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Abstract

Predicting the subsequent event for an exist-001
ing event context is an important but challeng-002
ing task, as it requires understanding the un-003
derlying relationship between events. Previ-004
ous methods propose to retrieve relational fea-005
tures from event graph to enhance the model-006
ing of event correlation. However, the spar-007
sity of event graph may restrict the acquisition008
of relevant graph information, and hence influ-009
ence the model performance. To address this010
issue, we consider automatically building of011
event graph using a BERT model. To this end,012
we incorporate an additional structured vari-013
able into BERT to learn to predict the event014
connections in the training process. Hence, in015
the test process, the connection relationship for016
unseen events can be predicted by the struc-017
tured variable. Results on two event prediction018
tasks: script event prediction and story ending019
prediction, show that our approach can outper-020
form state-of-the-art baseline methods.021

1 Introduction022

Understanding the semantics of events and their un-023

derlying connections is a long-standing task in nat-024

ural language processing (Minsky, 1974; Schank,025

1975). Much research has been done on extracting026

script knowledge from narrative texts, and mak-027

ing use of such knowledge for predicting a likely028

subsequent event given a set of context events.029

A key issue to fulfilling such tasks is the mod-030

eling of event relation information. To this end,031

early work exploited event pair relations (Cham-032

bers, 2008; Jans et al., 2012; Granroth and Clark,033

2016) and temporal information (Pichotta, 2016;034

Pichotta and Mooney, 2016). The former has035

been used for event prediction by using embedding036

methods, where the similarity between subsequent037

events and context events are measured and used038

for candidate ranking. The latter has been used039

for neural network methods, where models such as040

LSTMs have been used to model a chain of context041

Figure 1: (a) An example for event prediction. (b) Given
an event sequence, retrieval-based methods lookup structural
information of events from event graph. However, in the test
process, part of events may be not covered by the event graph,
hence their connection information is unavailable. Different
from retrieval-based methods, GraphBERT is able to predict
the connection strength between events.

events. There has also been work integrating the 042

two methods (Wang et al., 2017). 043

Despite achieving certain effectiveness, the 044

above methods do not fully model the underlying 045

connection between context events. As shown in 046

Figure 1 (a), given the facts that Jason had been 047

overstretched at work, He decided to change job 048

and Jason finds a new job, the subsequent event Ja- 049

son is satisfied with his new job is more likely than 050

Jason feels much stressed at his new job, which can 051

be inferred by understanding the fact that the reason 052

for his new job search is stress in his job. Li et al. 053

(2018b) and Koncel et al. (2019) consider such con- 054

text structure by building event evolutionary graphs, 055

and using network embedding models to extract re- 056

lational features. For these methods, event graphs 057

serve as a source of external structured knowledge, 058

which are extracted from narrative texts and pro- 059

vide prior features for event correlation. 060

One limitation of their methods is that the ef- 061

fectiveness of their methods heavily relies on the 062

coverage of the event graph. As shown in Figure 063

1 (b), Li et al. (2018b) and Koncel et al. (2019)’s 064

methods work by looking up the event tuples in the 065
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event graph to retrieve the connection information066

