
Bridging the Capability Gap: Joint Alignment Tuning for Harmonizing
LLM-based Multi-Agent Systems

Anonymous ACL submission

Abstract001

The advancement of large language models002
(LLMs) has spurred the development of multi-003
agent systems for complex tasks, yet existing004
approaches often train agents independently,005
leading to capability gaps and coordination fail-006
ures. To address this, we propose MOAT, a007
Multi-Agent Joint Alignment Tuning frame-008
work that bridges the capability gap between009
planning and grounding agents through itera-010
tive joint alignment. MOAT alternates between011
two key phases: (1) Planning Agent Alignment,012
which optimizes subgoal generation by reward-013
ing sequences that reduce grounding perplexity,014
and (2) Grounding Agent Improving, which015
enhances action generation using high-quality016
subgoal-action pairs filtered by a critic model.017
Theoretical analysis proves that MOAT ensures018
non-decreasing performance and convergence.019
Experiments across six benchmarks demon-020
strate that MOAT outperforms state-of-the-art021
baselines, achieving average improvements of022
3.1% on held-in tasks and 4.4% on held-out023
tasks with 7B-scale models. Notably, MOAT024
surpasses GPT-4 on Mind2Web by over 50%,025
showcasing its ability to harmonize smaller026
open-source LLMs into a competitive multi-027
agent system. 1028

1 Introduction029

The rapid development of large language mod-030

els (LLMs) has significantly transformed the de-031

velopment of intelligent agents capable of reason-032

ing, decision-making, and interacting with com-033

plex environments (Sumers et al., 2024; Song034

et al., 2023a; Chase, 2022; Song et al., 2023b).035

With the powerful capability of these models, a036

number of autonomous frameworks using LLM-037

based agents have been proposed and demonstrated038

impressive potential in a wide range of applica-039

tions (Yang et al., 2023; Hong et al., 2024; Team,040

2023). These frameworks relying on closed-source041

1Code is available on Anonymous GitHub.

Previous Independent Training Method

SFT dataset

Fine tuning

SFT dataset

Fine tuning

Grounding

Agent

Planning

Agent

Bad Subgoals
❌ Failure

Good Subgoals

Actions

The subgoals is
complex,

I can’t handle

The subgoals
seems bad,

Maybe there's a
mistake

❌ Failure
Actions

User Task
Subgoals Actions

Answer

Weak Strong

Strong Weak

The Capability Gap Between Agents

Figure 1: Previous multi-agent training framework,
which separately train the planning and Grounding
agents. This leads to a capability gap, e.g., misaligned
strengths (strong planning vs. weak grounding, or vice
versa), causing coordination failures during action exe-
cution.

