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ABSTRACT

This paper presents a new approach and algorithm for solving a class of con-
strained Bi-Level Optimization (BLO) problems in which the lower-level problem
involves constraints coupling both upper-level and lower-level variables. Such
problems have recently gained significant attention due to their broad applicabil-
ity in machine learning. However, conventional gradient-based methods unavoid-
ably rely on computationally intensive calculations related to the Hessian matrix.
To address this challenge, we devise a smooth proximal Lagrangian value func-
tion to handle the constrained lower-level problem. Utilizing this construct, we
introduce a single-level reformulation for constrained BLOs that transforms the
original BLO problem into an equivalent optimization problem with smooth con-
straints. Enabled by this reformulation, we develop a Hessian-free gradient-based
algorithm—termed proximal Lagrangian Value function-based Hessian-free Bi-
level Algorithm (LV-HBA)—that is straightforward to implement in a single loop
manner. Consequently, LV-HBA is especially well-suited for machine learning
applications. Furthermore, we offer non-asymptotic convergence analysis for LV-
HBA, eliminating the need for traditional strong convexity assumptions for the
lower-level problem while also being capable of accommodating non-singleton
scenarios. Empirical results substantiate the algorithm’s superior practical perfor-
mance.

1 INTRODUCTION

In this work, we consider the constrained Bi-Level Optimization (BLO) problems with possibly
coupled lower-level (LL) constraints, which is in form of,

min
x∈X,y∈Y

F (x, y) s.t. y ∈ S(x), (1)

where S(x) denotes the set of optimal solutions for the constrained LL problem,

min
y∈Y

f(x, y) s.t. g(x, y) ≤ 0. (2)

Here both X ⊆ Rn and Y ⊆ Rm are closed convex sets. The upper-level (UL) objective F :
X × Y → R, the LL objective f : X × Y → R, and the LL constraint mapping g : X × Y → Rl
are continuously differentiable functions. It is noteworthy that both LL objective f and constraint
mapping g are functions of UL variable x LL variable y.

BLO has recently emerged as a powerful tool for tackling various modern machine learning prob-
lems characterized by inherent hierarchical structures, such as hyperparameter optimization Pe-
dregosa (2016); Franceschi et al. (2018); Mackay et al. (2019), meta learning Franceschi et al.
(2018); Zügner & Günnemann (2019); Rajeswaran et al. (2019); Ji et al. (2020), neural architec-
ture search Liu et al. (2018); Liang et al. (2019); Elsken et al. (2020), to name a few. Among
them, the constrained BLOs capture several important applications, including adversarial learning
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Table 1: Comparison of our method LV-HBA with closely related works for constrained BLO (
IG-AL Tsaknakis et al. (2022), SIGD Khanduri et al. (2023), AiPOD/E-AiPOD Xiao et al. (2023b),
GAM Xu & Zhu (2023), BVFSM Liu et al. (2023a) ). All method, except BVFSM, require the LL
strongly convexity assumption, which implies the singleton of the LL minimizer. GAM and BVFSM
provide only asymptotic convergence analysis. Using h(x, y) = 0 ⇔ h(x, y) ≤ 0,−h(x, y) ≤ 0,
our method allows for the inclusion of linear constraints.

Method LL Objective LL Constraints Hessian-Free Single
Loop Non-Singleton

IG-AL Strongly Convex Ay ≤ b % % %

SIGD Strongly Convex Ay ≤ b % % %
AiPOD

E-AiPOD Strongly Convex Ay + h(x) = c % " %

GAM Strongly Convex g(x, y) ≤ 0
h(x, y) = 0 % % %

BVFSM Convex g(x, y) ≤ 0 " % "

LV-HBA Convex g(x, y) ≤ 0 " " "

Madry et al. (2018); Wong et al. (2019); Zhang et al. (2022), federated learning Fallah et al. (2020);
Tarzanagh et al. (2022); Yang et al. (2023b), see the recent survey papers Liu et al. (2021a); Zhang
et al. (2023) for more applications in machine learning and signal processing.

Owing to their effectiveness and scalability, gradient-based algorithms have become mainstream
techniques for BLO in learning and vision fields Liu et al. (2021a). While gradient-based algorithms
for unconstrained BLO problems have been extensively explored in the literature Ghadimi & Wang
(2018); Shaban et al. (2019); Liu et al. (2020; 2021b); Huang et al. (2022); Ji et al. (2021; 2022);
Hong et al. (2023); Dagréou et al. (2022); Ye et al. (2022); Liu et al. (2023b); Kwon et al. (2023a),
research focusing on efficient methods for constrained BLO problems is quite limited. This gap is
especially evident in scenarios where LL constraints couple both UL and LL variables.

Indeed, the majority of existing works in this direction focus on particular types of constrained
LL problems. For instance, recent works Tsaknakis et al. (2022); Khanduri et al. (2023) address
constrained BLOs where LL problem pertains to minimizing a strongly convex objective subject
to linear inequality constraints. The study Xiao et al. (2023a) considers the stochastic BLO prob-
lems with equality constraints at both upper and lower levels, while Xu & Zhu (2023) studies BLOs
wherein LL problem is convex with equality and inequality constraints and presumes that LL ob-
jective is strongly convex and the constraints satisfy Linear Independence Constraint Qualification
(LICQ). Notably, the methods presented in these works all employ implicit gradient-based tech-
niques, relying on implicit gradient computation of LL solution mapping. This dependency requires
both the uniqueness and smoothness of LL solution mapping, thereby limiting its applicability. Crit-
ically, implicit gradient techniques necessitate computationally intensive calculations related to LL
Hessian matrix. In this context, a natural yet important question is: Can we devise Hessian-free
algorithms for constrained BLOs?

A recent affirmation to this question is provided in Liu et al. (2023a), leveraging the value func-
tion approach Ye & Zhu (1995). For constrained BLOs, value function-based methods encounter
issues tied to non-differentiable constraints emerging from the value function-based reformulation.
To circumvent this non-smoothness issue, Liu et al. (2023a) introduces a sequential approximation
minimization strategy. Herein, quadratic regularization alongside penalty/barrier functions of LL
inequality constraints are applied to smooth LL value function. Nonetheless, this approach necessi-
tates solving a series of subproblems and lacks a non-asymptotic analysis. This leads to a practical
question: Can we devise a Hessian-free algorithm in a single-loop manner for constrained BLOs?
1.1 MAIN CONTRIBUTIONS

In this study, we provide an affirmative answer to the previously raised question. We first pro-
pose a single-level reformulation for constrained BLO problems by defining a proximal Lagrangian
value function associated with the constrained LL problem. This function is defined as the value
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function of a strongly-convex-strongly-concave proximal min-max problem and exhibits continuous
differentiability. As a result, our approach recasts constrained BLO problems into single-level opti-
mization problems with smooth constraints. Drawing from this reformulation, we devise a Hessian-
free gradient-based algorithm for constrained BLOs, and provide the non-asymptotic convergence
analysis. Conducting such an analysis, especially given LL constraints, is non-trivial. By utilizing
the strongly-convex-strongly-concave structure within the min-max problem of the proximal La-
grangian value function, we can approximate its gradient using only the first-order data from LL
problem. The error in this gradient approximation remains controllable, without the need for LL
objective’s strong convexity. This facilitates our establishment of the non-asymptotic convergence
analysis of the proposed algorithm for constrained LL problem with a merely convex LL objective.

Our primary contributions are outlined below.

• We introduce a novel proximal Lagrangian value function to handle constrained LL prob-
lem. By leveraging this function, we present a new single-level reformulation for con-
strained BLOs, converting them into equivalent single-level optimization problems with
smooth constraints.

• Drawing from our reformulation, we propose the proximal Lagrangian Value function-
based Hessian-free Bi-level Algorithm (LV-HBA) tailored for constrained BLO problems
with LL constraints coupling both UL and LL variables. To our knowledge, this work is the
first to develop a provably Hessian-free gradient-based algorithm for constrained BLOs in
a single-loop manner. A brief summary of the comparison of LV-HBA with closely related
works is provided in Table 1.

• We rigorously establish the non-asymptotic convergence analysis of LV-HBA. Employ-
ing the proximal Lagrangian value function, we eliminate the necessity for LL objective’s
strong convexity, thereby accommodating merely convex LL scenarios.

• We evaluate the efficiency of LV-HBA through numerical experiments on synthetic prob-
lems, hyperparameter optimization for SVM and federated bilevel learning. Empirical re-
sults validate the superior practical performance of LV-HBA.

1.2 RELATED WORK

In the section we give a brief review of some recent works that are directly related to ours. An
expanded review of recent studies on BLOs is provided in Section A.2.

Reformulations for BLOs. One of the most commonly approaches for BLOs is to reformulate them
as single-level problems. This can often be done in two ways Dempe & Zemkoho (2013). One is
known as KKT reformulation Kim et al. (2020), which replaces LL problem with its Karush-Kuhn-
Tucker (KKT) conditions. Consequently, it unavoidably relies on first-order gradient information.
As a result, gradient-based algorithms based on it also necessitate second-order gradient informa-
tion. In contrast, value function reformulation does not rely on any gradient information. Benefiting
from this, the majority of existing Hessian-free gradient-based algorithms for both unconstrained
and constrained BLOs, are developed based on value function reformulation, see, e.g., Liu et al.
(2021b; 2023a); Ye et al. (2022); Sow et al. (2022); Shen & Chen (2023); Kwon et al. (2023a);
Lu & Mei (2023); Lu (2024). Recently, Gao et al. (2023) proposes a new reformulation of BLOs,
using Moreau envelope of LL problem, to weaken the underlying assumption from LL full convex-
ity in Gao et al. (2022) to weak convexity. However, Moreau envelope-based reformulation still
encounters challenges related to non-differentiable constraints, arising from the reformulation itself.

Algorithms for Constrained BLOs. Other than the previously mentioned works that focus on LL
constraints, there is a line of research dedicated to addressing the constrained UL setting, including:
implicit approximation methods in Ghadimi & Wang (2018); two-timescale framework in Hong
et al. (2023); single-timescale method in Chen et al. (2022a); initialization auxiliary method in
Liu et al. (2021c); Bregman distance-based method in Huang et al. (2022); proximal gradient-type
algorithm in Chen et al. (2022b); inexact conditional gradient method in Abolfazli et al. (2023).
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2 PROXIMAL LAGRANGIAN VALUE FUNCTION APPROACH

In this section, we introduce a novel single-level reformulation for constrained BLO problems, foun-
dational to our proposed methodology. Furthermore, we describe the proposed algorithm LV-HBA.
To simplify our notation, throughout this paper, for LL constraint mapping g : X × Y → Rl and
any vectors λ ∈ Rl+, z ∈ Rl , we represent

∑l
i=1 λigi and

∑l
i=1 zigi as λg and zg, respectively.

Similarly,
∑l
i=1 λi∇ygi and

∑l
i=1 zi∇ygi are denoted by λ∇yg and z∇yg, respectively.

2.1 REFORMULATION VIA PROXIMAL LAGRANGIAN VALUE FUNCTION

We start by introducing the proximal Lagrangian value function vγ(x, y, z) for LL problem, drawing
inspiration from Moreau envelope value function discussed in Gao et al. (2023). It is defined as:

vγ(x, y, z) := min
θ∈Y

max
λ∈Rl

+

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

}
, (3)

where z ∈ Rl, Rl+ := {λ ∈ Rl|λi ≥ 0 ∀i}, γ := (γ1, γ2) ≥ 0 is the proximal parameter. Note that
f(x, y) + λg(x, y) is the Lagrangian function of LL problem. Employing this function, we present
a smooth reformulation for constrained BLO problem (1):

min
(x,y)∈C,z≥0

F (x, y) s.t. f(x, y)− vγ(x, y, z) ≤ 0, (4)

where C := {(x, y) ∈ X × Y | g(x, y) ≤ 0}. Under the convexity of LL problem and the exis-
tence of multipliers for LL problem, the equivalence between reformulation (4) and constrained
BLO problem (1) is established. Notably, f(x, y) − vγ(x, y, z) ≥ 0 for any (x, y, z) ∈ C × Rl+.
Comprehensive proofs can be found in Theorem A.1 in Appendix A.3.

To guarantee the theoretical convergence of the proposed method, instead of directly solving refor-
mulation (4), we consider its variant using a truncated proximal Lagrangian value function,

vγ,r(x, y, z) := min
θ∈Y

max
λ∈Z

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

}
, (5)

where Z := [0, r]l ⊆ Rl+ and r > 0. Compared with vγ(x, y, z), the truncated version vγ,r(x, y, z)
is defined by maximizing λ over a bounded set Z instead of over Rl+. And the truncated proximal
Lagrangian value function gives us the following variant to reformulation (4),

min
(x,y)∈C,z∈Z

F (x, y) s.t. f(x, y)− vγ,r(x, y, z) ≤ 0. (6)

Note that f(x, y)−vγ,r(x, y, z) ≥ 0 for any (x, y, z) ∈ C×Z. If r is sufficiently large, the solution
of reformulation (4) can be obtained by solving variant (6). A comprehensive proof is presented in
Theorem A.2 within Appendix A.3.

