
AntiDIF: Accurate and Diverse Antibody Specific Inverse
Folding with Discrete Diffusion

Nikhil Branson 1 Charlotte Deane 1

Abstract
Inverse folding is an important step in current
computational antibody design. Recently deep
learning methods have made impressive progress
in improving the sequence recovery of antibod-
ies given their 3D backbone structure. However,
inverse folding is often a one-to-many problem,
i.e. there are multiple sequences that fold into the
same structure. Previous methods have not taken
into account the diversity between the predicted
sequences for a given structure. Here we create
AntiDIF an Antibody-specific discrete Diffusion
model for Inverse Folding. Compared with state-
of-the-art methods we show that AntiDIF im-
proves diversity between predictions while keep-
ing high sequence recovery rates. Furthermore,
forward folding of the generated sequences shows
good agreement with the target 3D structure.

1. Introduction
Computational protein design has made significant progress
with the development and utilisation of deep learning meth-
ods and generative AI e.g. (Geffner et al., 2025; Abramson
et al., 2024; Cutting et al., 2024; Watson et al., 2023; Yim
et al., 2023; Hsu et al., 2022). Antibodies are a particularly
important type of protein. They are a large class of thera-
peutics and have been successfully used to improve human
health for a host of different diseases e.g. (Lu et al., 2020;
Carter & Lazar, 2018). Advances in machine learning have
already and promise to continue to help in the development
of novel antibody therapeutics (Jaszczyszyn et al., 2023;
Hummer et al., 2022).

Inverse protein folding is the problem of finding amino
acid sequences that fold into a given 3D protein backbone
structure. Successful inverse folding models are invaluable
in de novo design pipelines and for optimising desirable
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properties of proteins. Deep learning has proved highly
effective at the inverse protein folding problem (Ingraham
et al., 2019; Dauparas et al., 2022; Hsu et al., 2022).

Antibodies are Y-shaped proteins formed of two heavy and
two light chains with the antigen binding site being mostly
formed by complementary determining region (CDR) loops.
These loops are hypervariable in comparison to the frame-
work regions of antibodies that are mostly germline-encoded
(Sela-Culang et al., 2013). The CDR loops are thus vital in
determining the binding properties of antibodies. These dis-
tinct properties relative to other proteins mean that antibody-
specific models have shown substantial improvement over
general inverse folding models (Høie et al., 2023; Dreyer
et al., 2023).

However, these models have focused on and have been eval-
uated for how well their predictions agree with the original
sequences and by using forward folding methods, the con-
sistency of the predicted structures with the target structures.
Crucially this does not take into account the diversity be-
tween generated sequences, where because inverse folding
is a many-to-one mapping problem, there are multiple se-
quences that can fold into a given structure. Having multiple
diverse sequences is particularly valuable in practice as this
gives a range of sequences that can be selected based on
desired properties. For example, improved stability or re-
duced immunogenicity, Thus, it is desirable for an inverse
folding method to generate a diverse set of plausible amino
acid sequences for a given 3D structure (Silva et al., 2025;
Yi et al., 2023).

Diffusion-based generative models have been shown to be
particularly well-suited to producing a range of high-quality
outputs in multiple domains including protein design (Dhari-
wal & Nichol, 2021; Song et al., 2020; Klarner et al., 2024;
Yim et al., 2023; Watson et al., 2023). Thus, here we train
an antibody-specific diffusion model for inverse folding
(AntiDIF) to generate diverse and accurate sequences for a
given backbone. AntiDIF is built upon RL-DIF (Ektefaie
et al., 2024) a discrete diffusion inverse folding method that
has shown good performance for general proteins. We train
AntiDIF by fine-tuning RL-DIF with both experimentally
determined structures from the structural Antibody Database
(SAbDab) (Schneider et al., 2022; Dunbar et al., 2014) and
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Figure 1. AntiDIF performance compared with antibody specific inverse folding methods, AntiFold and AbMPNN and general inverse
folding methods ESM-1IF and RL-DIF. (A) Shows sequence recovery rates, for each CDR. (B) shows the diversity across four predicted
sequences for the two models with the best sequence recovery, AntiDIF, and AntiFold. The figure shows AntiDIF has comparable
sequence recovery to AntiFold while substantially improving diversity.

predicted structures from the Observed Antibody Space
(OAS) (Olsen et al., 2022; Kovaltsuk et al., 2018). We show
that AntiDIF is able to generate diverse sequences while
keeping high sequence recovery rates. Giving an unparal-
leled sequence recovery to diversity trade-off. Furthermore,
we demonstrate that despite the improved sequence diver-
sity forward folding of the sequences generated by AntiDIF
maintains high levels of agreement with experimentally de-
termined structures. These results show that AntiDIF would
be a valuable addition to antibody design pipelines allowing
for improved optimisation of biophysical properties.

