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Abstract: Offline reinforcement learning (RL) aims to learn an optimal policy
from pre-collected and labeled datasets, which eliminates the time-consuming
data collection in online RL. However, offline RL still bears a large burden of
specifying/handcrafting extrinsic rewards for each transition in the offline data. As
a remedy for the labor-intensive labeling, we propose to endow offline RL tasks
with a few expert data and utilize the limited expert data to drive intrinsic rewards,
thus eliminating the need for extrinsic rewards. To achieve that, we introduce
Calibrated Latent gUidancE (CLUE), which utilizes a conditional variational
auto-encoder to learn a latent space such that intrinsic rewards can be directly
qualified over the latent space. CLUE’s key idea is to align the intrinsic rewards
consistent with the expert intention via enforcing the embeddings of expert data to
a calibrated contextual representation. We instantiate the expert-driven intrinsic
rewards in sparse-reward offline RL tasks, offline imitation learning (IL) tasks, and
unsupervised offline RL tasks. Empirically, we find that CLUE can effectively
improve the sparse-reward offline RL performance, outperform the state-of-the-art
offline IL baselines, and discover diverse skills from static reward-free offline data.
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1 Introduction

Recent advances in reinforcement learning (RL) have shown great success in decision-making
domains ranging from robot manipulation [1, 2] to navigation [3, 4] and large-language models [5].
Generally, an RL agent receives two sources of supervisory signals associated with the learning
progress: 1) environment transition dynamics and 2) task-specifying rewards, where 1) the transition
dynamics coordinate the agent’s behaviors toward the environment affordances and 2) the task-
specifying rewards capture the designer’s preferences over agent behaviors. However, the two
supervised signals themselves also limit the applicability of RL methods, since in many tasks,
especially in real-world domains, either collecting online environmental transitions or labeling
complex task-specifying rewards is time-consuming and laborious.

To tackle the above challenges, two separate RL branches have been proposed: 1) offline RL [6],
also known as batch RL, which promises to learn effective policies from previously-collected static
datasets without further online interaction, and 2) intrinsic rewards [7], which aim to capture a rich
form of task knowledge (such as long-term exploration or exploitation) that provides additional
guidance on how an agent should behave. Aligning with the task-specifying rewards, such intrinsic
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Figure 1: Three instantiations for the assumed "expert" data in offline RL settings: 1) sparse-reward
offline RL, 2) offline imitation learning (IL) setting, and 3) unsupervised offline RL setting (aiming
to learn diverse skills/policies from static reward-free offline data).

rewards promise to accelerate online RL by augmenting or replacing the manual task-specifying
rewards (hereafter extrinsic rewards). In fact, prior offline RL methods [6] typically introduce a
policy/value regularization and operate in a form of reward augmentation, which thus can be seen as a
special kind of intrinsic motivation. However, such intrinsic motivation is only designed to eliminate
the potential out-of-distribution (OOD) issues in offline RL and does not account for representing
task-specifying behaviors (extrinsic rewards). In this work, we aim to design an offline RL intrinsic
reward that promotes offline RL performance while representing task-specifying behaviors.

It is worth noting that adapting the online intrinsic rewards to offline RL problems is non-trivial.
In online RL, intrinsic rewards often capture the long-term temporal dependencies of interaction
trajectories [7, 8]. For example, Badia et al. [9] capture the novelty of states across multiple episodes;
Eysenbach et al. [10] quantify the discriminability between skills represented by latent variables.
However, such temporal dependencies rely on online interaction transitions, which thus cannot be
straightly captured in offline settings. In this work, we thus propose to discard the above temporal
dependence scheme and use an "expert" to facilitate labeling intrinsic rewards and guiding the offline
agent. To do so, we identify three scenarios for the expert instantiations in offline RL settings:

1) For sparse-reward offline RL tasks, we filter out the trajectories that do not accomplish the tasks and
take the success trajectories as the expert behaviors. By relabeling continuous intrinsic rewards for
those failed trajectories, we expect such a reward relabelling procedure can promote offline learning.

2) For reward-free offline RL tasks, we assume that the agent has access to additional (limited)
expert data generated by an expert policy. We expect that such limited expert data can provide useful
intrinsic rewards for unlabeled transitions and then bias the learning policy toward expert behaviors.

3) Also considering the reward-free offline RL setting, we do not assume any additional expert data.
Instead, we choose to cluster the offline transitions into a number of classes and take each class as a
separate "expert". Then, we encourage offline agents to produce diverse behaviors when conditioned
on different classes, in a similar spirit to the unsupervised skill learning in online RL.

We can see that in all three settings (Figure 1), we assume the existence of an expert (limited expert
data), either from trajectory filtering, from an external expert, or through clustering. To instantiate
the above intrinsic rewards, we propose Calibrated Latent gUidancE (CLUE), which aims to label
intrinsic rewards for unlabeled (or spare-reward) transitions in the offline RL setting. Specifically,
CLUE uses a conditional variational auto-encoder to learn a latent space for both expert data and
unlabeled data, then labels intrinsic rewards by computing the distance between the latent embeddings
of expert and unlabeled data. CLUE’s key idea is to explicitly bind together all the embeddings of
expert data, thus learning a calibrated embedding for all expert behaviors. Intuitively, this binding
procedure encourages the latent space to capture task-oriented behaviors such that latent space can
produce task-oriented intrinsic guidance when computing distance over the latent space.
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In summary, we make the following contributions in this paper: 1) We propose CLUE, which can
provide pluggable intrinsic rewards for offline RL methods. 2) We demonstrate CLUE can effectively
improve the spare-reward offline RL performance. 3) Considering offline imitation learning (IL)
settings, CLUE can achieve better or comparable results compared to both the reward-labeled offline
RL methods and the state-of-the-art offline IL methods. 4) We find that CLUE is able to discover
diverse behaviors/skills in the unsupervised (reward-free) offline RL setting.