models (Achiam et al., 2023; Team et al., 2023) 042

often incur higher costs and raise privacy concerns. 043

In contrast, increasingly powerful open-source al- 044

ternatives (Touvron et al., 2023; Jiang et al., 2023; 045

Guo et al., 2024) are emerging as the mainstream 046

solution, owing to their flexibility that enables bet- 047

ter adaptation. 048

To enhance the reasoning capability of open- 049

source LLM-based agents, several works propose 050

to construct reasoning trajectory data for train- 051

ing (Yao et al., 2023; Madaan et al., 2024) or 052

directly distill from closed-source models (Zeng 053

et al., 2024; Xu et al., 2024; Chen et al., 2024). 054

However, most LLM-based agent frameworks fo- 055

cus on training one model to perform various tasks, 056

which may struggle with complex long-reasoning 057

problems (Liu et al., 2024, 2023) due to the limited 058

capacity of a single model. To address this chal- 059

1

https://anonymous.4open.science/r/multi-agent-alignment-46C0

lenge, some recent studies propose the multi-agent060

approaches (Yin et al., 2024a; Qiao et al.; Shen061

et al., 2024; Wang et al., 2024). Figure 1(a) illus-062

trates the most commonly-used multi-agent frame-063

work. Given a task, a planning agent decomposes it064

into a sequence of subgoals, and another grounding065

agent generates corresponding tool-calling actions066

based on these subgoals, thereby obtaining the fi-067

nal answer. To enable these specialized agents,068

they first construct the training data for each step069

and then train the models independently. While070

performance can be improved through this multi-071

agent decomposition, we argue that effective col-072

laboration among agents is not guaranteed in these073

methods. Different agents may exhibit varying pro-074

ficiency levels in handling assigned tasks due to075

independent training. This imbalance in special-076

ized capabilities, coupled with the lack of aware-077

ness regarding peer competencies of agents, can078

lead to suboptimal task routing and coordination079

challenges.080

To address the above problems, we propose081

MOAT, a Multi-agent Joint Alignment Tuning082

framework that iteratively alternates two main steps083

to enable the alignment in the multi-agent system,084

including (i) Planning Agent Alignment and (ii)085

Grounding Agent Improving. In the Planning086

Agent Alignment step, MOAT optimizes the plan-087

ning agent to formulate subgoals that can better088

guide the grounding agent to generate correct ac-089

tions. To achieve this, we sample multiple candi-090

date subgoal sequences from the planning agent for091

each input task. Then, we compute the perplexity092

of the grounding agents in generating correct tool093

callings on the condition of the generated subgoal094

sequences, respectively. Using this perplexity as a095

reward, we determine the utility of each subgoal se-096

quence, thereby training the planning agent to adapt097

to the grounding agent’s preference through direct098

preference optimization algorithm (Rafailov et al.,099

2024) In the Grounding Agent Improving step, we100

enhance the expertise of the grounding agent to101

understand the subgoals from the planning agent.102

Specifically, we remain the sampled subgoal with103

the lowest perplexity as input for the grounding104

agent, reinforcing it to generate correct tool-calling105

actions through a standard language modeling loss.106

Through theoretic analysis, we demonstrate that107

the holistic performance of the multi-agent sys-108

tem is improved progressively by alternating the109

above two steps. Since directly training models on110

self-generated datasets may introduce noise and po-111

tentially results in training collapse (Huang et al., 112

2024), we introduce a data selection strategy where 113

we use a critic model to judge the correctness of 114

the generated tool invocation sequences and filter 115

out low-quality data. 116

We apply MOAT to several open-source model 117

families (Llama-2 and Mistral) and evaluate it on 118

three agent tasks such as Web, Math, and QA. The 119

results show that MOAT consistently outperforms 120

existing baselines, both on in-distribution training 121

sets and out-of-distribution test sets. This vali- 122

dates the effectiveness of joint alignment tuning 123

and demonstrates its strong generalization ability. 124

Furthermore, we conduct an in-depth analysis of 125

factors such as the number of samples, iteration 126

counts, and the selection of the critic model. Our 127

contributions can be summarized as follows: 128

Our main contributions are as follows: (i) We in- 129

troduce MOAT, a Multi-Agent Joint Alignment 130

Tuning framework to jointly optimize intercon- 131

nected agents, bridging the capability gap between 132

them; (ii) We provide formal analysis proving 133

that the alternating optimization of planning and 134

grounding agents guarantees non-decreasing per- 135

formance and convergence; and (iii) Experiments 136

on both held-in and held-out settings across six 137

benchmarks demonstrate that MOAT achieves the 138

best performance with 4.4% improvement. 139

2 Related work 140

LLM-based multi-agent system. LLM-based 141

agent systems can interact with environments to 142

accomplish various complex tasks such as web 143

navigation (Yao et al., 2022; Zhou et al., 2023), 144

task planning (Zhang et al., 2024b), and tool learn- 145

ing(Shi et al., 2024). Single LLM agent frame- 146

works like AutoGPT (Yang et al., 2023), Xagent 147

(Team, 2023), and LangChain (Chase, 2022) can 148

effectively handle diverse complex tasks by in- 149

tegrating external functions. To further enhance 150

performance, recent studies have proposed LLM- 151

based multi-agent systems that accomplish tasks 152

through agent collaboration. For instance, systems 153

like CAMEL (Li et al., 2023), AutoGen (Wu et al., 154

2024), and ChatEval (Chan et al., 2024) employ 155

role-playing with predefined roles to enable agents 156

to efficiently complete different tasks and achieve 157

common goals. However, existing systems pri- 158

marily rely on closed-source model APIs, limiting 159

applications in specific domains. 160

2

Agent tuning. Recent research has laid the foun-161

dation for building language agents based on open-162

source models by utilizing larger models to gen-163

erate training data for fine-tuning smaller models,164

enabling better instruction following and reasoning165

capabilities. For example, studies such as Agent-166

Bank (Song et al., 2024), FireAct (Chen et al.,167

2023), AgentTuning (Zeng et al., 2024), AgentO-168

hana (Zhang et al., 2024a), and fine-tune the open-169

source LLMs like Llama by collecting agent tra-170

jectory data from strong teacher models like GPT-171

4. However, single small agent still struggle with172

complex long-reasoning tasks (Liu et al., 2024). To173

address this, Lumos (Yin et al., 2024a) and (Shen174

et al., 2024) proposed a multi-agent training frame-175

work that promotes collaboration among agents to176

solve complex tasks. Meanwhile, Autoact (Qiao177

et al.) proposes a multi-agent learning framework178

that utilizes self-instruct to autonomously gener-179

ate self-improving data, thereby eliminating the re-180

liance on synthesis trajectories from closed-source181

models.182

However, existing works either focus on building183

data to train individual models or separately train184

multiple models, neglecting the joint optimization185

of multiple agents. To address this limitation, we186

propose a multi-agent joint optimization algorithm187

for multi-agent systems.188

3 Agent Task Preliminary189

A multi-agent system typically comprises three190

core components: (1) a planning agent that decom-191

poses tasks into subgoals, (2) a grounding agent192

that translates subgoals into executable actions, and193

(3) an execution module that implements the gen-194

erated actions to get final answer. Given a task x,195

the planning agent is responsible for decompos-196

ing the user task x into a sequence of subgoals,197

S = πp(x) = {s1, s2, . . . , s|S|}, where each si198

represents a subgoal that contributes to the solution199

of the task x and πp is the planning agent parame-200

ters. The grounding agent, based on the user’s task201

x, the set of available tools I , and the decomposed202

subgoals S, then generates a sequence of tool calls203

A = πg(x, I, S) = {a1, a2, . . . , a|A|}, where each204

ai ∈ I represents an individual tool invocation re-205

quired to complete the subgoal si and πg is the206

agent parameters of grounding agent. Finally, the207

execution module is responsible for executing the208

generated tool-call sequence A to accomplish the209

user task x.210

4 Multi-agent Joint Alignment Tuning 211

In this section, we introduce the MOAT, a multi- 212

agent joint alignment tuning framework, which 213

aligns the planning and grounding agents in an 214

iteratively manner, thereby improving the holistic 215

performance. Prior to applying our framework, we 216

perform an initial fine-tuning to equip the model 217

with foundational problem-solving abilities. 218

As illustrated in Figure 2, MOAT alternates be- 219

tween two steps: (i) Planning Agent Alignment 220

and (ii) Grounding Agent Improving. The Plan- 221

ning Agent Alignment aims to facilitate exploration 222

of the planning agent in generating subgoals. This 223

exploration encourages the generation of subgoals 224

that better assist the grounding agent in generating 225

the correct action sequence A. 226

The Grounding Agent Improving focuses on 227

constructing a high-quality and diverse supervised 228

fine-tuning (SFT) dataset of subgoal sequences and 229

tool invocation sequences, aiming to enhance the 230

grounding agent’s generalization ability to the plan- 231

ning agent. 232

This process is iterative: in each round, the plan- 233

ning and grounding agents continuously adapt by 234

learning from the more effective behaviors of the 235

previous round, leading to improved collaboration 236

and overall performance consistency. 237

4.1 Initial Tuning 238

To equip the model with the ability to initially ad- 239

dress user tasks, we first conduct an initial tuning 240

using the SFT dataset collected in previous work 241

(Yin et al., 2024a). 242

Formally, given an input task x and the ground 243

truth subgoals S, the planning agent training objec- 244

tive of SFT is to minimize the following loss: 245

LP = −
|S|∑
i=1

logPπp(Si | S<i;x), (1) 246

Given the generated subgoals S from the planning 247

agent, the grounding agent learns to ground it to the 248

corresponding tool-calling actions A, which can be 249

formulated as: 250

LG = −
|A|∑
i=1

logPπg(Ai | A<i;x, I, S), (2) 251

where I is the list of available tools. The final 252

answer is obtained by executing the tool-callings 253

A. 254

3

Planning
Agent

Grounding
Agent

Ground-truth A

Task
Input

Critic
Model

1. Sample K times

6. Training based
on next token

prediction

2. Generate actions

5. Correct actions

Step 2：Grounding
Agent Improving

Step 1: Planning Agent Alignment

Subgoal sequences Action sequences

3. Compute PPL-based rewards4. Training based DPO loss

Corrected action sequences

Figure 2: The proposed MOAT framework iteratively alternates between two steps: (1) Planning Agent Alignment:
The planning agent samples K candidate subgoal sequences , and the grounding agent generates corresponding
tool-calling actions. Subgoal sequences are ranked by PPL, and the planning agent is optimized via DPO. (2)
Grounding Agent Improving: The subgoal-action pairs generated are corrected using a critic model, and the
grounding agent is fine-tuned on the corrected dataset to enhance generalization.