2. Methods
2.1. Inverse folding with diffusion

Formally, the aim of inverse folding is to generate sequences
S that fold into a protein backbone with the coordinates
X ∈ RN×3, where N is the number of residues of the
protein. Here, the amino acids are parametrised as one-
hot encoded vectors such that S ∈ {0, 1}N×v with v, the
vocabulary size, equal to 20, representing the 20 naturally
occurring amino acids.

Diffusion consists of a forward noising process, where a
denoising neural network can be learned, and a reverse
process, used for generation. The distribution of noised
states that relate the original native sequence S0 to latent
noisy sequences is given by a Markov process such that:

q(S1, . . . , ST | S0) =

T∏
t=1

q(St | St−1).

Where each latent state S1, S2, ..., ST is progressively nois-
ier as the diffusion time step, t, increases, where t ∈ N0.

In the backward process, a noisy sample is iteratively de-
noised such that:

pθ(S0, S1, . . . , ST ) = p(ST )

T∏
t=1

pθ(St−1 | St).

Here pθ found via a neural network that is learnt to de-noise
the latent states,and θ are the learnable parameters. The
network steers the generation of new sequences toward the
distribution of observed sequences.

We employ discrete diffusion to train AntiDIF as imple-
mented in RL-DIF (Ektefaie et al., 2024) and based on
D3PM (Austin et al., 2021). This defines a forward diffu-
sion process by relating S at different diffusion time steps
via transition matrices, which give the probability of moving
from one amino acid type to another. See (Ektefaie et al.,
2024) and (Austin et al., 2021) for full details.

The core layers of the de-noising neural network used in
RL-DIF are PiGNN layers from PiFold (Gao et al., 2023).
Given the backbone coordinates X the model creates a kNN
graph with k = 30 between the residues. The PiFold fea-
turiser is then used to obtain node and edge features that are
used as input into the model with the noised sequence and
the diffusion timestep. This model (M ) thus, predicts the de-
noised sequence conditioned on the noisy sequence, back-
bone structure, and time step. Such that Ŝ = M(St, X, t).

2.2. Training AntiDIF on antibodies

We utilised the dataset curated by Dreyer et al. for AbMPNN
(Dreyer et al., 2023) for training and testing our model.
Dreyer et al. utilised 3, 500 experimentally solved structures
from SAbDab (Schneider et al., 2022) and 147, 919 (Olsen
et al., 2022) predicted structures of sequences from OAS.
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Figure 2. AntiDIF performance compared with increased AntiFold sampling temperatures (AntiFold default t=0.2). (A) shows diversity
against sequence recovery averaged over all CDRs where the top right of the graph is where the best-performing model is located. (B)
shows sequence recovery broken down by CDRs (C) shows diversity broken down by CDRs.

Clustering and filtering were applied to this data before
splitting it into 80% training 10% validation and 10% testing
sets. See Appendix A.1.1 for further details.

For each training epoch, we used all training samples from
SAbDab and randomly sampled half this number of data
points from the OAS training set to encourage diversity
and limit overfitting. We trained until convergence on the
validation set. We used a maximum learning rate of 1×10−3

with warm-up and decay. For our learning rate scheduler,
we used a polynomial, of degree 2, and 1000 warm-up steps.
We also used the adamW optimiser (Loshchilov & Hutter,
2019) and a batch size of 16. We started training from the
pre-trained weights provided by RL-DIF (Ektefaie et al.,
2024).

2.3. Inverse folding metrics

Previous evaluations of antibody-specific inverse folding
methods have relied upon consistency metrics such as se-
quence recovery and structural agreement. However, as
discussed in the introduction diversity between generated
sequences is also a key metric. Therefore, in this study we
report sequence recovery between generated and target se-
quences, diversity between generated sequences and RMSD
between our generated structures, after forward folding, and
the target structures.

For each backbone structure in the test set, we generate 4
sequences, to calculate the diversity, sequence recovery and
RMSD from.