2 Related Works

The goal of our work is to learn task-oriented intrinsic rewards for sparse-reward or reward-free offline
data. While there is a large body of research on learning rewards for RL tasks [11, 12, 13, 14, 15],
most work assumes online RL settings, while we consider the offline RL setting. Additionally, little
work has yet to verify intrinsic rewards across sparse-reward, IL, and unsupervised RL tasks together.

Typically, many intrinsic rewards have been proposed to encourage exploration in sparse-reward
(online) RL tasks. In this case, intrinsic rewards are often formulated as state visitation counts [16, 17,
18], prediction error [19, 20], prediction uncertainty [21, 22], information gain [23], state entropy [24,
25, 26], and deviation from a default policy [27, 28]. However, these intrinsic rewards are often not
well aligned with the task that the agent is solving. In contrast, the goal of our work is to learn a task-
oriented intrinsic reward such that it promotes the policy learning progress for sparse-reward tasks.

Beyond the standard offline RL setup, learning from (static) reward-labeled offline data [6, 29, 30, 31,
32], offline imitation learning (IL) considers learning from expert trajectories and (reward-free) sub-
optimal offline data, which can be generally folded into two paradigms [33]: behavior cloning (BC)
and offline inverse RL (IRL). BC directly learns a policy from expert trajectories using supervised
learning [34]. Due to compounding errors induced by covariate shift [35], BC methods require a
large amount of expert data, thus hindering the application on data-scarce scenarios. To overcome
such limitations, offline IRL methods consider matching the state-action distributions induced by the
expert [36, 37, 38, 39, 40, 41]. Typically, they formulate the expert matching objective by introducing
a discriminator and trying to find the saddle point of a min-max optimization, which tends to be brittle
and sensitive to the training (offline) data. However, our CLUE does not introduce any adversarial
objective, thus exhibiting more robust performance on a wide variety of tasks.

The idea of unsupervised RL is to learn diverse behaviors/skills in an open-ended environment without
access to extrinsic rewards [42, 43, 44]. Previous unsupervised RL methods are often formulated
through the lens of empowerment [45]. Central to this formulation is the information-theoretic skill
discovery approach, where diverse skills can be discovered by optimizing the long-term temporal
dependencies of interaction trajectories, e.g., maximizing the mutual information between induced
trajectories and some latent/context variables [10, 46, 47, 48, 49, 50, 51]. In this work, we propose
to discard this online temporal dependence scheme and use clustering methods to formulate such
diversity and use CLUE to label intrinsic rewards to guide offline agents.

3 Preliminary

Offline RL. We consider RL in a Markov Decision Process (MDP) M := (S,A, T, r, p0, γ), where
S is the state space, A is the action space, T is the environment transition dynamics, r is the task-
oriented extrinsic reward function, p0 is the initial state distribution, and γ is the discount factor. The
goal of RL is to find an optimal policy πθ(a|s) that maximizes the expected return Eπθ(τ) [

∑∞
t=0 γ

trt]
when interacting with the environment M, where trajectory τ := (s0,a0, r0, s1, · · · ) denotes the
generated trajectory, s0 ∼ p0(s0), at ∼ πθ(at|st), st+1 ∼ T (st+1|st,at), and rt denotes the
extrinsic reward r(st,at) at time step t. In offline RL, the agent can not interact with the environment
and only receives a static dataset of trajectories D := {τi}ni , pre-collected by one or a mixture of
(unknown) behavior policies. Then, the goal of offline RL is to find the best policy from offline data.

Conditional variational auto-encoders (CVAE). Given offline data x, the variational auto-encoder
(VAE) [52] proposes to maximize the variational lower bound,

3



log pθ(x) = KL(qϕ(z|x)∥pθ(z|x)) + Eqϕ(z|x) [− log qϕ(z|x) + log pθ(x, z)] (1)
≥ −KL(qϕ(z|x)∥pθ(z)) + Eqϕ(z|x) [log pθ(x|z)] , (2)

where pθ(z) is the prior distribution, qϕ(z|x) denotes the encoder model, and pθ(x|z) denotes decoder
model. Considering the structured output prediction settings, conditional VAE (CVAE) maximizes
the variational lower bound of the conditional log-likelihood:

log pθ(x|y) ≥ −KL(qϕ(z|x,y)∥pθ(z|y)) + Eqϕ(z|x,y) [log pθ(x|z,y)] . (3)

4 CLUE: Calibrated Latent Guidance

In this section, we introduce our method CLUE (Calibrated Latent gUidancE) that learns a calibrated
latent space such that intrinsic rewards can be directly gauged over the latent space. We begin by
assuming access to limited expert offline data and describe how we can use it to label intrinsic
rewards for reward-free offline data in Section 4.1. Next in Section 4.2, we describe three offline
RL instantiations, including one sparse-reward and two reward-free (offline imitation learning and
unsupervised offline RL) settings, each corresponding to a scenario discussed previously (Figure 1).

4.1 Calibrated Intrinsic Rewards

Assuming access to limited expert offline data De := {(s,a, s′)} and a large number of reward-free
offline data D := {(s,a, s′)}, our goal is to use De to learn an intrinsic reward function r̂(s,a) for
the reward-free transitions in D, such that we can recover expert behaviors using the relabeled offline
data Dr̂ := {(s,a, r̂, s′)}. With a slight abuse of notation, here we write r̂ in transitions {(s,a, r̂, s′)}
to denote the relabeled intrinsic reward r̂(s,a).