between events for predicting the output. This is067

done by the standard knowledge graph lookup op-068

eration. However, if the context events are not in069

the event graph, the method cannot find relevant070

information. Figure 1 (b) shows an extreme case.071

In event sequence β, although the context events be072

starving and go for a meal are highly similar to the073

event graph content feel hungry and go for lunch,074

the retrieval-based methods can fail to match con-075

text events in the event graph and utilize the event076

graph knowledge. However, in practice, it is infea-077

sible to construct an event graph that covers most078

of the possible events. As an event is the composi-079

tion of multiple arguments, so the same event can080

correspond to various semantically equivalent ex-081

pressions, such as “feel hungry” vs “be starving”,082

or “hunger”, etc. This would limit the performance083

of the retrieval-based systems.084

To address this issue, we consider automatically085

predicting the event links using a graph-enhanced086

BERT model (GraphBERT). As shown in Fig-087

ure 1 (b), we collect event structure information088

into a BERT model with graph structure extension.089

Given a set of event contexts, we use the Graph-090

BERT model to construct an event graph structure091

by predicting connection strengths between context092

events, instead of retrieving them from a prebuilt093

event graph. Specifically, we extend the BERT094

model by introducing a structured variable, which095

captures the connection strengths between events.096

As shown in Figure 2, during training, both context097

events and external event graph information are098

used to train the structured variable. During testing,099

the structured variable which describes connection100

strengths between events is obtained using the con-101

text event only, which is used for finding the next102

event. Subsequently, we encode the predicted link103

strength for making a prediction.104

Experimental results on standard datasets show105

that our model outperforms baseline methods. Fur-106

ther analysis demonstrates that GraphBERT can107

predict the connection strengths for unseen events108

and improve the prediction accuracy.109

2 Background110

As shown in Figure 1 (a), the task of event predic-111

tion (Mostafazadeh et al., 2016; Li et al., 2018b)112

can be defined as choosing the most reasonable113

subsequent event for an existing event context.114

Formally, given a candidate event sequence X =115

{Xe1 , . . . , Xet , Xecj }, where {Xe1 , . . . , Xet}are t con- 116

text events andXecj is the cj th candidate subsequent 117

event, the prediction model is required to predict 118

a relatedness score Y ∈ [0, 1] for the candidate 119

subsequent event given the event context. 120

Event graphs (Li et al., 2018b) have been used 121

to represent relationships between multiple events. 122

Formally, an event graph could be denoted as G = 123

{V,R}, where V is the node set, R is the edge 124

set. Each node Vi ∈ V corresponds to an event 125

Xi, while each edge Rij ∈ R denotes a directed 126

edge Vi → Vj along with a weight Wij , which is 127

calculated by: 128

Wij =
count(Vi, Vj)∑
k count(Vi, Vk)

(1) 129

where count(Vi, Vj) denotes the frequency of a 130

bigram (Vi, Vj). Hence, the weightWij is the prob- 131

ability that Xj is the subsequent event of Xi. 132

3 Baseline System 133

Before formally introducing the GraphBERT 134

framework, we first introduce a retrieval-based 135

baseline system. As Figure 2 (a) shows, given 136

an event sequence X = {Xe1 , . . . , Xet , Xecj }, the 137

baseline system retrieves the corresponding struc- 138

tural information for each event within X from a 139

prebuilt event graph G, and then integrates the re- 140

trieved structural information into the BERT frame 141

for predicting the relatedness score Y . 142

For an arbitrary event tuple (Xei , Xej ), if it is 143

covered by the event graph G (i.e., both Xei and 144

Xej are nodes of G), then we can retrieve the cor- 145

responding node embeddings ei and ej , together 146

with the edge weight Aij by matching the event 147

tuple in the event graph. The representation vector 148

of the events within X further form into an embed- 149

ding matrix E, and the edge weights form into an 150

adjacency matrix A. To make use of the retrieved 151

structural information for enhancing the prediction 152

process, we first employ a graph neural network 153

to combine the event representation matrix and the 154

adjacency matrix: 155

E(U) = σ(AEWU ) (2) 156

where WU ∈ Rd×d is a weight matrix; σ is a sigmoid 157

function; E(U) is the event representation matrix 158

updated by A. 159

Then the combined event graph knowledge can 160

be merged into the frame of BERT for enhancing 161

the prediction process. To this end, we employ 162
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Figure 2: Model Structure. (a) Architecture of the baseline system. Given an event sequence, the baseline system retrieves event
node features and connection strength from a prebulit event graph. (b) In addition to the baseline system, GraphBERT introduces
an additional aggregator to obtain event representation from the hidden states of BERT, and learns to predict the connection
strength between events in the training process using the inferer. So that in the test process, the connection information can be
predicted for arbitrary event.

