SADM(C=1) 59.2 23.9 41.2 59.7
SADM(C=10) 73.6 45.6 62.9 65.8

Mov Rev
IB 85.4 43.4 - -
FID-Ex(C=1) 86.4 59.4 70.4 73.4
FID-Ex(C=6) 94.4 55.6 66.5 46.7
SADM(C=1) 87.9 56.9 68.9 76.3
SADM(C=6) 91.1 54.9 67.3 50.2

Table 3: Experimental results(%) in semi-supervised
scenarios. Perf. represents task performance and C
represents the count of segments set in FID architecture.

vides improvements for the Evi Inf dataset, whereas
it does not exhibit substantial gains for the BoolQ
and Evi Inf datasets. We attribute this observation
to the fact that, in the Evi Inf dataset, rationale
tends to appear in the middle or toward the end of
the passage. Hence, addressing the limitation of
input length with the FID becomes imperative.

Semi-supervised scenario. Considering the ex-
pensive cost of rationale annotation, semi-
supervised scenarios are more likely to be applied
in the real world. We select the IB framework, a
variant of the BERT2BERT framework, and the
FID-Ex framework, which demonstrates good per-
formance in the full-supervised scenario, as base-
lines. Following previous settings, we utilize only
25% of the training data with annotated rationales.
As shown in Tab. 3, on the Mov Rev dataset, our
SADM framework achieves lower performance
than the FID-Ex framework in task performance
and the quality of rationale but still outperforms
in RSQ metric. On the other four datasets, we
observe an average improvement of 3.7 points in
task performance, 1.3 points in IOU F1, 0.9 points
in TF1, and 4.2 points in the RSQ metric. Over-



Perf. IOU F1 TF1 RSQ RCP

FEVER
w/o SM 92.4 76.3 85.1 75.9 -
w/o RAL 92.0 85.6 86.6 82.5 93.7

SADM 93.1 85.9 86.9 83.5 94.5
w passage 93.3 - - 76.3 -

MultiRC
w/o SM 77.9 67.1 75.3 70.6 -
w/o RAL 79.5 72.8 77.8 74.1 79.9

SADM 80.1 72.9 78.1 75.2 81.5
w passage 80.9 - - 74.8 -

BoolQ
w/o SM 72.8 44.6 63.8 57.4 -
w/o RAL 72.9 52.1 64.0 62.4 80.3

SADM 74.3 52.9 64.5 63.1 80.7
w passage 75.2 - - 61.3 -

Evi Inf
w/o SM 67.4 21.2 55.2 47.6 -
w/o RAL 63.8 30.9 49.1 56.9 88.4

SADM 68.3 31.2 49.9 57.5 91.4
w passage 66.9 - - 57.2 -

Mov Rev
w/o SM 89.5 30.5 49.3 23.1 -
w/o RAL 89.4 56.7 68.6 66.8 99.4

SADM 94.9 63.9 73.2 90.5 99.9
w passage 95.9 - - 89.4 -

Table 4: Experimental results(%) of our ablation study.

all, our framework demonstrates more significant
advantages in the semi-supervised scenario.

6 Analysis

In our analysis, we conduct ablation experiments
(in Sec. 6.1) to evaluate the effectiveness of each
strategy in our SADM framework. We also con-
sider different choices of threshold in the RSQ met-
ric (in Sec. 6.2) to provide robust results. Further-
more, we provide quantitative analysis to evaluate
the lack of a reliable link between the rationale and
model decision in the competitive FID-Ex frame-
work, which will be shown in detail in App. B.

6.1 Ablation Study

We evaluate the performance of SADM without the
SM strategy and SADM without the RAL strat-
egy. As shown in Tab. 4, experimental results
show that the performance of the SADM frame-
work decreases to a certain extent when either the
SM strategy or RAL strategy is removed, which
indicates that both the SM strategy and RAL strat-
egy play a positive role. Notably, we specifically
verify the effect of the RAL strategy on model rea-
soning ability. We propose the Rationale-Centric
Precision (RCP) metric, which focuses on the pro-

Threshold 0.6 0.7 0.8 0.9 1.0

FEVER
FID-Ex(C=1) 75.4 75.2 75.2 75.1 75.1
SADM(C=1) 77.2 76.8 76.7 76.7 76.7

MultiRC
FID-Ex(C=1) 59.9 53.8 52.9 52.9 52.9
SADM(C=1) 63.9 56.9 55.8 55.8 55.8

BoolQ
FID-Ex(C=1) 59.7 57.1 55.6 52.6 52.4
FID-Ex(C=6) 59.3 57.7 55.8 55.8 52.7
SADM(C=1) 61.1 58.8 57.4 54.9 54.8
SADM(C=6) 59.2 56.9 54.8 52.4 52.2

Evi Inf
FID-Ex(C=1) 46.7 46.6 46.6 46.6 46.6
FID-Ex(C=6) 54.5 52.5 52.5 52.5 52.5
SADM(C=1) 47.2 47.1 47.1 47.1 47.1
SADM(C=6) 56.9 55.1 54.9 54.9 54.9

Mov Rev
FID-Ex(C=1) 56.8 41.7 27.1 17.6 13.1
FID-Ex(C=6) 41.7 25.6 15.6 6.5 4.5
SADM(C=1) 84.9 72.9 50.3 23.6 14.6
SADM(C=6) 55.8 35.7 21.1 8.5 6.1

Table 5: Experimental results(%) with different thresh-
olds chosen in the RSQ metric.

portion of correct decisions that can be made when
the model is provided with the annotated rationale
at the decision-making stage. Our experimental re-
sults show that when the RAL strategy is removed,
the RCP metric decreases by an average of 1.3
points across the five datasets. Such a phenomenon
underscores the critical significance of the RAL
strategy in enhancing the model’s reasoning ability
at the decision-making stage.

