Bridging the Capability Gap: Joint Alignment Tuning for Harmonizing
LLM-based Multi-Agent Systems

Anonymous ACL submission

Abstract

The advancement of large language models
(LLMs) has spurred the development of multi-
agent systems for complex tasks, yet existing
approaches often train agents independently,
leading to capability gaps and coordination fail-
ures. To address this, we propose MOAT, a
Multi-Agent Joint Alignment Tuning frame-
work that bridges the capability gap between
planning and grounding agents through itera-
tive joint alignment. MOAT alternates between
two key phases: (1) Planning Agent Alignment,
which optimizes subgoal generation by reward-
ing sequences that reduce grounding perplexity,
and (2) Grounding Agent Improving, which
enhances action generation using high-quality
subgoal-action pairs filtered by a critic model.
Theoretical analysis proves that MOAT ensures
non-decreasing performance and convergence.
Experiments across six benchmarks demon-
strate that MOAT outperforms state-of-the-art
baselines, achieving average improvements of
3.1% on held-in tasks and 4.4% on held-out
tasks with 7B-scale models. Notably, MOAT
surpasses GPT-4 on Mind2Web by over 50%,
showcasing its ability to harmonize smaller
open-source LLMs into a competitive multi-
agent system. !

1 Introduction

The rapid development of large language mod-
els (LLMs) has significantly transformed the de-
velopment of intelligent agents capable of reason-
ing, decision-making, and interacting with com-
plex environments (Sumers et al., 2024; Song
et al., 2023a; Chase, 2022; Song et al., 2023b).
With the powerful capability of these models, a
number of autonomous frameworks using LLM-
based agents have been proposed and demonstrated
impressive potential in a wide range of applica-
tions (Yang et al., 2023; Hong et al., 2024; Team,
2023). These frameworks relying on closed-source

!Code is available on Anonymous GitHub.

SFT dataset SFT dataset

Fme tuning sz Tunmg
Planning Subgoals Subgoals Grounding {Actions
User Task—°—> , —> Answer
Agent Agent
______________ The Capability Gap Between Agents ___________ ™
Bad Subgoals - Actions
; g @ X Failure |
' %% Thesubgoals :
= seems bad,
Maybe there’
Strong Mot e
s Good Subgoals Actions
-=, X Failure !
=i \The subgoals is :
complex,
I can't handle
Strong Weak

Previous Independent Training Method

Figure 1: Previous multi-agent training framework,
which separately train the planning and Grounding
agents. This leads to a capability gap, e.g., misaligned
strengths (strong planning vs. weak grounding, or vice
versa), causing coordination failures during action exe-
cution.

models (Achiam et al., 2023; Team et al., 2023)
often incur higher costs and raise privacy concerns.
In contrast, increasingly powerful open-source al-
ternatives (Touvron et al., 2023; Jiang et al., 2023;
Guo et al., 2024) are emerging as the mainstream
solution, owing to their flexibility that enables bet-
ter adaptation.

To enhance the reasoning capability of open-
source LL.M-based agents, several works propose
to construct reasoning trajectory data for train-
ing (Yao et al., 2023; Madaan et al., 2024) or
directly distill from closed-source models (Zeng
et al., 2024; Xu et al., 2024; Chen et al., 2024).
However, most LLM-based agent frameworks fo-
cus on training one model to perform various tasks,
which may struggle with complex long-reasoning
problems (Liu et al., 2024, 2023) due to the limited
capacity of a single model. To address this chal-

https://anonymous.4open.science/r/multi-agent-alignment-46C0

lenge, some recent studies propose the multi-agent
approaches (Yin et al., 2024a; Qiao et al.; Shen
et al., 2024; Wang et al., 2024). Figure 1(a) illus-
trates the most commonly-used multi-agent frame-
work. Given a task, a planning agent decomposes it
into a sequence of subgoals, and another grounding
agent generates corresponding tool-calling actions
based on these subgoals, thereby obtaining the fi-
nal answer. To enable these specialized agents,
they first construct the training data for each step
and then train the models independently. While
performance can be improved through this multi-
agent decomposition, we argue that effective col-
laboration among agents is not guaranteed in these
methods. Different agents may exhibit varying pro-
ficiency levels in handling assigned tasks due to
independent training. This imbalance in special-
ized capabilities, coupled with the lack of aware-
ness regarding peer competencies of agents, can
lead to suboptimal task routing and coordination
challenges.

To address the above problems, we propose
MOAT, a Multi-agent Joint Alignment Tuning
framework that iteratively alternates two main steps
to enable the alignment in the multi-agent system,
including (i) Planning Agent Alignment and (ii)
Grounding Agent Improving. In the Planning
Agent Alignment step, MOAT optimizes the plan-
ning agent to formulate subgoals that can better
guide the grounding agent to generate correct ac-
tions. To achieve this, we sample multiple candi-
date subgoal sequences from the planning agent for
each input task. Then, we compute the perplexity
of the grounding agents in generating correct tool
callings on the condition of the generated subgoal
sequences, respectively. Using this perplexity as a
reward, we determine the utility of each subgoal se-
quence, thereby training the planning agent to adapt
to the grounding agent’s preference through direct
preference optimization algorithm (Rafailov et al.,
2024) In the Grounding Agent Improving step, we
enhance the expertise of the grounding agent to
understand the subgoals from the planning agent.
Specifically, we remain the sampled subgoal with
the lowest perplexity as input for the grounding
agent, reinforcing it to generate correct tool-calling
actions through a standard language modeling loss.
Through theoretic analysis, we demonstrate that
the holistic performance of the multi-agent sys-
tem is improved progressively by alternating the
above two steps. Since directly training models on
self-generated datasets may introduce noise and po-

tentially results in training collapse (Huang et al.,
2024), we introduce a data selection strategy where
we use a critic model to judge the correctness of
the generated tool invocation sequences and filter
out low-quality data.