an attention operation to softly select relevant in-163

formation from the updated event representations164

E(U), and then update the hidden states of BERT.165

Specifically, we take the hidden states of the s1th166

Transformer layer of BERT (denoted asHs1) as the167

query, and take the updated event representation168

E(U) as the key:169

E(U)∗ = MultiAttn(Hs1 , E(U)) (3)170

where E(U)∗ carries information selected from171

E(U) and relevant to Hs1 .172

Then we merge E(U)∗ with Hs1 through an ad-173

dition operation, and employ layer normalization174

to keep gradient stability:175

Hs1∗ = LayerNorm(E(U)∗ +Hs1) (4)176

Hs1∗ contains both the node feature information177

and the connection information between events.178

By taking Hs1∗ as the input of the subsequent179

(s1 + 1)th Transformer layers of BERT, the event180

prediction process is enhanced with the predicted181

event graph knowledge.182

This retrieval-based baseline system can be re-183

garded as the adaption of Li et al. (2018b) and184

Koncel et al. (2019)’s retrieval-based methods on a185

pretrained model BERT.186

4 GraphBERT187

A critical weakness of the retrieval-based baseline188

system is that it heavily relies on the coverage of189

the event graph. In other words, if an event is190

not covered by the event graph, then the structural191

information (i.e., node features and the adjacency192

matrix) would be absent from the constructed event193

graph, which further limits the model performance.194

In this paper, we propose a predictive-based195

framework GraphBERT. GraphBERT uses the196

transformer layers of BERT as an encoder to obtain 197

the representation for arbitrary events, and then 198

learns to predict the link strength between events 199

in the training process, so that the sparsity issues 200

in the retrieval process can be avoided. 201

To this end, as Figure 2 (b) shows, in contrast to 202

the retrieval-based baseline system, we introduce 203

two more modules: (1) An aggregator to obtain 204

event representations from the BERT framework; 205

(2) an inferer to predict the link strength between 206

events based on the event representations. 207

4.1 Event Encoding 208

Given an event sequence X , to calculate the event 209

representations and predict the link strength for 210

events within X , GraphBERT first encodes X into 211

a set of token-level distributed representations by 212

taking the 1st-s0th Transformer layers of BERT as 213

an encoder. Then an aggregator is employed to 214

aggregate the token level representations into event 215

representations. 216

Token Level Representations For an event se- 217

quence X = {X1, · · · , Xt+1}, where Xi = 218

{x1, . . . , xli}is an event within X and with li tokens, 219

the s0th Transformer layer of BERT encodes these 220

tokens into contextualized distributed represen- 221

tations Hs0 = {(h1
1, . . . , h

1
l1

), · · · , (ht+1
1 , . . . , ht+1

lt+1
)}, 222

where hij ∈ R1×d is the distributed representation 223

of the jth token of event Xi. Then we conduct the 224

graph information prediction as well as the predic- 225

tion task based on the token representations. 226

Event Level Representations An aggregator 227

module aggregates tokens representation of events 228

derived from the hidden states of BERT (i.e., Hs0) 229

to obtain the event level representations. For an 230

arbitrary event Xi ∈ X , we employ a multi-head 231

attention operation (Vaswani et al., 2017) to ag- 232
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gregate information from the corresponding token233

representations Hs0
i = (hi1, . . . , h

i
li

) and obtain234

the vector representation of Xi. Specifically, we235

define the query matrix of attention operation as236

qi = 1
li

∑
hil , and take Hs0

i as the key matrix as237

well as the value matrix. Then the representation238

of Xi is calculated as:239

êi = MultiAttn(qi, H
s0
i , H

s0
i ) (5)240

where êi ∈ R1×d.241

In this way, we can obtain the representation242

of all events within X , which we denote as Ê =243

{ê1, · · · , êt+1}, where Ê ∈ R(t+1)×d is a matrix. Note244

that through the embedding layer of BERT, posi-245

tion information has been injected into the token246

representations. Thus Ê carries event order infor-247

mation.248

Then the event representation matrix Ê is used249

for predicting the link strength between events.250

Hence, the performance of link strength predic-251

tion can be strongly influenced by the quality of Ê.252

By deriving Ê from the hidden states of BERT, the253

abundant language knowledge within BERT can be254

utilized to obtain the event representations.255

4.2 Link Strength Prediction256

Given the event representation matrix Ê as node257

features, we employ an inferer module to predict258

the connection strength between arbitrary events259

within X , regardless of whether these events are260

seen in the training process. The output is a matrix261

Â ∈ R(t+1)×(t+1) , where Âij models the probability262

that event j is the subsequent event of event i.263

We stack n graph attention (GAT) layers264

(Veličković et al., 2017) for consolidating event265

features. For an event Xi, the GAT layer works on266

the neighborhood of Xi to aggregate information.267

Since the connection between events are unknown268

a priori, we set the neighborhood set of event Xi269

as Ni = {Xj}, where Xj ∈ X, j 6= i.270

Therefore, at the kth graph attention layer, given271

the representation of the ith event êki , we calculate272

the attention coefficients between other events and273

derive deep event representation as:274

αij = softmaxj,j∈Ni(Relu(u[Wαê
k
i ||Wαê

k
j ]))

êk+1
i = σ(

∑
j∈Ni

αijWαê
k
j ) (6)275

where u ∈ R1×2d,Wα ∈ Rd×dare trainable parame-276

ters, ·||·is a concatenation operation. At the first277

GAT layer, ê1i is initialized by êiderived from the278

aggregator.279

After n graph attention operations, we employ a 280

bilinear map to calculate a relation strength score 281

between two events within X based on their deep 282

representations: 283

Γij =
(
êni WR T(ênj )

)
(7) 284

where WR ∈ Rd×d are learnable parameters, T (·) 285

is the transpose operation. For all t + 1 events 286

within X , the relation strength score between arbi- 287

trary two events forms a matrix Γ ∈ R(t+1)×(t+1), 288

with each element Γij measuring the relation 289

strength between Xi and Xj . 290

Then we normalize the relation strength scores 291

using the softmax function: 292

Âij = softmaxj(Γij) (8) 293

After the layer normalization,
∑

j Âij = 1. 294

Hence, with the aggregator and the inferer, 295

GraphBERT can obtain representation and connec- 296

tion strengths for arbitrary events, regardless of 297

whether or not the event is covered by the event 298

graph. Then the predicted adjacency matrix Â and 299

event representations Ê can be used for prediction, 300

and the process is same as the retrieval-based base- 301

line, as described in Eq.(2)-Eq.(4). 302

4.3 Training of Inferer 303

In the training process, we employ a tutor module 304

to supervise the prediction of Â using the structural 305

information from a prebuilt event graph. Given an 306

event sequence X , the tutor obtains an adjacency 307

matrix A based on the edge weights of the event 308

graph. Formally, the weights of A are initialized 309

as: 310

Aij =

{
Wij , if Vi′ → Vj′ ∈ R,
0, others.