We first use CVAE to model the mixed offline behaviors in De ∪ D. Specifically, we take state s as
the input/conditional variable and take action a as the prediction variable. For each behavior samples
(s,a) in mixed data De ∪ D, we maximize the following variational lower bound:

log pθ(a|s) ≥ −KL(qϕ(z|s,a)∥pθ(z|s)) + Eqϕ(z|a,s) [log pθ(a|z, s)] (4)

≈ −KL(qϕ(z|s,a)∥pθ(z|s)) +
1

L

L∑
l=1

log pθ(a|z(l), s) ≜ LCVAE(s,a; θ, ϕ), (5)

where z(l) ∼ N (z|µϕ(s,a), σ
2
ϕ(s,a))

2, L is the number of samples, and LCVAE(s,a; θ, ϕ) is the
corresponding empirical lower bound. For simplicity, we set the prior distribution as the standard
Gaussian distribution, i.e., pθ(z|s) = N (0,1).

0.3 0.2 0.1 0.0 0.1 0.2 0.3
mean

0.88

0.92

0.96

1.00

st
an

da
rd

 d
ev

ia
tio

n

CVAE

non-expert expert

0.2 0.1 0.0 0.1 0.2
mean

0.96

0.97

0.98

0.99

st
an

da
rd

 d
ev

ia
tio

n

CLUE(ours)

non-expert expert

Figure 2: Latent embeddings of expert and non-
expert offline data on D4RL antmaze-medium-
diverse-v2 dataset, where embeddings are learned
by the naive CVAE (left) and our CLUE (right).

For a query sample (s,a), we label its intrin-
sic reward r̂(s,a) by computing the negative
distance between the latent embeddings of the
expert data and the query sample,

r̂(s,a) = exp (−c · ∥ze − z(s,a)∥2), (6)

where ze = E(s,a)∼De [qϕ(z|s,a)], z(s,a) ∼
qϕ(z|s,a), and c > 0 is a temperature factor.

However, naively maximizing LCVAE in Equa-
tion 5 may lead to undesirable embeddings with
varying scales that do not capture task-relevant behaviors when computing the latent distance. For
example, in Figure 2 left, we visualize the embeddings of the expert data De and the unlabeled
(non-expert) offline data D. We can see that the embeddings for the expert and non-expert data are
generally mixed together without clear separation. There is a large variance in expert data embeddings,

2We define µϕ(s,a) and σϕ(s,a) to be feed-forward networks with parameters ϕ, taking concatenated s and
a, and outputting the parameters (mean and std) of a Gaussian distribution in the latent space, respectively.
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and directly estimating the mean of the expert embeddings (i.e., ze = E(s,a)∼De [qϕ(z|s,a)]) cannot
effectively represent task-oriented behaviors, causing the labeled intrinsic reward r̂(s,a) to be biased.

To guarantee the intrinsic reward formulation r̂(s,a) in Equation 6 to be task-oriented, we thus
propose to learn calibrated embeddings. To do so, we explicitly bind together the expert embeddings,
expecting the expert embeddings to "collapse" into a single embedding. Thus, we introduce the
following calibration regularization over expert embeddings:

minLcalibr := E(s,a)∼De

[
∥µϕ(s,a)∥2 + ∥σϕ(s,a)∥2

]
. (7)

Due to the standard Gaussian prior for pθ(z|s) in Equation 5, we constrain not only the variance of
the expert embeddings but also the mean of the expert in Equation 7. Intuitively, Lcalibr unifies expert
embeddings ("collapsed" to a single point), therefore providing effective ze when computing intrinsic
rewards r̂(s,a) in Equation 6. As shown in Figure 2 right, the expert embeddings and their mean are
almost bound to a single point, so we can directly measure intrinsic rewards in latent space.

4.2 Intrinsic Reward Instantiations

Here we describe three offline instantiations, one spare-reward, and two reward-free offline settings,
that permit us to meet the previous expert data assumption (in Section 4.1) and label intrinsic rewards.

Spare-reward offline RL. Considering the challenging spare-reward offline data {(s,a, r, s′)}, we
can filter out the unsuccessful trajectories and take the finished trajectories as the expert data. Then,
we can replace the original spare rewards with the learned continuous intrinsic rewards.

Offline IL. Considering the reward-free offline RL data {(s,a, s′)}, we can assume the agent has
access to additional expert data (as few as only one trajectory). Then we can use the learned intrinsic
rewards to relabel the reward-free transitions, obtaining labeled offline data {(s,a, r̂, s′)}.

Unsupervised offline RL. Given the reward-free offline data {(s,a, s′)}, we can use clustering
algorithms to cluster the data into multiple classes and then treat each class as separate "expert" data.
In this way, we expect to learn different skills/policies when conditioned in different classes.

5 Experiments

In this section, we first empirically demonstrate the advantages of our pluggable intrinsic rewards
in sparse-reward offline RL tasks. Second, we then evaluate our CLUE in offline IL tasks, studying
how effective our intrinsic reward is in contrast to a broad range of state-of-the-art offline imitation
learning methods. Third, we study CLUE in unsupervised offline RL settings, expecting to discover
diverse behaviors from static offline data. Finally, we conduct ablation studies on the calibration
regularization and the amount of unlabeled offline data. All of our results are evaluated over 10
random seeds and 10 episodes for each seed.