4.2 Planning Agent Alignment255

As highlighted in previous work (Hou et al., 2025),256

models demonstrate strong capabilities within their257

parameter space. Therefore, performing multiple258

samplings within this space to explore valuable259

reasoning paths is crucial for optimizing the model.260

Therefore, after initialization, we sample diverse261

subgoal sequences from the planning agent at a262

high temperature to improve its alignment with the263

grounding agent.264

Formally, given the task x , we sample K candi-265

date subgoal sequences from the planning agent:266

Dsample = {S1, S2, . . . , SK}. (3)267

For each Sk ∈ Dsample, we calculate its perplexity268

(PPL) with respect to the ground agent as a measure269

of the planning agents’s behavior reward. A lower270

perplexity indicates that the subgoal sequence is271

more helpful to the grounding agent, facilitating272

the generation of correct responses. Therefore, the273

PPL can be used as a reward to determine the value274

of the S to the end-to-end task performance. This275

PPL are formulated as follows: 276

PPLG(A | x, I, Sk) := (4) 277

exp
{
− 1

|A|

|A|∑
i=1

logPg(Ai | A<i, x, I, Sk)
}
. 278

We aim to align the planning agent with subgoal 279

sequences that help the grounding agent generate 280

action sequences with low perplexity. To achieve 281

this, we employ contrastive alignment to reinforce 282

desirable behaviors while penalizing undesirable 283

ones. Specifically, we adopt the Direct Preference 284

Optimization (DPO) framework (Rafailov et al., 285

2024), which provides an effective approach to 286

align agent behaviors with human preferences. The 287

corresponding loss function is formulated as fol- 288

lows: 289

LDPO = −E(t,(Sw,Sl))∼D 290[
log σ

(
β log

πp(Sw|x)
πref(Sw|x)

− β log
πp(Sl|x)
πref(Sl|x)

)]
, 291

where (Sw, Sl) represents a response pair for 292

the task x, with Sw denoting the response with the 293

lowest PPL-based reward and Sl the highest. Here, 294

πp denotes the current planning agent being opti- 295

mized, while πref represents the reference model, 296

4

which is initialized as the original πp before opti-297

mization. And σ denotes the sigmoid function, β298

is a hyper-parameter.299

4.3 Grounding Agent Improving300

To enhance the generalization capability of the301

grounding agent and improve its adaptability to the302

diverse subgoal sequences generated by the plan-303

ning agent, we construct a SFT dataset using the304

diverse subgoal sequences sampled in step 1 along305

with the corresponding tool invocation sequences306

generated by the grounding agent for fine-tuning.307

Specifically, for a given task x and the sampled set308

of subgoal sequences (S1, S2, . . . , SK) in Equa-309

tion 3, the grounding agent πg generates the cor-310

responding response Ak = πg(x, I, Sk) for each311

subgoal sequence Sk.312

Prior research has shown that relying solely on313

model-generated responses for training may intro-314

duce noise and potentially lead to training collapse315

without external feedback (Huang et al., 2024). To316

address this issue, we introduce an external feed-317

back mechanism to validate the correctness of the318

generated tool invocation sequence Ak. Since mul-319

tiple tool invocation sequences can achieve the320

same goal in agent tasks, direct result comparison321

is insufficient for determining correctness. There-322

fore, we leverage a more powerful language model323

as a critic model to evaluate whether the gener-324

ated action sequence Ak aligns with the ground325

truth—i.e., whether it successfully accomplishes326

the intended task. If the sequence fails to com-327

plete the task, the critic model references the cor-328

rect answer and provides corrections. The dataset329

construction procedure is shown in Algorithm 1,330

where C(·) denotes the evaluation function of the331

critic model, and Acorrect is the corrected invoca-332

tion sequence provided by the critic model when333

C(⟨x, I, Sk⟩, Ak) = False. The prompt for the334

critic model is provided in Appendix A.3.335

Next, the two stages described above will be336

iteratively executed to achieve joint optimiza-337

tion.Through iterative process, the planning agent338

gradually adapts to the grounding agent, generating339

subgoal sequences that better align with its infer-340

ence process. Simultaneously, the grounding agent,341

in turns, improves its generalization capability to342

handle the diverse outputs of the planning agent.343

More details of the training algorithm are provided344

in Algorithm 2.345

Algorithm 1: Dataset Construction

1 Initialize SFT dataset D̂G ← ∅;
2 for each task x and Sk ∈ Dsample do
3 Generate Ak ← πg(x, I, Sk);
4 if C(⟨x, I, Sk⟩, Ak) = True then
5 D̂G ← D̂G ∪ {(x, I, Sk), A};
6 end
7 else
8 D̂G ← D̂G ∪ {(x, I, Sk), Acorrect};
9 end

10 end
11 return SFT dataset D̂G;

5 Theoretical analysis 346

In our framework, the planning agent and ground- 347

ing agent are optimized iteratively. In this section, 348

we provide a theoretical analysis to demonstrate 349

that each optimization step leads to non-decreasing 350

improvements and ultimately ensures the conver- 351

gence. We start by defining the expected perfor- 352

mance of the overall multi-agent system as: 353

E[R] = Es∼πp(x)

[
Et∼πg(s)[R(s, t)]