(9) 311

where Vi′ , Vj′ are nodes in the event graph cor- 312

responding to the ith and the jth event of the 313

candidate event sequence. The same as the pre- 314

dicted event adjacency matrix Â, A is also a 315

R(t+1)×(t+1)matrix. 316

We scale A to make each row sum equals 1. 317

Therefore, each element of A models the proba- 318

bility that the jth event is the subsequent event of 319

the ith event in X . In the training process, through 320

minimizing the distance between Â and A, the in- 321

ferer module is supervised by the tutor to learn to 322

predict the event connection strength based on the 323

event representations. 324
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4.4 Optimization325

The overall loss function is defined as:326

L = LEvent Prediction + λLGraph Reconstruction (10)327

where LEvent Prediction is a cross-entropy loss mea-328

suring the difference between predicted relatedness329

score Y and golden label, LGraph Reconstruction assess330

the difference between A and Â, λ is an additional331

hyperparameter for balancing the prediction loss332

with graph reconstruction loss.333

For calculating LGraph Reconstruction, we cast both334

A and Â as a set of random variables, and employ335

the KL divergence to measure their difference:336

LGraph Reconstruction =∑
i

KL(MultiNomial(Âi)||MultiNomial(Ai)) (11)337

where i denotes the ith row, and MultiNomial(·)338

denotes the multinomial distribution.339

5 Experiments340

We evaluate our approach on two event predic-341

tion tasks: Multiple Choice Narrative Cloze Task342

(MCNC) (Granroth and Clark, 2016) and Story343

Cloze Test (SCT) (Mostafazadeh et al., 2016) by344

constructing an event graph based on the train-345

ing set of MCNC to train the GraphBERT model346

and then adapts the GraphBERT model trained on347

the MCNC dataset to the SCT dataset to evaluate348

whether GraphBERT can predict the link strength349

between unseen events to enhance the prediction350

performance.351

5.1 Dataset352

Multiple Choice Narrative Cloze Task The353

MCNC task requires the prediction model to354

choose the most reasonable subsequent event355

from five candidate events given an event context356

(Granroth and Clark, 2016). In this task, each event357

is abstracted to Predicate-GR form (Granroth and358

Clark, 2016), which represents an event in a struc-359

ture of {subject, predicate, object, prepositional360

object}. Following Granroth and Clark (2016), we361

extract event chains from the New York Times por-362

tion of the Gigaword corpus. The detailed statistics363

of the dataset are shown in Table 1.364

Story Cloze Test Task The SCT task requires mod-365

els to select the correct ending from two candi-366

dates given a story context. Compared with MCNC367

which focuses on abstract events, the stories in368

Training Dev. Test
#Documents 830,643 103,583 103,805
#Event Chains 140,331 10,000 10,000
#Unique Events 430,516 44,581 47,252
#Uncovered Events 0 24,358 24,081

Table 1: Statistics of the MCNC dataset.

