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ABSTRACT 
Contrastive learning (CL) has recently catalyzed a productive 
avenue of research for recommendation. The efficacy of most CL 
methods for recommendation may hinge on their capacity to 
learn representation uniformity by mapping the data onto a hy-
persphere. Nonetheless, applying contrastive learning to down-
stream recommendation tasks remains challenging, as existing 
CL methods encounter difficulties in capturing the nonlinear de-
pendence of representations in high-dimensional space and 
struggle to learn hierarchical social dependency among users—
essential points for modeling user preferences. Moreover, the 
subtle distinctions between the augmented representations ren-
der CL methods sensitive to noise perturbations. Inspired by the 
Hilbert-Schmidt independence criterion (HSIC), we propose a 
graph Contrastive Learning model with Kernel Dependence 
Maximization CL-KDM for social recommendation to address 
these challenges. Specifically, to explicitly learn the kernel de-
pendence of representations and improve the robustness and 
generalization of recommendation, we maximize the kernel de-
pendence of augmented representations in kernel Hilbert space 
by introducing HSIC into the graph contrastive learning. Addi-
tionally, to simultaneously extract the hierarchical social de-
pendency across users while preserving underlying structures, 
we design a hierarchical mutual information maximization mod-
ule for generating augmented user representations, which are 
injected into the message passing of a graph neural network to 
enhance recommendation. Extensive experiments are conducted 
on three social recommendation datasets, and the results indicate 
that CL-KDM outperforms various baseline recommendation 
methods.  

CCS CONCEPTS 
• Information systems → Social recommendation. 

KEYWORDS 
Self-Supervised Learning, Contrastive Learning, Hilbert-Schmidt 
independence criterion, Data Augmentation, Graph Neural Net-
works  
Relevance: This work is relevant to the focus of understanding better the im-
pact of the Web and Web technologies, and to the track of Graph Algorithms 
and Modeling for the Web. This work proposes a graph contrastive learning 
with kernel dependence maximization algorithm, aiming to address the chal-
lenge of how to learn the nonlinear dependence of representations in high-
dimensional space in the field of graph representations. 

1  INTRODUCTION 
In the realm of recommender systems, various collaborative fil-
tering techniques have been utilized to map users and items into 
latent space [14]. Among these methods, Graph Neural Networks 
(GNNs) have risen as prominent frameworks within the context 
of collaborative filtering, effectively capturing high-order con-
nectivity patterns between users and items [31]. However, their 
effectiveness hinges on plentiful high-quality labels, struggling 
with sparse or noisy labeled data [12]. 

To mitigate label-dependency issues in GNN-based recom-
mendation, contrastive learning (CL) has rekindled interest in 
recommender systems [15, 18, 28]. CL's capacity to extract fea-
tures from unlabeled data offers promise in addressing data spar-
sity naturally [3, 11]. Recent research [12-15] has leveraged CL 
to improve recommendation. Depending on the way in which 
contrasting views are generated for collaborative filtering, recent 
CL models can be broadly classified into: i) Structure-Level Aug-
mentation [12]: augmenting user-item graphs with structural 
perturbations based on topology to create contrastive views and 
maximizes representation consistency via a graph encoder; ii) 
Representation-Level Augmentation [3]: generating contrasts 
through random noise added to representations; iii) Local-Global 
Augmentation [14]: reconciling local user-item embeddings with 
global information through local-global contrastive learning. De-
spite the encouraging results achieved by CL, however, they are 
not sufficient to deal with the nonlinear dependence of user/item 
representations in high-dimensional space and the modeling of 
social dependency due to hierarchical structures, which are es-
sential for user preference modeling.  

Firstly, the study [3] revealed that the success of contrastive 
learning applied to recommendation primarily stems from the 
uniform representation distribution, thus implicitly acting as 
popularity debiasing and capturing the intrinsic characteristics 
of users and items. Delving deeper into the study [28], we argue 
the key to contrastive learning lies in that it uses 𝐿2 normaliza-
tion to map raw data to hyperspheres for representation differ-
entiation and uniformity. However, the original intent of 𝐿2 
normalization is to map the vectors onto a unit length hy-
persphere for similarity metrics and to remove scale effects (as 
shown in Figure 1). Alarmingly, this process does not change the 
dimensionality of the data, but only influence the scale of the 
data, which may lead to weak differentiation of representations 
in high-dimensional space. Meanwhile, 𝐿2 normalization may 
lose the magnitude information of the original data, leading to 
information loss. Consequently, existing CL models cannot ex-
plicitly handle nonlinear dependence between representations in 
high-dimensional space. This capability is essential for capturing 
intricate patterns of user-item interactions. Furthermore, the lit-
erature [2] implies that the effectiveness of the classical CL mod-
el InfoNCE may stem from its implicit estimation of the kernel-
based dependence. 
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Secondly, owing to the intricate user-item interactions, the in-
fluence of users' social networks on recommender systems is 
striking and has given rise to a plethora of social recommenda-
tion models. Hence, it is advisable to harness the higher-order 
social influence to enact structure-level augmentations. However, 
existing structure-level and local-global augmentations typically 
extract subgraphs to learn the connectivity patterns of a graph, 
potentially resulting in the loss of critical structures and the re-
tention of noisy data. Intuitively, partitioning a graph into com-
munities is a potent method for preserving underlying structural 
information [48], as it leverages the inherent community charac-
teristics—tight internal connectivity of nodes within communi-
ties and weaker connectivity of nodes across communities—
spanning local to global scale (as shown in Figure 1(b)). The 
community structures possess the potential to influence user 
preferences, underscoring the necessity of refining users' hierar-
chical social dependency to enhance recommendation. 

To this end, an intriguing question arises: is there a means to 
explicitly learn the nonlinear dependence of representations in 
high-dimensional space and hierarchical social dependency? Ac-
cording to self-supervised learning from statistical dependence 
[2] and complex network theory, we propose to explicitly learn 
the kernel dependence of representations in Hilbert space and 
leverage community characteristics to explore the following 
challenges:  
•CH1: How to learn the nonlinear dependence of representa-
tions in high-dimensional space while empowering the ability to 
maintain semantic consistency and variability for robust and 
generalizable recommendation. The Hilbert Schmidt independ-
ence criterion (HSIC) provides a solution for learning the nonlin-
ear dependence of representations, where the sparsity of high-
dimensional space makes the selection of representations critical. 
However, current representation-level augmentations heavily 
rely on designed perturbations to create contrastive views of 
representations. Excessive perturbations can lead to substantial 
deviations from the original graph semantics, while overly subtle 
perturbations may fail to provide augmented embeddings with 
adequate variability. Furthermore, if the difference between 
augmented representations of a model is so small to be limited to 
constants, the model encounters challenges in generalizing to 
new datasets. The model exhibits sensitivity to minor input per-
turbations, thereby performing poorly in coping with noisy data. 
•CH2: How to capture the hierarchical social dependency among 
users by leveraging hierarchical topology while preserving 
community structures? While the community theory provides a 

viable direction for modeling hierarchical dependency, it remains 
challenging to leverage hierarchical community structures and 
simultaneously extract social dependency from the node-level to 
the community-level, and to the global-level. Meanwhile, the 
connectivity of nodes inside and outside a community implied by 
the community structure may make it promising to tap into the 
partial order relationships between negative samples in a social 
network, rather than just utilizing the positive samples of the 
social network for recommendation. 

To tackle these challenges, we propose a method of hierar-
chical graph contrastive learning with kernel dependence maxi-
mization (CL-KDM) which is capable of learning the nonlinear 
dependence in Hilbert space for robust and generalizable rec-
ommendation. Specifically, we design noise perturbations with 
Gumbel-distribution to generate semantically consistent and var-
iable augmented representations, and then we learn kernel de-
pendence maximization of the augmented representations by 
adding HSIC to the graph contrastive learning. To capture hier-
archical social dependency, we propose a hierarchical mutual 
information maximization approach that maximizes mutual in-
formation from the user-level to the community-level, and from 
the community-level to the global-level, thereby preserving the 
underlying structure. Finally, we design community-guided so-
cial graph reconstruction to further enhance user embeddings.  

In summary, our work makes the following contributions:  
• To the best of our knowledge, we are the first to introduce 
HSIC into recommendation to learn the kernel dependence of 
augmented user/item representations in Hilbert space.  
• Our theoretical analysis suggests that representation-level 
augmentations may be restricted to constants. Hence, we intro-
duce HSIC as a regularizer into graph contrastive learning to en-
hance the robustness and generalizability of recommendation. 
• We design hierarchical topology enhanced social dependency 
modeling and introduce the dependency to the message passing. 
Additionally, the community-guided social graph reconstruction 
is integrated to enhance user embeddings. 
• Extensive experiments demonstrate that CL-KDM achieves sig-
nificant improvements over state-of-the-art models. Ablation 
study shows that the Gaussian kernel effectively learns the ker-
nel dependence of augmented representations in Hilbert space. 