We apply MOAT to several open-source model
families (Llama-2 and Mistral) and evaluate it on
three agent tasks such as Web, Math, and QA. The
results show that MOAT consistently outperforms
existing baselines, both on in-distribution training
sets and out-of-distribution test sets. This vali-
dates the effectiveness of joint alignment tuning
and demonstrates its strong generalization ability.
Furthermore, we conduct an in-depth analysis of
factors such as the number of samples, iteration
counts, and the selection of the critic model. Our
contributions can be summarized as follows:

Our main contributions are as follows: (i) We in-
troduce MOAT, a Multi-Agent Joint Alignment
Tuning framework to jointly optimize intercon-
nected agents, bridging the capability gap between
them; (ii) We provide formal analysis proving
that the alternating optimization of planning and
grounding agents guarantees non-decreasing per-
formance and convergence; and (iii) Experiments
on both held-in and held-out settings across six
benchmarks demonstrate that MOAT achieves the
best performance with 4.4% improvement.

2 Related work

LLM-based multi-agent system. LLM-based
agent systems can interact with environments to
accomplish various complex tasks such as web
navigation (Yao et al., 2022; Zhou et al., 2023),
task planning (Zhang et al., 2024b), and tool learn-
ing(Shi et al., 2024). Single LLM agent frame-
works like AutoGPT (Yang et al., 2023), Xagent
(Team, 2023), and LangChain (Chase, 2022) can
effectively handle diverse complex tasks by in-
tegrating external functions. To further enhance
performance, recent studies have proposed LLM-
based multi-agent systems that accomplish tasks
through agent collaboration. For instance, systems
like CAMEL (Li et al., 2023), AutoGen (Wu et al.,
2024), and ChatEval (Chan et al., 2024) employ
role-playing with predefined roles to enable agents
to efficiently complete different tasks and achieve
common goals. However, existing systems pri-
marily rely on closed-source model APIs, limiting
applications in specific domains.

Agent tuning. Recent research has laid the foun-
dation for building language agents based on open-
source models by utilizing larger models to gen-
erate training data for fine-tuning smaller models,
enabling better instruction following and reasoning
capabilities. For example, studies such as Agent-
Bank (Song et al., 2024), FireAct (Chen et al.,
2023), AgentTuning (Zeng et al., 2024), AgentO-
hana (Zhang et al., 2024a), and fine-tune the open-
source LLMs like Llama by collecting agent tra-
jectory data from strong teacher models like GPT-
4. However, single small agent still struggle with
complex long-reasoning tasks (Liu et al., 2024). To
address this, Lumos (Yin et al., 2024a) and (Shen
et al., 2024) proposed a multi-agent training frame-
work that promotes collaboration among agents to
solve complex tasks. Meanwhile, Autoact (Qiao
et al.) proposes a multi-agent learning framework
that utilizes self-instruct to autonomously gener-
ate self-improving data, thereby eliminating the re-
liance on synthesis trajectories from closed-source
models.

However, existing works either focus on building
data to train individual models or separately train
multiple models, neglecting the joint optimization
of multiple agents. To address this limitation, we
propose a multi-agent joint optimization algorithm
for multi-agent systems.

3 Agent Task Preliminary

A multi-agent system typically comprises three
core components: (1) a planning agent that decom-
poses tasks into subgoals, (2) a grounding agent
that translates subgoals into executable actions, and
(3) an execution module that implements the gen-
erated actions to get final answer. Given a task z,
the planning agent is responsible for decompos-
ing the user task x into a sequence of subgoals,
S = mp(x) = {s1,82,...,8|5|}, Where each s;
represents a subgoal that contributes to the solution
of the task = and 7, is the planning agent parame-
ters. The grounding agent, based on the user’s task
x, the set of available tools I, and the decomposed
subgoals S, then generates a sequence of tool calls
A =my(z,1,5) = {a1,az,...,a}, where each
a; € I represents an individual tool invocation re-
quired to complete the subgoal s; and 7, is the
agent parameters of grounding agent. Finally, the
execution module is responsible for executing the
generated tool-call sequence A to accomplish the
user task z.

4 Multi-agent Joint Alignment Tuning

In this section, we introduce the MOAT, a multi-
agent joint alignment tuning framework, which
aligns the planning and grounding agents in an
iteratively manner, thereby improving the holistic
performance. Prior to applying our framework, we
perform an initial fine-tuning to equip the model
with foundational problem-solving abilities.

As illustrated in Figure 2, MOAT alternates be-
tween two steps: (i) Planning Agent Alignment
and (ii) Grounding Agent Improving. The Plan-
ning Agent Alignment aims to facilitate exploration
of the planning agent in generating subgoals. This
exploration encourages the generation of subgoals
that better assist the grounding agent in generating
the correct action sequence A.

The Grounding Agent Improving focuses on
constructing a high-quality and diverse supervised
fine-tuning (SFT) dataset of subgoal sequences and
tool invocation sequences, aiming to enhance the
grounding agent’s generalization ability to the plan-
ning agent.

This process is iterative: in each round, the plan-
ning and grounding agents continuously adapt by
learning from the more effective behaviors of the
previous round, leading to improved collaboration
and overall performance consistency.

4.1 Initial Tuning

To equip the model with the ability to initially ad-
dress user tasks, we first conduct an initial tuning
using the SFT dataset collected in previous work
(Yin et al., 2024a).

Formally, given an input task x and the ground
truth subgoals S, the planning agent training objec-
tive of SFT is to minimize the following loss:

S|
Lp ==Y log P (Si | Scizz), (1)

=1

Given the generated subgoals S from the planning
agent, the grounding agent learns to ground it to the
corresponding tool-calling actions A, which can be
formulated as:

|A]
Lo=—) logPr(Ai| Acisz, 1,S), ()

i=1

where I is the list of available tools. The final

answer is obtained by executing the tool-callings
A.