SCT are concrete events and with much more de- 369

tails. This dataset contains a five-sentence story 370

training set with 98,162 instances, and 1,871 four- 371

sentence story contexts along with a right ending 372

and a wrong ending in the dev. and test dataset, 373

respectively. Because of the absence of wrong end- 374

ing in the training set, we only use the development 375

and the test dataset, and split the development set 376

into 1,771 instances for finetuning models and 100 377

instances for the development purpose. 378

5.2 Construction of Event Graph 379

The event graph is constructed based on the train- 380

ing set of the MCNC dataset. Each event within 381

the training set of MCNC is taken as a node of the 382

event graph, and the edge weights are obtained by 383

calculating the event bigram frequency. Note that, 384

as shown in Table 1, although the events have been 385

processed into a highly abstracted form to allevi- 386

ate the sparsity, there are still nearly half of the 387

events in the development and test set of MCNC 388

remains uncovered by the event graph. In the test 389

process, for retrieval-based methods, given a can- 390

didate event sequence with length t+ 1, the edge 391

weights for events not covered by the event graph 392

are all set as 1/(t+ 1). 393

5.3 Experimental Settings 394

We implement the GraphBERT model using pre- 395

trained BERT-base model, which contains 12 Trans- 396

former layers. We aggregate the token representa- 397

tions from the 7th Transformer layer of BERT, and 398

merge the updated event representations to the 10th 399

Transformer layer of BERT. The aggregator has a 400

dimension of 768, and contains 12 attention heads. 401

The inferer contains 1 GAT layer. The balance co- 402

efficient λ equals 0.01. During the training and 403

testing process, we concatenate the elements of 404

the Predicate-GRs to turn the Predicate-GRs into 405

strings, so that the event sequences can conform to 406

the input format of the GraphBERT model. More 407

details are provided in the Appendix. 408

Baselines for MCNC 409

Event Pair and Event Chain Based Methods 410

(i) Event-Comp (Granroth and Clark, 2016) cal- 411

culates the pair-wise event relatedness score using 412

a Siamese network. (ii) PairLSTM (Wang et al., 413
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2017) integrates event order information and pair-414