2  Related Work 
Social Recommendation. Social influence theories [32] suggest 
that users' preferences and decisions are influenced by their 
friends, motivating the integration of social relationships into 
recommendation to overcome data sparsity. Traditional methods 
(e.g., Sorec [33], TrustSVD [34]) use matrix factorization to pro-
ject users into latent factors, assuming users with social connec-
tions share similar interests [36]. Deep learning-based models 
(e.g., DiffNet [35], ESRF [30], DISGCN [36]) leverage higher-
order social similarity through neural networks. Models using 
attention mechanisms, as represented by SAMN [37] and 
GraphRec [38], can dynamically assign varying levels of im-
portance to differentiate users or items, thus capturing nuanced 
preferences and interactions among users. Data augmentations 
have been applied in recent models (MHCN [10], SMIN [39]). 
However, most existing social recommendation falls short of 

Figure 1: Motivation examples. (a) The left diagram illus-
trates the uniformity of user/item representation distribu-
tion on the unit hypersphere. The right diagram enables 
dimension transformation by mapping the representations 
to high-dimensional space via kernel functions. (b) Com-
munity structures.  
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capturing essential hierarchical social dependency and underuti-
lizing partial order relationships of negative samples in social 
networks, which are vital to enhancing user preference modeling. 
Graph Neural Network for Recommendation. Given the 
strength of representation learning on graph-structured data, 
graph neural networks have been widely adopted in recommen-
dation to model various relationships in different recommenda-
tion scenarios. For example, i) user-item interactions in collabo-
rative filtering (e.g., LightGCN [31], NGCF [7]); ii) user connec-
tions in social recommendation (e.g., ESRF [30], DcRec [29]); iii) 
item-item temporal relationships (e.g., TiDA-GCN [40], MA-
GNN [41]); and iv) entity-item dependency in knowledge graph-
enhanced recommendation (e.g., Metakg [42]). Therefore, our 
CL-KDM adopts GNNs as the backbone to model the high-order 
collaborative relationships with the injection of hierarchical to-
pology enhanced social dependency.  
Self-Supervised Learning. Self-supervised learning (SSL) has 
garnered increasing prominence as a methodology utilized for 
extracting supervisory signals from data, facilitating the acquisi-
tion of representations without reliance on labels [2, 16-19]. In 
light of the favorable outcomes achieved by SSL in the field of 
graph representation learning [20], recent studies have also un-
dertaken an exploration of its applicability in recommendation 
scenarios [3, 12]. These studies mainly develop self-supervision 
tasks from the following perspectives: i) structure-level augmen-
tation: models such as SGL [12] and DCL [44] employ random 
node/edge dropout to create contrastive views based on user-
item graph augmentation; ii) representation-level augmentation: 
These works develop representation-level augmentations by 
adding perturbations into inputs to regulate the uniformity of 
representation distribution [3, 43]; iii) local-global augmentations: 
HCCF [45] and AutoCF [14] maximize mutual information from 
the node-level to the global-level. Different from these works, for 
robustness and generalization, we learn the nonlinear depend-
ence of augmented representations in high-dimensional space to 
regulate the uniformity of representations. 

3  METHODOLOGY  
This section elaborates the technical details of CL-KDM. We dis-
play the architecture of CL-KDM in Figure 2. We consider a rec-
ommendation scenario with a set of 𝑀  users 𝑈 =

{𝑢1, … 𝑢𝑚, … 𝑢𝑀} and a set of 𝑁 items 𝑉 = {𝑣1, … 𝑣𝑛, … 𝑣𝑁}. We 
define relevant inputs as below: Definition 1: User Social Graph 
𝒢𝑠 = {𝑈, 𝐸𝑠}. If two user nodes 𝑢𝑚 and 𝑢𝑚′  are socially con-
nected, there is an edge 𝐸𝑠  between them in 𝒢𝑠 . Community 
Graph 𝒢𝐶 = {𝑈, 𝐶, 𝐸𝑐}. 𝐶 denotes the set of community nodes 
and 𝐸𝑐 denotes affiliations between user nodes and community 
nodes. If 𝑢𝑚 belongs to community 𝑐𝑘 , there is an edge between 
𝑢𝑚 and 𝑐𝑘 in 𝒢𝑐. Definition 2: Interaction Graph 𝒢𝑟 is defined 
as 𝒢𝑟 = {𝑈, 𝑉, 𝐸𝑟}, where 𝐸𝑟  denotes edges between 𝑢𝑚  and 
𝑣𝑛. Problem Statement. Input: the social graph 𝒢𝑠, community 
graph 𝒢𝑐 and the user-item interaction graph 𝒢𝑟. Output: scores 
that predict the future user-item interactions.  

3.1  Hierarchical Topology Enhanced Social 
Dependency Modeling 
To capture the hierarchical social dependency among users, we 
develop a hierarchical topology enhanced social dependency 
framework that maximizes the mutual information between the 

community graph 𝒢𝑐 and social graph 𝒢𝑠. We first generate 

node-level embedding 𝒙𝑢𝑚 ∈ ℝ𝑑 for each user in our message 
propagation layer. The local encoding function over 𝒢𝑠 is de-

fined as:  𝐗∗ = ReLU(�̂�𝑠
−1/2(𝐀𝑠 + 𝐈𝑠)�̂�s

−1/2𝐗𝐖s) , where 𝐗∗ ∈ ℝ𝑀×𝑑 
is the encoded hierarchical social-aware representations for all 
users. 𝐖𝑠 is a learnable weight matrix and 𝐈𝑠 is an identity 
matrix. �̂�𝑠

−1/2(𝐀𝑠 + 𝐈𝑠)�̂�s
−1/2  performs the message aggregation 

for social neighbors, and �̂�𝑠 represents the diagonal node de-
gree matrix of the adjacent matrix  �̂�𝑠 ∈ ℝ𝑀×𝑀. After obtaining 
the node-level embeddings 𝑿 ∈ ℝ𝑀×𝑑  encoded from 𝒢𝑠 , we 

learn the community-level representation 𝝅𝑐 ∈ ℝ𝑑 over the 𝒢𝑐 

and the global-level representation 𝒓𝑠 ∈ ℝ𝑑 of 𝒢𝑠. We define 

community (global)-level aggregation function ℝ𝑀×𝑑 → ℝ𝑑 
with the consideration of the relationships among users, com-
munities, and the global graph as follows: 

     𝝅𝑐 = σ(
∑ 𝑿𝒎
𝑀
𝑚=1 ∙ 𝜌𝑚,𝑚

∑ ∑ 𝑔𝑚,𝑘
𝐾
𝑘=1

𝑀
𝑚=1

),𝒓𝑠 = σ(
∑ 𝑿𝒎
𝑀
𝑚=1 ∙ 𝑏𝑚,𝑚

∑ ∑ 𝑎𝑚,𝑚′
𝑀
𝑚′=1

𝑀
𝑚=1

)              (1) 

where σ denotes the sigmoid activation function and 𝜌𝑚,𝑚 indi-
cates the number of communities that contain user m, and 𝑔𝑚,𝑘 
indicates the user's affiliation value with the community. 𝑏𝑚,𝑚 
and 𝑎𝑚,𝑚′ represents the element in �̂�𝑠 and �̂�𝑠, respectively. 

We bridge the node-level embedding 𝒙𝑢𝑚  and the global-
level representation 𝒓𝑠  through community-level representa-
tion 𝝅𝑐 , and enhance these representations by exploring hierar-
chical mutual information among them. To encode the mutual 
dependency between community 𝒢𝑐 and global graph 𝒢𝑠, we 
train a discriminator that distinguishes between positive samples 
(𝒙𝑢𝑚 , 𝝅𝑐 ), (𝝅𝑐𝑘 , 𝒓𝑠 ) and negative samples (�́�𝑢𝑚 , 𝝅𝑐 ),  (�́�𝑐𝑘 , 𝒓𝑠) 
from 𝒢𝑐 and 𝒢𝑠 while preserving hierarchical topology. Nega-
tive instances (�́�𝑢𝑚 , 𝝅𝑐 ), (�́�𝑐𝑘 , 𝒓𝑠) are generated based on the 
node shuffling strategy [27]. The positive instances (𝒙𝑢𝑚 , 𝝅𝑐), 
(𝝅𝑐𝑘 ,𝒓𝑠) and negative instances (�́�𝑢𝑚 , 𝝅𝑐), (�́�𝑐𝑘 , 𝒓𝑠) are then fed 

into the discriminator function 𝜓(⋅):ℝ𝑑 × ℝ𝑑 : 
𝜓(𝒙𝑢𝑚,𝝅𝑐) = 𝜎(𝒙𝑢𝑚

T ⋅ 𝐖𝟏 ⋅ 𝝅𝑐) 
 𝜓(𝝅𝑐𝑘 , 𝒓𝑠) = 𝜎(𝝅𝑐𝑘

T ⋅ 𝐖𝟐 ⋅ 𝒓𝑠)  (2) 
where 𝜓(⋅) generates a probability score of node 𝑢𝑚 (𝑐𝑘) be-
longing to community 𝒢𝑐  (graph 𝒢𝑠 ) given representations 
(𝒙𝑢𝑚 , 𝝅𝑐), (𝝅𝑐𝑘 , 𝒓𝑠). 𝐖1 ,𝐖2 ∈ ℝ𝑑×𝑑 are learnable matrices. We 
then define community-level mutual information-based loss ℒ𝑚𝑢𝑐  
and global-level mutual information-based loss ℒ𝑚𝑢𝑔  as follows:  