Implementation. Note that our intrinsic rewards are pluggable and can be combined with any
offline RL algorithms. In our implementation, we combine CLUE with the Implicit Q-Learning
(IQL) algorithm [53] which is one of the state-of-the-art offline algorithms and can solve most of the
(reward-labeled) offline tasks with competitive performance. Our base IQL implementation is adapted
from IQL3, and we set all hyperparameters to the ones recommended in the original IQL paper.

5.1 Sparse-Reward Offline RL Tasks

Here we evaluate CLUE on spares-reward tasks (including AntMaze and Adroit domains) from the
D4RL benchmark. In this setting, we use the inherent sparse rewards in the dataset to select expert
data, i.e., selecting the task-completed or goal-reached trajectories from the sparse-reward dataset and
treating them as the expert data. In Tables 1 and 2, we compare our method with baseline methods
(IQL [53] and OTR [54]) when only one expert trajectory4 is selected. For comparison, we train

3https://github.com/ikostrikov/implicit_q_learning.
4In the appendix, we also compare our method with baseline methods when at most 10 completed trajectories

are selected, where "at most 10" refers to that there may be less than 10 successful trajectories in D4RL dataset.
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Table 1: Normalized scores (mean and standard
deviation) of CLUE and baselines on sparse-
reward AntMaze tasks, where both OTR and
CLUE use IQL as the base offline RL algorithm.
The highest scores between our CLUE and base-
line OTR are highlighted.

Dataset IQL OTR CLUE

umaze 88.7 81.6 ± 7.3 92.1 ± 3.9
umaze-diverse 67.5 70.4 ± 8.9 68.0 ± 11.2
medium-play 72.9 73.9 ± 6.0 75.3 ± 6.3
medium-diverse 72.1 72.5 ± 6.9 74.6 ± 7.5
large-play 43.2 49.7 ± 6.9 55.8 ± 7.7
large-diverse 46.9 48.1 ± 7.9 49.9 ± 6.9

AntMaze-v2 total 391.3 396.2 415.7

Table 2: Normalized scores (mean and standard
deviation) of CLUE and baselines on sparse-
reward Adroit tasks, where the highest scores be-
tween CLUE and OTR are highlighted.

Dataset IQL OTR CLUE

door-cloned 1.6 0.01 ± 0.01 0.02 ± 0.01
door-human 4.3 5.9 ± 2.7 7.7 ± 3.9
hammer-cloned 2.1 0.9 ± 0.3 1.4 ± 1.0
hammer-human 1.4 1.8 ± 1.4 1.9 ± 1.2
pen-cloned 37.3 46.9 ± 20.9 59.4 ± 21.1
pen-human 71.5 66.8 ± 21.2 82.9 ± 20.2
relocate-cloned -0.2 -0.24 ± 0.03 -0.23 ± 0.02
relocate-human 0.1 0.1 ± 0.1 0.2 ± 0.3

Adroit-v0 total 118.1 122.2 153.3

Table 3: Normalized scores (mean and standard deviation) of CLUE and baselines on locomotion
tasks using one (K=1), five (K=5), and ten (K=10) expert demonstrations. Both CLUE and OTR uses
IQL as the base offline RL algorithm, and we highlight the highest score in each setting.

Dataset IQL OTR (K=1) CLUE (K=1) OTR (K=5) CLUE (K=5) OTR (K=10) CLUE (K=10)

halfcheetah-medium 47.4 ± 0.2 43.3 ± 0.2 45.6 ± 0.3 43.3 ± 0.2 45.2 ± 0.2 43.1 ± 0.3 45.7 ± 0.2
halfcheetah-medium-replay 44.2 ± 1.2 41.3 ± 0.6 43.5 ± 0.5 41.9 ± 0.3 43.2 ± 0.4 41.6 ± 0.3 43.2 ± 0.5
halfcheetah-medium-expert 86.7 ± 5.3 89.6 ± 3.0 90.0 ± 2.4 89.9 ± 1.9 91.9 ± 1.4 87.9 ± 3.4 91.0 ± 2.5
hopper-medium 66.2 ± 5.7 78.7 ± 5.5 78.3 ± 5.4 79.5 ± 5.3 79.1 ± 3.5 80.0 ± 5.2 79.9 ± 6.0
hopper-medium-replay 94.7 ± 8.6 84.8 ± 2.6 94.3 ± 6.0 85.4 ± 1.7 93.3 ± 4.5 84.4 ± 1.8 93.7 ± 4.1
hopper-medium-expert 91.5 ± 14.3 93.2 ± 20.6 96.5 ± 14.7 90.4 ± 21.5 104.0 ± 5.4 96.6 ± 21.5 102.3 ± 7.7
walker2d-medium 78.3 ± 8.7 79.4 ± 1.4 80.7 ± 1.5 79.8 ± 1.4 79.6 ± 0.7 79.2 ± 1.3 81.7 ± 1.2
walker2d-medium-replay 73.8 ± 7.1 66.0 ± 6.7 76.3 ± 2.8 71.0 ± 5.0 75.1 ± 1.3 71.8 ± 3.8 75.3 ± 4.6
walker2d-medium-expert 109.6 ± 1.0 109.3 ± 0.8 109.3 ± 2.1 109.4 ± 0.4 109.9 ± 0.3 109.6 ± 0.5 110.7 ± 0.2

locomotion-v2 total 692.4 685.6 714.5 690.6 721.3 694.2 723.5

IQL over the naive sparse-reward D4RL data and train OTR over the relabeled D4RL dataset (using
optimal transport to compute intrinsic rewards and employing IQL to learn offline RL policy). We
can find that in 13 out of 14 tasks across AntMaze and Adroit domains, our CLUE outperforms the
baseline OTR. Meanwhile, compared to naive IQL (with sparse rewards), our CLUE implementation
obtains a total score of 106.2% on AntMaze tasks and 129.8% on Adroit tasks. This means that
with only a single expert trajectory, we can completely replace the sparse rewards with our intrinsic
reward in offline RL tasks, which can even achieve higher performance.