Step 1: Planning Agent Alignment

4. Training based DPO loss ;

Ground-truth A

3. Compute PPL-based rewards I

LI ik Jekr) ikl /4L <
N

20Y- ki 1. Sample K times 51] 2. Generate actions Ay
05 anning) S,) Grounding /| Ay
=4 Agent Agent 7| .
Sk Ay
Subgoal sequences A Action sequences
Step 2: Grounding | 6. Training based
Agent Improving V2% ”edx_’ t{)ken
prediction Ciire
Ay Model
C@ Task A, 50 4
&y Input . Correct actions |
. | <
Ay

Corrected action sequences

Figure 2: The proposed MOAT framework iteratively alternates between two steps: (1) Planning Agent Alignment:
The planning agent samples K candidate subgoal sequences , and the grounding agent generates corresponding
tool-calling actions. Subgoal sequences are ranked by PPL, and the planning agent is optimized via DPO. (2)
Grounding Agent Improving: The subgoal-action pairs generated are corrected using a critic model, and the
grounding agent is fine-tuned on the corrected dataset to enhance generalization.

4.2 Planning Agent Alignment

As highlighted in previous work (Hou et al., 2025),
models demonstrate strong capabilities within their
parameter space. Therefore, performing multiple
samplings within this space to explore valuable
reasoning paths is crucial for optimizing the model.
Therefore, after initialization, we sample diverse
subgoal sequences from the planning agent at a
high temperature to improve its alignment with the
grounding agent.

Formally, given the task x , we sample K candi-
date subgoal sequences from the planning agent:

Dsample - {817527'”751(}- (3)

For each Sj; € Dgample, We calculate its perplexity
(PPL) with respect to the ground agent as a measure
of the planning agents’s behavior reward. A lower
perplexity indicates that the subgoal sequence is
more helpful to the grounding agent, facilitating
the generation of correct responses. Therefore, the
PPL can be used as a reward to determine the value
of the S to the end-to-end task performance. This

PPL are formulated as follows:

PPLc(A | 2,1, 5;) := “)
|

Y log Byl | A1)).
i=1

exp]

We aim to align the planning agent with subgoal
sequences that help the grounding agent generate
action sequences with low perplexity. To achieve
this, we employ contrastive alignment to reinforce
desirable behaviors while penalizing undesirable
ones. Specifically, we adopt the Direct Preference
Optimization (DPO) framework (Rafailov et al.,
2024), which provides an effective approach to
align agent behaviors with human preferences. The
corresponding loss function is formulated as fol-
lows:

Lppo = —E,(5,,5,))~D

Sw
[loga (6 log :pf((S ‘T;?)

— Blog T (Si]2) ﬂ 7
Tret (51]2)
where (Sy, S;) represents a response pair for

the task x, with .S, denoting the response with the

lowest PPL-based reward and S; the highest. Here,
mp denotes the current planning agent being opti-
mized, while 7¢ represents the reference model,

which is initialized as the original 7, before opti-
mization. And o denotes the sigmoid function, g3
is a hyper-parameter.

4.3 Grounding Agent Improving

To enhance the generalization capability of the
grounding agent and improve its adaptability to the
diverse subgoal sequences generated by the plan-
ning agent, we construct a SFT dataset using the
diverse subgoal sequences sampled in step 1 along
with the corresponding tool invocation sequences
generated by the grounding agent for fine-tuning.
Specifically, for a given task = and the sampled set
of subgoal sequences (51, 52,...,S5k) in Equa-
tion 3, the grounding agent 7, generates the cor-
responding response Ay, = my(x, I, Sy) for each
subgoal sequence S.

Prior research has shown that relying solely on
model-generated responses for training may intro-
duce noise and potentially lead to training collapse
without external feedback (Huang et al., 2024). To
address this issue, we introduce an external feed-
back mechanism to validate the correctness of the
generated tool invocation sequence Ay. Since mul-
tiple tool invocation sequences can achieve the
same goal in agent tasks, direct result comparison
is insufficient for determining correctness. There-
fore, we leverage a more powerful language model
as a critic model to evaluate whether the gener-
ated action sequence Aj aligns with the ground
truth—i.e., whether it successfully accomplishes
the intended task. If the sequence fails to com-
plete the task, the critic model references the cor-
rect answer and provides corrections. The dataset
construction procedure is shown in Algorithm 1,
where C(-) denotes the evaluation function of the
critic model, and Acorrect 1S the corrected invoca-
tion sequence provided by the critic model when
C({x,1,Sk),Ar) = False. The prompt for the
critic model is provided in Appendix A.3.

Next, the two stages described above will be
iteratively executed to achieve joint optimiza-
tion.Through iterative process, the planning agent
gradually adapts to the grounding agent, generating
subgoal sequences that better align with its infer-
ence process. Simultaneously, the grounding agent,
in turns, improves its generalization capability to
handle the diverse outputs of the planning agent.
More details of the training algorithm are provided
in Algorithm 2.

Algorithm 1: Dataset Construction

1 Initialize SFT dataset D¢; < 0);
2 for each task x and Sy, € Dsample do

3 Generate Ay, < mg(x, 1, Sg);

4 if C((x, I, Sk), A) = True then

s | Dg + Dg U{(z,1,S), A}

6 end

7 else

8 ‘ DG <_DGU{($’I’ Sk)aAcorrect};
9 end

10 end

11 return SFT dataset ﬁg;

5 Theoretical analysis

In our framework, the planning agent and ground-
ing agent are optimized iteratively. In this section,
we provide a theoretical analysis to demonstrate
that each optimization step leads to non-decreasing
improvements and ultimately ensures the conver-
gence. We start by defining the expected perfor-
mance of the overall multi-agent system as:

E[R] - Eswwp(a:) [Et~7rg(s) [R(S,t)H)

Here the reward function R(s, t) evaluate the qual-
ity of tool-calling action ¢ given sub-goal sequence
s. And z indicates the input task. Below, we can
state the following two lemmas.

Lemma 5.1. Optimizing the planning agent while
keeping the grounding agent fixed leads to a non-
decreasing expected reward.

The planning agent is optimized using DPO,
with PPL as the reward signal. The optimization
objective can be formalized as:
max Egry (@) [-PPL(s;mg)] - (6)

P
Since PPL is negatively correlated with the true
reward R(s,a), this is equivalent to maximizing
the expected reward:
r%ax Eswﬂ’p(x) [R(Sv t)] : (7

p

The DPO algorithm guarantees that updates to
0p lead to non-decreasing expected rewards when
the grounding agent is fixed. Thus, we have:

E[R]+D) > E[R)®. (8)

This inequality holds because the optimization pro-
cess aligns the planning agent with sub-goal se-
quences that facilitate better performance in the
grounding agent.