ℒ𝑚𝑢𝑐 = −
1

𝑁𝑝𝑜𝑠
𝑢 + 𝑁𝑛𝑒𝑔

𝑢
(∑ 𝜌(𝒙𝒖𝒎, 𝝅𝒄)

𝑁𝑝𝑜𝑠
𝑢

𝑚=1
⋅ log𝜓(𝒙𝒖𝒎, 𝝅𝒄)

+ ∑ 𝜌(�́�𝑢𝑚 , 𝝅𝒄)
𝑁𝑛𝑒𝑔
𝑢

𝑚=1
⋅ log[1 − 𝝍(�̃�𝑢𝑚 , 𝝅𝒄)]) 

     ℒ𝑚𝑢𝑔
= −

1

𝑁𝑝𝑜𝑠
𝑐 + 𝑁𝑛𝑒𝑔

𝑐
(∑ 𝜌(𝝅𝑐𝑘

, 𝒓𝒔)
𝑁𝑝𝑜𝑠
𝑐

𝑘=1
⋅ log𝜓(𝝅𝒄𝒌

, 𝒓𝒔)

+ ∑ 𝜌(�́�𝒄𝒌 , 𝒓𝒔)
𝑁𝑛𝑒𝑔
𝑐

𝑘=1
⋅ log[1 − 𝜓(�́�𝑐𝑘 , 𝒓𝑠)])           (3) 

where positive instance 𝜌(𝒙𝑢𝑚 ,𝝅𝑐) = 1  and negative instance 
𝜌(�́�𝑢𝑚,𝝅𝑐) = 0. We minimize the joint mutual information-based 
loss ℒ𝑚𝑢 = 𝜆𝑐ℒ𝑚𝑢𝑐 + 𝜆𝑔ℒ𝑚𝑢𝑔  to preserve the node-level user 
features, community-level and global graph-level dependency, , 
where 𝜆𝑐 and 𝜆𝑔 balance the information learned from 𝒢𝑐 and 
𝒢𝑠. To this end, the social-aware user representations 𝐗∗ ∈ ℝ𝑀×𝑑 
are generated while preserving the hierarchical social context. 
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3.2  Graph Contrastive Learning with Kernel 
Dependence Maximization 
Inspired by the success of SSL in vision tasks from a statistical de-
pendence perspective [2], we propose a graph contrastive learning 
method based on the Hilbert Schmidt independence criterion to 
learn the kernel dependence maximization of augmented represen-
tations in high-dimensional space via kernel functions, improving 
the robustness of recommendation. We theoretically analyze that 
the difference of augmented representations in contrastive learn-
ing via subtle perturbations is limited by HSIC, and then we intro-
duce the HSIC-based kernel dependence maximization as a regu-
larizer to graph contrastive learning to improve recommendation. 
3.2.1 Message Propagation We adopt the GNNs as the backbone 
of our CL-KDM, and define the message propagation function as: 

  𝒆𝑢𝑚
(𝑙+1) = ∑

1

√|𝐽𝑚||𝐽𝑛|𝑛∈𝐽𝑚

𝒆𝑣𝑛
(𝑙) 

                                𝒆𝑣𝑛
(𝑙+1) = ∑

1

√|𝐽𝑚||𝐽𝑛|𝑚∈𝐽𝑛

(𝒆𝑢𝑚
(𝑙) + 𝒙𝑢𝑚

∗ )                              (4) 

where 𝐽𝑚 represents the set of items that interact with user 𝑢𝑚, 
and 𝐽𝑛 denotes the set of users that interact with item 𝑣𝑛. 𝑙 de-
notes the index of graph neural network layers. 𝒙𝑢𝑚

∗  is the so-
cial-aware user representation which is learned from our designed 
framework of hierarchical social dependency encoding (Section 3.1). 
Eq. (4) illustrates the concurrent incorporation of the node-level, 

community-level, and global-level social dependency into the 

process of message propagation. 
3.2.2 Noise perturbations with Gumbel Distribution. While 
the introduction of uniform perturbations to user/item nodes 
achieves representation-level augmentations and enhances the 
recommendation [3], uniformly distributed noise may cause the 
semantic inconsistency of augmented representations with the 
inputs. Inputting the Gumbel-distributed noise to representations 
can ensure that augmented representations do not compromise 
original semantics of a graph [1, 24]. Hence, we inject the Gumbel 
noise into representations to fortify the robustness of recommen-
dation. Formally, given a user node 𝑢𝑚 and its representation 
𝒆𝑢𝑚 ∈ ℝ𝑑 , we inject the Gumbel-distributed noises into 𝒆𝑢𝑚 , and 
obtain the following augmented representations �̃�𝑢𝑚(�̃̃�𝑢𝑚): 

�̃�𝑢𝑚 = 𝒆𝑢𝑚 + ∆̃,  �̃̃�𝑢𝑚 = 𝒆𝑢𝑚 + ∆̃̃ 

 𝑠. 𝑡.      ‖∆‖2 + 𝜖,    ∆ + ∆′ ⊙ sign(𝒆𝑢𝑚) (5) 

∆′= log(− log(∆̅)),  ∆̅∈ ℝ𝑑~Uniform(0,1)  
where ∆̃ and ∆̃̃ denote the different Gumbel-distributed noise 
vectors ∆ added to the same user node 𝑢𝑚, and 𝜖 controls the 
radius of a hypersphere [3]. We generate the augmented represen-
tations �̃�𝑣𝑛 and �̃̃�𝑣𝑛 of item 𝑣𝑛 using a similar way to that used 
for generating augmented user representations. At each layer 𝑙, 
different noise perturbations are imposed on the node embeddings 
[3]. For simplicity, we omit the superscript 𝑙. 
3.2.3 Graph contrastive learning. To mitigate the popularity 
bias problem in recommendation, we employ the InfoNCE loss 
[22] to learn each user representation by contrasting two differ-

ent augmentations: ℒ𝑐𝑙
𝑢𝑠𝑒𝑟 = ∑ −log 

𝑒𝑥𝑝(�̃�𝑢𝑚
T�̃̃�𝑢𝑚/𝜏)

∑ 𝑒𝑥𝑝(�̃�𝑢𝑚
T�̃̃�𝑢𝑝/𝜏)𝑝∈ℬ/{𝑚}

𝑚∈ℬ , 

where 𝑢𝑝 is a user in a sampled batch ℬ, �̃�𝑢𝑚 and �̃̃�𝑢𝑚 are 𝐿2 
normalized 𝑑 -dimensional representations learned from �̃�𝑢𝑚 

and �̃̃�𝑢𝑚, and 𝜏 is the temperature [3]. Analogously, we obtain 

the contrastive loss of the item side ℒ𝑐𝑙
𝑖𝑡𝑒𝑚. We combine ℒ𝑐𝑙

𝑢𝑠𝑒𝑟  
and ℒ𝑐𝑙

𝑖𝑡𝑒𝑚  to obtain graph contrastive learning loss ℒ𝑐𝑙 =
ℒ𝑐𝑙
𝑢𝑠𝑒𝑟 + ℒ𝑐𝑙

𝑖𝑡𝑒𝑚. ℒ𝑐𝑙 achieves the alignment of same node repre-
sentations and the divergence among different node representa-
tions. Meanwhile, ℒ𝑐𝑙 enforces the uniformity of feature distri-
bution on the unit hypersphere. 
3.2.4 Hilbert-Schmidt Independence Criterion-based embed-
ding learning: Although ℒ𝑐𝑙 learns representations by mapping 
the data onto a hypersphere via 𝐿2 normalization, it cannot ex-
plicitly handle nonlinear dependence in high-dimensional space. 
Hence, we introduce HSIC [23] into graph contrastive learning to 
explicitly learn the kernel dependence between augmented repre-
sentations in high-dimensional space. We use HSIC to measure the 
dependence between �̃� and �̃̃� via performing a nonlinear trans-

formation 𝜙:𝒵 → ℱ and 𝜑:𝒵 → 𝒢 for each representation (Re-
producing Kernel Hilbert Space (RKHS) with ℱ and 𝒢), and eval-
uating the norm of the cross-covariance between them:  

  HSIC(�̃�, �̃̃�) = ‖𝔼[𝜙(�̃�)𝜑(�̃̃�)T] − 𝔼[𝜙(�̃�)]𝔼[𝜑(�̃̃�)]T‖
𝐻𝑆

2
 (6) 
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Figure 2: The architecture of CL-KDM. (i) The hierarchical topology enhanced social dependency is built based on the node-
community, and community-global mutual information maximization. Enhanced user representations X* are injected into 
(ii); (ii) The graph contrastive learning with kernel dependence maximization is built based on the Hilbert-Schmidt Inde-
pendence Criterion; (iii) The community-guided social graph reconstruction is to model partial order relationships among 
negative samples for social links.  
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where‖·‖𝐻𝑆
2  is the Hilbert-Schmidt norm. HSIC identifies nonline-

ar dependence between �̃� and �̃̃� with appropriate 𝜙 and 𝜑 by 
measuring the scale of the correlation in these representations. 
Interestingly, through theoretical analysis [21, 50], we find that: 

  HSIC(�̃�, �̃̃�) ≥
𝑀ℱ𝑀𝒢

𝑀𝒵𝑀�̃̃�

sup
𝜃

Var(ℎ𝜃(�̃�)) (7) 

where ℎ𝜃 can be an encoder network, 𝑀ℱ and 𝑀𝒢 denote the 
bounded of functions in ℱ, 𝒢 (see Appendix). 𝑀𝒵 and 𝑀