5.2 Offline Imitation Learning Tasks

Then, we evaluate CLUE on offline IL tasks. We continue to use the D4RL data as offline data, but
here we explicitly discard the reward signal. Then, we use SAC to train an online expert policy to
collect expert demonstrations in each environment. We first compare CLUE to 1) naive IQL with
the (ground-truth) reward-labeled offline data and 2) OTR under our offline IL setting. In Table 3,
we provide the comparison results with 1, 5, and 10 expert trajectories. We can see that in 22 out of
27 offline IL settings, CLUE outperforms (or performs equally well) the most related baseline OTR,
demonstrating that CLUE can produce effective intrinsic rewards. Meanwhile, with only a single
expert trajectory, our CLUE implementation can achieve 103.2% of the total scores of naive IQL in
locomotion tasks. This means that with only one expert trajectory, our intrinsic rewards can even
replace the continuous ground-truth rewards in offline RL tasks and enable better performance.

Next, we compare CLUE to a representative set of offline IL baselines: SQIL[55] with TD3+BC [56]
implementation, ORIL [57], IQ-Learn [58], ValueDICE [37], DemoDICE [59], and SMODICE [60].
Note that the original SQIL is an online IL method, here we replace its (online) base RL algorithm
with TD3+BC, thus making it applicable to offline tasks. In Table 4, we provide the comparison
results over D4RL locomotion tasks. We can see that, overall, our CLUE performs better than most
offline IL baselines, showing that our intrinsic reward is well capable of capturing expert behaviors.
Further, we point out that CLUE is also robust to offline data with different qualities: most previous
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Table 4: Normalized scores (mean and standard deviation) of CLUE and offline IL baselines on
MuJoCo locomotion tasks using one expert trajectory (K=1) and ten expert trajectories (K=10). We
highlight the scores that are within two points of the highest score.

Dataset SQIL IQ-Learn ORIL ValueDICE DemoDICE SMODICE CLUE
K

=1
halfcheetah-medium 24.3 ± 2.7 21.7 ± 1.5 56.8 ± 1.2 36.4 ± 1.7 42.0 ± 0.8 42.4 ± 0.6 45.6 ± 0.3
halfcheetah-medium-replay 43.9 ± 1.0 7.7 ± 1.6 46.2 ± 1.1 29.4 ± 3.0 38.3 ± 1.3 38.3 ± 2.0 43.5 ± 0.5
halfcheetah-medium-expert 6.7 ± 1.2 2.0 ± 0.4 48.7 ± 2.4 1.0 ± 2.4 66.2 ± 4.3 80.9 ± 2.3 90.0 ± 2.4
hopper-medium 66.9 ± 5.1 29.6 ± 5.2 96.3 ± 0.9 44.0 ± 12.3 56.4 ± 1.9 54.8 ± 1.2 78.3 ± 5.4
hopper-medium-replay 98.6 ± 0.7 23.0 ± 9.4 56.7 ± 12.9 52.5 ± 14.4 70.7 ± 8.5 30.4 ± 7.8 94.3 ± 6.0
hopper-medium-expert 13.6 ± 9.6 9.1 ± 2.2 25.1 ± 12.8 27.3 ± 10.0 103.7 ± 5.5 82.4 ± 7.7 96.5 ± 14.7
walker2d-medium 51.9 ± 11.7 5.7 ± 4.0 20.4 ± 13.6 13.9 ± 9.1 74.5 ± 2.6 67.8 ± 6.0 80.7 ± 1.5
walker2d-medium-replay 42.3 ± 5.8 17.0 ± 7.6 71.8 ± 9.6 52.7 ± 13.1 57.2 ± 8.7 49.7 ± 4.6 76.3 ± 2.8
walker2d-medium-expert 18.8 ± 13.1 7.7 ± 2.4 11.6 ± 14.7 37.3 ± 13.7 87.3 ± 10.5 94.8 ± 11.1 109.3 ± 2.1

K
=1

0

halfcheetah-medium 48.0 ± 0.3 29.2 ± 6.4 56.7 ± 0.9 40.0 ± 1.9 41.9 ± 0.5 41.6 ± 0.7 45.7 ± 0.2
halfcheetah-medium-replay 45.1 ± 0.5 29.6 ± 3.1 46.2 ± 0.6 39.6 ± 1.0 38.5 ± 1.6 39.3 ± 0.9 43.2 ± 0.5
halfcheetah-medium-expert 11.4 ± 4.7 2.9 ± 0.8 46.6 ± 6.0 25.2 ± 8.3 67.1 ± 5.5 89.4 ± 1.4 91.0 ± 2.5
hopper-medium 65.8 ± 4.1 31.6 ± 6.2 101.5 ± 0.6 37.6 ± 9.5 57.4 ± 1.7 55.9 ± 1.7 79.9 ± 6.0
hopper-medium-replay 96.6 ± 0.7 38.0 ± 7.0 29.0 ± 6.8 83.6 ± 8.9 56.9 ± 4.6 32.6 ± 8.7 93.7 ± 4.1
hopper-medium-expert 19.6 ± 9.4 19.3 ± 3.9 18.9 ± 9.0 28.4 ± 8.6 96.9 ± 8.5 89.3 ± 5.9 102.3 ± 7.7
walker2d-medium 72.4 ± 8.6 46.4 ± 8.5 82.3 ± 8.8 54.3 ± 8.6 71.3 ± 4.3 67.9 ± 7.9 81.7 ± 1.2
walker2d-medium-replay 82.4 ± 4.7 16.6 ± 9.3 70.0 ± 10.0 54.6 ± 9.6 58.1 ± 7.9 52.4 ± 6.8 75.3 ± 4.6
walker2d-medium-expert 12.5 ± 9.3 24.5 ± 4.8 6.5 ± 8.2 40.1 ± 9.4 103.5 ± 7.8 107.5 ± 1.0 110.7 ± 0.2