2.2 GRADIENT OF PROXIMAL LAGRANGIAN VALUE FUNCTION

An important property of vγ(x, y, z) and its truncated counterpart vγ,r(x, y, z) is their continuous
differentiability under the setting of this study, as elucidated in Assumptions 3.2 and 3.3. Specif-
ically, if f(x, ·) and g(x, ·) are convex on Y , the proximal min-max problems in (3) and (5) are
both strongly-convex-strongly-concave. By invoking saddle point theorem, these problems possess
unique saddle points. Moreover, with continuous differentiability for both f and g, the gradient
∇vγ,r(x, y, z) can be derived with the explicit expression as

∇vγ,r(x, y, z) =
(
∇xf(x, θ

∗) + λ∗∇xg(x, θ
∗),

(y − θ∗)

γ1
,
(λ∗ − z)

γ2

)
, (7)

where (θ∗, λ∗) := (θ∗(x, y, z), λ∗(x, y, z)) denotes the unique saddle point for the min-max prob-
lem in (5). Similarly, for vγ(x, y, z), the gradient ∇vγ(x, y, z) shares the same form as in (7), but
with (θ∗, λ∗) corresponding to the unique saddle point of the min-max problem in (3). A detailed
proof can be found in Lemma A.1 within the Appendix.

4



Published as a conference paper at ICLR 2024

2.3 THE PROPOSED ALGORITHM

We introduce LV-HBA, a Hessian-free gradient-based algorithm designed for constrained BLOs.

At each iteration, given the current values of (xk, yk, zk, θk, λk), we initiate by executing a single
gradient descent ascent (GDA) step for the proximal min-max problem described in (5), updating
the variables (θ, λ) as follows

(θk+1, λk+1) = ProjY×Z
(
(θk, λk)− ηk(d

k
θ , d

k
λ)
)
, (8)

where ProjZ represents the Euclidean projection onto the bounded box Z, and

(dkθ , d
k
λ) :=

(
∇yf(x

k, θk) + λk∇yg(x
k, θk) +

1

γ1
(θk − yk),−g(xk, θk) + 1

γ2
(λk − zk)

)
. (9)

Subsequently, we update the variables (x, y, z) as follows

(xk+1, yk+1) = ProjC
(
(xk, yk)− αk(d

k
x, d

k
y)
)
,

zk+1 = ProjZ
(
zk − βkd

k
z

)
,

(10)

where the directions are defined as:

dkx :=
1

ck
∇xF (x

k, yk) +∇xf(x
k, yk)−∇xf(x

k, θk+1)− λk+1∇xg(x
k, θk+1),

dky :=
1

ck
∇yF (x

k, yk) +∇yf(x
k, yk)− 1

γ1
(yk − θk+1),

dkz := − 1

γ2
(λk+1 − zk).

(11)

A comprehensive description of LV-HBA is provided in Algorithm 1.

Algorithm 1 proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)
Initialize: (x0, y0) ∈ X×Y , z0 ∈ Z, (θ0, λ0) ∈ Y ×Rl+, stepsizes αk, βk, ηk, proximal parameter
γ, penalty parameter ck;

1: for k = 0, 1, . . . ,K − 1 do
2: calculate (dkθ , d

k
λ) as in equation (9);

3: update (θk+1, λk+1) = ProjY×Z
(
(θk, λk)− ηk(d

k
θ , d

k
λ)
)
;

4: calculate dkx, d
k
y , d

k
z as in equation (11);

5: update
(xk+1, yk+1) = ProjC

(
(xk, yk)− αk(d

k
x, d

k
y)
)
,

zk+1 = ProjZ
(
zk − βkd

k
z

)
.

6: end for

We provide insight into the construction of LV-HBA. The update of variables (x, y, z) in (10) can
be interpreted as an inexact alternating proximal gradient step from (xk, yk, zk) concerning the
following minimization problem:

min
(x,y)∈C,z∈Z

1

ck
F (x, y) + f(x, y)− vγ,r(x, y, z).

Drawing from the gradient formula of vγ,r(x, y, z) given in (7), (∇xf(x
k, θk+1) +

λk+1∇xg(x
k, θk+1), (yk − θk+1)/γ1, (λ

k+1 − zk)/γ2) in (11) can be considered as approxima-
tions to ∇vγ,r(x, y, z), using (θk+1, λk+1) as a proxy to (θ∗, λ∗).

Particularly, when the feasible sets Y and C exhibit “projection-friendly” characteristics, meaning
that the Euclidean projection onto them is computationally efficient, LV-HBA can be characterized
as a single-loop Hessian-free gradient-based algorithm for constrained BLO problems.

3 NON-ASYMPTOTIC CONVERGENCE ANALYSIS

In this section, we conduct a non-asymptotic analysis for LV-HBA. We begin by outlining the basic
assumptions adopted throughout this work.
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3.1 GENERAL ASSUMPTIONS

The following assumptions formalize the smoothness property of UL objective F , and smoothness
and convexity properties of LL objective f and LL constraints g.
Assumption 3.1 (Upper-Level Objective). The UL objective F is LF -smooth* on X × Y . Addi-
tionally, F is bounded below on X × Y , i.e., F := inf(x,y)∈X×Y F (x, y) > −∞.
Assumption 3.2 (Lower-Level Objective). Assume that the following conditions hold:

(i) f is convex w.r.t. LL variable y on Y for any x ∈ X .

(ii) f is continuously differentiable on an open set containing X×Y and is Lf -smooth on X×Y .

Given that f is Lf -smooth on X×Y , by leveraging the descent lemma (Beck, 2017, Lemma 5.7), it
can be deduced that f is also Lf -weakly convex, i.e, f(x, y) +Lf∥(x, y)∥2/2 is convex on X × Y .
Consequently, under Assumption 3.2, f is ρf -weakly convex on X × Y , with ρf ≥ 0 potentially
being smaller than Lf . To precisely determine the range for the step sizes of LV-HBA , we will
employ the weak convexity constant of f , ρf , in subsequent results.
Assumption 3.3 (Lower-Level Constraints). Assume that the following conditions hold:

(i) g(x, y) is convex and be Lg-Lipschitz continuous on X × Y .

(ii) g(x, y) is continuously differentiable on an open set containing X × Y , ∇xg(x, y) and
∇yg(x, y) are Lg1 and Lg2 -Lipschitz continuous on X × Y , respectively.

Our assumptions are based solely on the first-order differentiability of the problem data. The setting
of this study substantially relaxes the existing requirement for second-order differentiability in con-
strained BLO literature. Notably, we do not impose strong convexity on the LL objective f . As a
result, our analysis encompasses LL problem non-singleton scenarios, as detailed in Table 1.

3.2 CONVERGENCE RESULTS

To derive the non-asymptotic convergence results of LV-HBA, we first demonstrate the decreasing
property of a merit function introduced below,

Vk := ϕck(x
k, yk, zk) + Cθλ

∥∥(θk, λk)− (θ∗r(x
k, yk, zk), λ∗r(x

k, yk, zk))
∥∥2 , (12)

where Cθλ := max{(Lf + CZLg1)
2 + 1/(2γ21) + L2

g, 1/γ
2
2}, CZ := maxz∈Z ∥z∥, and

ϕck(x, y, z) :=
1

ck

(
F (x, y)− F

)
+ f(x, y)− vγ,r(x, y, z). (13)

Lemma 3.1. Under Assumptions 3.1, 3.2 and 3.3, let γ1 ∈ (0, 1/ρf ), γ2 > 0, ck+1 ≥ ck and
ηk ∈ (η, ρT /L

2
B) with η > 0, ρT := min{1/γ1 − ρf , 1/γ2} and LB := max{Lf +Lg +CZLg2 +

1/γ1, Lg + 1/γ2}, then there exist constants cα, cβ > 0 such that when αk ∈ (0, cα] and βk ∈
(0, cβ ], the sequence of (xk, yk, zk) generated by LV-HBA satisfies

Vk+1 − Vk ≤ − 1

4αk
∥(xk+1, yk+1)− (xk, yk)∥2 − 1

4βk
∥zk+1 − zk∥2

− ηρTCθλ
∥∥(θk, λk)− (θ∗r(x

k, yk, zk), λ∗r(x
k, yk, zk))

∥∥2 . (14)

The step sizes are carefully chosen to guarantee the sufficient descent property of Vk. This is es-
sential for the non-asymptotic convergence analysis. Comprehensive proofs for Lemma 3.1 and
accompanying auxiliary lemmas can be found in Sections A.4 , A.5 in Appendix.

Given the decreasing property of Vk, we proceed to establish the non-asymptotic convergence analy-
sis. Owing to the constraint f(x, y)− vγ,r(x, y, z) ≤ 0 in (6), by employing an argument analogous
to Ye & Zhu (1995), it can be deduced that conventional constraint qualifications are not satisfied

*Recall that a function h is said to be L-smooth on Ω if h is continuously differentiable and its gradient ∇h
is L-Lipschitz continuous on Ω.
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at any feasible point of constrained problem (6). As a result, the standard KKT conditions are in-
appropriate as necessary optimality conditions for problem (6). Motivated by the approximate KKT
condition presented in Andreani et al. (2010), which is characterized as an optimality condition for
nonlinear program, regardless of constraint qualifications’ fulfillment, we consider the following
residual function Rk := Rk(x, y, z) as a stationarity measure,

Rk := dist (0, (∇F (x, y), 0) + ck ((∇f(x, y), 0)−∇vγ,r(x, y, z)) +NC×Z(x, y, z)) , (15)

where NΩ(s) denotes the normal cone to Ω at s. This residual function Rk(x, y, z) also serves as a
stationarity measure for the penalized problem of (6), with ck serving as the penalty parameter,

min
(x,y)∈C,z∈Z

ψck(x, y, z) := F (x, y) + ck (f(x, y)− vγ,r(x, y, z)) . (16)

Evidently, Rk(x, y, z) = 0 if and only if (x, y, z) is a stationary point for problem (16), meaning
0 ∈ ∇ψck(x, y, z)+NC×Z(x, y, z). The following theorem offers the non-asymptotic convergence
for LV-HBA, and the proof is detailed in Section A.6 of the Appendix.
Theorem 3.1. Under Assumptions of Lemma 3.1, let γ1 ∈ (0, 1/ρf ), γ2 > 0, ck = c(k + 1)p with
p ∈ (0, 1/2), c > 0 and ηk ∈ (η, ρT /L

2
B), then there exist cα, cβ > 0 such that when αk ∈ (α, cα)

and βk ∈ (β, cβ) with α, β > 0, the sequence of (xk, yk, zk, θk, λk) generated by LV-HBA satisfies

min
0≤k≤K

∥∥(θk, λk)− (θ∗r(x
k, yk, zk), λ∗r(x

k, yk, zk))
∥∥ = O

(
1

K1/2

)
,

and

min
0≤k≤K

Rk(x
k+1, yk+1, zk+1) = O

(
1

K(1−2p)/2

)
.

Furthermore, if there exists M > 0 such that ψck(x
k, yk, zk) ≤ M for any k, the sequence of

(xk, yk, zk) satisfies

0 ≤ f(xK , yK)− vγ(x
K , yK , zK) ≤ f(xK , yK)− vγ,r(x

K , yK , zK) = O

(
1

Kp

)
.

4 EXPERIMENTS

In this section, we evaluate the empirical performance of LV-HBA using numerical experiments on
synthetic problems, hyperparameter optimization for SVM, and federated bilevel learning problem.
We compare LV-HBA against AiPOD, E-AiPOD (Xiao et al., 2023b), and GAM (Xu & Zhu, 2023).
The results underscore the effectiveness of LV-HBA in practical scenarios. Detailed experimen-
tal settings and parameter configurations can be found in Appendix A.1.The code is available at
https://github.com/SUSTech-Optimization/LV-HBA.

4.1 SYNTHETIC EXPERIMENTS.

We test LV-HBA in comparison to AiPOD and E-AiPOD, on two synthetic coupling equality-
constrained BLOs from two distinct scenarios: merely convex and strongly convex LL objectives.

Figure 1: Comparison between AiPOD, E-AiPOD and LV-HBA on LL merely convex synthetic
problem. Left two figures: initial point 10 ·1 ∈ R300. Right two figures: initial point 100 ·1 ∈ R300.

LL merely convex. We consider BLO with coupling equality constraints given by

min
x∈Rn,y:=(y1,y2)∈R2n

1

2
∥x− y2∥2 +

1

2
∥y1 − 1∥2 s.t. y ∈ argmin

y′∈Y(x)

{
1

2
∥y′1∥

2 − xT y′1 + 1T y′2

}
,

7
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where 1 ∈ Rn represents a vector with all elements equal to 1 and Y(x) = {y ∈ R2n | 1Tx +
1T y1 + 1T y2 = 0}. Its optimal solution can be analytically expressed as x∗ = − 3

101, y∗1 = 7
101,

y∗2 = − 4
101. For the problem where n = 100, we test algorithms from two distinct initial points:

10 · 1 ∈ R300 and 100 · 1 ∈ R300. The convergence curves relative to time are presented in
Figure 1. Notably, LV-HBA provides a more precise approximation to the optimal solution and
demonstrates faster convergence compared to AiPOD and E-AiPOD. The inadequate performance of
AiPOD and E-AiPOD may stem from the fact that while our synthetic problem has a merely convex
LL objective, both AiPOD and E-AiPOD require a strongly convex LL objective for convergence.
Moreover, we examine the sensitivity of parameter ck in LV-HBA, and present its convergence curve
in Figure 2. We further test the synthetic problem in a high-dimensional setting to demonstrate the
computational efficiency of LV-HBA by increasing the dimension n. We record the time when
∥xk − x∗∥/∥x∗∥ ≤ 10−2 is met by the iterates generated by LV-HBA. Results in Figure 2 highlight
the computational efficiency of LV-HBA.