wise event relations to predict the ending event.415

(ii) RoBERTa-RF (Lv et al., 2020) enhances pre-416

trained language model RoBERTa with chain-wise417

event relation knowledge for making prediction.418

Event Graph Based Methods419

(i) SGNN (Li et al., 2018b) constructs a narrative420

event evolutionary graph (NEEG) to describe event421

connections, and propose a scaled graph neural net-422

work to predict the ending event based on structural423

information retrieved from the NEEG. (ii) Het-424

erEvent (Zheng et al., 2020) encodes events using425

BERT, and implicitly models the word-event rela-426

tionship by an heterogeneous graph attention mech-427

anism. (iii) GraphTransformer (Koncel et al.,428

2019) retrieves structural information from event429

graph and introduces an additional graph encoder430

upon BERT to leverage the structural information.431

Pretrained Language Model Based Methods432

(i) BERT (Devlin et al., 2019) refers to the433

BERT-base model finetuned on the MCNC dataset.434

(ii) GraphBERTλ=0 refers the GraphBERT model435

optimized with the balance coefficient λ set as 0.436

Hence, the structural information cannot be incor-437

porated through the graph reconstruction term.438

5.3.1 Settings for SCT439

To test the generality of GraphBERT, we exam-440

ine whether GraphBERT can utilize the structural441

knowledge learned from MCNC-based event graph442

to guide the SCT task. To make fair comparisons,443

we also trained the BERT (Devlin et al., 2019),444

GraphTransformer (Koncel et al., 2019) on the445

MCNC dataset, then finetuned them on the SCT446

dataset. In the following sections, we use the sub-447

script “MCNC” to denote the model which has448

been trained on the MCNC dataset.449

However, in the finetuning and test process,450

GraphTransformer still relies on an event graph to451

provide structural information. To address this is-452

sue, we abstract each event in the finetuning set and453

test set of SCT into the Predicate-GR form, which454

is the same form with the nodes in the MCNC-455

based event graph. As a result, structural informa-456

tion for an event in SCT can be retrieved from the457

MCNC-based event graph using its corresponding458

Predicate-GR form, once the event is covered by459

the event graph.460

In addition to the above-mentioned methods, on461

the SCT dataset, we also compare GraphBERT462

with the following event-chain-based baselines:463

(i) HCM (Chaturvedi et al., 2017) trains a logis- 464

tic regression model based on contextual semantic 465

features. (ii) ISCK (Chen, 2019) integrates narra- 466

tive sequence and sentimental evolution informa- 467

tion to predict the story ending. 468

5.3.2 Overall Results 469

We list the results on MCNC and SCT in Table 2 470

and Table 3, respectively. From the results on 471

MCNC (Table 2), we can observe that: 472

(1) Compared to event-pair-based EventComp 473

and event-chain-based PairLSTM, event-graph- 474

based methods (i.e. SGNN, HeterEvent, Graph- 475

Transformer, and GraphBERT) show better per- 476

formance. In addition, GraphBERT outperforms 477

event-chain based RoBERTa-RF, though RoBERTa- 478

RF is built upon a much more powerful language 479

model. This confirms that involving event struc- 480

tural information could be effective for this task. 481

(2) Compared to BERT and GraphBERTλ=0, 482

graph enhanced models GraphTransformer and 483

GraphBERT further improve the accuracy of script 484

event prediction (T-test; P-Value < 0.01). This 485

shows that linguistic and structural knowledge can 486

have a complementary effect. 487

(3) Compared to the retrieval-based method 488

GraphTransformer, GraphBERT shows efficiency 489

of learning structural information from the event 490

graph (T-test; P-Value < 0.01). This indicates that 491

GraphBERT is able to learn the structural informa- 492

tion from the event graph in the training process, 493

and predict the correct structural information for 494

unseen events in the test process. 495

Results on the SCT dataset (Table 3) show that: 496

(1) Comparing GraphBERT with BERTMCNC, 497

GraphBERTλ=0,MCNC shows that the graph infor- 498

mation can also be helpful for the SCT task. 499

(2) Though incorporated graph information, the 500

performance of GraphTransformer is close or in- 501

ferior to BERT on SCT. This could be because of 502

the limited size of the SCT development set, which 503

contains 1,771 samples and might be insufficient to 504

adapt GraphTransformer to the SCT problem. How- 505

ever, GraphBERT shows a 1.3% absolute improve- 506

ment over BERT, which indicates the efficiency of 507

GraphBERT in predicting the link strength between 508

unseen events for predicting the ending event. 509

5.4 Influence of the Accuracy of the 510

Predicted Link Strength 511

We investigate the relationship between the ac- 512

curacy of the predicted link strengths with the 513
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Methods Accuracy(%)
Random 20.00**
EventComp (Granroth and Clark, 2016) 49.57**
PairLSTM (Wang et al., 2017) 50.83**
SGNN (Li et al., 2018b) 52.45**
BERT (Devlin et al., 2019) 57.35**
GraphTransformer (Koncel et al., 2019) 58.53**
HeterEvent (Zheng et al., 2020) 58.10**
GraphBERTλ=0 57.23**
RoBERTa-RF (Lv et al., 2020) 58.66**
GraphBERT 60.72

Table 2: Performance of GraphBERT and baseline methods on
the test set of MCNC. Accuracy marked with * means p-value
< 0.05 and ** indicates p-value < 0.01 in T-test.

Methods Accuracy(%)
HCM (Chaturvedi et al., 2017) 77.6**
ISCK (Chen, 2019) 87.6**
BERT (Devlin et al., 2019) 88.1*
BERTMCNC 88.5*
GraphTransformerMCNC (Koncel et al., 2019) 88.9
HeterEventMCNC (Zheng et al., 2020) 88.4*
GraphBERTλ=0,MCNC 88.3*
GraphBERTMCNC 89.8

Table 3: Model performance on the test set of SCT. Accuracy
marked with * means p-value < 0.05 and ** indicates p-value
< 0.01 in T-test.

model performance. However, for events in the514

test set, the golden event graph is unavailable. To515

address this issue, we split the original training set516

of MCNC into a new training and evaluating set,517

containing 120,331 and 20,000 instances, respec-518

tively. For each sample, we calculate the Pearson519

correlation coefficient between the predicted con-520

nection strengths and connection strengths derived521

from the event graph, as well as the relationship522

between such correlation coefficient and model per-523

formance. The results are shown in Figure 3. We524

observe that, in general, GraphBERT can predict525

the connection between arbitrary events with rea-526

sonable accuracy. Also, the model performance527

improves as the connection prediction accuracy in-528

creases. This confirms that correctly predicting the529

event connections for unseen events can be helpful530

for the event prediction process.531

5.5 Influence of the Coverage of the Event532

Graph533

We conduct experiments to investigate the specific534

influence of the sparsity of the event graph on535

model performance. Based on the original test536

set of MCNC, we build new test sets with different537

proportions of uncovered events, and compare the538

performances of the GraphBERT framework with539

retrieval-based method GraphTransformer (Kon-540

cel et al., 2019) on these test sets. As shown in541

Figure 4, as the proportion of uncovered events in-542

Figure 3: (a) The distribution of Pearson correlation coeffi-
cients between the predicted connection strength and connec-
tion strength derived from the event graph. (b) Relationship
between correlation coefficient and model performance.

Figure 4: The performance of GraphBERT and GraphTrans-
former under different proportion of uncovered events.

crease from 0 to 1, the performance of GraphTrans- 543

former shows a negative trend in general. This 544

is because, for retrieval-based methods, with the 545

increase of sparsity, the availability of structural 546

information decreases. Compared to GraphTrans- 547

former, the performance of GraphBERT is more 548

stable. These results indicate that predicting the 549

structural information can be useful for enhancing 550

the performance of event prediction. 551

5.6 Case Study 552

Table 4 provides an example of prediction results 553

from different models on the test set of SCT. The 554

event context describes a story that a bear appeared 555

in the campus and policemen came to tranquilize 556

the bear. Given the event context, GraphBERT 557

is able to choose correct ending E1 The bear fell 558

asleep, while GraphTransformer chooses the incor- 559

rect ending E2 The bear became very violent. 560

To correctly predict the story ending, a model 561

should understand the relationship between gave 562

a tranquilizer and fell asleep. However, event 563

gave a tranquilizer is not covered by the event 564

graph. Hence, the retrieval-based method Graph- 565

Transformer is unable to obtain structural informa- 566

tion from the event graph. On the other hand, in the 567

event graph, there is a directed edge from a node 568

obj. sedated to node subj. slept. This indicates that, 569

GraphBERT can learn the structural knowledge 570

from the MCNC-based event graph, and predict 571

the connection between gave a tranquilizer and fell 572

asleep for instances in the SCT dataset. 573
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Event Context Candidate Subsequent Event Model
A: I heard that my school’s campus had been closed.
B: The message said there was a bear on the grounds !
C: The police had to come and help get the bear away.
D: They gave the bear a tranquilizer.