Lemma 5.2. Optimizing the grounding agent while
keeping the planning agent fixed leads to a non-
decreasing expected reward.

The grounding agent is optimized through super-
vised fine-tuning using pairs (s, a) generated by the
planning agent. The corresponding optimization
objective is:

H;in E(s,t)ND [,C(ﬂ'g(ﬂs))] ’ (9)

where £ denotes the loss function (e.g., cross-
entropy loss). Minimizing this loss is equivalent to
maximizing the log-likelihood of the correct tool
invocation sequences:

max E(s4)~D [log g (t]s)] . (10)

g

Since improved log-likelihood corresponds to
reduced PPL and, consequently, higher reward, it
follows that:

E[R]+D > E[R]®. (11)

Hence, optimizing the grounding agent improves
or maintains the expected reward when the plan-
ning agent is fixed.

From Lemma 5.1 and Lemma 5.2, we have es-
tablished that both optimization steps ensure non-
decreasing expected rewards:

E[R)"*Y > E[R)®. (12)
Additionally, the expected reward E[R] is upper-
bounded due to the following reasons: (i) The
reward function R(s,t) is bounded in practical
scenarios; and (ii) The PPL has a lower bound.
Based on the Monotone Convergence Theorem,
the non-decreasing and upper-bounded nature of
{E[R]¥}2°, ensures this sequence converges to
a finite limit, thereby proving the training conver-
gence.

6 Experimental Setup

6.1 Benchmarks

Following previous work (Song et al., 2024; Chen
et al., 2024), we evaluate our MOAT under both
held-in and held-out settings. In each setting,
we experiment on a wide range of tasks, in-
cluding Mathematical reasoning (Math), Web in-
teraction (Web), and question answering. As
listed in Table 1, the held-in setting includes the
GSMBS8K (Cobbe et al., 2021) StrategyQA (Geva

Task Skill Dim. #Inst. Metric
Held-in Tasks

HotpotQA (Yang et al., 2018) QA 100 Exact Match

GSMSK (Cobbe et al., 2021) Math 500 Exact Match

Mind2Web (Deng et al., 2023) Web 100 Step SR
Held-out Tasks

StrategyQA (Geva et al., 2021) QA 100 Exact Match

SVAMP (Patel et al., 2021) Math 1000 Exact Match

WebShop (Yao et al., 2022) Web 500 Avg. Reward

Table 1: The held-in and held-out tasks used to evaluate
the agent capabilities of different LLMs.

et al., 2021), and Mind2Web (Deng et al., 2023);
while the held-out setting includes SVAMP (Patel
et al., 2021), WebShop (Yao et al., 2022), and Hot-
potQA (Yang et al., 2018). For solving interactive
tasks, we integrate commonly used actions for each
task into the pre-defined action interfaces as tool
set I. Details of supported executable actions are
included in Appendix A.4.

6.2 Baselines

We compare our MOAT with widely-used agent
tuning methods, including: (i) Agent Tun-
ing (Zeng et al., 2024), a multi-task tuning ap-
proach training LLMs on synthetic datasets com-
prising six tasks; (ii) Agent-FLAN (Chen et al.,
2024) employs a modular architecture that trains
distinct single agent capabilities through special-
ized parameter groups; and (iii) Agent Lumos (Yin
et al., 2024a), a well-known multi-agents training
framework that separately fine-tines each agent on
part of overall datasets to obtain specialized agents.
Besides, we also select GPT-3.5-Turbo and GPT-4
(Achiam et al., 2023) as strong baselines.

6.3 Implementation Details

We mainly the L1ama2-7b-hf as backbone LLMs
for agents in MOAT and baseline methods. For
a comprehensive evaluation, we also alternate
it with Mistral-7B-Instruct-v@.2, validating
our method across various LLMs. For the ini-
tial tuning, we use the publicly available datasets
from Lumos (Yin et al., 2024a) to fine-tuning
the base model. We set the number of sampled
subgoal sequences K to 15 and the number of
training iteration to 2. And we set the temper-
ature to 1.0 in the sampling process to ensure
the sampling of diverse subgoal sequences. We
employ DeepSeek-R1-Distill-Qwen-32B as the
critic model. More detailed training settings can be
found in Appendix A.1.

Method ‘ Base Model ‘

Held-in Tasks

‘ Held-out Tasks

| | GSK8K Mind2Web StrategyQA | Avg. | SVAMP WebShop HotpotQA | Avg.
API-Based Agents
GPT-4 - 87.0 226 710 [602] 905 58.6 521|671
GPT-3.5-Turbo - 65.0 21.7 580 | 482 810 62.4 240 | 558
Llama Model Agents
Llama-2-7B-Chat | Llama-2-7B 15.0 11.9 5.0 106 | 207 15.8 3.0 132
Agent Tuning Llama-2-7B 14.0 10.6 49.0 24.5 353 59.8 10.0 35.0
Agent Tuning Llama-2-13B 22.3 11.1 52.0 28.5 56.9 65.0 24.0 48.6
Agent-FLAN Llama-2-7B | 285 16.9 480 | 3L1| 392 55.9 120|357
Agent Lumos Llama-2-7B 472 32.6 45.0 416 | 655 583 25.0 49.6
MOAT | Llama-2-7B | 47.8 354 497 | 443 692 60.6 270 | 523
Mistral Model Agents
Agent Lumos | Mistral-7B-v0.2 | 46.4 33.8 493|432 619 58.7 270 | 492
MOAT | Mistral-7B-v0.2 | 48.2 347 560 | 463 | 737 59.0 280 | 536

Table 2: Evaluation results of MOAT and the baselines on both held-in and held-out tasks. The best-performing

models within each group are highlighted in bold.

7 Experiment results

7.1 Overall Performance

Held-in Tasks. Table 2 presents the evaluation
results. Compared with single-agent systems and
independently trained multi-agent baselines, the
MOAT achieves superior performance across three
held-in tasks in 7B-scale models. Furthermore,
the MOAT with Llama-7B demonstrates an aver-
age improvement of 15.8% compared to Agent-
Tuning with L1ama-13B. These results validate the
effectiveness of our method in jointly training in-
terconnected specialized agents to enhance overall
task-solving performance.