Additionally, as introduced in Sec. 3.1, the pas-
sage is an optional input at the decision-making
stage. For our SADM framework, the model can
make a decision based on a combination of gener-
ated rationale and passage. As shown in Tab. 4, ex-
perimental results show that considering both gen-
erated rationale and passage at the decision-making
stage can improve task performance, but slightly
damage the reliable link between the generated ra-
tionale and model decision. Such a phenomenon is
reasonable. When the model is provided with more
contextual information, it will make more correct
decisions, but at the same time, the information it
focuses on will be more scattered.

6.2 Choice of Threshold

To ensure a standardized evaluation of the gener-
ated rationale, we have selected a threshold of 0.5
for the recall rate in the RSQ metric. However, we
are concerned that the choice of the threshold will



bring bias in our experimental results. Therefore,
we have also conducted experiments with alter-
native threshold values of 0.6, 0.7, 0.8, 0.9, and
1.0, which allows us to present a robust evaluation.
As shown in Tab. 5, compared to strong baselines,
results consistently showcase the significant advan-
tage of our SADM framework across the entire
range of threshold values in the RSQ metric.

7 Conclusion

Our proposed SADM framework establishes a
more reliable link between the generated rationale
and model decision while improving task perfor-
mance and rationale quality. Furthermore, we ob-
serve significant advantages in semi-supervised sce-
narios. In the future, we will explore how to opti-
mize our framework to attain greater performance
improvements.

8 Limitation

Despite the numerous advantages exhibited by our
SADM framework, we believe that it still has the
following limitations:
• Our SADM framework achieves good perfor-

mance in full-supervised and semi-supervised
scenarios, but in the future, we will put more ef-
fort into thinking about how to apply our SADM
framework in the unsupervised scenario.

• In our work, we only design natural language
oriented toward human understanding as prompt
templates. Is this necessarily the best for the
model? We will further explore their influence.
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A IOU F1 and TF1

IOU F1. IOU F1 is used to assess the quality
of rationale at the sentence level. As shown in
the left of Fig. 4, it is assumed that the annotated
rationale consists of four sentences (highlighted
in green) and the generated rationale consists of
three sentences (highlighted in yellow), of which
two sentences match the sentences from annotated
rationales (connected part). In this sample, the pre-
cision ratio is calculated as 2/3 = 0.67, which
represents the ratio of matched sentences to the
total number of sentences from the generated ratio-
nale. The recall ratio is calculated as 2/4 = 0.5,
which represents the ratio of matched sentences to
the total number of sentences from the annotated
rationale. By considering both precision and recall,
the F1 value can be calculated for each test sam-
ple. Finally, the F1 values of all test samples are
averaged to obtain the Macro IOU F1 score.

Additionally, as shown in the right of Fig. 4, it
illustrates the approach for determining whether
two sentences match. A ratio is computed by di-
viding the length of the intersection between two
sentences by the length of their union. If this ratio
surpasses a specific threshold (typically set as 0.5
in prior work), the two sentences are considered
to be a match. In our study, we utilize the longest
common substring to determine the length of the
sentence intersection, and the matching score is
subsequently calculated.

TF1. TF1 is used to assess the quality of rationale
at the token level. In each test sample, we define
the set of tokens from the annotated rationale as Q1,
and the set of tokens from the generated rationale as
Q2. The intersection of these two sets is denoted as
Q. The precision rate is computed by dividing the
length of set Q by the length of set Q2, while the
recall rate is calculated by dividing the length of set
Q by the length of set Q1. By considering precision
and recall, the F1 value can be calculated. Finally,
the F1 values of all test samples are averaged to
obtain the Macro TF1 score.

B Quantitative Analysis

Our competitive baseline FID-Ex framework in-
volves generating the classification decision fol-
lowed by rationale in a parallel way. To quantita-
tively assess the reliable link between the generated
rationale and model decision, we conduct exper-
iments illustrated in Fig. 5. We apply a masking

Figure 4: Illustration of IOU F1 metric.

Figure 5: Illustration of the method for analyzing the
FID-Ex framework.

technique to the model decision and then initialize
the model with the prompt "Answer :< pad >
Explanation :" to encourage the generation of
rationale. We believe that if there is a reliable link
between the generated rationale and the model de-
cision, the IOU F1 and TF1 metrics will change
significantly after the masking of the model deci-
sion. However, interestingly, as presented in Tab. 6,
despite masking the model decision, we observe
minimal changes in both the IOU F1 and TF1 met-
rics. This somewhat suggests that, for the FID-Ex
framework, the rationale may be generated indepen-
dently, with no reliable link to the model decision.

FID-Ex IOU F1 TF1
Origin Mask Origin Mask

FEVER 85.4 85.2 86.4 86.3
MultiRC 72.1 72.2 77.4 77.3
BoolQ 52.3 49.1 64.2 59.8
Evi Inf 32.6 32.3 51.3 51.2
Mov Rev 57.1 57.3 68.2 68.1

Table 6: Quantitative analysis of FID-Ex framework.