Figure 2: Left two figures: Impact of p in parameter ck for LV-HBA. Rightmost figure: Time taken
to achieve a specified accuracy v.s. dimension for LV-HBA.

LL strongly convex. We consider the strongly convex instance as presented in Xiao et al. (2023b):

min
x∈X

sin
(
c⊤x+ d⊤y∗(x)

)
+ ln

(
∥x+ y∗(x)∥2 + 1

)
s.t. y∗(x) = argmin

y∈Y(x)

1

2
∥x− y∥2,

where X = {x | Bx = 0} ⊂ R100,Y(x) = {y | Ay+ Hx = 0} ⊂ R100, and A,B,H, c, d are
non-zero matrices or vectors imported from the code of Xiao et al. (2023b) available at https:
//github.com/hanshen95/AiPOD.. Contrary to the experiment in Xiao et al. (2023b), we
do not add Gaussian noise in this simulation. We test algorithms from two different initial points:
5 · (1,1) and 10 · (1,1) in R200. We use the norm of ∥yk − y∗(x)∥ as one stationarity measure,
another one is the value of hyper-objective F (xk, y∗(xk)). We depict the respective convergence
curves over time in Figure 3. Empirical results highlight the superior speed of convergence of our
LV-HBA compared to both AiPOD and E-AiPOD.

Figure 3: Comparison between AiPOD, E-AiPOD and LV-HBA on BLO with LL strongly convex
objective. Left: initial point 5(1,1) in R200. Right: initial point 10(1,1) in R200.

Table 2: Numerical results on the hyperparameter optimization problem of SVM and the data hyper-
cleaning task. The notation a ± b signifies a mean value a with a standard deviation of b over 40
trials.

Linear SVM Data Hyper-Cleaning
Dataset diabetes fourclass gisette
Method GAM LV-HBA GAM LV-HBA GAM LV-HBA

Accuracy 74 ± 1.4 75.07 ± 1.6 75.2 ± 1.6 75.4 ± 1.2 94.2 ± 0.5 94.6 ± 0.4
Time(s) 33.06± 2.2 6.65± 1.3 30± 2.2 6± 1.8 200±11.5 100±11.5
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4.2 HYPERPARAMETER OPTIMIZATION

We test the performance of our algorithm LV-HBA in comparison to GAM (Xu & Zhu, 2023). Both
algorithms are applied to the hyperparameter optimization problem of SVM and the data hyper-
cleaning task, as described in Xu & Zhu (2023). A comprehensive discussion of the problem for-
mulation and the specific implementation settings can be found in Appendix A.1.

Hyperparameter Optimization of SVM We center our attention on the linear SVM model and
conduct experiments on the dataset diabetes from Dua et al. (2017) and the dataset fourclass from
Ho & Kleinberg (1996). The results are presented in Table 2. Moreover, Figure 4 illustrates the
curve between test accuracy and time for the result on the dataset diabetes. Notably, our LV-HBA
outperforms GAM by achieving superior accuracy within a significantly reduced time.

Data Hyper-Cleaning We compare our LV-HBA against GAM on the data hyper-cleaning task
(Franceschi et al. (2017); Shaban et al. (2019)), utilizing dataset gisette (Guyon et al., 2004). Results
are tabulated in Table 2. A performance curve for test accuracy against time is depicted in Figure 4.
Remarkably, LV-HBA surpasses GAM, delivering enhanced test accuracy in a shorter time.

Figure 4: Left: accuracy v.s. running time in hyperparameter optimization of SVM on diabetes;
Middle: accuracy v.s. running time in data hyper-cleaning; Right: accuracy v.s. communication
round in federated loss function tuning problem.

4.3 FEDERATED LOSS FUNCTION TUNING

In this part, we test our LV-HBA compared to E-AiPOD (Xiao et al., 2023b) and FedNest (Tarzanagh
et al., 2022) using the federated loss function tuning problem, as explored in Xiao et al. (2023b).
Detailed descriptions of the problem formulation and the specific implementation settings are avail-
able in Appendix A.1. This federated learning with imbalanced data task aims to develop a model
ensuring fairness and generalization across datasets dominated by under-represented classes Li et al.
(2021). Results, detailed in Table 3 and Figure 4, indicate that LV-HBA surpasses E-AiPOD and
FedNest in both communication complexity and computational efficiency.

Table 3: Communication round and time taken to achieve a specified accuracy in the experiment for the
federated loss function tuning problem. E-A represents E-AiPOD; FN denotes FedNest; LV denotes LV-HBA.

Test accuracy: 90 Test accuracy: 92 Test accuracy: 94
Test accuracy E-A FN LV E-A FN LV E-A FN LV

Round 527 625 65 1080 1575 149 2256 3010 588
Time(s) ×25.7 ×27.4 1638 ×23 ×25.3 3754 ×12 ×15.9 14994

5 CONCLUSIONS

This work proposes a new approach and algorithm for solving a class of constrained BLO problems
in which LL problem involves constraints coupling both UL and LL variables. The key enabling
technique is to introduce a smooth proximal Lagrangian value function to handle the constrained
LL problem. This allows us to smoothly reformulate the original BLO, and develop a Hessian-free
gradient-based algorithm. In the future we would be interested in studying stochastic algorithms for
constrained BLOs, leveraging the simplicity of our approach and incorporating techniques such as
extrapolation, variance reduction, momentum, and others.
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Hédy Attouch and Roger J-B Wets. A convergence theory for saddle functions. Transactions of the
American Mathematical Society, 280(1):1–41, 1983.

Heinz H. Bauschke and Patrick L. Combettes. Convex analysis and monotone operator theory in
Hilbert spaces. CMS Books in Mathematics, 10, 2011.

Amir Beck. First-order methods in optimization. SIAM, 2017.

J Frédéric Bonnans and Alexander Shapiro. Perturbation analysis of optimization problems.
Springer Science & Business Media, 2013.

Lesi Chen, Yaohua Ma, and Jingzhao Zhang. Near-optimal fully first-order algorithms for finding
stationary points in bilevel optimization. arXiv preprint arXiv:2306.14853, 2023a.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic
gradient methods for bilevel problems. In NeurIPS, 2021.

Tianyi Chen, Yuejiao Sun, Quan Xiao, and Wotao Yin. A single-timescale method for stochastic
bilevel optimization. In AISTATS, 2022a.

Xuxing Chen, Krishnakumar Balasubramanian, and Saeed Ghadimi. Stochastic nested composi-
tional bi-level optimization for robust feature learning. arXiv preprint arXiv:2307.05384, 2023b.

Ziyi Chen, Bhavya Kailkhura, and Yi Zhou. A fast and convergent proximal algorithm for regular-
ized nonconvex and nonsmooth bi-level optimization. arXiv preprint arXiv:2203.16615, 2022b.
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A APPENDIX

The appendix is organized as follows:

• The experimental details is provided in Section A.1.

• Expanded related work is provided in Section A.2.

• The equivalent results of the reformulated problem 4 are provided in Section A.3.

• Some useful auxiliary lemmas are provided in Section A.4.

• The proof of Lemma 3.1 is given in Section A.5.

• The proof of Proposition 3.1 is provided in Section A.6.

A.1 EXPERIMENTAL DETAILS

In this section, we outline the specific experimental settings. All experiments were conducted using
Python 3.8 on a computer with an Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz CPU and an
NVIDIA A100 GPU with 40GB memory GPU.

A.1.1 SYNTHETIC EXPERIMENTS

LL merely convex:

Hyper-parameter settings for algorithms.

LV-HBA: In Figure 1, the step sizes are chosen as α = 0.005, β = 0.002, η = 0.03, γ1 = γ2 =
10, r = 1 with parameter ck = (k + 1)0.3. In Figure 2, the step sizes are chosen as α = 0.002,
β = 0.002, η = 0.03, γ1 = γ2 = 0.1, r = 1, ck = (k + 1)p with various p.

E-AiPOD: Projection probability is p = 0.3, total iterations are K = 300/p, UL iterations are
T = 2, and LL iterations are S = 5. In Figure 1, the step sizes are set as α = 0.0001, β = 0.001.
In both AiPOD and E-AiPOD, the parameter T is set to 2, as this choice has been demonstrated to
yield best performance, as shown in (Xiao et al., 2023b, Figure 1).

LL strongly convex Case:

The strongly convex instance is adapted from Xiao et al. (2023b) by omitting the Gaussian noise.

Hyper-parameter settings for algorithms. For LV-HBA, the step sizes are chosen as α = 0.02,
β = 0.001, η = 0.1, γ1 = γ2 = 1, r = 1000 with parameter ck = (k + 1)0.3. For both AiPOD and
E-AiPOD, the hyper-parameters are set consistent with the code in Xiao et al. (2023b). Specifically,
the projection probability p = 0.3, the number of UL iterations in is T = 2, the number of LL
iterations is S = 5, and the step sizes are set as α = 0.001, β = 0.02.

Sensitivity of parameters:

Additionally, to assess the sensitivity of the remaining parameters, further numerical experiments
were conducted on LL merely convex synthetic model. We record the time when ∥xk−x∗∥/∥x∗∥ ≤
10−2 is met by the iterates generated by LV-HBA. The results are as follows:
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Sensitivity
Parameters

α β η γ = γ1 = γ2 c p r Time(s)

α
0.001 0.02 0.01 10 0.025 0.3 1000 0.23
0.005 0.02 0.01 10 0.025 0.3 1000 0.064
0.01 0.02 0.01 10 0.025 0.3 1000 0.052

β
0.005 0.005 0.01 10 0.025 0.3 1000 0.068
0.005 0.02 0.01 10 0.025 0.3 1000 0.064
0.005 0.1 0.01 10 0.025 0.3 1000 0.063

η
0.005 0.02 0.005 10 0.025 0.3 1000 0.098
0.005 0.02 0.01 10 0.025 0.3 1000 0.064
0.005 0.02 0.05 10 0.025 0.3 1000 0.025

γ = γ1 = γ2

0.005 0.02 0.01 5 0.025 0.3 1000 0.069
0.005 0.02 0.01 10 0.025 0.3 1000 0.064
0.005 0.02 0.01 500 0.005 0.3 1000 0.064

c
0.005 0.02 0.01 10 0.005 0.3 1000 0.026
0.005 0.02 0.01 10 0.05 0.3 1000 0.064
0.005 0.02 0.01 10 0.025 0.3 1000 0.086

r
0.005 0.02 0.01 10 0.025 0.3 200 0.066
0.005 0.02 0.01 10 0.025 0.3 1000 0.064
0.005 0.02 0.01 10 0.025 0.3 2000 0.065

A.1.2 HYPERPAMETER OPTIMIZATION

The hyperparameter optimization of SVM and the data hyper-cleaning experiments were performed
using qpth version 0.0.11 and cvxpy version 1.2.0.

Hyperparameter Optimization of SVM We test the performance of our algorithm LV-HBA in
comparison to GAM proposed in Xu & Zhu (2023) on the same hyperparameter optimization prob-
lem of SVM as considered in Xu & Zhu (2023). Experiments are conducted using datasets dia-
betes from Dua et al. (2017). and fourclass from Ho & Kleinberg (1996). For dataset diabetes, we
randomly partition it into training, validation, and testing subsets containing 500, 150, and 118 ex-
amples, respectively. Similarly, dataset fourclass is partitioned into training, validation, and testing
subsets with 500, 150, and 212 examples, respectively. We conduct experiments on each dataset
with 40 repetitions.

The hyperparameter optimization of SVM can be expressed as:

min
c

Φ(c) = LDval (w
∗, b∗) ,

where the hyperparameter to be optimized is c = [c1, . . . , cN ] and w∗, b∗ are solution to the SVM
optimization problem given by

(w∗, b∗, ξ∗) = arg min
w,b,ξ

1

2
∥w∥2 + 1

2

N∑
i=1

eciξ2i

s.t. li
(
w⊤ϕ (zi) + b

)
≥ 1− ξi, i = 1, 2, . . . N.

Here, Dval represents the validation data, and Dtr the training data. For all 1 ≤ i ≤ N , zi denotes
the data point, li is the label, and (zi, li) ∈ Dtr . The upper-level objective function is:

LDval (w
∗, b∗) =

1

|Dval |
∑

(z,l)∈Dval

L (w∗, b∗; z, l) ,

where L (w∗, b∗;Dval ) is given by

L (w∗, b∗; z, l) = σ

(
−l
(
z⊤w∗ + b

)
∥w∗∥

)
,
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with σ(x) = 1−e−x

1+e−x . The term
l(z⊤w∗+b)

∥w∗∥ signifies the signed distance between point z and the
decision plane z⊤w∗ + b = 0. It is positive when predictions are accurate, and negative otherwise.
Thus, LDval (w

∗, b∗) serves as a differentiable surrogate for validation accuracy.