]
. (5) 354

Here the reward function R(s, t) evaluate the qual- 355

ity of tool-calling action t given sub-goal sequence 356

s. And x indicates the input task. Below, we can 357

state the following two lemmas. 358

Lemma 5.1. Optimizing the planning agent while 359

keeping the grounding agent fixed leads to a non- 360

decreasing expected reward. 361

The planning agent is optimized using DPO, 362

with PPL as the reward signal. The optimization 363

objective can be formalized as: 364

max
θp

Es∼πp(x) [−PPL(s;πg)] . (6) 365

Since PPL is negatively correlated with the true 366

reward R(s, a), this is equivalent to maximizing 367

the expected reward: 368

max
θp

Es∼πp(x) [R(s, t)] . (7) 369

The DPO algorithm guarantees that updates to 370

θP lead to non-decreasing expected rewards when 371

the grounding agent is fixed. Thus, we have: 372

E[R](t+1) ≥ E[R](t). (8) 373

This inequality holds because the optimization pro- 374

cess aligns the planning agent with sub-goal se- 375

quences that facilitate better performance in the 376

grounding agent. 377

5

Lemma 5.2. Optimizing the grounding agent while378

keeping the planning agent fixed leads to a non-379

decreasing expected reward.380

The grounding agent is optimized through super-381

vised fine-tuning using pairs (s, a) generated by the382

planning agent. The corresponding optimization383

objective is:384

min
θg

E(s,t)∼D [L(πg(t|s))] , (9)385

where L denotes the loss function (e.g., cross-386

entropy loss). Minimizing this loss is equivalent to387

maximizing the log-likelihood of the correct tool388

invocation sequences:389

max
θg

E(s,t)∼D [log πg(t|s)] . (10)390

Since improved log-likelihood corresponds to391

reduced PPL and, consequently, higher reward, it392

follows that:393

E[R](t+1) ≥ E[R](t). (11)394

Hence, optimizing the grounding agent improves395

or maintains the expected reward when the plan-396

ning agent is fixed.397

From Lemma 5.1 and Lemma 5.2, we have es-398

tablished that both optimization steps ensure non-399

decreasing expected rewards:400

E[R](t+1) ≥ E[R](t). (12)401

Additionally, the expected reward E[R] is upper-402

bounded due to the following reasons: (i) The403

reward function R(s, t) is bounded in practical404

scenarios; and (ii) The PPL has a lower bound.405

Based on the Monotone Convergence Theorem,406

the non-decreasing and upper-bounded nature of407

{E[R](i)}∞i=1 ensures this sequence converges to408

a finite limit, thereby proving the training conver-409

gence.410

6 Experimental Setup411

6.1 Benchmarks412

Following previous work (Song et al., 2024; Chen413

et al., 2024), we evaluate our MOAT under both414

held-in and held-out settings. In each setting,415

we experiment on a wide range of tasks, in-416

cluding Mathematical reasoning (Math), Web in-417

teraction (Web), and question answering. As418

listed in Table 1, the held-in setting includes the419

GSM8K (Cobbe et al., 2021) StrategyQA (Geva420

Task Skill Dim. #Inst. Metric

Held-in Tasks

HotpotQA (Yang et al., 2018) QA 100 Exact Match
GSM8K (Cobbe et al., 2021) Math 500 Exact Match
Mind2Web (Deng et al., 2023) Web 100 Step SR

Held-out Tasks

StrategyQA (Geva et al., 2021) QA 100 Exact Match
SVAMP (Patel et al., 2021) Math 1000 Exact Match
WebShop (Yao et al., 2022) Web 500 Avg. Reward

Table 1: The held-in and held-out tasks used to evaluate
the agent capabilities of different LLMs.

et al., 2021), and Mind2Web (Deng et al., 2023); 421

while the held-out setting includes SVAMP (Patel 422

et al., 2021), WebShop (Yao et al., 2022), and Hot- 423

potQA (Yang et al., 2018). For solving interactive 424

tasks, we integrate commonly used actions for each 425

task into the pre-defined action interfaces as tool 426

set I . Details of supported executable actions are 427

included in Appendix A.4. 428

6.2 Baselines 429

We compare our MOAT with widely-used agent 430

tuning methods, including: (i) Agent Tun- 431

ing (Zeng et al., 2024), a multi-task tuning ap- 432

proach training LLMs on synthetic datasets com- 433

prising six tasks; (ii) Agent-FLAN (Chen et al., 434

2024) employs a modular architecture that trains 435

distinct single agent capabilities through special- 436

ized parameter groups; and (iii) Agent Lumos (Yin 437

et al., 2024a), a well-known multi-agents training 438

framework that separately fine-tines each agent on 439

part of overall datasets to obtain specialized agents. 440

Besides, we also select GPT-3.5-Turbo and GPT-4 441

(Achiam et al., 2023) as strong baselines. 442

6.3 Implementation Details 443

We mainly the Llama2-7b-hf as backbone LLMs 444

for agents in MOAT and baseline methods. For 445

a comprehensive evaluation, we also alternate 446

it with Mistral-7B-Instruct-v0.2, validating 447

our method across various LLMs. For the ini- 448

tial tuning, we use the publicly available datasets 449

from Lumos (Yin et al., 2024a) to fine-tuning 450

the base model. We set the number of sampled 451

subgoal sequences K to 15 and the number of 452

training iteration to 2. And we set the temper- 453

ature to 1.0 in the sampling process to ensure 454

the sampling of diverse subgoal sequences. We 455

employ DeepSeek-R1-Distill-Qwen-32B as the 456

critic model. More detailed training settings can be 457

found in Appendix A.1. 458

6

Method Base Model Held-in Tasks Held-out Tasks

GSK8K Mind2Web StrategyQA Avg. SVAMP WebShop HotpotQA Avg.

API-Based Agents

GPT-4 - 87.0 22.6 71.0 60.2 90.5 58.6 52.1 67.1
GPT-3.5-Turbo - 65.0 21.7 58.0 48.2 81.0 62.4 24.0 55.8

Llama Model Agents

Llama-2-7B-Chat Llama-2-7B 15.0 11.9 5.0 10.6 20.7 15.8 3.0 13.2
Agent Tuning Llama-2-7B 14.0 10.6 49.0 24.5 35.3 59.8 10.0 35.0
Agent Tuning Llama-2-13B 22.3 11.1 52.0 28.5 56.9 65.0 24.0 48.6
Agent-FLAN Llama-2-7B 28.5 16.9 48.0 31.1 39.2 55.9 12.0 35.7
Agent Lumos Llama-2-7B 47.2 32.6 45.0 41.6 65.5 58.3 25.0 49.6

MOAT Llama-2-7B 47.8 35.4 49.7 44.3 69.2 60.6 27.0 52.3

Mistral Model Agents

Agent Lumos Mistral-7B-v0.2 46.4 33.8 49.3 43.2 61.9 58.7 27.0 49.2

MOAT Mistral-7B-v0.2 48.2 34.7 56.0 46.3 73.7 59.0 28.0 53.6

Table 2: Evaluation results of MOAT and the baselines on both held-in and held-out tasks. The best-performing
models within each group are highlighted in bold.

7 Experiment results459

7.1 Overall Performance460

Held-in Tasks. Table 2 presents the evaluation461

results. Compared with single-agent systems and462

independently trained multi-agent baselines, the463

MOAT achieves superior performance across three464

held-in tasks in 7B-scale models. Furthermore,465

the MOAT with Llama-7B demonstrates an aver-466

age improvement of 15.8% compared to Agent-467

Tuning with Llama-13B. These results validate the468

effectiveness of our method in jointly training in-469

terconnected specialized agents to enhance overall470

task-solving performance.471

Held-out Tasks. We further investigate the gener-472

alizability of our method in solving unseen tasks,473

i.e., out-of-domain tasks. As illustrated in Table 2,474

our method achieves the highest performance com-475

pared to open-source baselines. For instance, the476

MOAT with Mistral-7B outperforms Lumos with477

an average performance improvement of 4.4%. A478

potential explanation for this improvement is that479

through iterative alignment in MOAT, the subgoals480

generated by the planning model align better with481

the preferences of the grounding models; and the482

grounding models also achieve a more accurate un-483

derstanding of the generated subgoals. This mutual484

understanding enhances the generalizability of the485

overall system when facing tasks.486

Comparison with API-based Agents. Although487

our model was trained using Llama-7B and488

Mistral-7B-Instruct-v0.2, it achieves more489

than a 50% performance improvement over GPT-4490

on the Mind2Web task. These findings further vali- 491

date the effectiveness of our method in synergizing 492

smaller open-source models to achieve competitive 493

performance. 494

Method Mind2Web WebShop
Full MOAT 35.43 60.63
-w/o stage 1 31.94↓3.49 58.76↓1.87
-w/o stage 2 34.72↓0.71 60.29↓0.34

Table 3: Ablation study on two web datasets.