Ant-v2 HalfCheetah-v2 Walker2d-v2
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Figure 3: Qualitative visualizations of the learned skills in Ant, HalfCheetah, and Walker domains.
We can see that the ant learns to move in different directions, the half-cheetah learns to flip upright
and run at different speeds, and the walker learns to walk at different speeds.

adversarial-based methods deliberately depict unlabeled offline data as sub-optimal and tag expert
data as optimal, which can easily lead to a biased policy/discriminator. For example, we can see that
ORIL’s performance deteriorates severely on all medium-expert tasks. On the contrary, CLUE does
not bring in any adversarial objectives and is therefore much more robust.

5.3 Unsupervised Offline RL Tasks

Considering the reward-free offline RL settings, here we expect to learn diverse skills/policies from the
static offline data. To do so, we first use K-means clustering to cluster similar transitions and treat the
transitions in each of the clustered classes as separate expert data. For each class, we then use CLUE
to learn the corresponding intrinsic reward function and label intrinsic rewards for the rest of the
unlabelled data to learn corresponding skills. We visualize the learned diverse behaviors in Figure 3
(see videos in the supplementary material). We can see that our CLUE+K-means implementation
provides a promising solution to unsupervised offline RL, which successfully produces a diverse set
of skills and thus illustrates a huge potential for skill discovery from static offline data.

5.4 Ablation Studies

Ablating the calibration regularization. The key idea of CLUE is to encourage learning calibrated
expert embeddings, thus providing effective embedding space when computing intrinsic rewards.
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Figure 4: Ablating the effect of the calibration reg-
ularization. We can see that ablating the regular-
ization generally causes performance degradation,
implying that our calibration regularization can in-
deed encourage task-oriented intrinsic rewards. u:
umaze. m: medium. l: large. d: diverse. p: play.

Here we verify this intuition by ablating the
calibration regularization Lcalibr in Equation 7,
and directly using CVAE to learn the embed-
ding space. We show ablation results in Fig-
ure 4. We can observe that the naive CVAE
implementation (ablating the calibration regular-
ization Lcalibr) suffers from a significant perfor-
mance drop compared with our CLUE, indicat-
ing that our calibration regularization is effective
in promoting embedding alignment and produc-
ing task-oriented intrinsic rewards.

Varying the amount of unlabeled offline data.
To assess the effectiveness of our intrinsic re-
wards under data-scarce scenarios, here we vary the amount of unlabeled offline data available for
offline IL settings (see results for sparse-reward settings in the appendix). In Figure 5, we show
the normalized results with a small number of D4RL data ranging from 5% ∼ 25%. We can see
that across a range of dataset sizes, CLUE can perform well and achieve competitive performance
compared to the state-of-the-art offline IL baselines.

Figure 5: Ablating the number of unlabeled offline data. To compare CLUE with the baseline
methods, we shade the area below the scores of our CLUE. We can see that CLUE’s performance
generally outperforms offline IL baselines across a range of domains and dataset sizes in each domain.

6 Discussion and Limitations

In this paper, we propose calibrated latent guidance (CLUE) algorithm which labels intrinsic rewards
for unlabeled offline data. CLUE is an effective method and can provide pluggable intrinsic rewards
compatibility with any offline RL algorithms that require reward-annotated data for offline learning.
We have demonstrated that CLUE can effectively improve the spare-reward offline RL performance,
achieve competitive performance compared with the state-of-the-art baselines in offline IL tasks, and
learn diverse skills in unsupervised offline RL settings.

Future work and limitations. Our CLUE formulation assumes the presence of a large batch of
offline data and expert trajectories. This setting is common in many robotic domains. However,
we also point out that in some tasks, expert trajectories may be state-only and not contain actions.
Also, there may be transition dynamics shifts between the expert data and the unlabelled offline
data in some cross-domain problem settings. Thus, future directions could investigate the state-only
expert data and the cross-domain intrinsic rewards. In view of the fact that our intrinsic rewards are
measured in the latent space, it is feasible to apply our CLUE approach in both the state-only and
cross-domain scenarios, as long as we impose the corresponding regularization on the learned latent
embeddings. For example, we can directly add cross-domain constraints [61, 62] over our calibration
regularization, making CLUE suitable for cross-domain tasks. In summary, we believe future work
to this work will contribute to a general reward-relabeling framework capable of labeling effective
intrinsic rewards and addressing more realistic robotic tasks e.g., discovering diverse robot behaviors
from static manipulation data and transferring offline cross-domain behaviors in sim2real tasks.
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7 Additional Results

Figure 6: Ablating the number of unlabeled trajectories. We investigate the effect of unlabeled
trajectories on the performance. CLUE’s performance generally outperforms OTR. Further, we can
see that CLUE approximates the vanilla IQL method (with D4RL rewards) more closely and can
even outperform IQL given such a lack of offline data (≤ 25%).