Held-out Tasks. We further investigate the gener-
alizability of our method in solving unseen tasks,
i.e., out-of-domain tasks. As illustrated in Table 2,
our method achieves the highest performance com-
pared to open-source baselines. For instance, the
MOAT with Mistral-7B outperforms Lumos with
an average performance improvement of 4.4%. A
potential explanation for this improvement is that
through iterative alignment in MOAT, the subgoals
generated by the planning model align better with
the preferences of the grounding models; and the
grounding models also achieve a more accurate un-
derstanding of the generated subgoals. This mutual
understanding enhances the generalizability of the
overall system when facing tasks.

Comparison with API-based Agents. Although
our model was trained using Llama-7B and
Mistral-7B-Instruct-v@.2, it achieves more
than a 50% performance improvement over GPT-4

on the Mind2Web task. These findings further vali-
date the effectiveness of our method in synergizing
smaller open-source models to achieve competitive
performance.

Method Mind2Web WebShop
Full MOAT 35.43 60.63
-w/o stage 1 31.94 349 58.76,1 87
-w/o stage 2 34720711 60.290.34

Table 3: Ablation study on two web datasets.

60 -
55 4
50] [JSFT Baseline
o k=5
=] B K=10
o® [K=15
= -
40 -
3514
GSK8K StrategyQA Mind2Web

Figure 3: Evaluation results of MOAT using different
numbers of sampled subgoals responses (K) on three
held-in tasks.

7.2 Ablation Study

To further analyze the effectiveness of planning
alignment and grounding agent alignment in
MOAT, we conduct an ablation study by removing
each component individually. We denote these vari-
ants asw/o stage 1 andw/o stage 2 As shown

in Table 3, both variants exhibit significant perfor-
mance degradation, underscoring the importance of
our proposed joint alignment tuning method. No-
tably, the most substantial performance drop occurs
when stage 1 is removed, highlighting the critic role
of aligning the planning agent to generate coherent
subgoal sequences for the grounding agent. This
finding suggests that effective multi-agent cooper-
ation relies more heavily on the planning agent’s
ability to provide accuracy subgoals, which in turn
enables the grounding agent to execute tasks more
efficiently.

0.6 1
0.55 +
0.5
2
£ 0.45
= —4—GSK8K
—o— StrategyQA
> — & —Mind2Web
0.35 1 p— | |
0.3 ‘ | ‘ |
SFT Iteration 1 Iteration 2 Iteration 3

Figure 4: Performance trends of MOAT system (with
K=15) across three held-in tasks as the number of itera-
tions increases.

7.3 Detailed Analysis

Analysis of Different Sample Numbers. In our
main experiments, we set the number of sampled
responses K to 15. To explore the impact of the
sampling number K on model performance, we
conduct additional experiments by varying K from
5 to 15 during the training of Mistral-7B at itera-
tion 2. As shown in Figure 3, we observe a positive
correlation between the sampling number and the
final performance.

We also identify a performance drop on the
GSMSK and Mind2Web benchmarks when K=5.
We attribute this to the possibility that with insuffi-
cient sampling, the model may fail to sample high-
quality subgoal sequences that align well with the
grounding agent. In such cases, even the subgoal
sequence with the highest reward can negatively
impact model optimization.

Analysis of Iteration Count. We further inves-
tigate how the iteration count impacts model per-
formance using Mistral-7B with set K to 15. As
shown in Figure 4, the model’s performance im-
proves gradually with the increasing number of

iterations. However, beyond a certain threshold,
the performance gain becomes marginal. We hy-
pothesize that this is because, after a certain point,
the planning and grounding agents reach an equilib-
rium in performance, as demonstrated in Section 5.

Model Mind2Web WebShop
MOAT-Qwen-14B 33.52 60.63
MOAT-Qwen-32B 34.03 60.78
MOAT-GPT-40 35.28 60.57

Table 4: Model Performance on WebShop and

Mind2Web benchmark using different critic model

Impact of Different Critic Model. We em-
ploy the DeepSeek-R1-Distill-Qwen-32B as a
critic model, to refine the action sequences gen-
erated by the grounding agent. To qualitatively
analyze the impact of the critic model, we con-
duct experiments using both a more powerful
critic model (i.e., GPT-40) and a weaker one
(i.e., DeepSeek-R1-Distill-Qwen-14B). The re-
sults, as presented in Table 4, reveal a clear trend:
as the capability of the critic model improves,
the overall performance of MOAT also increases.
These observations highlight the importance of se-
lecting a robust critic model to optimize the perfor-
mance of our framework.

7.4 Case Study

We conduct case studies to demonstrate the effec-
tiveness of our joint alignment tuning framework
in solving complex tasks. The results show that
our MOAT effectively improves the task planning
performance and enhances the adaptability of the
grounding agent. Concrete examples and analysis
are provided in Appendix A.2.

8 Conclusion

In this work, we present MOAT, a novel Joint
Alignment Tuning framework designed to har-
monize the collaboration between planning and
grounding agents in LLM-based multi-agent sys-
tems. By iteratively optimizing the planning agent
to generate subgoals aligned with the grounding
agent’s capabilities and enhancing the ground-
ing agent’s adaptability to diverse subgoal se-
quences, MOAT effectively bridges the capability
gap caused by independent training. Extensive ex-
periments across six benchmarks demonstrate the
superiority of MOAT over existing methods.

Limitations

Our framework is currently developed and
evaluated exclusively on text-based scenarios,
without exploring multimodal learning settings.
While modern open-source language models (e.g.,
LLaVA, Qwen-VL) have demonstrated emerging
capabilities in processing multimodal inputs, our
current architecture lacks explicit mechanisms for
cross-modal alignment during collaborative train-
ing. In future work, we plan to incorporate multi-
modal information into our framework.