𝒵
 de-

note the bounded of functions in 𝒵 and 𝒵. sup
𝜃

 denotes the su-
premum. Eq (3) indicates that  HSIC(�̃�, �̃̃�)  suppresses the varia-
bility of perturbations. Since �̃� approximately satisfies the normal 
distribution �̃� ∼ 𝒩(0,σ2𝐈) after normalization, we can derive 
(proof see Appendix) [21]:  

        
𝜉√− log𝑜(1)𝑑𝑀�̃�

𝜎𝑀ℱ𝑀𝒢
HSIC(�̃�, �̃̃�) + 𝑜(𝜉)

≥ 𝔼[|ℎ𝜃(�̃� + ∆) − ℎ𝜃(�̃�)|], ∆∈ ℝ𝑑                     (8) 

where 𝑜(1)  stands for an arbitrary function 𝑤:ℝ → ℝ  s.t. 

lim𝜉→0𝑤(𝜉) = 0 [21]. If  HSIC(�̃�, �̃̃�) = 𝑜(
𝜎𝑀ℱ𝑀𝒢

√−2log 𝑜(1)𝑑𝑀𝒵

) , then 

lim𝜉→0 sup∆∈ℝ𝑑 𝔼[|ℎ𝜃(�̃� + ∆) − ℎ𝜃(�̃�)|]/𝜉 = 0 . Assuming that 

�̃̃� = �̃� + ∆, and therefore, lim𝜉→0 sup∆∈ℝ𝑑 𝔼[|ℎ𝜃(�̃̃�) − ℎ𝜃(�̃�)|]/𝜉 =
0, i.e., the difference between augmented representations is almost 

constant under small input perturbations. Hence, HSIC(�̃�, �̃̃�) lim-
its the variance between the augmented representations, which 
causes model sensitivity to input perturbations and poorly gener-
alization to new datasets. We therefore add the HSIC as regulariza-
tion term into ℒ𝑐𝑙 to improve robustness.  
3.2.5 Estimator of HSIC: We need to correctly and efficiently es-
timate      (�̃�, �̃̃�) . To alleviate the overfitting, we perform a 
Gumbel-softmax to �̃� based on the Gumbel distribution: 

𝑾�̃� = Gumbel_softmax(�̃�) 

 �̃� = �̃� ⊙𝑾�̃� (9) 

where �̃� is fed into HSIC. We turn to estimate HSIC(�̃�, �̃̃�). Inner 
products in RKHS are calculated by functions: 𝒦(�̃�𝑢𝑚, �̃�𝑢𝑚

′) =
〈𝜙(�̃�𝑢𝑚),𝜙(�̃�𝑢𝑚

′)〉ℱ , ℐ(�̃̃�𝑢𝑚 , �̃̃�𝑢𝑚
′
) = 〈𝜑(�̃̃�𝑢𝑚),𝜑(�̃̃�𝑢𝑚

′
)〉𝒢 , where 

𝒦 and ℐ are kernel functions. Let (�̃�𝑢𝑚, �̃�𝑢𝑚
′), (�̃̃�𝑢𝑚 , �̃̃�𝑢𝑚

′
) be 

independent copies of (�̃�𝑢𝑚 , �̃̃�𝑢𝑚), and this gives: 

HSIC(�̃�, �̃̃�) = 𝔼
�̃�,�̃�′,�̃̃�,�̃̃�′  [𝒦(�̃�, �̃�′)ℐ(�̃̃�, �̃̃�′)] −

         2𝔼
�̃�,�̃̃�[𝒦(�̃�, �̃�′)ℐ(�̃̃�, �̃̃�′)] + 𝔼�̃�,�̃�′[𝒦(�̃�, �̃�′)ℐ(�̃̃�, �̃̃�′)] (10) 

Given 𝑇  i.i.d. samples {(�̃�1, �̃̃�1
′
),… , (�̃�𝑇, �̃̃�𝑇

′
)}  drawn i.i.d. 

from the joint distribution of  (�̃�, �̃̃�) , we estimate HSIC by: 

HSIĈ(�̃�, �̃̃�) = (𝑇 − 1)−2Tr((𝑲(�̃�, �̃�′)𝑯𝑳(�̃̃�, �̃̃�′)𝑯). The kernel matri-
ces are denoted as 𝑲𝑚,𝑞 = 𝒦(�̃�𝑢𝑚, �̃�𝑢𝑞) and 𝑳𝑚,𝑞 = ℐ(�̃̃�𝑢𝑚 , �̃̃�𝑢𝑞), 

and 𝑯 = 𝐈 −
1

𝑇
𝟏𝟏T is the centering matrix. The kernel functions 

𝒦 and ℐ endow CL-KDM with the ability to map the representa-
tions in low-dimensional space to high-dimensional space [4]. This 
process changes the dimensionality and captures the nonlinear 
properties of data in high-dimensional space.  

3.2.6 Kernel Dependence Maximization. Our method extends 
the framework employed by most of recent SSL methods [2, 3, 21]. 
For an interaction graph 𝒢𝑟 with (𝑁 + 𝑀) nodes, each node 𝑢𝑚 
(𝑣𝑛) is augmented with noise perturbations, and then forms differ-
ent augmented representation �̃�𝑢𝑚 (�̃�𝑣𝑛) and �̃̃�𝑢𝑚  (�̃̃�𝑣𝑛). We as-
sociate each node with its different augmentations. For example, to 
match �̃�𝑢𝑚  and �̃̃�𝑢𝑚 , we maximize the kernel dependence be-

tween augmented representation �̃�𝑢𝑚  and �̃̃�𝑢𝑚  of the same 
node 𝑢𝑚. To construct representations tailored for recommenda-
tion tasks, we penalize high-variance representations. These ideas 
coalesce in our HSIC-based kernel dependence maximization ob-
jective for graph contrastive learning. We define the graph con-
trastive learning loss with kernel dependence maximization 
ℒ𝑐𝑙−𝑘𝑑𝑚 as:  

ℒ𝑘𝑑𝑚 = − HSIĈ(�̃�, �̃̃�) + 𝜂HSIĈ(�̃�, �̃�)
−
1

2 + 𝜂1HSIĈ (�̃̃�, �̃̃�)
−
1

2 

 ℒ𝑐𝑙−𝑘𝑑𝑚 = 𝜆𝑐𝑙ℒ𝑐𝑙 + 𝜆𝑘𝑑𝑚ℒ𝑘𝑑𝑚 (11) 

where 𝜂  and 𝜂1 control the importance of HSIĈ(�̃�, �̃�)
−
1

2  and 
 HSIĈ (�̃̃�, �̃̃�)

−
1

2. The square root for HSIĈ (�̃̃�, �̃̃�), HSIĈ(�̃�, �̃�) re-
stricts them on the same scale. 𝜆𝑘𝑑𝑚 is the regularization weight 
of kernel dependence maximization. HSIĈ(�̃�, �̃̃�)  estimates the 
degree of agreement between the augment representations �̃� and 
�̃̃�, which naturally leads to representation uniformity [2]. By min-
imizing the loss ℒ𝑘𝑑𝑚, we can maximize the kernel dependence 
between �̃� and �̃̃� to match different augmented representations 
of the same node. HSIC improves the ability of representations to 
discriminate in high-dimensional space by using kernel functions.  

3.3  Community-guided Social Graph Recon-
struction 

Enhancing the embedding propagation module by social relation-
ship reconstruction can inject social-aware signals into recom-
mendation. Most social-aware research reconstructs social signals 
through BPR pairwise loss [5]. However, these reconstruction 
tasks cannot learn the partial order relationships among negative 
samples (pseudo-positive samples). Motivated by the characteris-
tics of community structures that users in the same community 
tend to generate more social relations than users in different 
communities [48], we propose a community structure-guided so-
cial graph reconstruction network to learn this partial order rela-
tionship for enhanced recommendation. Specifically, we recon-
struct the adjacent matrix 𝐀𝑠 of 𝒢𝑠:  

𝑠𝑚,𝑞
𝐴𝑠 = 𝛿(𝑬𝑢𝑚,𝑬𝑢𝑞) 

ℒ𝑠1 = −
1

𝜓(𝐀𝑠)
∑ log𝜎(𝑠𝑚,𝑞

𝐴𝑠 − 𝑠𝑚,𝑝𝑖𝑛
𝐴𝑠 )(𝑚,𝑞)∈𝒮,

(𝑚,𝑝𝑖𝑛)∉𝒮

 

                    ℒ𝑠2 = −
1

𝜓(𝐀𝑠)
∑ log𝜎(𝑠𝑚,𝑝𝑖𝑛

𝐴𝑠 − 𝑠𝑚,𝑝𝑜
𝐴𝑠 )(𝑚,𝑝𝑖𝑛)∉𝒮,

(𝑚,𝑝𝑜)∉𝒮

               (12) 

where 𝛿(·) can either be a MLP or an inner product, and 𝜓(𝐀s) 
indicates the number of non-zero elements in 𝐀s. 𝒮 denotes the 
observed user-user social links.  𝑝

𝑖𝑛
 indicates that user 𝑢𝑝𝑖𝑛

 and 
user 𝑢𝑚 are in the same community without social links. Notably, 
𝑝𝑜 indicates that user 𝑢𝑝𝑜

 and user 𝑢𝑚 are in different commu-
nities without links. We define our joint loss function for the user-
user reconstruction as: ℒ𝑠 = 𝜇1ℒ𝑠1 + 𝜇2ℒ𝑠2 , where 𝜇1  and 𝜇2 
are the hyperparameters to adjust the weight proportion of ℒ𝑠1 
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and ℒ𝑠2. This process allows for the effective rebuilding of social 
relationships by incorporating community information and distin-
guishing between positive and negative links within the communi-
ty and outside the community, resulting in high-quality user em-
beddings. 