Varying the amount of unlabeled offline data. Here we vary the amount of unlabeled offline data
available for sparse-reward settings. Figure 6 shows that adding more unlabeled data improves the
performance of both CLUE and OTR. However, across a range of offline imitation tasks, CLUE
shows better performance compared to OTR. We also plot the performance curve of naive IQL with
(reward-labeled) offline data in Figure 6. We can see that with extremely limited offline data (≤ 25%),
CLUE approaches IQL’s performance more closely on the halfcheetah-medium task, and can even
outperform IQL on the remaining three tasks.

Table 5: Using 10% of D4RL data, normalized scores (mean and standard deviation) of CLUE and
baselines on antmaze tasks using one (K=1) and ten (K=10) expert demonstrations. The expert
trajectories are picked from the chosen 10% dataset. The highest score in each setting is highlighted.

Dataset IQL OTR (K=1) CLUE (K=1) OTR (K=10) CLUE (K=10)

umaze 73.7 ± 7.6 71.4 ± 8.5 75.4 ± 6.1 75.1 ± 8.3 82.5 ± 5.1
umaze-diverse 21.6 ± 9.8 33.0 ± 8.5 45.4 ± 10.4 30.8 ± 13.5* 58.6 ± 9.5*

medium-play 23.0 ± 8.9 38.7 ± 11.1 30.5 ± 13.9 37.3 ± 10.0 36.6 ± 12.7
medium-diverse 54.9 ± 7.8 60.9 ± 8.7 64.4 ± 8.9 59.2 ± 9.2 57.8 ± 8.6
large-play 5.8 ± 3.8 15.0 ± 8.4 12.0 ± 6.5 13.9 ± 5.8 29.4 ± 8.4
large-diverse 7.0 ± 3.6 3.3 ± 3.6 0.9 ± 1.5 9.0 ± 5.9 9.7 ± 4.5

antmaze-v2 total 186.0 222.3 228.6 225.3 274.6
* Only two successful trajectories are in the chosen sub-dataset and the results belong to K=2.

Varying the number of expert trajectories. Using 10% of D4RL data, we vary the number of
expert trajectories for sparse-reward offline RL settings in Table 5. We compare our method with
baseline methods (IQL and OTR) when only one expert trajectory is selected. For comparison, we
train IQL over the naive sparse-reward D4RL data and train OTR over the relabeled D4RL dataset
(using optimal transport to compute intrinsic rewards and employing IQL to learn offline RL policy).
We can find that in 7 out of 12 AntMaze tasks across, our CLUE outperforms the baseline OTR.
Meanwhile, compared to naive IQL (with sparse rewards), our CLUE implementation generally
outperforms better than IQL. This means that with only a single expert trajectory, we can completely
replace the sparse rewards with our intrinsic reward in offline RL tasks, which can even achieve
higher performance in such a data-scarce scenario (10% of D4RL data).

Varying the value of the temperature factor in intrinsic rewards. In Tables 6 and 7, we present
the results on AntMaze tasks when we vary the value of the temperature factor c in intrinsic rewards.
We can find that CLUE can generally achieve a robust performance across a range of temperature
factors. In Figure 7, we further analyze our intrinsic reward distribution following OTR. We can find
that CLUE’s reward prediction shows a stronger correlation with the ground-truth rewards from the
dataset, which can be served as a good reward proxy for downstream offline RL algorithms.
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Table 6: Normalized scores (mean) when varying the temperature factor c with a single expert
trajectory (K=1).

c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 c = 10

umaze 89.4 89.96 91.84 90.88 91.96 92.12 91.68 90.72 90.92 91.2
umaze-diverse 43.08 46.76 43.16 43.76 42.36 56.72 52.6 59.04 66.48 68
medium-play 60.4 63.2 65.2 68.92 68.04 75.32 71.76 74.12 72.2 73.64
medium-diverse 57.8 63.28 63.24 62.04 66.04 70.12 73 74.56 69.4 72.92
large-play 34.16 44.84 46.88 50.68 52.72 53.08 53.64 55.2 53.52 55.8
large-diverse 27.04 33.96 43.16 46.8 44.88 47.44 47.44 49.92 47.28 47.11

Table 7: Normalized scores (mean) when varying the temperature factor c with 10 expert trajectories
(K=10).

c = 1 c = 2 c = 3 c = 4 c = 5 c = 6 c = 7 c = 8 c = 9 c = 10

umaze 87.88 90 91.08 90.96 91.16 91 89.92 89.44 90.72 91.92
umaze-diverse 45.64 40.32 41.04 38.8 39.52 51.64 51.2 57.11 69.92 71.68
medium-play 58.72 64.2 68.24 71.44 69.92 75.56 74.12 76.2 75.8 76.48
medium-diverse 60.36 57.04 62.12 64.24 63.56 61.44 62.36 64.64 65.47 69.2
large-play 48.24 45.8 51.56 48.2 48.4 52.36 49.91 50.58 52.28 51.87
large-diverse 36.32 46.08 48.64 50.84 51.16 52.44 53.6 50.92 51.4 53.68

8 Experimental Details

8.1 Hyperparameters for CVAE Implementation

We list the hyperparameters used for training CVAE models in MuJoCO locomotion, AntMaze, and
Adroit tasks. The other CVAE hyperparameters are kept the same as those used in Wu et al. [63].

Table 8: Hyperparameters for training CVAE.