Ethics Statement

This research strictly adheres to the ethical prin-
ciples outlined in the ACM Code of Ethics, with
rigorous implementation of transparency and ac-
countability measures. All datasets, tools, and lan-
guage models (including Llama-2 and Mistral) are
sourced from publicly available platforms under
compliant licenses, ensuring ethical alignment and
reproducibility. The complete code and evaluation
protocols will be open-sourced upon publication.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu,
Wei Xue, Shanghang Zhang, Jie Fu, and Zhiyuan Liu.
2024. Chateval: Towards better LLM-based eval-
uators through multi-agent debate. In The Twelfth
International Conference on Learning Representa-
tions.

Harrison Chase. 2022. LangChain.

Baian Chen, Chang Shu, Ehsan Shareghi, Nigel Collier,
Karthik Narasimhan, and Shunyu Yao. 2023. Fireact:
Toward language agent fine-tuning. arXiv preprint
arXiv:2310.05915.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei
Zhang, Jiangning Liu, Dahua Lin, Kai Chen, and
Feng Zhao. 2024. Agent-FLAN: Designing data and
methods of effective agent tuning for large language
models. In Findings of the Association for Computa-
tional Linguistics: ACL 2024, pages 9354-9366.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2023.
Mind2web: Towards a generalist agent for the web.
Advances in Neural Information Processing Systems,
36:28091-28114.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did Aristo-
tle Use a Laptop? A Question Answering Bench-
mark with Implicit Reasoning Strategies. Transac-

tions of the Association for Computational Linguis-
tics (TACL).

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al.
2024. Metagpt: Meta programming for a multi-agent
collaborative framework. In The Twelfth Interna-
tional Conference on Learning Representations.

Zhenyu Hou, Xin Lv, Rui Lu, Jiajie Zhang, Yujiang
Li, Zijun Yao, Juanzi Li, Jie Tang, and Yuxiao Dong.
2025. Advancing language model reasoning through
reinforcement learning and inference scaling. arXiv
preprint arXiv:2501.11651.

Jie Huang, Xinyun Chen, Swaroop Mishra,
Huaixiu Steven Zheng, Adams Wei Yu, Xiny-
ing Song, and Denny Zhou. 2024. Large language
models cannot self-correct reasoning yet. In The
Twelfth International Conference on Learning
Representations.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online. Association for Computational Linguistics.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2023. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36:51991-52008.

https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://openreview.net/forum?id=FQepisCUWu
https://github.com/langchain-ai/langchain
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu
Lei, Hanyu Lai, Yu Gu, Hangliang Ding, Kaiwen
Men, Kejuan Yang, et al. 2024. Agentbench: Eval-
uating llms as agents. In The Twelfth International
Conference on Learning Representations.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue,
Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit,
et al. 2023. Bolaa: Benchmarking and orchestrating
Ilm-augmented autonomous agents. arXiv preprint
arXiv:2308.05960.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094.

Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo,
Wangchunshu Zhou, Yuchen Eleanor Jiang, Huajun
Chen, et al. Autoact: Automatic agent learning from
scratch for qa via self-planning. In ICLR 2024 Work-
shop on Large Language Model (LLM) Agents.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Weizhou Shen, Chenliang Li, Hongzhan Chen, Ming
Yan, Xiaojun Quan, Hehong Chen, Ji Zhang, and Fei
Huang. 2024. Small LLMs are weak tool learners: A
multi-LLM agent. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 16658—16680.

Zhengliang Shi, Shen Gao, Xiuyi Chen, Yue Feng,
Lingyong Yan, Haibo Shi, Dawei Yin, Pengjie Ren,
Suzan Verberne, and Zhaochun Ren. 2024. Learning
to use tools via cooperative and interactive agents.
In Findings of the Association for Computational
Linguistics: EMNLP 2024.

Chan Hee Song, Brian M. Sadler, Jiaman Wu, Wei-Lun
Chao, Clayton Washington, and Yu Su. 2023a. Llm-
planner: Few-shot grounded planning for embodied
agents with large language models. In IEEE/CVF
International Conference on Computer Vision, ICCV
2023, Paris, France, October 1-6, 2023, pages 2986—
2997. IEEE.

Yifan Song, Weimin Xiong, Xiutian Zhao, Dawei Zhu,
Wenhao Wu, Ke Wang, Cheng Li, Wei Peng, and Su-
jian Li. 2024. Agentbank: Towards generalized llm
agents via fine-tuning on 50000+ interaction trajec-
tories. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 2124-2141.

10

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,
Han Qian, Mingbo Song, Hailiang Huang, Cheng
Li, Ke Wang, Rong Yao, et al. 2023b. Restgpt: Con-
necting large language models with real-world restful
apis. arXiv preprint arXiv:2306.06624.

Theodore Sumers, Shunyu Yao, Karthik Narasimhan,
and Thomas Griffiths. 2024. Cognitive architectures
for language agents. Transactions on Machine Learn-
ing Research.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

XAgent Team. 2023. Xagent: An autonomous agent for
complex task solving.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yiying Wang, Xiaojing Li, Binzhu Wang, Yueyang
Zhou, Yingru Lin, Han Ji, Hong Chen, Jinshi Zhang,
Fei Yu, Zewei Zhao, Song Jin, Renji Gong, and Wan-
qing Xu. 2024. Peer: Expertizing domain-specific
tasks with a multi-agent framework and tuning meth-
ods. Preprint, arXiv:2407.06985.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,
Ryen W White, Doug Burger, and Chi Wang. 2024.
Autogen: Enabling next-gen LLM applications via
multi-agent conversation. In ICLR 2024 Workshop
on Large Language Model (LLM) Agents.

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata
Mukherjee, Yuchen Liu, and Dongkuan Xu. 2023.
Rewoo: Decoupling reasoning from observations for
efficient augmented language models. arXiv preprint
arXiv:2305.18323.

Yiheng Xu, SU Hongjin, Chen Xing, Boyu Mi, Qian
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu,
Tianbao Xie, et al. 2024. Lemur: Harmonizing nat-
ural language and code for language agents. In The
Twelfth International Conference on Learning Repre-
sentations.