Hyper-parameter settings for algorithms. For LV-HBA, the step sizes are chosen as α = 0.01, β =
0.1, η = 0.01, γ1 = γ2 = 10, r = 100 with parameter ck = (k + 1)0.3. For GAM, hyperparameters
are set in alignment with the code in Xu & Zhu (2023): γ = 0.3, ϵ0 = 0.3, β = 0.5. In GAM’s
implementation, to uphold the LL strong convexity assumption, the LL problem’s objective function
is set as 1

2∥w∥
2 + 1

2

∑N
i=1 e

ciξ2i +
1
2µb

2 where µ is a small positive number.

Data Hyper-Cleaning We adopt the data hyper-cleaning formulation as the hyperparameter opti-
mization of SVM, as presented in Xu & Zhu (2023). In this model, post-optimization of hyperpa-
rameter c, the penalty term corresponding to the corrupted data (zi, yi) approaches 0. Consequently,
the corrupted data (zi, yi) is identified and has a negligible impact on the training and prediction of
the classifier model. Experiments are conducted using the datasets gisette from Guyon et al. (2004).
For dataset gisette, we segment it into training, validation, and testing subsets, comprising 400, 180,
and 5420 examples, respectively. We conduct experiments on each dataset with 40 repetitions.

Hyper-parameter settings for algorithms. For LV-HBA, we select step sizes with values α = 0.01,
β = 0.1, and η = 0.01, accompanied by parameter ck = (k + 1)0.3. For GAM, hyperparameters
are consistent with specifications in Xu & Zhu (2023), with γ = 0.3, ϵ0 = 0.3, and β = 0.5.

A.1.3 FEDERATED LOSS FUNCTION TUNING

In this part, we test our LV-HBA compared to E-AiPOD Xiao et al. (2023b) and FedNest Tarzanagh
et al. (2022) on the same federated loss function tuning problem, as explored in Xiao et al. (2023b).
The experiments were executed with opencv-python version 4.6.0.66. In the federated loss function
tuning problem, the UL optimizes loss-tuning parameters to enhance both generalization and fair-
ness. Meanwhile, the LL focuses on training model parameters on potentially imbalanced datasets.
The formal problem statement is:

min
x∈X

1

M

M∑
m=1

fupvs (y∗m(x);Dm
val) ,

s.t. y∗(x) = argmin
y∈Y

1

M

M∑
m=1

f low
vs (x, ym;Dm

tr ) ,

where M = 50 representing the number of clients, x is the loss-tuning parameter and y indicates
the neural network parameters. Dm

tr and Dm
val are the training and validation sets of client m. The

consensus sets X and Y are given by X := {x | x1 = · · · = xM} and Y := {y | y1 = · · · = yM},
respectively. Training datasets {Dm

tr }
M
m=1 have class imbalances. As introduced by Kini et al.

(2021), the vector-scaling loss f low
vs is

f low
vs (x, y;D) := − 1

|D|
∑
dn∈D

ωln log
exp (δlnhln (y; dn) + τln)∑C
c=1 exp (δchc (y; dn) + τc)

,

where N signifies dataset size, C denotes the class count, and dn is the n-th data item with label ln
in dataset D. The logit output of the neural network for parameters y and input dn is h (y; dn) =

[h1 (y; dn) , . . . , hC (y; dn)]
⊤ ∈ RC , x is defined as (ω, δ, τ) with ω := [ω1, . . . , ωC ]

⊤ ∈ RC , and
δ, τ defined in a similar manner. The upper-level loss f up

vS is a variant of f low
vs where δ = 1, τ = 0,

and ω is a static class weight for the validation dataset.

Hyper-parameter settings for algorithms. For LV-HBA, we select step sizes with values α = 0.01,
β = 0.01, and η = 0.01, γ1 = γ2 = 10, r = 100, parameter ck = (k+1)0.3 and bath size as 256. For
E-AiPOD and FedNest, hyperparameters align with specifications in Xiao et al. (2023b): E-AiPOD
has a communication probability p = 0.3, S = 20, α = 0.01, β = 0.04, N ′ = 3, and batch size
of 256. FedNest utilizes LL iteration number τ = 3, episode T = 3, resulting in a communication
frequency of 0.3 per LL iteration.
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A.2 EXPANDED RELATED WORK

In this section, we provide an extensive review of recent studies closely related to our work.

Approaches for BLO. One of the most commonly employed approaches for tackling BLO prob-
lems is to reformulate them as single-level problems. This can often be accomplished in two ways
Dempe & Zemkoho (2013). One of these approaches, known as the KKT (or MPEC) reformula-
tion, replaces the LL problem with its Karush-Kuhn-Tucker (KKT) conditions and minimizes over
the original variables as well as multipliers if the LL constraints exist. The resulting problem is
the so-called mathematical program with complementarity/equilibrium constraints (MPCC/MPEC)
Luo et al. (1996), which itself poses a significant challenge when treated as a nonlinear program-
ming problem Kim et al. (2020). Remarkably, the KKT reformulation employs the KKT conditions,
thereby unavoidably relying on first-order gradient information. Consequently, gradient-based algo-
rithms based on KKT reformulation also depend on second-order gradient information.

Another often used approach is the value function approach, originally proposed in Outrata (1990)
and Ye & Zhu (1995). It is obtained by replacing the LL problem by its description via the (optimal)
value function. Unlike the KKT reformulation, the value function reformation does not use any
gradient information of the objective and constraint functions in the LL problem. To the best of our
knowledge, the majority of existing Hessian-free (also referred to as fully first-order) gradient-based
algorithms for both unconstrained and constrained BLOs, are developed based on the value function
reformulation, see, e.g., Liu et al. (2021b; 2023a); Ye et al. (2022); Sow et al. (2022); Shen & Chen
(2023); Kwon et al. (2023a); Lu & Mei (2023). It should be noted, however, that the value function
is typically nonsmooth, even when the functions involved are linear and affine. Hence, the value
function reformulation often leads to a nonsmooth problem. To alleviate the nonsmooth issue, the
recent works Ye et al. (2023); Gao et al. (2022) develop difference of convex algorithms for solving
BLO problems in which the UL objective is a difference of convex function and the LL problem is
fully convex.

Recently, to weaken the underlying assumption from lower level full convexity to weak convexity,
Gao et al. (2023) proposes a new reformulation of BLOs, using Moreau envelope of the LL problem.
They also demonstrate the equivalence between the reformulated and the original BLO problems in
the convex setting. Other approaches for BLOs include implicit methods Franceschi et al. (2017);
Ghadimi & Wang (2018); Shaban et al. (2019), penalty methods Lin et al. (2014), duality-based
solution approach Ouattara & Aswani (2018); Li et al. (2023; 2024).

Unconstrained BLO. The LL strong convexity in unconstrained BLO significantly contributes to
the development of efficient BLO algorithms, see, e.g., Maclaurin et al. (2015); Franceschi et al.
(2017); Shaban et al. (2019); Mackay et al. (2019); Grazzi et al. (2020); Ji et al. (2021; 2022) for
the iterative differentiation (ITD) based approach; Pedregosa (2016); Ghadimi & Wang (2018); Ra-
jeswaran et al. (2019); Lorraine et al. (2020); Hong et al. (2023); Chen et al. (2021); Arbel & Mairal
(2022a); Dagréou et al. (2022); Ye et al. (2022); Yang et al. (2023a) for the approximate implicit
differentiation (AID) based approach. Recently, based on the value function-based reformulation,
Kwon et al. (2023a) developed stochastic and deterministic fully first-order BLO algorithms and
established their non-asymptotic convergence guarantees, while an improved convergence analysis
is provided in the recent work Chen et al. (2023a).

Convex LL problems introduce additional challenges, such as the presence of multiple LL solu-
tions (Non-Singleton), which can impede the utilization of implicit-based approaches developed for
nonconvex-strongly-convex BLO. To tackle Non-Singleton, recent advances include: aggregation
methods (or called sequential averaging methods) in Liu et al. (2020); Li et al. (2020); Liu et al.
(2022) with asymptotic convergence guarantees; in Liu et al. (2023b) with convergence rate anal-
ysis; value function-based difference-of-convex algorithm in Ye et al. (2023); Gao et al. (2022);
primal-dual algorithms in Sow et al. (2022); min-max optimization reformulation-based first-order
penalty methods in Lu & Mei (2023).

Efficient methods for nonconvex-nonconvex BLO remain under-explored, recent advances in-
clude: initialization auxiliary and pessimistic trajectory truncation method in Liu et al. (2021c);
value function-based interior-point method in Liu et al. (2021b); possibly degenerate implicit
differentiation-based unrolled optimization algorithms in Arbel & Mairal (2022b); momentum-
based algorithm in Huang (2023); generalized alternating method in Xiao et al. (2023a); fully first-
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order value function-based algorithm in Ye et al. (2022); penalty-based fully first-order algorithm in
Shen & Chen (2023); a smoothed first-order Lagrangian method in Lu (2024).

Constrained BLO. While gradient-based algorithms for unconstrained BLO problems have been
extensively explored, the investigation of efficient methods for constrained BLO problems is rela-
tively limited, especially when addressing LL constraints coupling both UL and LL variables.

Recently, driven by applications in machine learning, the recent works such as Tsaknakis et al.
(2022); Khanduri et al. (2023) study the constrained BLOs, where the LL problem involves the
minimization of a strongly convex objective over a set of linear inequality constraints; Xiao et al.
(2023a) investigates the stochastic BLO problems with possibly coupled equality constraints in both
upper and lower levels; Xu & Zhu (2023) considers BLOs in which the LL problem is convex with
general equality and inequality constraints, while assuming that the LL objective is strongly convex
and the constraints satisfy strict Linear Independence Constraint Qualification (LICQ); Tsaknakis
et al. (2023) develop a novel barrier-based gradient approximation algorithm that transforms the
general constrained BLO problem to a problem with only linear equality constraints. Observe that all
of these works employ implicit gradient-based methods, relying on the computation of the implicit
gradient of the unique LL solution mapping. Among them, Khanduri et al. (2023) develops a linear
perturbation-based smoothing framework for the linearly constrained LL problem that ensures the
existence of the implicit gradient in an almost sure sense. Notably, these implicit gradient-based
methods for constrained BLOs unavoidably rely on computationally intensive calculations related
to the Hessian matrix.

The value function-based methods can avoid recurrent calculations related to the Hessian matrix,
see, e.g., Liu et al. (2023a); Lu & Mei (2023). Both papers have considered BLOs with general
constraints in the LL problem. For constrained BLOs, value function-based methods face challenges
related to non-differentiable constraints, stemming from the value function-based reformulation. To
address the nonsmooth issue, Liu et al. (2023a) proposes a sequential minimization algorithmic
framework, by adding a quadratic regularization and penalty/barrier functions of the LL inequality
constraints to the LL objective; Lu & Mei (2023) develops first-order penalty methods by solving a
sequence of minimax problems or a single minimax problem. Recent advances include primal-dual
algorithms in Sow et al. (2022); primal nonsmooth reformulation-based algorithm in Helou et al.
(2023); penalty-based first-order algorithms in Kwon et al. (2023b).

There is also a line of works devoted to tackle the constrained UL setting including: implicit
approximation methods in Ghadimi & Wang (2018); a two-timescale framework in Hong et al.
(2023); a single-timescale method in Chen et al. (2022a); initialization auxiliary method in Liu et al.
(2021c); Bregman distance-based method in Huang et al. (2022); value function-based Difference-
of-Convex algorithm in Gao et al. (2022); proximal gradient-type algorithm in Chen et al. (2022b);
penalty-based method in Shen & Chen (2023); Moreau Envelope-based Difference-of-weakly-
Convex method in Gao et al. (2023); inexact conditional gradient method in Abolfazli et al. (2023);
nested compositional BLO in Chen et al. (2023b).

A.3 EQUIVALENT RESULTS OF REFORMULATED PROBLEM

In the following result, we demonstrate that the reformulation problem (4) is equivalent to the BLO
problem (1).

Recall that for the sake of notational simplicity, throughout this paper, for LL constraint mapping
g : X × Y → Rl and any vectors λ, z ∈ Rl, we represent

∑l
i=1 λigi and

∑l
i=1 zigi as λg and zg,

respectively. Similarly,
∑l
i=1 λi∇ygi and

∑l
i=1 zi∇ygi are denoted by λ∇yg and z∇yg, respec-

tively.

For the reader’s convenience, we restate the reformulation problem (4) as follows:

min
(x,y)∈C,z≥0

F (x, y) s.t. f(x, y)− vγ(x, y, z) ≤ 0, (4)

where C := {(x, y) ∈ X × Y | g(x, y) ≤ 0}, and vγ(x, y, z) is the proximal Lagrangian value
function, restated below,

vγ(x, y, z) := min
θ∈Y

max
λ∈Rl

+

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

}
. (3)
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The proximal Lagrangian value function vγ(x, y, z) defined in equation (3) can be regarded as the
(upper) Yosida approximate of the Lagrangian function L(x, y, λ) := f(x, y) + λg(x, y) of the LL
problem (Attouch & Wets, 1983, Section 5).

Theorem A.1. Assume that f(x, ·) and g(x, ·) are both convex on Y . Suppose γ1, γ2 > 0, the refor-
mulated problem (4) is equivalent to the BLO problem (1), if multiplier of the lower-level problem(
2) exists for any feasible point (x, y) of the BLO problem (1).