E1: The bear fell asleep. (
√

) GraphBERT

E2: The bear became very violent. (×) GraphTransformer

Table 4: An example of event predictions made by GraphTransformer and GraphBERT on the SCT dataset.

6 Discussion574

The GraphBERT model employs a structure vari-575

able Â to capture the “is next event” relationship576

between events. By introducing more parallel struc-577

tural variables {Â1, . . . , Âk}, it can be extended to578

simultaneously learn multiple kinds of event re-579

lationships, such as temporal or causal relation-580

ship. Furthermore, previous researches demon-581

strate that the graph-structured relationship exten-582

sively exist between other semantic units, such583

as sentences(Yasunaga et al., 2017), or even para-584

graphs (Sonawane and Kulkarni, 2014). However,585

similar to the situation in event graph, it would586

be impractical to construct knowledge graphs that587

cover all possible connection relationships between588

all the sentences or paragraphs. This restricts the589

applicable of retrieval-based methods in these sit-590

uations. On the contrary, our generative approach591

suggests a potential solution by learning the con-592

nection relationship from graph-structured knowl-593

edge base with limited size, then generalizing to594

the unseen cases.595

7 Related Work596

The investigation of scripts dates back to 1970’s597

(Minsky, 1974; Schank, 1975). The script event598

prediction task models the relationships between599

abstract events. Previous studies propose to model600

the pair-wise relationship (Chambers, 2008; Jans601

et al., 2012; Granroth and Clark, 2016) or event602

order information (Pichotta and Mooney, 2016; Pi-603

chotta, 2016; Wang et al., 2017) for predicting the604

subsequent event. Li et al. (2018b) and Lv et al.605

(2019) propose to leverage the rich connection be-606

tween events using graph neural network and atten-607

tion mechanism, respectively.608

Different from script event prediction, the story609

cloze task (Mostafazadeh et al., 2016) focuses on610

concrete events. Therefore, it requires prediction611

models to learn commonsense knowledge for un-612

derstanding the story plot and predicting the end-613

ing. To this end, Li et al. (2018a) and Guan (2019)614

propose to combine context clues with external615

knowledge such as KGs. Li et al. (2019) finetune616

pretrained language models to solve the task. Com-617

pared to their works, our approach can use both the 618

language knowledge enriched in BERT to promote 619

the comprehension of event context, and the struc- 620

tural information from event graph to enhance the 621

modeling of event connections. 622

A recent line of work has been engaged in com- 623

bining the strength of Transformer based models 624

with graph structured data. To integrate KG with 625

language representation model BERT, Zhang et al. 626

(2019) encode KG with a graph embedding algo- 627

rithm TransE (Bordes et al., 2013), and takes the 628

representation of entities in KG as input of their 629

model. However, this line of work only linearizes 630

KGs to adapt the input of BERT. Graph structure 631

is not substantially integrated with BERT. Guan 632

(2019) and Koncel et al. (2019) propose retrieval- 633

based methods to leverage the structural informa- 634

tion of KG. However, in the event prediction task, 635

the diversity of event expression challenges the 636

coverage of the event graph, and prevents us from 637

simply retrieving events in the test instances from 638

the event graph. We propose to integrate the graph 639

structural information with BERT through a predic- 640

tive method. Compared to retrieval-based methods, 641

our approach is able to learn the structural informa- 642

tion of the event graph and generate the structural 643

information of events to avoid the unavailable of 644

structural information in test instances. 645

8 Conclusion 646

We devised a graph knowledge enhanced BERT 647

model for the event prediction task. In addition 648

to the BERT structure, GraphBERT introduces a 649

structured variable to learn structural information 650

from the event graph, and model the relationship 651

between the event context and the candidate subse- 652

quent event. Compared to retrieval-based methods, 653

GraphBERT is able to predict the link strength 654

between all events, thus avoiding the (inevitable) 655

sparsity of event graph. Experimental results on 656

MCNC and SCT task show that GraphBERT can 657

improve the event prediction performances com- 658

pared to state-of-the-art baseline methods. In ad- 659

dition, GraphBERT could also be adapted to other 660

graph-structured data, such as knowledge graphs. 661
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Léo, Márton Karsai, Carlos Sarraute, Éric Fleury,715
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9 Experimental Settings806