3.4  Model Training 
We define the loss in our prediction layer as: 

�̂�𝑚,𝑛 = 𝐄𝑢𝑚
T𝐄𝑣𝑛 

 ℒ𝑟𝑒𝑐 = −∑ log 𝜎(�̂�𝑚,𝑛 − �̂�𝑚,𝑗)(𝑚,𝑛)∈ℛ,(𝑚,𝑗)∉ℛ   (13) 

where �̂�𝑚,𝑛 is the predictive score of the interaction between 
user 𝑢𝑚 and item 𝑣𝑛. ℛ denotes the observed user-item inter-
actions. After incorporating the community structure-guided 
social graph reconstruction loss stated in Section 3.3 and graph 
contrastive learning loss with kernel dependence maximization 
in Section 3.2, we define our joint loss function as below: 
 ℒ = ℒ𝑟𝑒𝑐 + ℒ𝑐𝑙−𝑘𝑑𝑚 + 𝜔𝑠ℒ𝑠 + 𝜔Θ‖Θ‖𝐹

2   (14) 
where 𝜔𝑠 are hyperparameters to ℒ𝑠. To prevent the overfit-
ting issue, the regularization term is used where 𝜔Θ and Θ 
denote the weight and model parameters, respectively.  

3.5  Complexity analysis 
Next, we analyze the complexity of the proposed CL-KDM model. 
Let 𝐵 denote the batch size, 𝒯 denote the node number in a batch. 
i) In the graph contrastive learning with kernel dependence maxi-
mization, the computation cost of ℒ𝑐𝑙  for contrasting posi-
tive/negative samples is 𝑂(𝐵𝑑 + 𝐵𝒯𝑑). The computation cost of 
ℒ𝑘𝑑𝑚 needs 𝑂(𝐵2𝑑2). ii) In the hierarchical topology enhanced 
social dependency module, the complexity for calculation is 
𝑂(𝐵𝑑). iii) In the community-guided graph reconstruction module, 
the loss ℒ𝑠 requires 𝑂(𝑑) operations for each user-user pair, and 
the complexity of ℒ𝑠 is 𝑂(2𝐵𝑑). iv) In the training phase, the 
complexity of ℒ𝑟𝑒𝑐 is 𝑂(2𝐵𝑑). Specific experimental analysis of 
computational time is demonstrated in Section 4.5. 

4  EVALUATION 
In this section, extensive experiments are conducted for model 
evaluation to answer the following research questions:  
• RQ1: How does CL-KDM perform compared to state-of-the-art 
recommendation methods? • RQ2: How does each module con-
tribute to CL-KDM? • RQ3: How is the robustness of CL-KDM? • 
RQ4: How do the hyperparameters affect CL-KDM? • RQ5: How 
efficient is the model CL-KDM? 

4.1  Experimental Settings 
4.1.1 Datasets and Evaluation Protocols. We conduct perfor-
mance validation on three widely-used social recommendation 
datasets: Yelp1, Douban2, and Ciao3. Table 1 lists the statistics of 
these datasets. We randomly split each dataset into train-
ing/validation/test sets (80%/10%/10%). NDCG@K and Recall@K 
are used to evaluate the performance [13]. Additionally, HR@K, 
MRR@K [26], and Precision@K [10] are used for comparison 
and the results are given in the Appendix. The value of K is set 
at 5, 10, 20. We rank all items to evaluate the performance on the 
test set [25].  

 
1 https://github.com/lcwy220/Social-Recommendation 
2https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding 
3 http://www.cse.msu.edu/~tangjili/trust.html 

4.1.2 Comparison Models. We compare CL-KDM with state-of-
the-art methods from different research lines: 1) MF-based 
methods: BPR [5], NeuMF [6]; 2) GNNs-based methods: NGCF 
[7], DGCF [8], DiffNet [9]; 3) SSL-enhanced recommendation 
methods: MHCN [10], SEPT [11], SGL [12], NCL [13], SimGCL 
[3], AutoCF [14], DCCF [15]. More details about the comparison 
baseline models are given in the Appendix. 
4.1.3 Hyperparameter Settings: We implement our CL-KDM 
with Pytorch and utilize the Adam optimizer for model parame-
ter inference, with a learning rate of 0.001 and embedding di-
mension of 64. For a fair comparison, we fine-tune all the hy-
perparameters of baselines with the grid search. 𝜆𝑘𝑑𝑚 is tuned 
from {1e-5, 1e-4, ..., 0.01}. In accordance with the optimal kernel 
function selection [46][47], we choose several kernel functions 
as candidate kernels, which include the Gaussian kernel 
𝒦(𝑥,𝑦) = 𝑒𝑥𝑝 (−‖𝑥 − 𝑦‖2/2𝜎2), Linear kernel, Laplacian kernel, 
Polynomial kernel, and Sigmoid kernel [47]. The bandwidth σ 
in the Gaussian kernel is tuned between {0.001,0.01, ..., 1}. More 
details about the hyperparameter settings are in the Appendix. 

4.2  Overall Performance Comparison (RQ1) 
Table 2 encapsulates the comprehensive performance of the 
comparison methods across three social recommendation da-
tasets. The summarized observations are as follows:  
Obs.1: Superiority over SSL approaches. CL-KDM consistent-
ly attains superior performance over baselines, including strong 
self-supervised approaches in all datasets. By learning the non-
linear kernel dependence in high-dimensional space into the 
graph contrastive learning framework through our kernel de-
pendence maximization, CL-KDM surpasses existing SSL meth-
ods. Current representation-level augmentations are limited by 
the strength of the designed perturbations, making it difficult to 
maintain semantic consistency and diversity of the augmented 
representations. Structure-level augmentations use subgraph 
structures and tend to destroy important information about 
graph structures. Overall, the robustness and generalization of 
recommendation to cope with different scenarios can be im-
proved by using perturbations with Gumbel distribution and in-
troducing HSIC into graph contrastive learning. 
Obs.2: Benefits of data augmentations. In comparison base-
lines, we observe that SSL methods, such as SimGCL and NCL, 
consistently outperform pure GNN-based models like DGCF and 
NGCF in most cases. This confirms the advantages of self-
supervised data augmentations within the realm of social rec-
ommendation. Such performance gap between GNN-based mod-
els and SSL-enhanced models could be attributed to: i) the long-
tailed distribution of interaction data forces user embeddings to 
be constantly updated in the direction of popular items; ii) the 
highly clustered property of the representation distribution 
brought about by the message-passing mechanism induces rep-
resentational degradation [3]. 

Table 1: Statistics of datasets 

Dataset Users Items Interactions 
Social 

Relations 
Interaction 

Density 

Relations 
Density 

Yelp 21,461 102,433 894,435 497,206 0.0407% 0.1080% 
Douban 13,367 12,677 1,068,278 8,170 0.6304% 0.0046% 

Ciao 7,375 106,797 208,486 111,781 0.0026% 0.2055% 
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Figure 4: Performance w.r.t. data sparsity. The bars repre-
sent the improvement ratio between CL-KDM and each 
baseline with the corresponding color, while the lines rep-
resent performance curves. 
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4.3  Module Ablation Study (RQ2) 
We conduct an ablation study to investigate the contribution of 
different sub-modules of CL-KDM in Figure 3. 
Effect of Kernel Dependence Maximization. We investigate 
the benefit of kernel dependence maximization for the social 
recommendation task with the variant -KDM. In this variant, we 
remove the kernel dependence maximization ℒ𝑘𝑑𝑚. The results 
demonstrate an obvious improvement of our CL-KDM over the 
variant -KDM. This suggests that introducing HSIC into graph 
contrast learning and explicitly learn the kernel dependence be-
tween augmented representations can effectively regulate the 
representation uniformity in kernel Hilbert space to improve 
performance.   
Effect of Hierarchical Topology Enhanced Social Depend-
ency Modeling. We examine the advantage of the hierarchical 
topology enhanced social dependency modeling via the variant -
HTS. In -HTS, we remove the hierarchical social-aware represen-
tations 𝐗∗ for all users. The results in Figure 3 show that the 
variant -HTS reduces the performance of CL-KDM, demonstrat-
ing the advantages of learning hierarchical social dependency 
among users. Hence, the results indicate that the user represen-
tations are enhanced by injecting hierarchical social dependency 
into the embedding propagation process. 
Effect of Community-guided Social Graph Reconstruction. 
In variant -CSR, the community-guided social graph reconstruc-
tion network  ℒ𝑠 is removed. The results show that removing 
 ℒ𝑠  causes performance degradation in recommendation and 
indicates the benefit of the community-guided social graph re-
construction module which enhances the user representations 
via injecting community-aware structural signals into the user-
item graph. -CSR/N indicates that ℒ𝑠2 is removed. The results 
show that removing ℒ𝑠2 also affects performance, suggesting 
that social graph reconstruction can be better enhance recom-
mendation by utilizing community structures to learn the partial 
order relationship of negative samples in 𝒢𝑠.  