Sequence recovery (SR) gives the fraction of amino acids in
the generated sequence Ŝ that agree with the target sequence
S for a given protein. Thus, for a protein with N residues,
the sequence recovery is given by:

SR(S, Ŝ) =
1

N

N∑
i=0

S[i] = Ŝ[i]

.

Where S[i] gives the amino acid identity at position i of the
sequence.

Sequence Diversity measures the fraction of amino acids
that differ between a set of predicted sequences. For the
set of M predicted sequences {Ŝm}Mk=m we calculate the
diversity D between them as:

D =
1

M(M − 1)

M∑
j=1

M∑
k=1
k ̸=j

1− SR(Ŝk, Ŝj)

RMSD between 3D structures. After forward folding
of our generated sequences, F (Ŝ) with forward folding
method F , we find the root mean squared deviation (RMSD)
between F (Ŝ) and the experimental backbone. We do
this using the rsm cur function from PyMOL. We find the
RMSD for the backbone atoms, after aligning the framework
regions.

3. Results
3.1. AntiDIF shows high sequence recovery and

diversity

Figure 1 shows the sequence recovery and diversity of An-
tiDIF compared with state-of-the-art inverse folding models
(Høie et al., 2023). A table of these results is also pro-
vided in Appendix A.2. Figure 1A shows that AntiDIF
improves upon RL-DIF, the general protein model we build
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Table 1. RMSD (lower is better) between predicted structures from ABodyBuilder2 and experimentally determined backbones. Predicted
sequences from AntiDIF and AntiFold are used for the respective models and the target (native) sequence is used for Native.

CDRH1 CDRH2 CDRH3 CDRL1 CDRL2 CDRL3

AntiDIF 0.758 0.738 1.498 0.769 0.474 0.76
AntiFold 0.751 0.735 1.67 0.751 0.414 0.77
Native 0.69 0.585 0.846 0.577 0.355 0.568

on, for all CDRs. The figure also shows AntiDIF has a simi-
lar sequence recovery to AntiFold and has better sequence
recovery than all of the other models across all CDRs, in-
cluding the antibody specific model AbMPNN. Figure 1B
shows that AntiDIF has substantially improved diversity of
predicted sequences compared with AntiFold with a close to
an order of magnitude improvement across multiple CDRs.
Taken as a whole, these results demonstrate that AntiDIF
greatly increases the diversity of predictions while keeping
competitive sequence recovery rates.

The methods achieve the lowest sequence recovery and the
highest diversity for CDRH3. This is because CDRH3 is
experimentally observed to be the most diverse loop due to
junctional diversity (Weitzner et al., 2015).

Figure 2 compares AntiDIF with AntiFold sampled using
higher temperatures than the default model (t=0.2). Figure
2A shows diversity against sequence recovery averaged over
all CDRs. It shows, as expected, that increasing the tem-
perature of AntiFold increases the diversity of the model’s
predictions but this change also decreases the sequence re-
covery. Importantly, as temperature increases, AntiDIF out-
performs AntiFold in terms of sequence recovery rates while
still producing more diverse predictions. Thus, AntiDIF
demonstrates a better trade-off between sequence recovery
and diversity.

Figure 2B and Figure 2C break down the results by CDRs
for AntiDIF compared with AntiFold 0.5. These figures
show that AntiDIF has the highest sequence recovery across
all CDRs apart from CDRL2 where it is still very compet-
itive. Furthermore, AntiDIF has the best diversity across
all CDRs apart from CDRH3, where it is slightly outper-
formed by AntiFold 0.5 which we note has greatly reduced
sequence recovery for this region. AntiDIF also achieves
both better sequence recovery and diversity across multiple
regions showing a simultaneous improvement across both
metrics of interest.

3.2. AntiDIF shows low RMSD of predicted 3D
structures

Next, we evaluated how well our predicted structures com-
pared with the experimental target structures from SAbDab.
We did this by forward folding our predicted sequences

using AbodyBuilder2 (Abanades et al., 2023). We then
calculated the root-mean-square deviation (RMSD) for the
backbone of the CDRs after aligning the structures on the
framework region. For this analysis, we used the 56 struc-
tures with resolutions < 2.5 Å from the test set as was done
in AntiFold for their structural agreement experiment (Høie
et al., 2023). We considered the four predicted sequences
per protein for each model.