GSK8K StrategyQA Mind2Web
30

35

40

45

50

55

60

M
et

ri
c

SFT Baseline
K=5
K=10
K=15

Figure 3: Evaluation results of MOAT using different
numbers of sampled subgoals responses (K) on three
held-in tasks.

7.2 Ablation Study 495

To further analyze the effectiveness of planning 496

alignment and grounding agent alignment in 497

MOAT, we conduct an ablation study by removing 498

each component individually. We denote these vari- 499

ants as w/o stage 1 and w/o stage 2 As shown 500

7

in Table 3, both variants exhibit significant perfor-501

mance degradation, underscoring the importance of502

our proposed joint alignment tuning method. No-503

tably, the most substantial performance drop occurs504

when stage 1 is removed, highlighting the critic role505

of aligning the planning agent to generate coherent506

subgoal sequences for the grounding agent. This507

finding suggests that effective multi-agent cooper-508

ation relies more heavily on the planning agent’s509

ability to provide accuracy subgoals, which in turn510

enables the grounding agent to execute tasks more511

efficiently.512

SFT Iteration 1 Iteration 2 Iteration 3
0.3

0.35

0.4

0.45

0.5

0.55

0.6

M
et

ri
c

GSK8K
StrategyQA
Mind2Web

Figure 4: Performance trends of MOAT system (with
K=15) across three held-in tasks as the number of itera-
tions increases.

7.3 Detailed Analysis513

Analysis of Different Sample Numbers. In our514

main experiments, we set the number of sampled515

responses K to 15. To explore the impact of the516

sampling number K on model performance, we517

conduct additional experiments by varying K from518

5 to 15 during the training of Mistral-7B at itera-519

tion 2. As shown in Figure 3, we observe a positive520

correlation between the sampling number and the521

final performance.522

We also identify a performance drop on the523

GSM8K and Mind2Web benchmarks when K=5.524

We attribute this to the possibility that with insuffi-525

cient sampling, the model may fail to sample high-526

quality subgoal sequences that align well with the527

grounding agent. In such cases, even the subgoal528

sequence with the highest reward can negatively529

impact model optimization.530

Analysis of Iteration Count. We further inves-531

tigate how the iteration count impacts model per-532

formance using Mistral-7B with set K to 15. As533

shown in Figure 4, the model’s performance im-534

proves gradually with the increasing number of535

iterations. However, beyond a certain threshold, 536

the performance gain becomes marginal. We hy- 537

pothesize that this is because, after a certain point, 538

the planning and grounding agents reach an equilib- 539

rium in performance, as demonstrated in Section 5. 540

Model Mind2Web WebShop
MOAT-Qwen-14B 33.52 60.63
MOAT-Qwen-32B 34.03 60.78

MOAT-GPT-4O 35.28 60.57

Table 4: Model Performance on WebShop and
Mind2Web benchmark using different critic model

Impact of Different Critic Model. We em- 541

ploy the DeepSeek-R1-Distill-Qwen-32B as a 542

critic model, to refine the action sequences gen- 543

erated by the grounding agent. To qualitatively 544

analyze the impact of the critic model, we con- 545

duct experiments using both a more powerful 546

critic model (i.e., GPT-4O) and a weaker one 547

(i.e., DeepSeek-R1-Distill-Qwen-14B). The re- 548

sults, as presented in Table 4, reveal a clear trend: 549

as the capability of the critic model improves, 550

the overall performance of MOAT also increases. 551

These observations highlight the importance of se- 552

lecting a robust critic model to optimize the perfor- 553

mance of our framework. 554

7.4 Case Study 555

We conduct case studies to demonstrate the effec- 556

tiveness of our joint alignment tuning framework 557

in solving complex tasks. The results show that 558

our MOAT effectively improves the task planning 559

performance and enhances the adaptability of the 560

grounding agent. Concrete examples and analysis 561

are provided in Appendix A.2. 562

8 Conclusion 563

In this work, we present MOAT, a novel Joint 564

Alignment Tuning framework designed to har- 565

monize the collaboration between planning and 566

grounding agents in LLM-based multi-agent sys- 567

tems. By iteratively optimizing the planning agent 568

to generate subgoals aligned with the grounding 569

agent’s capabilities and enhancing the ground- 570

ing agent’s adaptability to diverse subgoal se- 571

quences, MOAT effectively bridges the capability 572

gap caused by independent training. Extensive ex- 573

periments across six benchmarks demonstrate the 574

superiority of MOAT over existing methods. 575

8

Limitations576

Our framework is currently developed and577

evaluated exclusively on text-based scenarios,578

without exploring multimodal learning settings.579

While modern open-source language models (e.g.,580

LLaVA, Qwen-VL) have demonstrated emerging581

capabilities in processing multimodal inputs, our582

current architecture lacks explicit mechanisms for583

cross-modal alignment during collaborative train-584

ing. In future work, we plan to incorporate multi-585

modal information into our framework.586

Ethics Statement587

This research strictly adheres to the ethical prin-588

ciples outlined in the ACM Code of Ethics, with589

rigorous implementation of transparency and ac-590

countability measures. All datasets, tools, and lan-591

guage models (including Llama-2 and Mistral) are592

sourced from publicly available platforms under593

compliant licenses, ensuring ethical alignment and594

reproducibility. The complete code and evaluation595

protocols will be open-sourced upon publication.596

References597

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama598
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,599
Diogo Almeida, Janko Altenschmidt, Sam Altman,600
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.601
arXiv preprint arXiv:2303.08774.602

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,603
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.604
2024. Chateval: Towards better LLM-based eval-605
uators through multi-agent debate. In The Twelfth606
International Conference on Learning Representa-607
tions.608

Harrison Chase. 2022. LangChain.609

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,610
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:611
Toward language agent fine-tuning. arXiv preprint612
arXiv:2310.05915.613

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming614
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-615
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,616
Greg Brockman, et al. 2021. Evaluating large617
language models trained on code. arXiv preprint618
arXiv:2107.03374.619

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei620
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and621
Feng Zhao. 2024. Agent-FLAN: Designing data and622
methods of effective agent tuning for large language623
models. In Findings of the Association for Computa-624
tional Linguistics: ACL 2024, pages 9354–9366.625

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 626
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 627
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 628
Nakano, Christopher Hesse, and John Schulman. 629
2021. Training verifiers to solve math word prob- 630
lems. arXiv preprint arXiv:2110.14168. 631