4.4  Model Robustness Test (RQ3) 
Robustness to Data Sparsity. To validate the robustness of CL-
KDM, we assess its performance on users with different sparsity 
levels in Figure 4. Users are categorized into five groups based on 
interaction frequency while keeping a consistent total interac-
tion count within each group. We find that CL-KDM roughly 
surpasses these baselines. Meanwhile, on Ciao and Yelp, CL-
KDM brings large performance gains mainly in scenarios with 
few interactions. This implies that CL-KDM can perform effec-
tive recommendation with sparse user-item interactions, benefit-
ed by the proposed graph contrastive learning with kernel de-
pendence maximization.  
Robustness to Noisy Interactions. We perform experiments 
to validate CL-KDM’s robustness to noisy data. We taint the 
training set by adding different ratios of negative user-item in-
teractions while leaving the testing set unaltered. As shown in 
Figure 5, the results exhibit that CL-KDM is robust under differ-
ent ratios of noisy data, and it consistently outperforms the 
competitive baselines and mitigates the noise problem well. The 
superior performance of CL-KDM may stem from its injection of 
Gumbel noises into representations, ensuring the preservation of 
original semantics and effectively enhancing robustness. 

4.5  Hyperparameter Investigation (RQ4) 
In this section, we explore the impact of several important hy-
perparameters on the recommendation performance of CL-KDM. 
The evaluation results of Recall@10 and NDCG@10 are dis-
played in Figure 6, Figure 7, and Appendix. In Figure 7, the y-

Table 2: Experimental results on Yelp, Douban, and Ciao datasets. All improvements are significant with 𝒑-value < 0.01. 

                 BP  N  MF N  F D  F D ffN     PT MH N N       D  F      F 
    

    
  -

    

Y    

      @5 0.0 79 0.0 43 0.0 96 0.0223 0.0239 0.0259 0.0258 0.0294 0.0289 0.0265 0.026  0.0306 0.0337 

    @5 0.0208 0.0 68 0.0228 0.0254 0.026  0.0287 0.0308 0.036  0.0355 0.0304 0.0284 0.0380 0.0409 

      @10 0.0292 0.0252 0.0338 0.0365 0.0373 0.0407 0.0429 0.0486 0.0472 0.0464 0.0432 0.0506 0.0546 

    @10 0.0239 0.0 99 0.0267 0.0290 0.0294 0.0339 0.035  0.0399 0.0396 0.0329 0.0323 0.0426 0.0453 

       

      @5 0.0663 0.055  0.0727 0.0735 0.0749 0.0798 0.0834 0.0837 0.0849 0.0828 0.08 9 0.09 5 0.0960 

    @5 0. 369 0.  3  0. 420 0. 4   0. 4 7 0. 59  0. 6 3 0. 638 0. 672 0. 670 0. 645 0. 762 0.1821 

      @10 0. 099 0.092  0.  97 0. 205 0.  95 0. 245 0. 28  0.  89 0. 255 0. 2   0. 205 0. 409 0.1453 

    @10 0. 370 0.  34 0. 438 0. 44  0. 428 0. 568 0. 593 0. 595 0. 669 0. 539 0. 564 0. 745 0.1789 

     

      @5 0.0234 0.0 85 0.0262 0.0264 0.0265 0.0289 0.0295 0.0299 0.0309 0.0290 0.0294 0.0326 0.0355 

    @5 0.0283 0.0224 0.0295 0.0304 0.0306 0.034  0.0348 0.0372 0.0370 0.0357 0.0359 0.0383 0.0421 

      @10 0.0384 0.0288 0.042  0.04 4 0.0430 0.0460 0.0455 0.0485 0.0487 0.0464 0.0477 0.049  0.0519 

    @10 0.0323 0.0246 0.0336 0.0339 0.034  0.0375 0.038  0.0405 0.0409 0.0394 0.0376 0.04 3 0.0444 

 

Figure 5: Performance w.r.t. noise ratio. 
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Figure 3: Module ablation study on Ciao and Yelp. 
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axis denotes the relative performance degradation ratio com-
pared to the optimal performance. We observe: 
Effect of kernel function selection. The choice of kernel 
function is critical to the module of kernel dependence maximi-
zation, and different kernel functions can capture different types 
of nonlinear dependence in high-dimensional space. Here we 
test different Kernel functions and report their results in Figure 7. 
The results show that the best performance is achieved by using 
the Gaussian kernel function in the kernel dependence maximi-
zation module. This can be attributed to the smooth property of 
the Gaussian kernel function, and the smooth property makes 
CL-KDM more robust to noisy data. 
Effect of regularization weight 𝝀𝒌𝒅𝒎  of kernel depend-
ence maximization. 𝜆𝑘𝑑𝑚 determines the strength of kernel 
dependence maximization. As shown in Figure 7, an appropriate 
𝜆𝑘𝑑𝑚 improves the performance. However, further increasing 
𝜆𝑘𝑑𝑚 leads to a sharp decrease in performance. A larger 𝜆𝑘𝑑𝑚 
may cause excessive semantic deviation of the augmented repre-
sentations from the original representations, thus damaging per-
formance.  
Effect of Gaussian kernel bandwidth 𝝈. We study the influ-
ence of the bandwidth in the Gaussian kernel function on rec-
ommendation performance. The bandwidth aims to adjust the 
shape of the kernel function. By adjusting the bandwidth param-
eter, the complexity and generalization ability of the kernel func-
tion can be controlled to better accommodate different data dis-
tribution. The results in Figure 7 indicate that choosing a too-
small bandwidth may cause overfitting, while a too-large band-
width can lead to excessive smoothing, both negatively impact-
ing performance. 
4.6  Model Efficiency Study (RQ5) 
Model Convergence Analysis. This section investigates the 
convergence of CL-KDM with different kernels and the results 
are depicted in Figure 8. The outcomes reveal an obviously faster 
convergence speed of our CL-KDM with the Gaussian kernel, 
underscoring its proficiency in training efficiency. Concurrently, 
it upholds an outstanding recommendation accuracy. Leveraging 
a Gaussian kernel expedites convergence in learning nonlinear 
dependence in high-dimensional space. Its expressive capacity 

efficiently captures the nonlinear dependence and transforms 
data into linearly separable forms, thus accelerating convergence 
and enhancing training efficiency. 
Computational Cost Evaluation. We further conduct a model 
efficiency analysis in terms of running time and present the 
evaluation results in Table 3. Although CL-KDM utilizes graph 
augmentations, the adjacency matrix of the graph needs to be 
generated only once before training, thus achieving competitive 
efficiency compared to other graph augmentation methods. 

4.7  Embedding Visualization Analysis 
In this section, we undertake an embedding visualization analy-
sis using representations encoded by CL-KDM alongside compet-
itive baselines. We map the learned representations (randomly 
sample 2,000 users for Ciao) to 3-D space using t-SNE [3]. As 
shown in Figure 9, the representations generated by CL-KDM 
exhibit uniformity and dispersion. In comparison to SGL, both 
SimGCL and CL-KDM achieve more uniformity. Furthermore, 
CL-KDM shows a significantly larger distance in embedding dis-
tribution, indicating that CL-KDM effectively preserves variabil-
ity among representations while avoiding semantic deviation. 

5  Conclusion 
This work proposes a graph contrastive learning algorithm with 
kernel dependence maximization called CL-KDM to provide so-
cial recommendation with robustness and generalizability. CL-
KDM can learn kernel dependence of augmented representations 
in high-dimensional space by introducing the Hilbert-Schmidt 
independence criterion into graph contrastive learning. Fur-
thermore, hierarchical topology enhanced social dependency 
modeling as well as community-guided social graph reconstruc-
tion are integrated to enhance user embeddings. Extensive ex-
periments are executed to validate the performance of CL-KDM. 
Results demonstrate the effectiveness of CL-KDM compared 
with existing recommendation methods. 

Table 3: Running time per epoch. 

Model MHCN  AutoCF DCCF SGL SimGCL CL-KDM 

Yelp 63.37s 68.03s 74.98s 30.42s 21.87s 45.09s 
Douban 367.28s 119.41s 124.94s 28.95s 24.34s 40.15s 

Ciao 10.06s 27.98 s 29.12s 9.07s 3.72s 10.21s 

Figure 6: Influence of different kernel functions on per-
formance. 

@5 @10 @20
0.035

0.040

0.045

0.050

(a)  Ciao

N
D

C
G

@5 @10 @20
0.03

0.04

0.05

0.06

0.07

0.08

R
ec

a
ll

@5 @10 @20
0.00

0.02

0.04

0.06

0.08

(b)  Yelp

N
D

C
G

@5 @10 @20
0.03

0.04

0.05

Polynomial Kernel        Sigmoid Kernel 

 Gaussian Kernel     Linear Kernel     Laplacian Kernel    

R
ec

a
ll

Figure 8: Convergence analysis.  