MuJoCo Locomotion Antmaze Adroit

full-data partial-data full-data partial-data full-data

Hidden dim 128 128 512 512 128
Batch size 128 128 256 256 128
Numbers of iterations 104 104 105 105 105

Learning rate 10−4 10−4 10−3 10−3 10−4

Weight for Lcalibr 0.1 0.1 0.8 0.8 0.1
Spare-reward setting:
Number of expert trajectories 3 3 5 5 3

8.2 Hyperparameters for our IQL Implementation

The IQL hyperparameters employed in this paper are consistent with those utilized by Kostrikov
et al. [53] in their offline implementation. It is important to note that IQL incorporates a procedure
for rescaling rewards within the dataset, which allows for the use of the same hyperparameters
across datasets that differ in quality. As CLUE generates rewards offline, we similarly apply reward
scaling following the IQL methodology. For the locomotion, adroit, and ant tasks, we rescale rewards
with 1000

max_return−min_return . To regularize the policy network for the chosen sub-dataset, we similarly
introduce Dropout with a rate of 0.2.

MuJoCo locomotion and Adroit tasks. We set the learning rate 10−3 for hopper-medium-expert
dataset (K=10) and 3× 10−4 for the rest of tasks. We run IQL for 1M gradient steps and average
mean returns over 10 random seeds and 10 evaluation trajectories for each seed.

Antmaze tasks. We set the learning rate 5× 10−4 for umaze-diverse dataset (K=1 and K=10) and
3× 10−4 for the rest of tasks. For medium-play dataset (K=1 and K=10), medium-diverse dataset
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Figure 7: Qualitative comparison of the learned intrinsic rewards with different temperature factors.

(K=1), and large-play dataset (K=10), we set the dropout rate 0.2 to gain a better performance. We
run IQL for 1M gradient steps for the full dataset and 0.3M for the partial dataset, respectively.

8.3 Hyperparameters in K-means

We use CLUE to learn diversity skills on Ant-v2, HalfCheetah-v2, and Walker2d-v2. The K-means,
an unsupervised learning method, is employed to cluster the offline transitions {(s, a, s′)} from each
dataset into 100 classes and take each class as a separate "expert". Specifically, we use KMEANS
method exacted from sklearn.cluster API. The hyperparameters are set as follows: n_clusters =
100, random_state = 1, n_init = 1,max_iter = 300.

8.4 Offline IL Baselines

SQIL proposes to learn a soft Q-function where the reward labels for the expert transitions are one
and the reward labels for the non-expert transitions are zero. The offline implementation of SQIL is
adapted from the online SAC agent provided by Garg et al. [58], and we combine it with TD3+BC.

IQ-Learn advocates for directly learning a Q-function by contrasting the expert data with the
data collected in the replay buffer, thus avoiding the intermediate step of reward learning. In our
experiments, we used the official PyTorch implementation5 with the recommended configuration by
Garg et al. [58].

ORIL assumes the offline dataset is a mixture of both optimal and suboptimal data and learns a
discriminator to distinguish between them. Then, the output of the discriminator is used as the
reward label to optimize the offline policy toward expert behaviors. We borrowed the TD3+BC
implementation reproduced by Ma et al. [60] in our experiments.

ValueDICE is the earliest DICE-based IL algorithm that minimizes the divergence of the state-action
distribution between the learning policy and the expert data. The code used in the experiments is the
official TensorFlow implementation6 released by Kostrikov et al. [37].

DemoDICE proposes to optimize the policy via a state-action distribution matching objective with
an extra offline regularization term. We report the performance of DemoDICE using the TensorFlow
implementation7 by Kim et al. [59], while the hyperparameters are set as same as the ones in the
paper.

SMODICE aims to solve the problem of learning from observation and thus proposes to minimize
the divergence of state distribution. Besides, Ma et al. [60] extends the choice of divergence so that

5https://github.com/Div99/IQ-Learn
6https://github.com/google-research/google-research/tree/master/value_dice
7https://github.com/KAIST-AILab/imitation-dice
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the agent is more generalized. The code and configuration used in our experiments are from the
official repository8.

9 In What Cases Should We Expect CLUE to Help vs to Hurt?

If the distribution of the expert data is unimodal, our method can learn effectively while providing
effective intrinsic rewards. On the contrary, if the distribution of the expert data is multi-modal,
explicitly binding the embeddings of the expert data together would instead affect the learning of z,
thus resulting in an ineffective intrinsic reward for policy learning.

10 Learned Diverse Skills

To encourage diverse skills from reward-free offline data, we cluster the offline transitions into 100
classes using K-means and take each class as a separate "expert". Then, we use these expert data from
different classes to label the original reward-free data and train IQL policy to learn the corresponding
skills. In this section, we illustrate all the learned skills by CLUE.

8https://github.com/JasonMa2016/SMODICE
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10.1 Learned Diverse Skills from Ant-Medium Dataset
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Figure 8: Visualization of unsupervised skills learned from the ant-medium dataset.
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10.2 Learned Diverse Skills from Ant-Random Dataset
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Figure 9: Visualization of unsupervised skills learned from the ant-random dataset.
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10.3 Learned Diverse Skills from Halfcheetah-Medium Dataset

11.75 m

Figure 10: Visualization of unsupervised skills learned from the halfcheetah-medium dataset.
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10.4 Learned Diverse Skills from Halfcheetah-Random Dataset
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Figure 11: Visualization of unsupervised skills learned from the halfcheetah-random dataset.
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10.5 Learned Diverse Skills from Walker2d-Medium Dataset

0.89 m

Figure 12: Visualization of unsupervised skills learned from the walker2d-medium dataset.
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10.6 Learned Diverse Skills from Walker2d-Random Dataset

56.25 cm

Figure 13: Visualization of unsupervised skills learned from the walker2d-random dataset.
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