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam 632
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2023. 633
Mind2web: Towards a generalist agent for the web. 634
Advances in Neural Information Processing Systems, 635
36:28091–28114. 636

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, 637
Dan Roth, and Jonathan Berant. 2021. Did Aristo- 638
tle Use a Laptop? A Question Answering Bench- 639
mark with Implicit Reasoning Strategies. Transac- 640
tions of the Association for Computational Linguis- 641
tics (TACL). 642

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 643
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 644
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder: 645
When the large language model meets programming– 646
the rise of code intelligence. arXiv preprint 647
arXiv:2401.14196. 648

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 649
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, 650
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. 651
2024. Metagpt: Meta programming for a multi-agent 652
collaborative framework. In The Twelfth Interna- 653
tional Conference on Learning Representations. 654

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang 655
Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao Dong. 656
2025. Advancing language model reasoning through 657
reinforcement learning and inference scaling. arXiv 658
preprint arXiv:2501.11651. 659

Jie Huang, Xinyun Chen, Swaroop Mishra, 660
Huaixiu Steven Zheng, Adams Wei Yu, Xiny- 661
ing Song, and Denny Zhou. 2024. Large language 662
models cannot self-correct reasoning yet. In The 663
Twelfth International Conference on Learning 664
Representations. 665

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 666
sch, Chris Bamford, Devendra Singh Chaplot, Diego 667
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 668
laume Lample, Lucile Saulnier, et al. 2023. Mistral 669
7b. arXiv preprint arXiv:2310.06825. 670

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 671
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 672
Wen-tau Yih. 2020. Dense passage retrieval for open- 673
domain question answering. In Proceedings of the 674
2020 Conference on Empirical Methods in Natural 675
Language Processing (EMNLP), pages 6769–6781, 676
Online. Association for Computational Linguistics. 677

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii 678
Khizbullin, and Bernard Ghanem. 2023. Camel: 679
Communicative agents for" mind" exploration of 680
large language model society. Advances in Neural 681
Information Processing Systems, 36:51991–52008. 682

9

https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://github.com/langchain-ai/langchain
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu683
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen684
Men, Kejuan Yang, et al. 2024. Agentbench: Eval-685
uating llms as agents. In The Twelfth International686
Conference on Learning Representations.687

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue,688
Shelby Heinecke, Rithesh Murthy, Yihao Feng,689
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit,690
et al. 2023. Bolaa: Benchmarking and orchestrating691
llm-augmented autonomous agents. arXiv preprint692
arXiv:2308.05960.693

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler694
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,695
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,696
et al. 2024. Self-refine: Iterative refinement with697
self-feedback. Advances in Neural Information Pro-698
cessing Systems, 36.699

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.700
2021. Are nlp models really able to solve simple701
math word problems? In Proceedings of the 2021702
Conference of the North American Chapter of the703
Association for Computational Linguistics: Human704
Language Technologies, pages 2080–2094.705

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,706
Wangchunshu Zhou, Yuchen Eleanor Jiang, Huajun707
Chen, et al. Autoact: Automatic agent learning from708
scratch for qa via self-planning. In ICLR 2024 Work-709
shop on Large Language Model (LLM) Agents.710

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-711
pher D Manning, Stefano Ermon, and Chelsea Finn.712
2024. Direct preference optimization: Your language713
model is secretly a reward model. Advances in Neu-714
ral Information Processing Systems, 36.715

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming716
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei717
Huang. 2024. Small LLMs are weak tool learners: A718
multi-LLM agent. In Proceedings of the 2024 Con-719
ference on Empirical Methods in Natural Language720
Processing, pages 16658–16680.721

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,722
Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren,723
Suzan Verberne, and Zhaochun Ren. 2024. Learning724
to use tools via cooperative and interactive agents.725
In Findings of the Association for Computational726
Linguistics: EMNLP 2024.727

Chan Hee Song, Brian M. Sadler, Jiaman Wu, Wei-Lun728
Chao, Clayton Washington, and Yu Su. 2023a. Llm-729
planner: Few-shot grounded planning for embodied730
agents with large language models. In IEEE/CVF731
International Conference on Computer Vision, ICCV732
2023, Paris, France, October 1-6, 2023, pages 2986–733
2997. IEEE.734

Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu,735
Wenhao Wu, Ke Wang, Cheng Li, Wei Peng, and Su-736
jian Li. 2024. Agentbank: Towards generalized llm737
agents via fine-tuning on 50000+ interaction trajec-738
tories. In Findings of the Association for Computa-739
tional Linguistics: EMNLP 2024, pages 2124–2141.740

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu, 741
Han Qian, Mingbo Song, Hailiang Huang, Cheng 742
Li, Ke Wang, Rong Yao, et al. 2023b. Restgpt: Con- 743
necting large language models with real-world restful 744
apis. arXiv preprint arXiv:2306.06624. 745

Theodore Sumers, Shunyu Yao, Karthik Narasimhan, 746
and Thomas Griffiths. 2024. Cognitive architectures 747
for language agents. Transactions on Machine Learn- 748
ing Research. 749

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean- 750
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 751
Schalkwyk, Andrew M Dai, Anja Hauth, Katie 752
Millican, et al. 2023. Gemini: a family of 753
highly capable multimodal models. arXiv preprint 754
arXiv:2312.11805. 755

XAgent Team. 2023. Xagent: An autonomous agent for 756
complex task solving. 757

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 758
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 759
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 760
Bhosale, et al. 2023. Llama 2: Open founda- 761
tion and fine-tuned chat models. arXiv preprint 762
arXiv:2307.09288. 763

Yiying Wang, Xiaojing Li, Binzhu Wang, Yueyang 764
Zhou, Yingru Lin, Han Ji, Hong Chen, Jinshi Zhang, 765
Fei Yu, Zewei Zhao, Song Jin, Renji Gong, and Wan- 766
qing Xu. 2024. Peer: Expertizing domain-specific 767
tasks with a multi-agent framework and tuning meth- 768
ods. Preprint, arXiv:2407.06985. 769

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, 770
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, 771
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah, 772
Ryen W White, Doug Burger, and Chi Wang. 2024. 773
Autogen: Enabling next-gen LLM applications via 774
multi-agent conversation. In ICLR 2024 Workshop 775
on Large Language Model (LLM) Agents. 776

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata 777
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023. 778
Rewoo: Decoupling reasoning from observations for 779
efficient augmented language models. arXiv preprint 780
arXiv:2305.18323. 781

Yiheng Xu, SU Hongjin, Chen Xing, Boyu Mi, Qian 782
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu, 783
Tianbao Xie, et al. 2024. Lemur: Harmonizing nat- 784
ural language and code for language agents. In The 785
Twelfth International Conference on Learning Repre- 786
sentations. 787