Proof. First, let (x, y, z) be any feasible point of problem (4), then we have (x, y) ∈ X ×Y , z ≥ 0,
and g(x, y) ≤ 0. Furthermore, the following inequalities hold,

f(x, y) ≤ vγ(x, y, z) := min
θ∈Y

max
λ≥0

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

}
≤ min

θ∈Y
max
λ≥0

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2

}
≤ min

θ∈Y

{
f(x, θ) +

1

2γ1
∥θ − y∥2

∣∣ g(x, θ) ≤ 0

}
≤ f(x, y).

(17)

Since the first and the last terms in the above inequalities are the same, we must have equalities
throughout. Specially, we have

y ∈ argmin
θ∈Y

{
f(x, θ) +

1

2γ1
∥θ − y∥2

∣∣ g(x, θ) ≤ 0

}
.

Because f(x, ·) and g(x, ·) are both convex functions on Y , considering g(x, ·) ≤ 0 as an abstract
convex set constraint and using the first-order optimality conditions, we obtain that

y ∈ argminθ∈Y {f(x, θ) | g(x, θ) ≤ 0} ,

and thus y ∈ S(x). Then the point (x, y) is feasible to the BLO problem (1).

Conversely, suppose that (x, y) is an feasible point of the BLO problem (1), then we have (x, y) ∈
X × Y and y ∈ S(x). On one hand, according to the assumption that multiplier z ≥ 0 of the LL
problem (2) exists at (x, y), since the LL problem is convex, by the first-order optimality conditions,
we get

y ∈ argminθ∈Y {f(x, θ) + zg(x, θ)}.
Once more, due to the convexity of the LL problem, this implies that

y ∈ argminθ∈Y

{
f(x, θ) + zg(x, θ) +

1

2γ1
∥θ − y∥2

}
.

On the other hand, since g(x, y) ≤ 0, by the complementarity conditions, i.e., zg(x, y) = 0,

z ∈ argmaxλ≥0

{
f(x, y) + λg(x, y)− 1

2γ2
∥λ− z∥2

}
.

Hence, the point (y, z) is a saddle point of the following strong convex strong concave function
L : Y × Rl+ → R:

L(θ, λ) := f(x, θ) + λg(x, θ) +
1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2.

Thus it follows from saddle point theorem that

min
θ∈Y

max
λ≥0

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

}
=f(x, y) + zg(x, y) = f(x, y),

where the last inequality uses the complementarity conditions zg(x, y) = 0. Therefore,
vγ(x, y, z) = f(x, y) and then (x, y, z) is feasible to the reformulation problem (4).
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Remark A.1. Indeed, as per the estimate provided in (17), the proximal Lagrangian value function
vγ(x, y, z) establishes a lower bound for f(x, y), that is, vγ(x, y, z) ≤ f(x, y) for any (x, y, z) ∈
C × Rl+. Specifically, we have

vγ(x, y, z) ≤ min
θ∈Y

{
f(x, θ) +

1

2γ1
∥θ − y∥2

∣∣ g(x, θ) ≤ 0

}
=: vγ1(x, y), (18)

where vγ1(x, y) coincides with the so-called Moreau envelope function, initially introduced by Gao
et al. (2023) for BLO problems. Additionally, the latter also acts as a lower bound for the function
f(x, y).

Subsequently, we demonstrate that for a sufficiently large r, the solution to the reformulation (4) can
be obtained by solving variant (6). Note that ProjZ in Algorithm 1 is a simple Euclidean projection
on a box Z := [0, r]l with lower bounds 0 and upper bounds r ≥ 0. This projection is pivotal in
guaranteeing the boundedness of the auxiliary variable zk+1. For clarity, we restate the variant (6)
of the reformulation (4) as follows:

min
(x,y)∈X×Y,z∈Z

F (x, y) s.t. f(x, y)− vγ,r(x, y, z) ≤ 0, g(x, y) ≤ 0, (6)

where vγ,r(x, y, z) is a truncated proximal Lagrangian value function, defined in equation (5),

vγ,r(x, y, z) := min
θ∈Y

max
λ∈Z

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

}
. (5)

Theorem A.2. Suppose γ1, γ2 > 0, let an optimal solution (x∗, y∗, z∗) of reformulation (4) exist
such that z∗ is within the set Z. Then (x∗, y∗, z∗) is also an optimal solution for the reformulation
(6). Consequently, the optimal values for both reformulations, (4) and (6), are identical. Moreover,
any optimal solution of (6) is optimal to reformulation (4).

Proof. Firstly, according to the definitions of vγ and vγ,r, we have that vγ(x, y, z) ≥ vγ,r(x, y, z)
for any (x, y, z) ∈ X×Y ×Z. Therefore, any feasible point (x, y, z) of problem (6) is also feasible
to problem (4) and thus the optimal value of problem (6) is larger or equal to that of problem (4).

Conversely, let (x∗, y∗, z∗) be an optimal solution of the reformulation problem (4) with z∗ belong-
ing to the set Z, since (x∗, y∗, z∗) is feasible to problem (4). As shown in the proof of Theorem A.1,
we obtain y∗ ∈ S(x∗). Next we show that z∗ is a multiplier of the LL problem (2) at (x∗, y∗). To
this end, it suffices to prove that

(y∗, z∗) = argmin
θ∈Y

argmax
λ≥0

{
f(x∗, θ) + λg(x∗, θ) +

1

2γ1
∥θ − y∗∥2 − 1

2γ2
∥λ− z∗∥2

}
. (19)

By estimates in (17), we get

y∗ ∈argmin
θ∈Y

max
λ≥0

{
f(x∗, θ) + λg(x∗, θ) +

1

2γ1
∥θ − y∗∥2

}
,

y∗ =argmin
θ∈Y

max
λ≥0

{
f(x∗, θ) + λg(x∗, θ) +

1

2γ1
∥θ − y∗∥2 − 1

2γ2
∥λ− z∗∥2

}
.

Furthermore, the optimal values of the above optimization problems are equal. This implies that
z∗g(x∗, y∗) = 0, and then

z∗ ∈ argmaxλ≥0

{
f(x∗, y∗) + λg(x∗, y∗)− 1

2γ2
∥λ− z∗∥2

}
.

Now since z∗ ∈ Z, we have

(y∗, z∗) = argmin
θ∈Y

argmax
λ∈Z

{
f(x∗, θ) + λg(x∗, θ) +

1

2γ1
∥θ − y∗∥2 − 1

2γ2
∥λ− z∗∥2

}
,

leading to vγ(x∗, y∗, z∗) = vγ,r(x
∗, y∗, z∗) and thus (x∗, y∗, z∗) is also feasible to problem (6).

Therefore, the optimal value of problem (6) is equal to that of problem (4). Then, because any
feasible point (x, y, z) of problem (6) is feasible to problem (4), we get the conclusion.
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A.4 AUXILIARY LEMMAS

The following lemma provides a characterization of the gradient of the Lagrangian based proximal
value function vγ,r(x, y, z).

Given that f is Lf -smooth on X×Y , by leveraging the descent lemma (Beck, 2017, Lemma 5.7), it
can be deduced that f is also Lf -weakly convex, i.e, f(x, y) +Lf∥(x, y)∥2/2 is convex on X × Y .
Consequently, under Assumption 3.2, f is ρf -weakly convex on X × Y , with ρf ≥ 0 potentially
being smaller than Lf . To precisely determine the range for the step sizes of LV-HBA , we will
employ the weak convexity constant of f , ρf , in subsequent results.
Lemma A.1. Under Assumptions 3.2 and 3.3, let γ1 ∈ (0, 1/ρf ) and γ2 > 0. Then vγ,r(x, y, z) is
continuously differentiable on X × Y × Rl, and for any (x, y, z) ∈ X × Y × Rl,

∇vγ,r(x, y, z) =
(
∇xf(x, θ

∗) + λ∗∇xg(x, θ
∗),

(y − θ∗)

γ1
,
(λ∗ − z)

γ2

)
, (20)

where θ∗ := θ∗(x, y, z) and λ∗ := λ∗(x, y, z) is the unique saddle point of the min-max problem:

min
θ∈Y

max
λ∈Z

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

}
. (21)

Furthermore, for any ρv ≥ ρf/(1−γ1ρf ), vγ,r(x, y, z) is ρv-weakly convex with respect to variables
(x, y) on X × Y for any fixed z ∈ Rl.

Proof. Firstly, we define an auxiliary function,

φγ(x, θ, z) := max
λ∈Z

{
f(x, θ) + λg(x, θ)− 1

2γ2
∥λ− z∥2

}
.

Noticed that φγ(x, θ, z) can be rewritten as

φγ(x, θ, z) = − inf
λ∈Z

{
−f(x, θ)− λg(x, θ) +

1

2γ2
∥λ− z∥2

}
.

By Assumptions 3.2 and 3.3, f and g are both continuous differentiable on an open set containing
X×Y , it can be easily shown that −f(x, θ)−λg(x, θ)+ 1

2γ2
∥λ−z∥2 satisfies the inf-compactness

condition in (Bonnans & Shapiro, 2013, Theorem 4.13) on any point (x̄, θ̄, z̄) ∈ X × Y × Rl, that
is, for any (x̄, θ̄, z̄) ∈ X × Y × Rl, there exist c ∈ R, compact set D and neighborhood W of
(x̄, θ̄, z̄) such that the level set {λ ∈ Z | − f(x, θ)− λg(x, θ) + 1

γ2
∥λ− z∥2 ≤ c} is nonempty and

contained in D for any (x, θ, z) ∈ W . Because argmaxλ∈Z

{
f(x, θ) + λg(x, θ)− 1

2γ2
∥λ− z∥2

}
is unique for any (x, θ, z) ∈ X×Y ×Rl, we denote it by λ̂∗(x, θ, z). Then, by Assumptions 3.2 and
3.3, we can derive from (Bonnans & Shapiro, 2013, Theorem 4.13, Remark 4.14) that φγ(x, θ, z) is
differentiable at any point on X × Y × Rl, and for any (x, θ, z) ∈ X × Y × Rl,

∇φγ(x, θ, z) =
(
∇f(x, θ) + λ̂∗(x, θ, z)∇g(x, θ),−(z − λ̂∗(x, θ, z))/γ2

)
. (22)

By simple calculation, we can obtain that

λ̂∗(x, θ, z) := argmax
λ∈Z

{
f(x, θ) + λg(x, θ)− 1

2γ2
∥λ− z∥2

}
= ProjZ (z + γ2g(x, θ)) .

Since by Assumptions 3.2 and 3.3 that f and g are both continuous differentiable on an open set
containing X × Y , and ProjZ is continuous, hence ∇φγ(x, θ, z) is continuous on X × Y × Rl.

Secondly, with the introduced auxiliary function φγ , we can rewrite vγ,r as

vγ,r(x, y, z) = min
θ∈Y

{
φγ(x, θ, z) +

1

2γ1
∥θ − y∥2

}
. (23)

Next we will show that φγ(x, y, z) is ρf -weakly convex with respect to variables (x, y) on X × Y
for any fixed z ∈ Rl. By Assumptions 3.2 and 3.3, we have that for any λ ∈ Rl+,

f(x, y) + λg(x, y)− 1

2γ2
∥λ− z∥2 + ρf

2
∥(x, y)∥2,
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is convex with respect to variables (x, y) on X × Y . Then by (Rockafellar, 1974, Theorem 1), we
obtain that

φγ(x, y, z) +
ρf
2
∥(x, y)∥2 = max

λ∈Z

{
f(x, y) + λg(x, y)− 1

2γ2
∥λ− z∥2 + ρf

2
∥(x, y)∥2

}
is convex with respect to variables (x, y) on X × Y and thus φγ(x, y, z) is ρf -weakly convex
with respect to variables (x, y) on X × Y for any fixed z ∈ Rl. Then, by Assumptions 3.2 and
3.3, it can be easily shown that when γ1 ∈ (0, 1/ρf ), φγ(x, θ, z) + 1

2γ1
∥θ − y∥2 satisfies the inf-

compactness condition on any point (x̄, ȳ, z̄) ∈ X × Y × Rl. Next, because when γ1 ∈ (0, 1/ρf ),
φγ(x, θ, z) +

1
2γ1

∥θ− y∥2 is strongly convex with respect to θ, argminθ∈Y {φγ(x, θ, z) + 1
2γ1

∥θ−
y∥2} is unique and it is equal to θ∗(x, y, λ). By using (Bonnans & Shapiro, 2013, Theorem 4.13,
Remark 4.14), the continuous differentiablility of φγ established above and equation (22), we can
obtain that vγ,r(x, y, z) is differentiable at any point on X × Y × Rl, and for any (x, y, z) ∈
X × Y × Rl,

∇vγ,r(x, y, z) =
(
∇xf(x, θ

∗) + λ̂∗(x, θ∗, z)∇xg(x, θ
∗), (y − θ∗)/γ1, (λ̂

∗(x, θ∗, z)− z)/γ2

)
,

where θ∗ denotes θ∗(x, y, z).

Finally, noticed that under Assumptions 3.2 and 3.3, when γ1 ∈ (0, 1/ρf ) and γ2 > 0, the function

f(x, θ) + λg(x, θ) +
1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2,

is strongly convex and strongly concave with respect to θ and λ, respectively. Therefore, it follows
from saddle point theorem,

min
θ∈Y

max
λ∈Z

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

}
= max

λ∈Z
min
θ∈Y

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

}
,

leading to
λ̂∗(x, θ∗, z) = λ∗(x, y, z),

and thus the conclusion follows.