0 5 10 15 20 25 30 35 40 45 50
0.03

0.04

0.05

0 5 10 15 20 25 30

0.01

0.02

0.03

0.04

0.05

R
ec

a
ll

@
1

0

Epoch

 Gaussian Kernel

 Polynomial Kernel

 Laplacian Kernel

 SGL

 SimGCL

YelpYelp Ciao

R
ec

a
ll

@
1

0

Epoch

 Gaussian Kernel

 Polynomial Kernel

 Laplacian Kernel

 SGL

 SimGCL

Figure 9: User embedding distribution using t-SNE on 
Ciao. 
  

Figure 7: Hyperparameter study for CL-KDM in terms of 
NDCG@10 changes on Ciao and Yelp datasets. 
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Appendix 

A.1 Theoretical Analysis 

In this section, we give the theoretical analysis of Equation 7 and 
Equation 8 in the main text. 

A.1.1 Derivation of equation (7): Here, we formally provide 
the rationale for using HSIC to enhance robustness: we show 

theoretically that the regularization term HSIC(�̃�, �̃̃�) makes the 
recommendation model less sensitive to input perturbations. Let 
ℎ𝜃 = (𝑔 ∘ 𝑓) , where 𝑔  and 𝑓  denote the mapping function  

[21]. HSIC(�̃�, �̃̃�) is associated with kernels 𝒦�̃�, 𝒦�̃̃�
. Let 𝒵,𝒵 be 

the supports of �̃�, �̃̃�, respectively [50]. We assume that both ℎ𝜃 

and 𝑔 are continuous and bounded functions in �̃�, 𝒵, i.e., ℎ𝜃 ∈

𝐶(𝒵),𝑔 ∈ 𝐶(𝒵). Moreover, we assume that ℎ𝜃 and 𝑔 are uni-
formly bounded, i.e., there are 0<𝑀𝒵,𝑀

𝒵
<∞ such that: 

               𝑀�̃� = max
ℎ𝜃∈𝐶(𝒵)

‖ℎ𝜃‖∞ and 𝑀
�̃̃�
= max

𝑔∈𝐶(𝒵)
‖𝑔‖∞   (15) 

We assume kernels 𝒦�̃�, 𝒦
�̃̃�

 are universal with respect to ℎ𝜃 

and 𝑔, i.e., if ℱ and 𝒢 are the induced RKHS for kernels 𝒦�̃�, 
𝒦

�̃̃�
, respectively, then for uniformly bounded ℎ𝜃, 𝑔 and any 

𝜀 > 0  there are functions ℎ’ ∈ ℱ  and 𝑔’ ∈ 𝒢  such that 

‖ℎ𝜃 − ℎ’‖
∞

≤ ε and ‖𝑔 − 𝑔’‖
∞

≤ ε . Moreover, functions in ℱ 

and 𝒢 are uniformly bounded, i.e., there exist 0 < 𝑀ℱ,𝑀ℱ <∞ 
such that:  

                 𝑀ℱ = max
𝑓′∈ℱ

‖𝑓′‖∞ and 𝑀𝒢 = max
𝑔′∈𝒢

‖𝑔′‖∞ (16) 

Since ℱ, 𝒢 are the two separable RKHS on 𝒵,𝒵 induced by 

𝒦�̃� , 𝒦
�̃̃�

. Then, the inequality holds:  HSIC(�̃�, �̃̃�) ≥

sup
𝑠∈ℱ,𝑡∈𝒢

Cov[𝑠(�̃�), 𝑡(�̃̃�)].  HSIC bounds the supremum of the covar-

iance between functions in the RKHS. Let ℱ̃ = {ℎ/𝑀ℱ: ℎ ∈ ℱ} 
and �̃� = {𝑔/𝑀𝒢:𝑔 ∈ 𝒢}. In the original RKHS, we have: 
 

 
𝑀𝒵𝑀�̃̃�

𝑀ℱ𝑀𝒢
HSIC(�̃�, �̃̃�) = sup

𝑠∈ℱ̃,𝑡∈�̃�

Cov[𝑠(�̃�), 𝑡(�̃̃�)] (17) 

According to [51, 50], we obtain: 

    (�̃�, �̃̃�) ≥
𝑀ℱ𝑀𝒢

𝑀𝒵𝑀𝒵

sup
𝜃

Var[(ℎ𝜃(�̃�))] 

A.1.2 Derivation of equation (8): Let 𝑡𝑖: ℝ𝑑 → ℝ, 𝑖 =
1, 2, . . . ,𝑑 be the following truncation functions:  

 𝑡𝑖(�̃�) = {

−𝑅, 𝑖𝑓 �̃�𝑖 < 𝑅

�̃�𝑖 , 𝑖𝑓 −𝑅 ≤ �̃�𝑖 < 𝑅

𝑅, 𝑖𝑓 �̃�𝑖 > 𝑅

 (18) 

According to [21], we have 
𝑅𝑀�̃̃�

𝑀ℱ𝑀𝒢

HSIC(�̃�, �̃̃�) ≥ 

sup
𝒕∈𝑪(�̃�)∶‖𝒕‖∞≤𝑹,𝒈∈𝑪(�̃̃�)∶‖𝒈‖∞≤𝑴

�̃̃�

Cov[𝑡(�̃�),𝑔(�̃̃�)] ≥ Cov[𝒕𝒊(�̃�),𝒉𝜽(�̃�)] (19) 

Let �̃� ∼ (0,𝜎2𝐈) [49],we have: 

  Cov[�̃�𝑖 , ℎ𝜃(�̃�)] − Cov[𝑡𝑖(�̃�), ℎ𝜃(�̃�)] ≤
2𝑀

𝒵
σ

√2π
exp(−

𝑅2

2𝜎2)   

  Cov[�̃�𝑖 , ℎ𝜃(�̃�)] = σ2𝔼[
𝜕ℎ𝜃(�̃�)

𝜕�̃�𝑖
]   (20) 

Combining (19) and (20), we have: 

 
𝑅𝑀

𝒵

𝑀ℱ𝑀𝒢
HSIC(�̃�, �̃̃�) +

2𝑀
𝒵

σ

√2π
exp(−

𝑅2

2𝜎2) ≥ σ2𝔼[
𝜕ℎ𝜃(�̃�)

𝜕�̃�𝑖
] =

                                    σ2𝔼[∑ |
𝜕ℎ𝜃(�̃�)

𝜕�̃�𝑖
|𝑑

𝑖=1 ]                                    (21) 

By Taylor’s theorem: we obtain: 

  𝔼[|ℎ𝜃(�̃� + 𝛥) − ℎ𝜃(�̃�)|] ≤ 𝔼[|𝛥T𝛁�̃�ℎ𝜃(�̃�)|] + 𝑜(𝜉) 

  ≤ 𝜉𝔼[∑ |
𝜕ℎ𝜃(�̃�)

𝜕�̃�𝑖
|𝑑

𝑖=1 ] + 𝑜(𝜉)  (22) 

Let 𝑅 = 𝜎√−2log 𝑜(1) . Then, we get 
2𝜉𝑑

√2𝜋𝜎
exp(−

𝑅2

2𝜎2) = 𝑜(𝜉) . In 

conclusion, we have:  

𝝃√−2log 𝑜(1)𝑑𝑀𝒵

𝜎𝑀ℱ𝑀𝒢
HSIC(�̃�, �̃̃�) + 𝑜(𝜉)

≥ 𝔼[|ℎ𝜃(�̃� + ∆) − ℎ𝜃(�̃� + ∆)|],∆∈ ℝ𝑑   

Algorithm 1 CL-KDM 
Input: user-item interaction graph 𝒢𝑟, user-user social graph 𝒢𝑆, user-community 

graph 𝒢𝑐, maximum epoch numbers 𝑃1, 𝑃2, weight 𝜆𝑘𝑑𝑚, 𝜔𝑠, bandwidth 
σ, learning rate η 

Output: trained parameters in Θ 
1   Initialize all parameters in Θ 
2   for e = 1 to 𝑃1 do 
3    Calculate the community/global-level representation of 𝒢𝑐, 𝒢𝑆 (Eq 1)  
4    Calculate the hierarchical mutual information-based loss ℒ𝑚𝑢 (Eq 3) 
5    for θ in the hierarchical social dependency modeling module do 
6     𝜃 = 𝜃 − 𝜂 ∂ℒ𝑚𝑢/ ∂𝜃  
7    end 
8   end 
9   for e = 1 to 𝑃2 do 
10    inject the Gumbel-distributed noises ∆̃ into 𝒆𝑢𝑚 , 𝒆𝑣𝑛 
11    Calculate the Hilbert-Schmidt Independence Criterion     ̂(�̃�, �̃̃�) 
12    Calculate the graph contrastive learning loss with kernel dependence maxi-