Hui Yang, Sifu Yue, and Yunzhong He. 2023. Auto-gpt 788
for online decision making: Benchmarks and addi- 789
tional opinions. arXiv preprint arXiv:2306.02224. 790

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, 791
William Cohen, Ruslan Salakhutdinov, and Christo- 792
pher D Manning. 2018. Hotpotqa: A dataset for 793
diverse, explainable multi-hop question answering. 794
In Proceedings of the 2018 Conference on Empiri- 795
cal Methods in Natural Language Processing, pages 796
2369–2380. 797

10

https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2

Shunyu Yao, Howard Chen, John Yang, and Karthik798
Narasimhan. 2022. Webshop: Towards scalable real-799
world web interaction with grounded language agents.800
Advances in Neural Information Processing Systems,801
35:20744–20757.802

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak803
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.804
React: Synergizing reasoning and acting in language805
models. In The Eleventh International Conference806
on Learning Representations.807

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-808
athi Chandu, Kai-Wei Chang, Yejin Choi, and809
Bill Yuchen Lin. 2024a. Agent lumos: Unified and810
modular training for open-source language agents.811
In Proceedings of the 62nd Annual Meeting of the812
Association for Computational Linguistics (Volume813
1: Long Papers), pages 12380–12403. Association814
for Computational Linguistics.815

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-816
athi Chandu, Kai-Wei Chang, Yejin Choi, and817
Bill Yuchen Lin. 2024b. Agent lumos: Unified and818
modular training for open-source language agents.819
Preprint, arXiv:2311.05657.820

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao821
Liu, Yuxiao Dong, and Jie Tang. 2024. AgentTuning:822
Enabling generalized agent abilities for LLMs. In823
Findings of the Association for Computational Lin-824
guistics: ACL 2024, pages 3053–3077. Association825
for Computational Linguistics.826

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu,827
Weiran Yao, Ming Zhu, Juntao Tan, Thai Hoang,828
Zuxin Liu, Liangwei Yang, et al. 2024a. Agentohana:829
Design unified data and training pipeline for effective830
agent learning. arXiv preprint arXiv:2402.15506.831

Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu,832
Bryan Hooi, and Shumin Deng. 2024b. Exploring833
collaboration mechanisms for LLM agents: A social834
psychology view. In Proceedings of the 62nd An-835
nual Meeting of the Association for Computational836
Linguistics (Volume 1: Long Papers), pages 14544–837
14607.838

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,839
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue840
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-841
ham Neubig. 2023. Webarena: A realistic web envi-842
ronment for building autonomous agents. In Second843
Agent Learning in Open-Endedness Workshop.844

11

https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657

Algorithm 2: Iterative Optimization
Input: The number of iterations Nr, the

number of samples K, the tasks set
T , the set of available tools I ,
the critic model CRITIC ,
planning agent PLANNING0 ,
grounding agent GROUNDING0

1 for iteration r = 1... Nr do

2 for each task xi ∈ T do
3 # Sample K response
4 for j ← 1 to K do
5 S̃i,j ← PLANNINGr−1(xi)

6 ri,j ← PPLGr(Ai|xi, I, S̃i,j)

7 end
8 end

9 # PLANNING Optimization
10 Swin ← S̃[argmax(r, axis = 1)]

11 Slose ← S̃[argmin(r, axis = 1)]

12 θPLANNINGr ←
13 θPLANNINGr−1 − ∂LDPO[(Swin,Slose),T]

∂θPLANNINGr−1

14 # GROUNDING Optimization
15 for each task xi ∈ T do
16 # Sample K response
17 for j ← 1 to K do
18 Ãi,j ←
19 GROUNDINGr−1(Ai|xi, I, S̃i,j)

20 end
21 end
22 Ã

′
i,j = CRITIC(Ãi,j)

23 θGROUNDINGr ←

24 θGROUNDINGr−1 − ∂LSFT[(S̃,I,T),Ã′]

∂θGROUNDINGr−1

25 end
Output: PLANNINGNr , GROUNDINGNr

A Appendix845

A.1 Implementation Details846

We show more training details about our experi-847

ments.All our experiments are conducted on 2 ×848

NVIDIA A800 (80GB) GPUs.849

For initial tuning, we implement training over850

two epochs with a learning rate of 2× 10−5 and a851

batch size 128. And We set the maximum sequence852

length to 1024. We also apply linear warmup for853

3% of the total training steps to adjust the learning854

rate.855

For DPO training, we fine-tuned the model using 856

the accelerate framework with DeepSpeed for 857

optimized distributed training. We set batch size 858

to 4 and gradient accumulation to 8. The learning 859

rate is set to 4× 10−7 with a cosine learning rate 860

scheduler. And We set the maximum sequence 861

length to 1024. Additionally, we leveraged the TRL 862

library 2 to facilitate the training of reinforcement 863

learning-based models. Meanwhile, we filter out 864

data samples where the reward difference between 865

Sw and Sl is less than 0.1 for stability during DPO 866

training. 867

For grounding agent improving training, we im- 868

plement training over two epochs with a learning 869

rate of 2×10−5 and a batch size 128 the same with 870

initial tuning. To reduce the impact of noisy data, 871

we select only the (Sw, A) pairs with the highest 872

reward from D̂G for training. At the same time, 873

we mix these with the initial data in a 1:1 ratio to 874

prevent the model from forgetting prior knowledge. 875

A.2 Case Study 876

As illustrated in Table A.2, the case studies evalu- 877

ate the responses generated by our MOAT and the 878

independent training method. Our findings show 879

that through joint alignment tuning, the models 880

are able to align their capabilities. Specifically, 881

for the given case, we observe that the indepen- 882

dently trained method struggles with subgoal de- 883

composition in planning agent, making it difficult 884

for grounding agent to resolve, leading to a fail- 885

ure in solving the task. However, after the joint 886

alignment training, the capability gap is addressed, 887

allowing the planning agent to generate subgoals 888

that are easier for the grounding agent to under- 889

stand. Consequently, the grounding agent success- 890

fully produced the correct action sequence. 891

A.3 Prompts 892

We provide our prompts used in the multi-agent 893

system. The prompt of the planning agent to gener- 894

ate the subgoal sequences is in Table 6. The prompt 895

of the grounding agent to generate the action se- 896

quences is in Table 7. The prompt of the critic 897

model to correct the action sequences generated by 898

grounding agents is in Table 8. 899

A.4 Action Interfaces and Execution Tools for 900

Complex Interactive Tasks 901

For each defined action in the action interfaces, a 902

corresponding backend execution tool is provided 903

2https://github.com/huggingface/trl

12

https://github.com/huggingface/trl

Case Study

Question:
Richard lives in an apartment building with 15 floors. Each floor contains 8 units, and 3/4 of the building is occupied. What’s the
total number of unoccupied units In the building?