Remark A.2. Using the a similar argument as above, the following result holds for the Lagrangian
based proximal value function vγ(x, y, z) when γ1 ∈ (0, 1/ρf ) and γ2 > 0. That is,

(1) The function vγ(x, y, z) is continuously differentiable on X × Y × Rl;

(2) The gradient of vγ(x, y, z) has closed-form given by

∇vγ,r(x, y, z) =
(
∇xf(x, θ

∗) + λ∗∇xg(x, θ
∗),

(y − θ∗)

γ1
,
(λ∗ − z)

γ2

)
, (24)

where θ∗ := θ∗(x, y, z) and λ∗ := λ∗(x, y, z) is the unique saddle point of the following min-
max problem:

min
θ∈Y

max
λ≥0

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

}
. (25)

(3) Furthermore, for any ρv ≥ ρf/(1 − γ1ρf ), vγ(x, y, z) is ρv-weakly convex with respect to
variables (x, y) on X × Y for any fixed z ∈ Rl.

Lemma A.2. Under the assumption of Lemma A.1, let γ1 ∈ (0, 1/ρf ), γ2 > 0, and (x̄, ȳ, z̄) ∈
X×Y ×Rl. Then for any ρv ≥ ρf/(1−γ1ρf ) and (x, y) in X×Y , the following inequality holds:

−vγ,r(x, y, z̄) ≤ −vγ,r(x̄, ȳ, z̄)− ⟨∇xyvγ,r(x̄, ȳ, z̄), (x, y)− (x̄, ȳ)⟩+ ρv
2
∥(x, y)− (x̄, ȳ)∥2.
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Proof. The conclusion follows directly from Lemma A.1 that vγ,r(x, y, z) is ρv-weakly convex with
respect to variables (x, y) on X × Y for any fixed z ∈ Rl.

Lemma A.3. Under Assumptions 3.2 and 3.3, let γ1 ∈ (0, 1/ρf ), γ2 > 0. Then, for any (x, y, z),
(x′, y′, z′) ∈ X × Rm × Rl, the following Lipschitz property holds:

∥(θ∗(x, y, z), λ∗(x, y, z))− (θ∗(x′, y′, z′), λ∗(x′, y′, z′))∥

≤ Lf + CZLg2 + Lg
ρT

∥x− x′∥+ 1

γ1ρT
∥y − y′∥+ 1

γ2ρT
∥z − z′∥

≤Lθλ∥(x, y, z)− (x′, y′, z′)∥,

(26)

where ρT := min{1/γ1 − ρf , 1/γ2}, CZ := maxz∈Z ∥z∥ and Lθλ :=
√
3max{Lf + CZLg2 +

Lg, 1/γ1, 1/γ2}/ρT .

Proof. For succinctness, we denote (x, y, z) and (x′, y′, z′) by w and w′, respectively. Given that
(θ∗(w), λ∗(w)) is the saddle point for min-max problem

min
θ∈Y

max
λ∈Z

{
f(x, θ) + λg(x, θ) +

1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

}
,

it follows from the stationary condition that

0 ∈ ∇yf(x, θ
∗(w)) + λ∗(w)∇yg(x, θ

∗(w)) + (θ∗(w)− y)/γ1 +NY (θ
∗(w)),

0 ∈ −g(x, θ∗(w))) + (λ∗(w)− z)/γ2 +NZ(λ
∗(w)).

(27)

Under Assumptions 3.2 and 3.3, and that γ1 ∈ (0, 1/ρf ) and γ2 > 0, we know that the function

f(x, θ) + λg(x, θ) +
1

2γ1
∥θ − y∥2 − 1

2γ2
∥λ− z∥2

is (1/γ1 − ρf )-strongly convex and 1/γ2-strongly concave with respect to θ and λ, respectively.
Then, it follows from (Rockafellar & Wets, 2009, Theorem 12.17 and Exercise 12.59) that the
operator

Tw(θ, λ) := (∇yf(x, θ) + λ∇yg(x, θ) + (θ − y)/γ1 +NY (θ),−g(x, θ) + (λ− z)/γ2 +NZ(λ))

is ρT := min{1/γ1 − ρf , 1/γ2}-strongly monotone. Using Tw(θ, λ), the inclusion (27) can be
rewritten as

0 ∈ Tw(θ
∗(w), λ∗(w)).

Similarly, since (θ∗(w′), λ∗(w′)) is a saddle point for min-max problem

min
θ∈Y

max
λ∈Z

{
f(x′, θ) + λg(x′, θ) +

1

2γ1
∥θ − y′∥2 − 1

2γ2
∥λ− z′∥2

}
,

we have
0 ∈ Tw′(θ∗(w′), λ∗(w′)).

Next, by the definition of Tw(θ, λ), we have

(e1, e2) ∈ Tw(θ
∗(w′), λ∗(w′)),

with
e1 := ∇yf(x, θ

∗(w′))−∇yf(x
′, θ∗(w′))

+ λ∗(w′) (∇yg(x, θ
∗(w′))−∇yg(x

′, θ∗(w′))) + (y′ − y)/γ1,

e2 := −g(x, θ∗(w′))) + g(x′, θ∗(w′))) + (z′ − z)/γ2.

Given that Tw(θ, λ) is ρT -strongly monotone, we have

⟨−(e1, e2), (θ
∗(w), λ∗(w))− (θ∗(w′), λ∗(w′))⟩

≥ρT ∥(θ∗(w), λ∗(w))− (θ∗(w′), λ∗(w′))∥2.
(28)

For λ∗(w), we can obtain that

λ∗(w) = argmax
λ∈Z

{
f(x, θ∗(w)) + λg(x, θ∗(w)) +

1

2γ1
∥θ∗(w)− y∥2 − 1

2γ2
∥λ− z∥2

}
= ProjZ (z + γ2g(x, θ

∗(w))) .
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Since Z is a bounded set, it follows that λ∗(w) ≤ CZ , for any x ∈ X, y ∈ Y, z ∈ Z. According to
Assumptions 3.2 and 3.3 and the fact that θ∗(w) ∈ Y , we can derive that

∥e1∥ ≤ Lf∥x− x′∥+ CZLg2∥x− x′∥+ 1

γ1
∥y − y′∥,

and
∥e2∥ ≤ Lg∥x− x′∥+ 1

γ2
∥z − z′∥.

Thus, it follows from inequality (28) that

∥(θ∗(w), λ∗(w))− (θ∗(w′), λ∗(w′))∥

≤ 1

ρT
∥(e1, e2)∥ ≤ 1

ρT
(∥e1∥+ ∥e2∥)

≤ Lf + CZLg2 + Lg
ρT

∥x− x′∥+ 1

γ1ρT
∥y − y′∥+ 1

γ2ρT
∥z − z′∥,

which implies the desired result.

Lemma A.4. Suppose Assumptions of Lemma A.3 holds, and let γ1 ∈ (0, 1/ρf ), γ2 > 0 and
(x̄, ȳ, z̄) ∈ X × Rm × Rl. Then for any z ∈ Rl, we have

−vγ,r(x̄, ȳ, z) ≤ −vγ,r(x̄, ȳ, z̄)− ⟨∇zvγ,r(x̄, ȳ, z̄), z − z̄⟩+ Lvz
2

∥z − z̄∥2,

with Lvz := (γ2ρT + 1)/(γ22ρT ).

Proof. By using Lemma A.3, with fixed (x̄, ȳ, z̄) ∈ X × Rm × Rl, for any z ∈ Rl, we have

∥(θ∗(x̄, ȳ, z), λ∗(x̄, ȳ, z))− (θ∗(x̄, ȳ, z̄), λ∗(x̄, ȳ, z̄))∥ ≤ 1

γ2ρT
∥z − z̄∥,

and thus it follows from Lemma A.1 that

∥∇zvγ,r(x̄, ȳ, z)−∇zvγ,r(x̄, ȳ, z̄)∥ =
1

γ2
∥λ∗(x̄, ȳ, z)− z − λ∗(x̄, ȳ, z̄) + z̄∥

≤ γ2ρT + 1

γ22ρT
∥z − z̄∥.

Then the conclusion follows from (Beck, 2017, Lemma 5.7).

Lemma A.5. Under Assumption of Lemma A.3, let γ1 ∈ (0, 1/ρf ), γ2 > 0 and ηk ∈ (0, ρT /L
2
B)

with ρT := min{1/γ1 − ρf , 1/γ2} and LB := max{Lf +Lg +CZLg2 + 1/γ1, Lg + 1/γ2}, then,
the sequence of (xk, yk, zk, θk, λk) generated by Algorithm 1 satisfies∥∥(θk+1, λk+1)− (θ∗(xk, yk, zk), λ∗(xk, yk, zk))

∥∥
≤ (1− ηkρT )

∥∥(θk, λk)− (θ∗(xk, yk, zk), λ∗(xk, yk, zk))
∥∥ . (29)

Proof. With given (xk, yk, zk) ∈ X × Y × Z, we denote θ∗(xk, yk, zk) and λ∗(xk, yk, zk) by θ∗
and λ∗, respectively, for conciseness. By Assumptions 3.2 and 3.3, and that γ1 ∈ (0, 1/ρf ), γ2 > 0,
we know that

f(xk, θ) + λg(xk, θ) +
1

2γ1
∥θ − yk∥2 − 1

2γ2
∥λ− zk∥2

is (1/γ1 − ρf )-strongly convex and 1/γ2-strongly concave with respect to θ and λ, respectively.
Then, the proximal min-max problem in equation (3) is equivalent to finding (θ, λ) satisfying

0 ∈ (A+B)(θ, λ),

with
A(θ, λ) := NY (θ)×NZ(λ),

and

B(θ, λ) :=
(
∇yf(x

k, θ) + λ∇yg(x
k, θ) + (θ − yk)/γ1,−g(xk, θ) + (λ− zk)/γ2

)
.
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And, therefore, 0 ∈ (A+B)(θ∗, λ∗). Because f(xk, θ)+λg(xk, θ)+ 1
2γ1

∥θ−yk∥2− 1
2γ2

∥λ−zk∥2
is (1/γ1 − ρf )-strongly convex and 1/γ2-strongly concave with respect to θ and λ, respectively, it
follows from (Rockafellar & Wets, 2009, Theorem 12.17 and Exercise 12.59) that the operator B is
ρT := min{1/γ1 − ρf , 1/γ2}-strongly monotone on Y × Z. And by Assumptions 3.2 and 3.3, we
have that for any (θ, λ), (θ′, λ′) ∈ Y × Z,

∥B(θ, λ)−B(θ′, λ′)∥ ≤∥∇yf(x
k, θ)−∇yf(x

k, θ′)∥+ ∥λ∇yg(x
k, θ)− λ′∇yg(x

k, θ′)∥

+
1

γ1
∥θ − θ′∥+ ∥g(xk, θ)− g(xk, θ′)∥+ 1

γ2
∥λ− λ′∥

≤
(
Lf + Lg +

1

γ1

)
∥θ − θ′∥+ 1

γ2
∥λ− λ′∥

+ ∥λ∇yg(x
k, θ)− λ′∇yg(x

k, θ)∥+ ∥λ′∇yg(x
k, θ)− λ′∇yg(x

k, θ′)∥

≤
(
Lf + Lg + CZLg2 +

1

γ1

)
∥θ − θ′∥+

(
Lg +

1

γ2

)
∥λ− λ′∥,

where the last inequality follows from the fact that CZ := maxz∈Z ∥z∥ and
maxx∈X,θ∈Y ∥∇yg(x, θ)∥ ≤ Lg . Therefore, we obtain that the operator B is LB := max{Lf +
Lg + CZLg2 + 1/γ1, Lg + 1/γ2}-Lipschitz continuous. Then, we can have from (Bauschke &
Combettes, 2011, Proposition 26.1(iv)) that (θ∗, λ∗) = (Id+ηkA)

−1((θ∗, λ∗)−ηkB(θ∗, λ∗)), with
Id denoting the identity operator. Since (θk+1, λk+1) = (Id + ηkA)

−1((θk, λk) − ηkB(θk, λk)),
as shown in the proof of (Bauschke & Combettes, 2011, Proposition 26.9) that when
ηk ∈ (0, 2ρT /L

2
B),

∥(θk+1, λk+1)− (θ∗, λ∗)∥ ≤
(
1− ηk(2ρT − ηkL

2
B)
)
∥(θk, λk)− (θ∗, λ∗)∥.

When ηk ∈ (0, ρT /L
2
B), we can obtain from the above inequality that

∥(θk+1, λk+1)− (θ∗, λ∗)∥ ≤ (1− ηkρT ) ∥(θk, λk)− (θ∗, λ∗)∥.

As previously stated that the update of variables (x, y, z) in equation (10) can be interpreted as
inexact alternating proximal gradient from (xk, yk, zk) on min(x,y)∈C,z∈Z ϕck(x, y, z), in which
ϕck is defined in equation (13) as

ϕck(x, y, z) :=
1

ck

(
F (x, y)− F

)
+ f(x, y)− vγ,r(x, y, z).