mization ℒ𝑐𝑙−𝑘𝑑𝑚 (Eq 11) 
13    Draw a mini-batch of (𝑠𝑚,𝑞

𝐴𝑠 , 𝑠𝑚,𝑝𝑖𝑛

𝐴𝑠 , 𝑠𝑚,𝑝𝑜

𝐴𝑠 ) for reconstruction 
14    Calculate the reconstruction loss ℒ𝑠1, ℒ𝑠2 (Eq 12) 
15    Calculate the predictive loss  ℒ𝑟𝑒𝑐 (Eq 13) and joint loss function ℒ (Eq 14) 
16    for θ in the Kernel Dependence Maximization module do 
17     𝜃 = 𝜃 − 𝜂 ∂ℒ/ ∂𝜃  
18    end 
19   end 
20   return all parameters Θ 
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A.2 Supplementary Experiment Results 
A.2.1 Comparison Model. We compare CL-KDM with state-of-
the-art methods from different research lines: 1) MF-based 
methods • BPR [5]: A classical model that learns the latent rep-
resentations with the matrix factorization (MF) framework. • 
NeuMF [6]: A representative neural collaborative filtering (CF) 
method that replaces the inner-product with a non-linear feature 
projection. 2) GNNs-based methods: • NGCF [7]: It adopts the 
user-item graph to incorporate high-order connectivity for rec-
ommendation • DGCF [8]: It disentangles latent factors behind 
user-item interactions in a graph neural network architecture. • 
DiffNet [9]: A social recommendation model that mimics the 
social influence between different friends using graph attention 
networks. 3) SSL-enhanced recommendation methods: • 
MHCN [10]: This model uses hypergraph convolution methods 
to capture different impacts of social motifs on preference learn-
ing among friends. • SEPT [11]: A social recommendation model 
which mines multiple positive samples with semi-supervised 
learning on the perturbed graph. • SGL [12]: It performs 
edge/node discarding to augment the graph data. • NCL [13]: A 
model that enhances graph contrastive learning through aug-
mented structural and semantic neighbors. • SimGCL [3]: A 
simple CL method that adds uniform noises to the embedding 
space to create contrastive views. • AutoCF [14]: An automated 

collaborative filtering that performs data augmentations for rec-
ommendation. • DCCF [15]: A framework that adaptively realiz-
es disentanglement with self-supervised augmentations.  
  
A.2.2 Hyperparameter Settings: We set the temperature 𝜏 = 0.2. 
The batch size is selected from {512, 1024, 2048}. The number of 
propagation layers over the graph neural network is tuned from 
{1, 2, 3}. For a fair comparison, we refer to the best hyperparame-
ter settings reported in the original papers of the baselines and 
then fine-tune all the hyperparameters of the baselines with the 
grid search. In our work, community information is constructed 
based on mining users’ social links using the overlapping com-
munity detecting algorithm [48].  

We list the experiment results on three datasets in terms of 
metrics HR@K, MRR@K, Precision@K at K=5, 10, 20 and 
NDCG@20, Recall@20 in Table 4. We display the experiment 
results of the hyperparameter study and convergence analysis on 
Yelp and Ciao datasets in Figure 10 and Figure 11. These results 
all show a similar trend to the results in the main text.  

Table 4: Experimental results on Yelp, Douban, and Ciao datasets in terms of HR, MRR, Precision. 

Datasets Metrics BPR NeuMF NGCF DGCF DiffNet SEPT MHCN NCL SGL DCCF AutoCF SIM 
GCL 

CL-
KDM 

Yelp 

HR@5 0.0666 0.0556 0.0746 0.0849 0.0846 0.1011 0.0994 0.0924 0.1131 0.1037 0.0997 0.1233 0.1280 
MRR@5 0.0363 0.0303 0.0400 0.0440 0.0445 0.0543 0.0531 0.0534 0.0584 0.0556 0.0529 0.0675 0.0723 

Precision@5 0.0142 0.0116 0.0163 0.0182 0.0197 0.0221 0.0227 0.0254 0.0243 0.0234 0.0219 0.0276 0.0292 
HR@10 0.1086 0.0943 0.1234 0.1337 0.1399 0.1550 0.1571 0.1671 0.1647 0.1521 0.1522 0.1884 0.1931 

MRR@10 0.0417 0.0354 0.0464 0.0504 0.0497 0.0614 0.0607 0.0608 0.0664 0.0609 0.0603 0.0755 0.0799 
Precision@10 0.0122 0.0103 0.0143 0.0154 0.0155 0.0185 0.0195 0.0135 0.0201 0.0171 0.0199 0.0232 0.0245 

HR@20 
Recall@20 

0.1638 
0.0470 

0.1478 
0.0418 

0.1887 
0.0546 

0.2001 
0.0572 

0.2095 
0.0597 

0.2323 
0.0697 

0.2326 
0.0679 

0.2396 
0.0711 

0.2405 
0.0709 

0.2373 
0.0674 

0.2314 
0.0671 

0.2701 
0.0799 

0.2747 
0.0853 

MRR@20 0.0455 0.0391 0.0509 0.0550 0.0534 0.0666 0.0659 0.0624 0.0614 0.0681 0.0685 0.0806 0.0856 
NDCG@20 

Precision@20 
0.0287 
0.0100 

0.0248 
0.0086 

0.0328 
0.0118 

0.0350 
0.0127 

0.0365 
0.0131 

0.0432 
0.0162 

0.0424 
0.0159 

0.0453 
0.0169 

0.0449 
0.0164 

0.0416 
0.0160 

0.0406 
0.0158 

0.0510 
0.0185 

0.0537 
0.0194 

Douban 

HR@5 0.3774 0.3365 0.3864 0.3901 0.3953 0.4135 0.4191 0.4201 0.3982 0.4058 0.4101 0.4448 0.4546 
MRR@5 0.2334 0.1963 0.2377 0.2391 0.2416 0.2662 0.2693 0.2566 0.2525 0.2607 0.2614 0.2896 0.2975 

Precision@5 0.1162 0.0974 0.1190 0.1188 0.1181 0.1313 0.1319 0.1271 0.1266 0.1254 0.1247 0.1445 0.1495 
HR@10 0.4968 0.4475 0.5105 0.5131 0.5130 0.5258 0.5309 0.5100 0.5275 0.5004 0.5010 0.5569 0.5689 

MRR@10 0.2494 0.2113 0.2624 0.2631 0.2572 0.2812 0.2841 0.2775 0.2704 0.2710 0.2745 0.3044 0.3132 
Precision@10 0.0986 0.0858 0.1015 0.1004 0.0999 0.1085 0.1093 0.1060 0.1058 0.1049 0.1504 0.1193 0.1224 

HR@20 
Recall@20 

0.6068 
0.1743 

0.5664 
0.1502 

0.6198 
0.1840 

0.6198 
0.1834 

0.6240 
0.1829 

0.6365 
0.1923 

0.6357 
0.1926 

0.6356 
0.1969 

0.6314 
0.1907 

0.6301 
0.1911 

0.6355 
0.1934 

0.6582 
0.2115 

0.6692 
0.2186 

MRR@20 0.2571 0.2195 0.2699 0.2620 0.2651 0.2890 0.2915 0.2761 0.2753 0.2711 0.2716 0.3113 0.3195 
NDCG@20 

Precision@20 
0.1467 
0.0808 

0.1222 
0.0694 

0.1535 
0.0825 

0.1527 
0.0823 

0.1525 
0.0812 

0.1655 
0.0873 

0.1668 
0.0867 

0.1691 
0.0866 

0.1587 
0.0858 

0.1641 
0.0849 

0.1609 
0.0855 

0.1833 
0.0950 

0.1874 
0.0973 

Ciao 

HR@5 0.0837 0.0665 0.0908 0.0919 0.0911 0.1017 0.1042 0.1117 0.1049 0.1009 0.1011 0.1074 0.1150 
MRR@5 0.0503 0.0397 0.0513 0.0534 0.0531 0.0600 0.0618 0.0647 0.0653 0.0609 0.0613 0.0661 0.0713 

Precision@5 0.0204 0.0158 0.0217 0.0219 0.0221 0.0241 0.0245 0.0253 0.0250 0.0250 0.0250 0.0252 0.0276 
HR@10 0.1186 0.0929 0.1346 0.1314 0.1351 0.1463 0.1455 0.1456 0.1473 0.1432 0.1409 0.1474 0.1571 

MRR@10 0.0557 0.0431 0.0571 0.0587 0.0591 0.0656 0.0674 0.0704 0.0709 0.0678 0.0669 0.0713 0.0766 
Precision@10 0.0156 0.0122 0.0174 0.0170 0.0175 0.0185 0.0189 0.0195 0.0191 0.0189 0.0181 0.0193 0.0206 

HR@20 
Recall@20 

0.1558 
0.0533 

0.1304 
0.0450 

0.1785 
0.0600 

0.1760 
0.0586 

0.1791 
0.0607 

0.1977 
0.0669 

0.2010 
0.0691 

0.2027 
0.0689 

0.1987 
0.0691 

0.1933 
0.0675 

0.1902 
0.0661 

0.2018 
0.0703 

0.2114 
0.0765 

MRR@20 0.0582 0.0456 0.0601 0.0618 0.0620 0.0691 0.0712 0.0636 0.0743 0.0693 0.0690 0.0751 0.0802 
NDCG@20 

Precision@20 
0.0359 
0.0110 

0.0289 
0.0090 

0.0387 
0.0125 

0.0387 
0.0122 

0.0391 
0.0126 

0.0434 
0.0135 

0.0448 
0.0138 

0.0465 
0.0136 

0.0464 
0.0140 

0.0454 
0.0132 

0.0452 
0.0135 

0.0473 
0.0140 

0.0501 
0.0149 

 

Figure 10: Hyperparameter study for CL-KDM in terms of 
Recall@10 changes on Ciao and Yelp datasets. 
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Figure 11: Convergence analysis w.r.t epochs for training 
in terms of NDCG@10. 
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