Table 1 (and Figure 3 in Appendix A.2) shows these results
across the different CDRs. The table shows that AntiDIF has
a very similar performance to AntiFold across the majority
of the CDRs. Furthermore, for CDRH3 AntiDIF has slightly
lower RMSD despite AntiDIF having much higher diversity
(Figure 1). Thus, AntiDIF generates both diverse sequences
and plausible structures.

4. Conclusions
Inverse folding is inherently a one-to-many mapping prob-
lem. Furthermore, having multiple sequences that fold into
the same structure is particularly valuable in practice as this
gives a range of sequences that can be selected based on
important properties such as improved stability. However,
diversity between predicted sequences has not been consid-
ered by previous antibody-specific methods. We demon-
strate that by using discrete diffusion our model, AntiDIF,
shows a better trade-off between sequence recovery and di-
versity. When, compared to state-of-the-art inverse folding
methods, AntiDIF vastly improves diversity while keeping
high levels of sequence recovery. Furthermore, the for-
ward folding of our generated sequences shows good 3D
structural agreement with the target structure. These results
show that AntiDIF would be a valuable addition to antibody
design pipelines.

Software and Data
The code is available from https://github.com/
oxpig/AntiDIF. The data used is all publicly available
(Dreyer et al., 2023).
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A. Appendix
A.1. Additional methods

Here we briefly detail discrete diffusion for inverse folding using D3PM see (Austin et al., 2021) and (Ektefaie et al., 2024)
for full details.

The forward noising process is defined for amino acid sequence S at time step t, such that

St ∼ q(St|St−1, Y0) ≡ Cat(St; p = St−1Qt).

Here Qt is a transition matrix, of dimensionality v × v and S0 is the original noise-free sequence and Cat is the categorical
distribution. As in RL-DIF we use uniform transition matrixes.

To parameterise the reverse process for generation we also need the posterior given by:

q(St−1|St, S0) = Cat

(
St−1; p =

StQ
T
t ⊙ S0Q̄t−1

S0Q̄tST
t

)
.

where Q̄t =
∏t

k=1 Qk. Thus, using a neural network allows for the prediction of the sequence S0 and thus, q(St−1|St, S0).
Therefore, after sampling ST from a noised distribution, ST can then be iteratively de-noised to produce a clean sample S.

A.1.1. DATASETS

The SAbDab structures selected by Dreyer et al. are antibodies in complex with antigens. As in AntiFold we only used the
antibody fragments in this study. These antibodies are numbered using IMGT numbering (Lefranc et al., 2003). The OAS
dataset does not contain epitopes. Dreyer et al. filtered the SAbDab structures to remove redundant structures and ones with
high levels of CDR or epitope sequence similarities. They also only keep structures with experimental resolutions < 5Å.
The OAS dataset was filtered by removing duplicates. These datasets were then clustered based on the similarity of the CDR
sequences. The train test split was done based on these clusters such that a SAbDab cluster that would have been in the
OAS training or validation clusters was in the SAbDab training set to ensure no overlap. We further filtered this dataset by
removing structures that could not be modelled by RL-DIF. This lead to the removal of 11 data points from the test set and
32 from the train set. The results for all models presented here are from this same test set.

A.2. Additional figures and tabels
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Figure 3. Box plot of RMSD (lower is better) across the 56 structures considered. RMSD is between predicted structures from ABody-
Builder2 and experimentally determined backbones.

Table 2. Sequence recovery of the different CDR regions (higher is better).

CDRH1 CDRH2 CDRH3 CDRL1 CDRL2 CDRL3

AntiDIF 0.769 0.727 0.598 0.719 0.815 0.734
AntiFold 0.5 0.752 0.712 0.527 0.706 0.822 0.731
AntiFold 0.4 0.763 0.722 0.543 0.716 0.827 0.742
AntiFold 0.3 0.771 0.731 0.559 0.725 0.833 0.75
AntiFold 0.778 0.736 0.57 0.73 0.835 0.756

Table 3. Diversity between the generated sequences for the different CDR regions (higher is better).

CDRH1 CDRH2 CDRH3 CDRL1 CDRL2 CDRL3

AntiDIF 0.135 0.152 0.236 0.149 0.086 0.16
AntiFold 0.5 0.101 0.105 0.251 0.096 0.061 0.113
AntiFold 0.4 0.074 0.076 0.196 0.071 0.049 0.084
AntiFold 0.3 0.052 0.056 0.143 0.049 0.026 0.061
AntiFold 0.03 0.035 0.092 0.036 0.014 0.041
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