Since vγ,r(x, y, z) ≤ vγ(x, y, z) ≤ f(x, y) for all (x, y) ∈ C, by Assumption 3.1, we have
ϕck(x, y, z) ≥ 0 for all (x, y, z) ∈ C × Rl. In the following lemma, we demonstrate that the
function ϕck(x, y, z) exhibits a decreasing property with errors at each iteration.

Lemma A.6. Under Assumptions 3.1, 3.2 and 3.3, let γ1 ∈ (0, 1/ρf ) and γ2 > 0. Then the
sequence of (xk, yk, θk) generated by Algorithm 1 satisfies

ϕck(x
k+1, yk+1, zk+1) ≤ϕck(x

k, yk, zk)

−
(

1

2αk
− Lϕk

2
− βkL

2
θλ

γ22

)
∥(xk+1, yk+1)− (xk, yk)∥2

−
(

1

2βk
− Lvz

2

)
∥zk+1 − zk∥2

+

(
αkL

2
g +

βk
γ22

)∥∥λk+1 − λ∗(xk, yk, zk)
∥∥2

+
αk
2

(
2(Lf + CZLg1)

2 +
1

γ21

)∥∥θk+1 − θ∗(xk, yk, zk)
∥∥2 ,

(30)

where Lϕk
:= LF /ck + Lf + ρv .
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Proof. Given Assumptions 3.1 and 3.2 that ∇F and ∇f are LF - and Lf -Lipschitz continuous on
X × Y , respectively, and applying (Beck, 2017, Lemma 5.7) and Lemma A.2, we obtain

ϕck(x
k+1, yk+1, zk) ≤ϕck(x

k, yk, zk) + ⟨∇xyϕck(x
k, yk, zk), (xk+1, yk+1)− (xk, yk)⟩

+
Lϕk

2
∥(xk+1, yk+1)− (xk, yk)∥2,

(31)

with Lϕk
:= LF /ck + Lf + ρv . Based on the update rule of variable (x, y) in equation (10), the

convexity of C := {(x, y) ∈ X × Y | g(x, y) ≤ 0} and the property of the projection operator
ProjC , we have〈

(xk, yk)− αk(d
k
x, d

k
y)− (xk+1, yk+1), (xk, yk)− (xk+1, yk+1)

〉
≤ 0,

leading to 〈
(dkx, d

k
y), (x

k+1, yk+1)− (xk, yk)
〉
≤ − 1

αk
∥(xk+1, yk+1)− (xk, yk)∥2.

Combining this with inequality (31), we infer that

ϕck(x
k+1, yk+1, zk) ≤ϕck(x

k, yk, zk)−
(

1

αk
− Lϕk

2

)
∥(xk+1, yk+1)− (xk, yk)∥2

+
〈
∇xyϕck(x

k, yk, zk)− (dkx, d
k
y), (x

k+1, yk+1)− (xk, yk)
〉
.

(32)

It should be noticed that since (xk, yk, zk) ∈ X × Y × Z and (θ∗(xk, yk, zk), λ∗(xk, yk, zk)),
(θk, λk) ∈ Y × Z for all k, it holds that λk ∈ Z and ∥∇xg(x

k, θ∗(xk, yk, zk)∥ ≤
maxx∈X,θ∈Y ∥∇xg(x, θ)∥ ≤ Lg for all k. Considering the formula of ∇xyvγ,r(x, y, z) derived
in Lemma A.2 and the definitions of dkx and dky provided in equation (11), we can obtain that∥∥∇xyϕck(x

k, yk, zk)− (dkx, d
k
y)
∥∥2

=
∥∥∇xf(x

k, θ∗(xk, yk, zk)) + λ∗(xk, yk, zk)∇xg(x
k, θ∗(xk, yk, zk))

−∇xf(x
k, θk+1)− λk+1∇xg(x

k, θk+1)
∥∥2 + 1

γ21
∥θ∗(xk, yk, zk)− θk+1∥2

≤ 2
∥∥∇xf(x

k, θ∗(xk, yk, zk)) + λk+1∇xg(x
k, θ∗(xk, yk, zk))

−∇xf(x
k, θk+1)− λk+1∇xg(x

k, θk+1)
∥∥2

+ 2∥λ∗(xk, yk, zk)∇xg(x
k, θ∗(xk, yk, zk))− λk+1∇xg(x

k, θ∗(xk, yk, zk))∥2

+
1

γ21
∥θ∗(xk, yk, zk)− θk+1∥2

≤
(
2(Lf + CZLg1)

2 +
1

γ21

)∥∥θk+1 − θ∗(xk, yk, zk)
∥∥2 + 2L2

g

∥∥λk+1 − λ∗(xk, yk, zk)
∥∥2 ,

(33)

where the last inequality follows from Assumptions 3.2 and 3.3, ∥λk+1∥ ≤ CZ and
∥∇xg(x

k, θ∗(xk, yk, zk))∥ ≤ Lg . This yields〈
∇xyϕck(x

k, yk, zk)− (dkx, d
k
y), (x

k+1, yk+1)− (xk, yk)
〉

≤ αk
2

(
2(Lf + CZLg1)

2 + 1/γ21
) ∥∥θk+1 − θ∗(xk, yk, zk)

∥∥2 + αkL
2
g

∥∥λk+1 − λ∗(xk, yk, zk)
∥∥2

+
1

2αk
∥(xk+1, yk+1)− (xk, yk)∥2,

which combing with inequality (32) leads to

ϕck(x
k+1, yk+1, zk)

≤ϕck(x
k, yk, zk)−

(
1

2αk
− Lϕk

2

)
∥(xk+1, yk+1)− (xk, yk)∥2

+
αk
2

(
2(Lf + CZLg1)

2 +
1

γ21

)∥∥θk+1 − θ∗(xk, yk, zk)
∥∥2

+ αkL
2
g

∥∥λk+1 − λ∗(xk, yk, zk)
∥∥2 .

(34)
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According to the update rule of variable z in equation (10) and the property of the projection operator
ProjZ , we have 〈

dkz , z
k+1 − zk

〉
≤ − 1

βk
∥zk+1 − zk∥2. (35)

Using Lemma A.4, we obtain

ϕck(x
k+1, yk+1, zk+1)

≤ϕck(x
k+1, yk+1, zk) + ⟨∇zϕck(x

k+1, yk+1, zk), zk+1 − zk⟩+ Lvz
2

∥zk+1 − zk∥2.
(36)

Combining this with inequality (35), we can derive

ϕck(x
k+1, yk+1, zk+1)

≤ϕck(x
k+1, yk+1, zk)−

(
1

βk
− Lvz

2

)
∥zk+1 − zk∥2

+
〈
∇zϕck(x

k+1, yk+1, zk)− dkz , z
k+1 − zk

〉
.

(37)

Using the definition of ϕck and the formula of ∇zvγ,r derived in Lemma A.1 and the definition of
dkz provided in equation (11), we have∥∥∇zϕck(x

k+1, yk+1, zk)− dkz
∥∥2 =

∥∥−∇zvγ,r(x
k+1, yk+1, zk)− dkz

∥∥2
=
∥∥(zk − λ∗(xk+1, yk+1, zk))/γ2 − (zk − λk+1)/γ2

∥∥2
=

1

γ22

∥∥λk+1 − λ∗(xk+1, yk+1, zk)
∥∥2 ,

and thus〈
∇zϕck(x

k+1, yk+1, zk)− dkz , z
k+1 − zk

〉
≤ βk
2γ22

∥∥λk+1 − λ∗(xk+1, yk+1, zk)
∥∥2

+
1

2βk
∥zk+1 − zk∥2.

Then, we have from inequality (37) that

ϕck(x
k+1, yk+1, zk+1)

≤ϕck(x
k+1, yk+1, zk)−

(
1

2βk
− Lvz

2

)
∥zk+1 − zk∥2

+
βk
2γ22

∥∥λk+1 − λ∗(xk+1, yk+1, zk)
∥∥2

≤ϕck(x
k+1, yk+1, zk)−

(
1

2βk
− Lvz

2

)
∥zk+1 − zk∥2 + βk

γ22

∥∥λk+1 − λ∗(xk, yk, zk)
∥∥2

+
βkL

2
θλ

γ22
∥(xk+1, yk+1)− (xk, yk)∥2.

(38)

where the last inequality follows from Lemma A.3. The conclusion follows by combining estimates
(34) and (38).

A.5 PROOF OF LEMMA 3.1

By utilizing the auxiliary lemmas established in the previous section, we will demonstrate the de-
creasing property of

Vk := ϕck(x
k, yk, zk) + Cθλ

∥∥(θk, λk)− (θ∗(xk, yk, zk), λ∗(xk, yk, zk))
∥∥2 , (39)

where Cθλ := max{(Lf + CZLg1)
2 + 1/(2γ21) + L2

g, 1/γ
2
2}, and

ϕck(x, y, z) :=
1

ck

(
F (x, y)− F

)
+ f(x, y)− vγ,r(x, y, z). (13)

27



Published as a conference paper at ICLR 2024

Lemma A.7. Under Assumptions 3.1, 3.2 and 3.3, let γ1 ∈ (0, 1/ρf ), γ2 > 0, ck+1 ≥ ck and
ηk ∈ (η, ρT /L

2
B) with η > 0, ρT := min{1/γ1 − ρf , 1/γ2} and LB := max{Lf +Lg +CZLg2 +

1/γ1, Lg +1/γ2}, then there exist constants cα, cβ > 0 such that when 0 < αk ≤ cα and 0 < βk ≤
cβ , the sequence of (xk, yk, zk) generated by Algorithm 1 satisfies

Vk+1 − Vk ≤ − 1

4αk
∥(xk+1, yk+1)− (xk, yk)∥2 − 1

4βk
∥zk+1 − zk∥2

− ηρTCθλ
∥∥(θk, λk)− (θ∗(xk, yk, zk), λ∗(xk, yk, zk))

∥∥2 . (40)

Proof. For succinctness, we denote (xk, yk, zk) bywk. Let us first recall estimate (30) from Lemma
A.6, which states that

ϕck(w
k+1) ≤ϕck(w

k)−
(

1

2αk
− Lϕk

2
− βkL

2
θλ

γ22

)
∥(xk+1, yk+1)− (xk, yk)∥2

−
(

1

2βk
− Lvz

2

)
∥zk+1 − zk∥2 +

(
αkL

2
g +

βk
γ22

)∥∥λk+1 − λ∗(wk)
∥∥2

+
αk
2

(
2(Lf + CZLg1)

2 +
1

γ21

)∥∥θk+1 − θ∗(wk)
∥∥2 .

(41)

Since ck+1 ≥ ck, we can infer that (F (xk+1, yk+1) − F )/ck+1 ≤ (F (xk+1, yk+1) − F )/ck.
Combining with inequality (41) leads to
Vk+1 − Vk =ϕck+1

(wk+1)− ϕck(w
k)

+ Cθλ
∥∥(θk+1, λk+1)− (θ∗(wk+1), λ∗(wk+1))

∥∥2 − Cθλ
∥∥(θk, λk)− (θ∗(wk), λ∗(wk))

∥∥2
≤ϕck(x

k+1, yk+1, zk+1)− ϕck(x
k, yk, zk)

+ Cθλ
∥∥(θk+1, λk+1)− (θ∗(wk+1), λ∗(wk+1))

∥∥2 − Cθλ
∥∥(θk, λk)− (θ∗(wk), λ∗(wk))

∥∥2
≤ −

(
1

2αk
− Lϕk

2
− βkL

2
θλ

γ22

)
∥(xk+1, yk+1)− (xk, yk)∥2

−
(

1

2βk
− Lvz

2

)
∥zk+1 − zk∥2 + Cθλ

∥∥(θk+1, λk+1)− (θ∗(wk+1), λ∗(wk+1))
∥∥2

− Cθλ
∥∥(θk, λk)− (θ∗(wk), λ∗(wk))

∥∥2 + (αkL2
g +

βk
γ22

)∥∥λk+1 − λ∗(wk)
∥∥2

+
αk
2

(
2(Lf + CZLg1)

2 +
1

γ21

)∥∥θk+1 − θ∗(wk)
∥∥2

≤ −
(

1

2αk
− Lϕk

2
− βkL

2
θλ

γ22

)
∥(xk+1, yk+1)− (xk, yk)∥2 −

(
1

2βk
− Lvz

2

)
∥zk+1 − zk∥2

+ Cθλ
∥∥(θk+1, λk+1)− (θ∗(wk+1), λ∗(wk+1))

∥∥2 − Cθλ
∥∥(θk, λk)− (θ∗(wk), λ∗(wk))

∥∥2
+ 2max{αk, βk}Cθλ

∥∥(θk+1, λk+1)− (θ∗(wk), λ∗(wk))
∥∥2 ,

(42)
where the last inequality follows from the fact that

Cθλ := max
{
(Lf + CZLg1)

2 + 1/(2γ21) + L2
g, 1/γ

2
2

}
.