9.1 Training Details807

To conform to the input format of BERT, for an808

event described in the Predicate-GR form {subject,809

predicate, object, prepositional object}, we first810

concatenate each element within the predicate-GR811

into a string “subject predicate object prepositional812

object”, so that an event described in a structured813

form is turned into a string. Then for satisfying the814

requirement of BERT, the candidate event sequence815

is further preprocessed into the form of:816

[CLS] e1 [SEP] . . . et [SEP] candidate [SEP]
(12)817

On the MCNC dataset, the GraphBERT model818

is trained for 3 epochs, with a batch size of 64, and819

a learning rate of 2e-5. While during the finetuning820

process on SCT, GraphBERT is optimized with a821

batch size of 16, and a learning rate of 1e-5, with 5822

epochs.823

Figure 5: The performance of model trained with different
balance coefficient λ.

(4, 10) (5, 10) (6, 10) (7, 10) (8, 10) (9, 10)
58.76 60.28 60.57 60.72 60.28 60.01

Table 5: Influence of start layer and merge layer on model
performance.

9.2 Searching for the Balance Coefficient 824

In this paper, the objective function is composed of 825

two components. Through minimizing the graph 826

reconstruction loss, model learns to modeling the 827

bigram event adjacency patterns. While through 828

minimizing the prediction loss, model is trained 829

to choose the correct ending given an event con- 830

text. These two components are balanced with a 831

coefficient λ. 832

To investigate the effect of the balance coeffi- 833

cient, we compare the prediction accuracy of the 834

GraphBERT model trained with different λ and 835

show the results in Figure 5. From which we could 836

observe that, the prediction accuracy increases as 837

the balance coefficient increase from 0 to 0.1. This 838

is because the additional event graph structure in- 839

formation is helpful for the event prediction task. 840

However, as the λ exceeds 0.5, the model per- 841

formances start to decrease. This is because the 842

overemphasis of graph reconstruction loss would 843

in turn decrease the model performance. 844

9.3 Searching of Start and Merge Layer in 845

BERT 846

Different transformer layers of BERT tend to con- 847

centrate on different semantic and syntactic infor- 848

mation (Clark et al., 2019; Coenen et al., 2019). 849

Therefore, which layer is selected in the BERT to 850

start integrating event graph knowledge, and which 851

layer is selected to merge graph enhanced event 852

representations can affect the performance of the 853

model. We study such effect in two ways: first, 854

we fix the start layer and change the merge layer. 855

Second, we fix the gap between start and merge 856

layer, and change the start layer. Results are shown 857

in Table 5. The tuple (n1, n2) denotes the (start, 858
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Model Prediction Accuracy (%)
BERT 57.35

GraphBERT 60.72
RoBERTa 61.19

GraphRoBERTa 62.81

Table 6: Performance of the event graph knowledge enhanced
RoBERTa model (Graph-RoBERTa) on the MCNC dataset.

merge) layer. From which we could observe that,859

under the same gap between merge and start layer,860

employing the 7th transformer layer of BERT as861

the start layer can achieve the best result. While862

setting the merge–start gap as 2 is more efficient863

than other choices. Interestingly, Jawahar et al.864

(2019) find that the syntactic features can be well865

captured in the middle layers of BERT, especially866

in the 7–9 layer. This indicates that the middle867

layers of BERT focus more on sentence level infor-868

mation, and implicitly support the reasonableness869

that choosing the 7th and 10th transformer layer of870

BERT as the start end merge layer.871

10 Enhancing Different Kinds of872

Pretrained Transformer-based873

Pretrained Language Models with874

Event Graph Knowledge875

In this paper, we propose the GraphBERT frame-876

work, which enhances the transformer-based per-877

trained language model BERT with event graph878

knowledge through an additional structural variable879

Â. We argue that, using the structural variable, we880

can also equip other transformer-based pretrained881

language models, such as RoBERTa, with the event882

graph knowledge, and then enhance the event pre-883

diction process. This could be achieved by adapt884

the aggregator, inferer and merger module upon the885

other transformer-based frameworks.886

Using the above-mentioned manner, we imple-887

mented a GraphRoBERTa model and examined its888

performance on the MCNC dataset. The results889

are shown in Table 6. We observe that, compared890

with BERT, RoBERTa and GraphRoBERTa show891

better performance. This is because, during the892

pretraining process, RoBERTa can acquire more893

abundant linguistic knowledge for understanding894

the events through the dynamic masked token pre-895

diction mechanism. Moreover, the comparison896

between GraphBERT with BERT, and between897

GraphRoBERTa with RoBERTa show the effective-898

ness of our approach in incorporating event graph899

knowledge with multiple prevailing transformer-900

based pretrained language models, to consistently901

enhancing the performance of event prediction. 902

11