Hui Yang, Sifu Yue, and Yunzhong He. 2023. Auto-gpt
for online decision making: Benchmarks and addi-
tional opinions. arXiv preprint arXiv:2306.02224.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369-2380.

https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://doi.org/10.1109/ICCV51070.2023.00280
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://arxiv.org/abs/2407.06985
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2
https://openreview.net/forum?id=uAjxFFing2

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2022. Webshop: Towards scalable real-
world web interaction with grounded language agents.
Advances in Neural Information Processing Systems,

35:20744-20757.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024a. Agent lumos: Unified and
modular training for open-source language agents.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 12380-12403. Association
for Computational Linguistics.

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy-
athi Chandu, Kai-Wei Chang, Yejin Choi, and
Bill Yuchen Lin. 2024b. Agent lumos: Unified and
modular training for open-source language agents.
Preprint, arXiv:2311.05657.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2024. AgentTuning:
Enabling generalized agent abilities for LLMs. In
Findings of the Association for Computational Lin-
guistics: ACL 2024, pages 3053—-3077. Association
for Computational Linguistics.

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu,
Weiran Yao, Ming Zhu, Juntao Tan, Thai Hoang,
Zuxin Liu, Liangwei Yang, et al. 2024a. Agentohana:
Design unified data and training pipeline for effective
agent learning. arXiv preprint arXiv:2402.15506.

Jintian Zhang, Xin Xu, Ningyu Zhang, Ruibo Liu,
Bryan Hooi, and Shumin Deng. 2024b. Exploring
collaboration mechanisms for LLM agents: A social
psychology view. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 14544—
14607.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou,
Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Gra-
ham Neubig. 2023. Webarena: A realistic web envi-
ronment for building autonomous agents. In Second
Agent Learning in Open-Endedness Workshop.

11

https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2311.05657

Algorithm 2: Iterative Optimization

Input: The number of iterations V,, the
number of samples K, the tasks set
T, the set of available tools I,
the critic model CRITIC ,
planning agent PLANNING ,
grounding agent GROUNDING

1 for iterationr = 1... N, do

for each task x; € T do
Sample K response
for j +— 1to K do
S”i,j < PLANNING,_1(z;)
T < PPLGT (AZ|$“ I, SiJ)
end

2
3
4

end

PLANNING Optimization

10 Swin < S[argmax(r, azis = 1)]

1 Slose S'[argmin(r, axris = 1)]

12 GPLANNINGT —

9Lppo[(Swin,Stose) T

@PLANNING, 1
HOPTANNING,. 1

13

14 # GROUNDING Optimization
for each task x; € T do
Sample K response
for j +— 1to K do
Aijj <
GROUNDING,_1 (Ag|zi, I, S5 5)
end

15
16
17
18
19
20

21 end

A;j = CRITIC(EZ-J)

GGROUNDINGT i

22
23
9Lsrr[(8,1,T),A]

OGROUNDINGr,l o
80GROUND1NGT_1

24

25 end
Output: PLANNING v, , GROUNDING y,

A Appendix

A.1 Implementation Details

We show more training details about our experi-
ments.All our experiments are conducted on 2 X
NVIDIA A800 (80GB) GPUs.

For initial tuning, we implement training over
two epochs with a learning rate of 2 x 1077 and a
batch size 128. And We set the maximum sequence
length to 1024. We also apply linear warmup for
3% of the total training steps to adjust the learning
rate.

12

For DPO training, we fine-tuned the model using
the accelerate framework with DeepSpeed for
optimized distributed training. We set batch size
to 4 and gradient accumulation to 8. The learning
rate is set to 4 x 10~ with a cosine learning rate
scheduler. And We set the maximum sequence
length to 1024. Additionally, we leveraged the TRL
library 2 to facilitate the training of reinforcement
learning-based models. Meanwhile, we filter out
data samples where the reward difference between
Sw and Sy is less than 0.1 for stability during DPO
training.

For grounding agent improving training, we im-
plement training over two epochs with a learning
rate of 2 x 1075 and a batch size 128 the same with
initial tuning. To reduce the impact of noisy data,
we select only the (S, A) pairs with the highest
reward from ﬁG for training. At the same time,
we mix these with the initial data in a 1:1 ratio to
prevent the model from forgetting prior knowledge.

A.2 Case Study

As illustrated in Table A.2, the case studies evalu-
ate the responses generated by our MOAT and the
independent training method. Our findings show
that through joint alignment tuning, the models
are able to align their capabilities. Specifically,
for the given case, we observe that the indepen-
dently trained method struggles with subgoal de-
composition in planning agent, making it difficult
for grounding agent to resolve, leading to a fail-
ure in solving the task. However, after the joint
alignment training, the capability gap is addressed,
allowing the planning agent to generate subgoals
that are easier for the grounding agent to under-
stand. Consequently, the grounding agent success-
fully produced the correct action sequence.

A.3 Prompts

We provide our prompts used in the multi-agent
system. The prompt of the planning agent to gener-
ate the subgoal sequences is in Table 6. The prompt
of the grounding agent to generate the action se-
quences is in Table 7. The prompt of the critic
model to correct the action sequences generated by
grounding agents is in Table 8.

A.4 Action Interfaces and Execution Tools for
Complex Interactive Tasks

For each defined action in the action interfaces, a
corresponding backend execution tool is provided

2https://github.com/huggingface/trl

https://github.com/huggingface/trl

Case Study

Question:
Richard lives in an apartment building with 15 floors. Each floor contains 8 units, and 3/4 of the building is occupied. What’s the
total number of unoccupied units In the building?

MOAT:

Subgoals:

Subgoal 1: Calculate the total number of units in the entire building.;
Subgoal 2: Calculate the number of floors that are occupied.;

Subgoal 3: Calculate the total number of units that are occupied.;
Subgoal 4: Calculate the total number of unoccupied units in the building.

Actions:

R1 = Calculator(15 * 8);
R2 = Calculator(15 * 3/4);,
R3 = Calculator(R2 * 8);
R4 = Calculator(R1 - R3)

Answer:
30

Independent Training Method:

Subgoals:

Subgoal 1: Calculate the total number of units in the building.;

Subgoal 2: Calculate the number of units that are unoccupied.;

Subgoal 3: Calculate the total number of unoccupied units in the building.