We can demonstrate that∥∥(θk+1, λk+1)− (θ∗(wk+1), λ∗(wk+1))
∥∥2 − ∥∥(θk, λk)− (θ∗(wk), λ∗(wk))

∥∥2
+ 2αk

∥∥(θk+1, λk+1)− (θ∗(wk), λ∗(wk))
∥∥2

≤ (1 + ϵk + 2αk)
∥∥(θk+1, λk+1)− (θ∗(wk), λ∗(wk))

∥∥2 − ∥∥(θk, λk)− (θ∗(wk), λ∗(wk))
∥∥2

+ (1 +
1

ϵk
)∥(θ∗(wk+1), λ∗(wk+1))− (θ∗(wk), λ∗(wk))∥2

≤ (1 + ϵk + 2αk)(1− ηkρT )
2∥(θk, λk)− (θ∗(wk), λ∗(wk))∥2 −

∥∥(θk, λk)− (θ∗(wk), λ∗(wk))
∥∥2

+ (1 +
1

ϵk
)L2

θλ

∥∥wk+1 − wk
∥∥2 ,
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for any ϵk > 0, where the second inequality is a consequence of Lemmas A.3 and A.5. By setting
ϵk = ηkρT /2 in the above inequality, we obtain that when αk ≤ ηkρT /4, it holds that (1 + ϵk +
2αk)(1− ηkρT ) ≤ 1 and thus∥∥(θk+1, λk+1)− (θ∗(wk+1), λ∗(wk+1))

∥∥2 − ∥∥(θk, λk)− (θ∗(wk), λ∗(wk))
∥∥2

+ 2αk
∥∥(θk+1, λk+1)− (θ∗(wk), λ∗(wk))

∥∥2
≤ − ηkρT ∥(θk, λk)− (θ∗(wk), λ∗(wk))∥2 +

(
1 +

2

ηkρT

)
L2
θλ

∥∥wk+1 − wk
∥∥2 , (43)

Similarly, we can show that when βk ≤ ηkρT /4, it holds that∥∥(θk+1, λk+1)− (θ∗(wk+1), λ∗(wk+1))
∥∥2 − ∥∥(θk, λk)− (θ∗(wk), λ∗(wk))

∥∥2
+ 2βk

∥∥(θk+1, λk+1)− (θ∗(wk), λ∗(wk))
∥∥2

≤ − ηkρT ∥(θk, λk)− (θ∗(wk), λ∗(wk))∥2 +
(
1 +

2

ηkρT

)
L2
θλ

∥∥wk+1 − wk
∥∥2 . (44)

Combining estimates (42), (43) and (44), we have

Vk+1 − Vk ≤ −
(

1

2αk
− Lϕk

2
− βkL

2
θλ

γ22
−
(
1 +

2

ηkρT

)
L2
θλCθλ

)∥∥(xk+1, yk+1)− (xk, yk)
∥∥2

−
(

1

2βk
− Lvz

2
−
(
1 +

2

ηkρT

)
L2
θλCθλ

)
∥zk+1 − zk∥2

− ηkρTCθλ∥(θk, λk)− (θ∗(wk), λ∗(wk))∥2.
(45)

When ck+1 ≥ ck, ηk ≥ η > 0, αk ≤ ηρT /4 and βk ≤ ηρT /4, it holds that for any k, αk ≤ ηkρT /4,
βk ≤ ηkρT /4,

Lϕk

2
+
βkL

2
θλ

γ22
+

(
1 +

2

ηkρT

)
L2
θλCθλ ≤ Lϕ0

2
+ +

ηρTL
2
θλ

4γ22
+

(
1 +

2

ηρT

)
L2
θλCθλ =: Cα,

(46)
and

Lvz
2

+

(
1 +

2

ηkρT

)
L2
θλCθλ ≤ Lvz

2
+

(
1 +

2

ηρT

)
L2
θλCθλ =: Cβ , (47)

Consequently, if cα, cβ > 0 satisfies

cα ≤ min

{
1

4
ηρT ,

1

4Cα

}
, cβ ≤ min

{
1

4
ηρT ,

1

4Cβ

}
, (48)

then, when 0 < αk ≤ cα and 0 < βk ≤ cβ , it holds that

1

2αk
− Lϕk

2
− βkL

2
θλ

γ22
−
(
1 +

2

ηkρT

)
L2
θλCθλ ≥ 1

4αk
,

and
1

2βk
− Lvz

2
−
(
1 +

2

ηkρT

)
L2
θλCθλ ≥ 1

4βk
.

Then, the conclusion follows from estimate (45).

A.6 PROOF OF THEOREM 3.1

We establish the non-asymptotic convergence of LV-HBA in the following theorem, as measured by
the residual function defined in equation (15),

Rk := dist (0, (∇F (x, y), 0) + ck ((∇f(x, y), 0)−∇vγ,r(x, y, z)) +NC×Z(x, y, z)) . (15)
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Theorem A.3. Under Assumptions of Lemma A.7, let γ1 ∈ (0, 1/ρf ), γ2 > 0, ck = c(k + 1)p with
p ∈ (0, 1/2), c > 0, and ηk ∈ (η, ρT /L

2
B) with η > 0, then there exists cα, cβ > 0 such that when

αk ∈ (α, cα) and βk ∈ (β, cβ) with α, β > 0, the sequence of (xk, yk, zk, θk, λk) generated by
LV-HBA in Algorithm 1 satisfies

min
0≤k≤K

∥∥(θk, λk)− (θ∗r(x
k, yk, zk), λ∗r(x

k, yk, zk))
∥∥ = O

(
1

K1/2

)
, (49)

and

min
0≤k≤K

Rk(x
k+1, yk+1, zk+1) = O

(
1

K(1−2p)/2

)
. (50)

Furthermore, if there exists M > 0 such that ψck(x
k, yk, zk) ≤ M for any k, the sequence of

(xk, yk, zk) also satisfies

0 ≤ f(xk, yk)− vγ(x
k, yk, zk) ≤ f(xk, yk)− vγ,r(x

k, yk, zk) = O

(
1

Kp

)
. (51)

Proof. Firstly, given cα, cβ > 0 in equation (48), Lemma 3.1 guarantees that the inequality (14)
holds when αk ≤ cα, βk ≤ cβ . By telescoping the inequality (14) for k = 0, 1, . . . ,K − 1, we get

K−1∑
k=0

(
1

4αk
∥(xk+1, yk+1)− (xk, yk)∥2 + 1

4βk
∥zk+1 − zk∥2

+ ηρTCθλ
∥∥(θk, λk)− (θ∗r(x

k, yk, zk), λ∗r(x
k, yk, zk))

∥∥2)
≤V0 − VK ≤ V0,

(52)

where the last inequality is valid since VK is nonnegative. The latter is implies by the fact that
vγ,r(x, y, z) ≤ vγ(x, y, z) ≤ f(x, y) for all (x, y) ∈ C. Thus, we have

∞∑
k=0

∥∥(θk, λk)− (θ∗r(x
k, yk, zk), λ∗r(x

k, yk, zk))
∥∥2 <∞. (53)

This implies that the estimate (49) holds, that is,

min
0≤k≤K

∥∥(θk, λk)− (θ∗r(x
k, yk, zk), λ∗r(x

k, yk, zk))
∥∥ = O

(
1

K1/2

)
. (54)

Secondly, According to the update rule of variables (x, y, z) in equation (10), we have that

0 ∈ ck(d
k
x, d

k
y) +NC(x

k+1, yk+1) +
ck
αk

(
(xk+1, yk+1)− (xk, yk)

)
,

0 ∈ ckd
k
z +NZ(z

k+1) +
ck
βk

(
zk+1 − zk

)
.

(55)

By the definitions of dkx, dky and dkz given in equation (11), we obtain

(ekxy, e
k
z) ∈

(
∇F (xk+1, yk+1), 0

)
+ ck

((
∇f(xk+1, yk+1), 0

)
−∇vγ,r(xk+1, yk+1, zk+1)

)
+NC×Z(x

k+1, yk+1, zk+1),

with

ekxy := ∇xyψck(x
k+1, yk+1, zk+1)− ck(d

k
x, d

k
y)−

ck
αk

(
(xk+1, yk+1)− (xk, yk)

)
,

ekz := ∇zψck(x
k+1, yk+1, zk+1)− ckd

k
z −

ck
βk

(
zk+1 − zk

)
.

(56)

Next, we estimate ∥ekxy∥. We have

∥ekxy∥ ≤∥∇xyψck(x
k+1, yk+1, zk+1)−∇xyψck(x

k, yk, zk)∥+ ∥∇xyψck(x
k, yk, zk)− ck(d

k
x, d

k
y)∥

+
ck
αk

∥∥(xk+1, yk+1)− (xk, yk)
∥∥ .
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For the first term in the right hand side of the above inequality, by using Assumptions 3.2, 3.2 and
3.3, Lemmas A.1 and A.3, we can obtain the existence of Lψ1

> 0 such that

∥∇xyψck(x
k+1, yk+1, zk+1)−∇xyψck(x

k, yk, zk)∥ ≤ ckLψ1
∥(xk+1, yk+1, zk+1)−(xk, yk, zk)∥.

Using the inequality (33) and Lemma A.5, we have

∥∇xyψck(x
k, yk, zk)− ck(d

k
x, d

k
y)∥ = ck

∥∥∇xyϕck(x
k, yk, zk)− (dkx, d

k
y)
∥∥

≤ ckCψ1

∥∥(θk+1, λk+1)− (θ∗r(x
k, yk, zk), λ∗r(x

k, yk, zk))
∥∥

≤ ckCψ1

∥∥(θk, λk)− (θ∗r(x
k, yk, zk), λ∗r(x

k, yk, zk))
∥∥ ,

(57)
with Cψ1

:=
√
max{2(Lf + CZLg1)

2 + 1/γ21 , 2L
2
g}. Hence, we have

∥ekxy∥ ≤ ckLψ1
∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥+ ck

αk

∥∥(xk+1, yk+1)− (xk, yk)
∥∥

+ ckCψ1

∥∥(θk, λk)− (θ∗r(x
k, yk, zk), λ∗r(x

k, yk, zk))
∥∥ .

For ∥ekz∥, we have

∥ekz∥ ≤∥∇zψck(x
k+1, yk+1, zk+1)− ckd

k
z∥+

ck
βk

∥∥zk+1 − zk
∥∥ .

Using Lemmas A.1 and A.5, we have

∥∇zψck(x
k+1, yk+1, zk+1)− ckd

k
z∥ = ck

∥∥−∇zvγ,r(x
k+1, yk+1, zk+1)− dkz

∥∥
≤ ck
γ2

(∥∥λk+1 − λ∗r(x
k+1, yk+1, zk+1)

∥∥+ ∥∥zk+1 − zk
∥∥)

≤ ck
γ2

(∥∥λk − λ∗r(x
k+1, yk+1, zk+1)

∥∥+ ∥∥zk+1 − zk
∥∥) .

Therefore, we have

∥ekz∥ ≤ ck
βk

∥∥zk+1 − zk
∥∥+ ck

γ2

(∥∥λk − λ∗r(x
k+1, yk+1, zk+1)

∥∥+ ∥∥zk+1 − zk
∥∥) .

With the estimations of ∥ekxy∥ and ∥ekz∥, we obtain the existence of Lψ > 0 such that

Rk(x
k+1, yk+1, zk+1) ≤ ckLψ∥(xk+1, yk+1, zk+1)− (xk, yk, zk)∥

+
ck
αk

∥∥(xk+1, yk+1)− (xk, yk)
∥∥+ ck

βk

∥∥zk+1 − zk
∥∥

+ ck

(
Cψ1

+
1

γ2

)∥∥(θk, λk)− (θ∗r(x
k, yk, zk), λ∗r(x

k, yk, zk))
∥∥ .

Utilizing this inequality, let αk ≥ α and βk ≥ β for some positive constants α, β, we can show that
there exists CR > 0 such that

1

c2k
Rk(x

k+1, yk+1, zk+1)2

≤CR

(
1

4αk
∥(xk+1, yk+1)− (xk, yk)∥2 + 1

4βk
∥zk+1 − zk∥2

+ ηρTCθλ
∥∥(θk, λk)− (θ∗r(x

k, yk, zk), λ∗r(x
k, yk, zk))

∥∥2).
(58)

Combining this with the inequality (52) implies that
∞∑
k=0

1

c2k
Rk(x

k+1, yk+1, zk+1)2 <∞. (59)

Because 2p < 1, it holds that
K∑
k=0

1

c2k
=

1

c2

K∑
k=0

(
1

k + 1

)2p

≥ 1

c2

∫ K+2

1

1

t2p
dt ≥ (K + 2)1−2p − 1

(1− 2p)c2
,
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and we can conclude from the inequality (59) that

min
0≤k≤K

Rk(x
k+1, yk+1, zk+1) = O

(
1

K(1−2p)/2

)
.

Thus we complete the proof of the estimate (50).

Finally, since ψck(x
k, yk, zk) ≤M and F (xk, yk) ≥ F for any k, we have

ck

(
f(xk, yk)− vγ,r(x

k, yk, zk)
)
≤M − F , ∀k,

and we can obtain from ck = c(k + 1)p that

f(xk, yk)− vγ,r(x
k, yk, zk) = O

(
1

Kp

)
.

Since vγ,r(x, y, z) ≤ vγ(x, y, z) ≤ f(x, y) for all (x, y) ∈ C, we get

0 ≤ f(xk, yk)− vγ(x
k, yk, zk) ≤ f(xk, yk)− vγ,r(x

k, yk, zk) = O

(
1

Kp

)
.

This establishes the desired estimate (51), completing the proof.
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