MOAT:

Subgoals:
Subgoal 1: Calculate the total number of units in the entire building.;
Subgoal 2: Calculate the number of floors that are occupied.;
Subgoal 3: Calculate the total number of units that are occupied.;
Subgoal 4: Calculate the total number of unoccupied units in the building.

Actions:
R1 = Calculator(15 * 8);
R2 = Calculator(15 * 3/4);
R3 = Calculator(R2 * 8);
R4 = Calculator(R1 - R3)

Answer:
30

Independent Training Method:

Subgoals:
Subgoal 1: Calculate the total number of units in the building.;
Subgoal 2: Calculate the number of units that are unoccupied.;
Subgoal 3: Calculate the total number of unoccupied units in the building.

Actions:
R1 = Calculator(15 * 8);
R2 = Calculator(R1 * 3/4);
R3 = Calculator(R2 * 2)

Answer:
30

Table 5: A case study in the GSM8K test dataset.

Prompt to generate subgoal sequences

Please provide a reasonable subgoal-based plan to solve the given task.

Task:{TASK}

Table 6: The prompt of planning agent to generate subgoal sequences.

Prompt to generate action sequences

Please ground the given subgoal to corresponding executable actions for solving the given task. The grounded actions must be
the one in available action list.

The available action list is:{ACTION_LIST}

Task:{TASK}

Subgoals to be grounded:{SUBGOALS}

Table 7: The prompt of grounding agent to generate action sequences.

13

Prompt to correct action sequences

Given a task and a corresponding series of subgoals and their corresponding actions that may be incomplete, your task is to
judge whether the subgoals and actions can reached a final answer or conclusion for the problem.
The grounded actions must be the one in available action list.The available action list is {ACTION_LIST}
If the actions can reached a final answer, you should directly output "Final answer reached". Otherwise, you should give
corrections to the original subgoals and their corresponding actions. It is not necessary to be similar to the original subgoals and
actions.

Task:{TASK}
Original subgoals: {SUBGOALS}
Original actions: {ACTIONS}

Your output should follow the format:
If can reached a final answer, directly output "Final answer reached". Else, output corrected subgoals and actions following this
format:
Corrected Subgoals: <series of subgoals to complete the task in one line, Each Subgoal begins with Subgoal idx>
Corrected Actions: <corresponding actions in one line>

Table 8: The prompt of critic model to correct action sequences.

to enable the implementation of that action. Our904

setup follows the approach described in Yin et al.905

(2024b). We have adopted the same configura-906

tion to ensure comparability between our work and907

theirs.908

As shown in Table 9a, for QA tasks, we909

use Wikipedia and Google Search APIs to910

find relevant knowledge about entities. Addi-911

tionally, we use a semantic matching model,912

dpr-reader-multiset-base3, employed in913

Dense Passage Retrieval (DPR) (Karpukhin914

et al., 2020), to retrieve paragraphs based on the915

query. Following the approach from ReWOO (Xu916

et al., 2023), we also utilize GPT-series models917

as a straightforward QA tool to respond to918

queries based on the retrieved knowledge or prior919

interactions.920

In Table 9b, web tasks involve real mouse and921

keyboard operations such as typing, clicking, and922

selecting HTML tags. To identify the appropri-923

ate HTML tags to operate on, we use a DeBERTa924

model4 that ranks and retrieves relevant tags based925

on the current action, as seen in the AgentBench926

evaluation.927

As illustrated in Table 9c, WolframAlpha API 5928

serves as the main tool for mathematical tasks, as929

it is capable of executing a wide range of math-930

ematical functions, including formula computa-931

tion and equation solving. For more advanced932

math operations like sorting, we leverage OpenAI933

3https://huggingface.co/facebook/
dpr-reader-multiset-base.

4https://huggingface.co/osunlp/MindAct_
CandidateGeneration_deberta-v3-base.

5https://www.wolframalpha.com/.

Codex (Chen et al., 2021) to generate short code 934

snippets for execution. 935

For the unseen task WebShop, the actions 936

include Search, FeatureRetrieve, Pick, and 937

Click. The Search and Click actions are 938

implemented using the embedded features pro- 939

vided in the official WebShop virtual environ- 940

ment6 following (Liu et al., 2024). Mean- 941

while, FeatureRetrieve and Pick rely on the 942

dpr-reader-multiset-base, which helps select 943

the most relevant items and their features based on 944

the query. 945

6https://github.com/princeton-nlp/WebShop.

14

https://huggingface.co/facebook/dpr-reader-multiset-base
https://huggingface.co/facebook/dpr-reader-multiset-base
https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base
https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base
https://www.wolframalpha.com/
https://github.com/princeton-nlp/WebShop

Task Type Action Types Function Descriptions Tools

QA

KnowledgeQuery(Entity) -> Knowledge Query the entity knowledge Wikipedia, Google Search

ParagraphRetrieval(Knowledge, Query)
-> Paragraphs

Retrieve relevant paragraphs
based on the query

dpr-reader-multiset-base

QA(Context, Query) -> Answer
Answer the query based on

the provided context
GPT-series/open LLMs

Calculator(Expression) -> Value Calculate given mathematical expressions WolframAlpha

(a) Actions used in complex QA tasks.

Task Type Action Types Function Descriptions Implementation

Web

Click(Env, Query) -> Tag Locate the tag to be clicked based on the query

HTML Simulator
Type(Env, Query, Text) -> Tag, Text

Locate the relevant tag based on the query
and output the typed text

Select(Env, Query, Text) -> Tag, Text
Locate the relevant tag based on the query

and output the selected option

(b) Actions used in web tasks.

Task Type Action Types Function Descriptions Implementation

Math

Calculator(Expression) -> Value Calculate mathematical expressions

WolframAlpha
SetEquation(Expression) -> Equation Set equations based on the given expression

SolveEquation(Equation) -> Solutions Solve the system of equations

Define(Variable) -> Variable Define a variable

SolveInequality(Inequality) -> Solutions Solve the inequality

Code(Function_Description) -> Code Generate code for mathematical functions gpt-3.5-turbo

Count(List) -> Number Count the number of elements in a list Python

(c) Actions used in math tasks.

Table 9: Action interfaces and execution module implementations for complex interactive tasks.

15

	Introduction
	Related work
	Agent Task Preliminary
	Multi-agent Joint Alignment Tuning
	Initial Tuning
	Planning Agent Alignment
	Grounding Agent Improving

	Theoretical analysis
	Experimental Setup
	Benchmarks
	Baselines
	Implementation Details

	Experiment results
	Overall Performance
	Ablation Study
	Detailed Analysis
	Case Study

	Conclusion
	Appendix
	Implementation Details
	Case Study
	Prompts
	Action Interfaces and Execution Tools for Complex Interactive Tasks