Actions:

R1 = Calculator(15 * 8);
R2 = Calculator(R1 * 3/4);
R3 = Calculator(R2 * 2)

Answer:
30

Table 5: A case study in the GSMS8K test dataset.

Prompt to generate subgoal sequences

Please provide a reasonable subgoal-based plan to solve the given task.

Task:{TASK}

Table 6: The prompt of planning agent to generate subgoal sequences.

Prompt to generate action sequences

Please ground the given subgoal to corresponding executable actions for solving the given task. The grounded actions must be
the one in available action list.

The available action list is:{ ACTION_LIST}
Task:{TASK}

Subgoals to be grounded: {SUBGOALS}

Table 7: The prompt of grounding agent to generate action sequences.

13

Prompt to correct action sequences

Given a task and a corresponding series of subgoals and their corresponding actions that may be incomplete, your task is to
judge whether the subgoals and actions can reached a final answer or conclusion for the problem.

The grounded actions must be the one in available action list.The available action list is { ACTION_LIST}

If the actions can reached a final answer, you should directly output "Final answer reached". Otherwise, you should give
corrections to the original subgoals and their corresponding actions. It is not necessary to be similar to the original subgoals and
actions.

Task:{TASK}
Original subgoals: {SUBGOALS}
Original actions: { ACTIONS}

Your output should follow the format:

If can reached a final answer, directly output "Final answer reached". Else, output corrected subgoals and actions following this
format:

Corrected Subgoals: <series of subgoals to complete the task in one line, Each Subgoal begins with Subgoal idx>

Corrected Actions: <corresponding actions in one line>

Table 8: The prompt of critic model to correct action sequences.

to enable the implementation of that action. Our Codex (Chen et al., 2021) to generate short code
setup follows the approach described in Yin et al. snippets for execution.

(2024b). We have adopted the same configura- For the unseen task WebShop, the actions
tion to ensure comparability between our work and include Search, FeatureRetrieve, Pick, and
theirs. Click. The Search and Click actions are

As shown in Table 9a, for QA tasks, we implemented using the embedded features pro-
use Wikipedia and Google Search APIs to vided in the official WebShop virtual environ-
find relevant knowledge about entities. Addi- ment® following (Liu et al., 2024). Mean-
tionally, we use a semantic matching model, while, FeatureRetrieve and Pick rely on the
dpr-reader-multiset-base®, employed in dpr-reader-multiset-base, which helps select
Dense Passage Retrieval (DPR) (Karpukhin the most relevant items and their features based on
et al., 2020), to retrieve paragraphs based on the the query.
query. Following the approach from ReWOO (Xu
et al., 2023), we also utilize GPT-series models
as a straightforward QA tool to respond to
queries based on the retrieved knowledge or prior
interactions.

In Table 9b, web tasks involve real mouse and
keyboard operations such as typing, clicking, and
selecting HTML tags. To identify the appropri-
ate HTML tags to operate on, we use a DeBERTa
model” that ranks and retrieves relevant tags based
on the current action, as seen in the AgentBench
evaluation.

As illustrated in Table 9c, WolframAlpha API >
serves as the main tool for mathematical tasks, as
it is capable of executing a wide range of math-
ematical functions, including formula computa-
tion and equation solving. For more advanced
math operations like sorting, we leverage OpenAl

3https://huggingface.co/facebook/
dpr-reader-multiset-base.

*https://huggingface.co/osunlp/MindAct_

CandidateGeneration_deberta-v3-base.
5https ://www.wolframalpha.com/. 6ht’cps: //github.com/princeton-nlp/WebShop.

14

https://huggingface.co/facebook/dpr-reader-multiset-base
https://huggingface.co/facebook/dpr-reader-multiset-base
https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base
https://huggingface.co/osunlp/MindAct_CandidateGeneration_deberta-v3-base
https://www.wolframalpha.com/
https://github.com/princeton-nlp/WebShop

Task Type Action Types Function Descriptions Tools

KnowledgeQuery(Entity) -> Knowledge Query the entity knowledge Wikipedia, Google Search
ParagraphRetrieval (Knowledge, Query) Retrieve relevant paragraphs dpr-reader-multiset-base
0A -> Paragraphs based on the query
Answer the query based on .
A(Context -> Al R PT-series LLMs
QA(Context, Query) nswer the provided context GPT-series/open s
Calculator(Expression) -> Value Calculate given mathematical expressions WolframAlpha
(a) Actions used in complex QA tasks.
Task Type Action Types Function Descriptions Implementation
Click(Env, Query) -> Tag Locate the tag to be clicked based on the query
Locate the relevant tag based on the query
Type(Env, Query, Text) -> Tag, Text .
Web ype(Query) e and output the typed text HTML Simulator
Locate the relevant tag based on the query
->
Select(Env, Query, Text) Tag, Text and output the selected option
(b) Actions used in web tasks.
Task Type Action Types Function Descriptions Implementation
Calculator(Expression) -> Value Calculate mathematical expressions
SetEquation(Expression) -> Equation Set equations based on the given expression
SolveEquation(Equation) -> Solutions Solve the system of equations WolframAlpha
Math
Define(Variable) -> Variable Define a variable
SolveInequality(Inequality) -> Solutions Solve the inequality
Code(Function_Description) -> Code Generate code for mathematical functions gpt-3.5-turbo
Count(List) -> Number Count the number of elements in a list Python

(c) Actions used in math tasks.

Table 9: Action interfaces and execution module implementations for complex interactive tasks.

15

	Introduction
	Related work
	Agent Task Preliminary
	Multi-agent Joint Alignment Tuning
	Initial Tuning
	Planning Agent Alignment
	Grounding Agent Improving

	Theoretical analysis
	Experimental Setup
	Benchmarks
	Baselines
	Implementation Details

	Experiment results
	Overall Performance
	Ablation Study
	Detailed Analysis
	Case Study

	Conclusion
	Appendix
	Implementation Details
	Case Study
	Prompts
	Action Interfaces and Execution Tools for Complex Interactive Tasks

